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REDUCED UNIT GROUPS IN TOTALLY DEFINITE

QUATERNION ALGEBRAS OVER REAL QUADRATIC FIELDS

QUN LI, JIANGWEI XUE, AND CHIA‐FU YU

ABSTRACT. This is the survey paper of the joint work [8] in progress. The
purpose is to report the results on the classification and enumeration of reduced

unit groups of maximal orders in totally definite quaternion algebras over real
quadratic fields,

1. INTRODUCTION

Let F be a totaıly real number field with ring of integers  O_{F} , and  B a totally
definite quaternion  F‐algebra. Fix a maximal  O_{F}‐order  \mathbb{O} in  B . Denote by  C1(\mathbb{O})
the set of right ideal classes of  \mathbb{O} and by  h(\mathbb{O})  :=|C1(\mathbb{O})| the class number of  \mathbb{O},
which depends only on  B and is independent of the choice of  \mathbb{O} , hence also denoted
by  h(B) . Two  O_{F}‐orders in  B have the same type if they are  B^{x} ‐conjugate. Denote
by  Tp(B) the finite set of conjugacy classes of all maximal  O_{F} ‐orders in  B and write
 t(B)=t(\mathbb{O})  :=|Tp(\mathbb{O})| for the type number of  B.

Using Eichler’s trace formula ([5], [9], cf. [12]) one can compute, for each given
 B , both the class number  h(B) and the type number  t(B) . However, the formula
for  t(B) is more involved; it requires the knowledge of the ideal class group  C1(F)
of  F . In some cases where the totally real field  F has “simpler structure there is
an alternative way of computing  t(B) . Instead of working through Eichler’s trace
formula for  t(B) , one can compute  t(B) directly from  h(B) . More precisely, one
has the following result (see [16]).

Proposition 1. Let  B be a totally definite quaternion algebra over a totally real
number field F. If  B is unramfied at all finite places of  F and  h(F) is odd, then
 h(B)=h(F)t(B)

For example if  F=\mathbb{Q}(\sqrt{p}) , where  p is a prime number, then  h(F) is odd. In
[3, Corollary 18.4] one can find a complete list of quadratic fields with odd class
numbers.

Vignéras [11, Theorem 3.1] gave an explicit formula for  h(\mathbb{O}) (also including
Eichler orders  \mathbb{O} ) where  F is a real quadratic field. Explicit formulas tend to be
very complicated for more general fields  F . However, one can use Eichler’s trace
formula to evaluate  h(\mathbb{O}) for each given case. Kirschmer and Voight [7] have worked
out the analogous Gauss class number in this setting. They determined all Eichler
 O_{F}‐orders with class number  \leq 2 . Previously Brzezinski  11 ] obtained a complete
list of all orders (including non‐Gorenstein orders) in definite quaternion  Q‐algebras
with class number one.
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Let  I_{1} , . . . ,  I_{h} be a complete set of representatives of the right ideal class set
 C1(\mathbb{O}) . The mass of  C1(\mathbb{O}) is defined to be

Mass (  \mathbb{O} )  := \sum_{i=1}^{h}\frac{1}{|\mathbb{O}_{i}^{\cross}/O_{F}^{\cross}|} , where  \mathbb{O}_{i}  :=\mathcal{O}_{l}(I_{i}) is the left order of  I_{i}.

The group  \mathbb{O}_{i}^{\cross}/O_{F}^{\cross} is finite and called the reduced unit group of  \mathbb{O}_{i} . The mass is
much easier to compute. For example, if  [F:\mathbb{Q}]=2 , the mass formula states

Mass  ( \mathbb{O})=\frac{1}{2}\zeta_{F}(-1)\prod_{p1\mathfrak{d}(\mathbb{O})}(N(P)-
1) ,

where  \zeta_{F}(s) is the Dedekind zeta function of  F,  N(p)=|O_{F}/p| , and  \mathfrak{d}(\mathbb{O}) is the
discriminant of  \mathbb{O} . In general, Eichler’s trace formula gives

 h(\mathbb{O})= Mass  (\mathbb{O})+El1(\mathbb{O}) ,

where the calculation of the elliptic part  El1(\mathbb{O}) involves listing all imaginary qua‐
dratic  O_{F} ‐orders  R with non‐trivial reduced unit group  R^{\cross}/O_{F}^{X} , and computing
their class nutnbers and the nutnber of local optimal embeddings into  \mathbb{O}.

It is expected that Mass (  \mathbb{O} ) is the “main term”’ for  f\iota(\mathbb{O}) . In other words, the
ideal classes  [I_{i}]\in C1(\mathbb{O}) with  \mathbb{O}_{i}^{\cross}/O_{F}^{\cross}=1 should constitute the majority of  C1(\mathbb{O}) .
More precisely, one has the following conjecture.

Conjecture 2. We have

  \frac{Mass(\mathbb{O})}{h(\mathbb{O})}  arrow ı, as long as  h(\mathbb{O})arrow\infty.

This expectation is verified [15, Section 6.3] for the family of totally definite
quaternion  \mathbb{Q}(\sqrt{p}) ‐algebras  B_{\infty_{1},\infty_{2}} which are unramified at all finite places of
 \mathbb{Q}(\sqrt{p}) with  p running through all prime numbers. In general, it follows from
Eichler’s trace formula that the term  El1(\mathbb{O}) is a linear combination of class numbers
of two kinds of CM extensions  K/F :

 \bullet  K=F(\zeta_{2n}) for a suitable class of  nEN ;
 \bullet  K=F(\sqrt{-\varepsilon_{i}}) for a finite system of totally positive units  \varepsilon_{i}\in O_{F}^{\cross}.

(See (5.1) for the possible CM fields  K in the case  [F :  \mathbb{Q}]=2 ). Therefore,
one needs to compare the term  \zeta_{F}(-1)h(F) with the class numbers  h(F(\zeta_{2n}))
and  h(F(\sqrt{-\varepsilon_{i}})) . When the degree  [F : \mathbb{Q}] is bounded, the numbers of terms
 h(F(\zeta_{2n})) and  h(F(\sqrt{-\varepsilon_{i}})) are bounded. However, as  [F:\mathbb{Q}] increases, one needs
to show that the number of terms increases moderately compared with the growth
of  \zeta_{F}(-1)h(F) . One can ask whether or not   h(\mathbb{O})arrow\infty if and only if the absolute
discriminant disc  (F)arrow\infty . If this is the case, then the problem would be reduced
to the analysis of the growth behavior of  \zeta_{F}(-1) and the relative class numbers
 h(K)/h(F) in terms of the growth of the discriminant of  F.

2. THE EXAMPLE OF QUATERNION  Q‐ALGEBRAS

Let  B be a definite quaternion  Q‐algebra and  \mathbb{O} a maximal order in  B . For
each  n\geq 1 , denote by  C_{n} the cyclic group of order  n . Then (see [12, Chapter V,
Proposition 3.1])

(2.1)  \mathbb{O}^{\cross}\in\{C_{2}, C_{4}, C_{6}\}
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except that

 B=B_{2,\infty} ,  h(\mathbb{O})=1 ,  \mathbb{O}^{X}\simeq SL_{2}(\Gamma_{3}) , or

 B=B_{3,\infty}, h(\mathbb{O})=1, \mathbb{O}^{\cross}\simeq \mathbb{Z}
/3\mathbb{Z}\rangle\triangleleft \mathbb{Z}/4\mathbb{Z},

where  B_{p,\infty} denotes the quaternion  \mathbb{Q}‐algebra ramified exactly at  \{p, \infty\} . Thus,  \mathbb{O}^{\cross}

is cyclic except for finitely many definite quaternion  \mathbb{Q}‐algebras  B and for finitely
many (not necessarily maximal) orders  \mathbb{O} up to conjugate. Put

(2.2)  h(B, G) :=\#\{[I]\in C1(\mathbb{O})|\mathcal{O}_{l}(I)^{x}/\{\pm 1\}\simeq G\},

and set  h(G)=h(B, G) if  B is clear from the context. By the Deuring‐Eichler‐Igusa
class number formula [4], for  B=B_{p,\infty} and  p\geq 5 , one can deduce

(2.3)  h(C_{1})=h(B, C_{\perp})= \frac{p-1}{12}-\frac{1}{4}(1-(\begin{array}{l}
-4
-
p
\end{array}))-\frac{1}{6}(1-(\frac{-3}{p})) ,

(2.4)  h(C_{2})= \frac{1}{2}(1-(\begin{array}{l}
-4
-
p
\end{array})) , h(C_{3})=\frac{1}{2}(1-(\begin{array}{l}
-3
-
p
\end{array})) .

In particular, we have

(2.5)  \mathcal{O}_{l}(I)^{\cross}=\{\pm 1\}, \forall[I]\in C1(\mathbb{O})
\Leftrightarrow p\equiv 1 (mod 12) .

Note that for any fixed maximal order  \mathbb{O}\subset B_{p,\infty} , we have a natural bijection

 C1(\mathbb{O})  \simeq  \{gu1are11i_{P^{ticcurvesover}p}\dot{{\imath}}somorphism classes o

 fs_{\frac{u}{\mathbb{F}}}per\sin-\}
[I]  \ovalbox{\tt\small REJECT}  [E]

which identifies  \mathcal{O}_{l}(I) with End(E) . Using (2.4) and the geometric interpretation
above, we compute in [17] forms of supersingular elliptic curves over a suitable non‐
perfect field, and compute their endomorphism algebras. As a result, we obtain the
following result.

Proposition 3 ([17, Theorem 1.3]). There exists a supersingular elliptic curve  E

over  5 ome field  k\supset \mathbb{F}_{p} with  End_{k}^{0}(E)=\mathbb{Q} if and only if  p\not\equiv 1 (lnod 12).

For the remainder of this note, we shall focus on the case where  F=\mathbb{Q}(\sqrt{d}) is
a real quadratic field with a square free  d\in \mathbb{N}.

3. RESULTS FOR  F=\mathbb{Q}(\sqrt{p}),  p A PRIME

Let  p be a pritne number and  B the totally definite quaternion  F=\mathbb{Q}(\sqrt{p})-
aıgebra ramified only at the two infinite places of  F , which is also denoted by
 B_{\infty_{1},\infty} , . Fix again a maximal  O_{F}‐order  \mathbb{O} in  B . In this case, there is a natural
bijection (see [13, Theorem 6.2] and [15, TheoreIn 6.1.2])

Cl (  \mathbb{O} )  \simeq  \{\begin{array}{l}
\Gamma_{p}-\dot{{\imath}}somorph{\imath} smclassesof\sup ers{\imath} 
ngularabelian
surfa^{a}cesXover\mathbb{F}_{p}with\Gamma robeniuseIld_{0I}norph{\imath} sIn
\pi_{X}^{2}=pandend_{O1}norphi_{S1}nringEnd_{\Gamma_{p}}(X)\supset O_{F}
\end{array}\} .

For any finite group  G , put

  t(G):=\#  \{\begin{array}{lllll}
B^{\cross}   - conjugacy   classes   of   \max imal
O_{F}- orders      \mathcal{O}\subseteq Bwith   \mathcal{O}^{\cross}/O_{F}
^{\cross}\simeq G   
\end{array}\} .
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Proposition 1 also gives the class‐type number relation

(3.1)  h(G)=h(F) .  t(G) .

Thus, knowing  t(G) amounts to knowing  h(G) . For any  71\geq 1 , denote by  D_{n} the
dihedral group of order  2n.

Lemma 4. We have

 \bullet  p=2,  h(\mathbb{O})=1andh(S_{4})=1.
 \bullet  p=3,  h(\mathbb{O})=2andh(S_{4})=h(D_{12})=1.
 \bullet  p=5,  h(\mathbb{O})=1andh(A_{5})=1.

Theorem 5. Assume  p\geq 7.
(1) (Hashimoto [6]) For  p\equiv 1mod 4 , we have

 t(C_{1})= \frac{\zeta_{F}(-1)}{2}-\frac{h(-p)}{8}-\frac{h(-3p)}{12}-\frac{1}{4}
(\frac{p}{3})-\frac{1}{4}(\frac{2}{p})+\frac{1}{2},
 t(C_{2})= \frac{h(-p)}{4}+\frac{1}{2}(\frac{p}{3})+\frac{1}{4}(\frac{2}{p})-
\frac{3}{4},
 t(C_{3})= \frac{h(-3p)}{4}+\frac{1}{4}(\frac{p}{3})+\frac{1}{2}(\frac{2}{p})-
\frac{3}{4},
 t(D_{3})= \frac{1}{2}(1-(\frac{p}{3})) , t(A_{4})=\frac{1}{2}(1-(\frac{2}{p})) ,

and  t(G)=0 for any group  G not in the above list. Here  h(m) is short for
 h(\mathbb{Q}(\sqrt{m})) for a square‐free integer  m\in \mathbb{Z}.

(2) (Li‐Xue‐Yu) For  p\equiv 3 lnod  4_{f} we have

t(Cı)  = \frac{\zeta_{F}(-1)}{2}+(-7+3(\frac{2}{p}))\frac{h(-p)}{8}-\frac{h(-2p)}{4}-
\frac{h(-3p)}{12}+\frac{3}{2},
 t(C_{2})=(2-( \frac{2}{p}))\frac{h(-p)}{2}+\frac{h(-2p)}{2}-\frac{5}{2},
 t(C_{3})= \frac{h(-3p)}{4}-1,
 t(C_{4})=(3-( \frac{2}{p}))\frac{h(-p)}{2}-1,
 t(D_{3})=1 , t(D_{4})=1, t(S_{4})=1,

and  t(G)=0 for a ny group  G not listed above.

By Theorem 5, there exists a superingular abelian surface  X over  \Gamma_{p} with non‐
abelian reduced automorphism group RAut(X)  =Aut(X)/O_{F}^{\cross} if and only if  p\equiv 3
 (mod 4) or  p\not\equiv 1(mod 24) . Note that  p\equiv 3(mod 4) implies  p\not\equiv 1(mod 24) .
Using a similar idea of the proof of Proposition 3, one can prove

Proposition 6. If  p\not\equiv 1(mod 24) , then there exists a superingular abelian surface
 X over some field  k\supset\Gamma_{p} such that  End_{k}^{0}(X)\simeq \mathbb{Q}(\sqrt{p}) .

Question 7. (1) Is  p\not\equiv 1(mod 24) a necessary condition for the assertion of
Proposition 6?

(2) For a given prime  p , what are all possible endomorphism algebras of super‐
singular abelian surfaces over some field of characteristic  p>0 ?
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One can use results of [17] to deduce all possible endomorphism algebras of non‐
simple supersingular abelian surfaces. The most interesting part of Question 7 (2)
then is for simple supersingular abelian surfaces.

4. RESULTS FOR  F=\mathbb{Q}(\sqrt{d})

Let  F=\mathbb{Q}(\sqrt{d}) be an arbitary quadratic real field, with a square free  d\in \mathbb{N},
and  B be any totally definite quaternion  F‐algebra. Our main result may be
rephrased roughly as follows:

We have explicit formulas  t(G) for each finite non‐cyclic group  G (See Propo‐
sition 14) and a complete recipe for calculating  h(G) for each finite group  G (See
Section 8). When  B=B_{\infty_{1},\infty_{2}} and  h(F) is odd, we have an explicit formula for
 t(G) for each finite group  G.

Remark 8. (1)  In fact, the only obstacle between us and a complete formula for
 h(G) is the overwhelming number of cases that the problem naturally divides into,
rendering any unified formula too cumbersome and unwieldy. However, for any
class of quadratic real fields that one has a good grasp on the fundamental units,
deduction of explicit formulas for  h(G) based on our recipe becomes entirely routine.
One such example is when  B=B_{\infty_{1},\infty_{2}} and  d=p is a prime as in part (2) of
Theorem 5.

(2) If one drops one of the conditions  B=B_{\infty_{1},\infty_{2}} and  h(F) being odd in
Theorem 4, there is no known explicit formula for  t(B) even for  [F:\mathbb{Q}]=2 . Thus,
our assumption for the result of  t(G) is not too restricted. The main reason for
making this assumption is based on Proposition 1. However, the present method
goes beyond these restrictions. Indeed, our result of determination of  t(G) for
non‐cyclic groups  G does not require this assumption and it is even simpler if
 B\not\simeq B_{\infty_{1},\infty_{2}} . It is possible to explore relations of  h(G) and  t(G) more explicitly
by cases under a weaker condition than that  h(F) is odd.

(3) Our result refines the explicit formula for  h(B) given by Vignéras [11]. How‐
ever, we do not have a new approach for Vignéras’s explicit class number formula.
Indeed, the way we compute all  h(G) is to treat those  G\neq C{\imath} first, and then use
Vignéras’s explicit formula to obtain  h(C_{1}) .

Let  \mathcal{O} be an  O_{F} ‐order in  B . Then

 \mathcal{O}^{\star}:=\mathcal{O}^{X}/O_{F}^{\cross}\in\{C_{n}, D_{n}(1\leq 
n\leq 6orn=12), A_{4}, S_{4}, A_{5}\}.
The idea is to regard  \mathcal{O}^{\star} as a finite subgroup of  SO_{3}(\mathbb{R}) via the embedding

 \mathcal{O}^{\star}\mapsto(B\otimes_{F}\mathbb{R})^{\cross}/\mathbb{R}^{\cross}
=\mathbb{H}^{\cross}/\mathbb{R}^{X}\simeq SO_{3}(\mathbb{R}) ,

and use the well‐known classification of finite subgroups of  SO_{3}(\mathbb{R}) (See [12, The‐
orem I.3.6]). Note that if  \~{u}\in \mathcal{O}^{\star} is an element of finite order, then ord(ũ)  \in\{1\leq
 n\leq 6\}\cup\{12\}.

There are strong restrictions on  F and  B if one of the groups  C_{5},  C_{12},  A_{5} may
occur. More explicitly,

 C_{5}\subset \mathcal{O}^{\star}\Leftrightarrow F=\mathbb{Q}(\sqrt{5}) and  \mathbb{Q}(\zeta_{10})\subset B,

 C_{12}\subset \mathcal{O}^{\star}\Rightarrow F=\mathbb{Q}(\sqrt{3}) and  Q((_{12} )  \subset B,

 A_{5} occurs  \Leftrightarrow F=\mathbb{Q}(\sqrt{5}) and  B=B_{\infty_{1},\infty_{2}}.
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In fact, when  d\in\{2,3,5\} , there exists an  O_{F} ‐order with non‐cyclic reduced
unit group if and only if  B\simeq B_{\infty}\perp,\infty_{2} , which has already been treated in Section 3.
Thus, we may consider only the following list for square‐free  d\geq 6 :

(4.1)  \mathcal{G}:=\{C_{1}, C_{2}, C_{3}, C_{4}, C_{6}, D_{2}, D_{3}, D_{4}, D_{6}, 
A_{4}, S_{4}\}.

For non‐cyclic groups in  \mathcal{G} , one has the following inclusions:

(4.2)  D_{2}\subset D_{4}\subset S_{4}, D_{2}\subset A_{4}\subset S_{4}, D_{3}\subset\
{S_{4}, D_{6}\}, \{D_{2}, D_{3}\}\subset D_{6}.

The proof of Theorem 4 is divided into the following steps:

1. Make finer classification of the possibly non‐cyclic groups  G that may occur
(See Definition 10).

2. Determine explicitly  t(G) for non‐cyclic groups  G.

3. Determine  h(G) from  t(G) for non‐cyclic groups  G.

4. Use the relation of global and local optimal embeddings. This step produces
linear relations roughly of the form

(4.3)   \sum_{C_{n}\subset G}a_{n}(G)h(G)=\sum_{R}h(R)\prod_{p}m_{p}(R) , \forall 
n\geq 2,
where  R runs through certain  O_{F}‐orders in CM extensions of  F and  m_{p}(R)
denotes the number of conjugacy classes of local optimal embeddings from
 R to  \mathbb{O} at  p . Then we solve recursively for  h(G) starting from the maximal
groups to smaller groups. This step produces formulas for  h(G) except for
 G=C_{1}.

5. For  G=C_{1} , the relation (4.3) reduces to

  \sum_{G}h(G)=h(\mathbb{O}) .

We then use Vignéras’s explicit formula for  h(\mathbb{O}) to obtain  h(C_{1}) .

The remaining part of this note will illustrate the steps of the proof.

5. OCCURENCE OF NON‐CYCLIC GROUPS

In this section, we let  F=\mathbb{Q}(\sqrt{d}) with  d\geq 6 , and let  B,  \mathcal{O} be the same as in
the previous section. Denote by  \varepsilon the fundamental unit of  O_{F} . Put

 S:=\{\begin{array}{ll}
\{1\}   if N_{F/\mathbb{Q}}(\varepsilon)=-1;
\{1, \varepsilon\}   otherwise.
\end{array}
For any non‐trivial element ũ  \in \mathcal{O}^{\star}=\mathcal{O}^{\cross}/O_{F}^{\cross} , denote by  K_{\overline{u}}  :=F[u] and
 O_{F} [ũ]  :=O_{F}[u] , respectively, the field and order generated by any lifting  u\in \mathcal{O}

of ũ. Clearly,  K_{\overline{u}} and  O_{F} [ũ] are independent of the choice of  u . One can always
choose a representative  u\in \mathcal{O}^{\cross} so that  Nr(u)\in S . Such a choice of representative
is unique up to sign. For any CM extension  K with maximal totally real subfield
 F , the Hasse index is defined to be  Q_{K/F}  :=[O_{K}^{\cross} : \mu_{K}O_{F}^{\cross}]\in\{1,2\} , where  \mu_{K} is
the group of roots of unity in  K.

Definition 9. We say a CM extension  K/F is of type I (resp. of type II) if  Q_{K/F}=
ı (resp.  Q_{K/F}=2).
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If  K/F is of type I, then  O_{K}^{x}/O_{F}^{\cross}\simeq\mu_{K}/\{\pm 1\} , otherwise,  O_{K}^{x}/O_{F}^{x} is a cyclic
group of order  |\mu_{K}| . Thus, if  \mu_{K}=\{\pm 1\} , then  [O_{K}^{\cross} : O_{F}^{\cross}]\in\{1,2\} and

 K/F is of type I  \Leftrightarrow[O_{K}^{\cross} : O_{F}^{x}]=1.
We list some properties:

(i) If  N_{F/\mathbb{Q}}(\varepsilon)=-1 , then ord(ũ)  \in\{2,3\} , otherwise, ord(ũ)  \in\{2,3,4,6\}.
(ii) If  ord(\overline{u})=4 then  N_{F/\mathbb{Q}}(\varepsilon)=1,  K_{u}-=F(\sqrt{-1}) and  F(\sqrt{-1})/F is of type

II. The CM extension  F(\sqrt{-1})/F is of type II if and only if  2\varepsilon\in(F^{X})^{2}
(See [2, Lemma 2]). In particular,

 2\varepsilon\in(F^{\cross})^{2}\Rightarrow O_{F(\sqrt{-1})}^{\cross}/O_{F}^{x}
\simeq \mathbb{Z}/4\mathbb{Z} and  N_{F/\mathbb{Q}}(\varepsilon)=1.

(iii) If  ord(\overline{u})=6 then  N_{F/\mathbb{Q}}(\varepsilon)=1,  K_{\overline{u}}=F(\sqrt{-3}) and  F(\sqrt{-3})/F is of type
II. The CM extension  F(\sqrt{-3})/F is of type II if and only if  3\varepsilon\in(F^{\cross})^{2}
(ibid.). In particular,

 3\varepsilon\in(F^{\cross})^{2}\Rightarrow O_{F(\sqrt{-3})}^{\cross}/O_{F}
^{\cross}\simeq \mathbb{Z}/6\mathbb{Z} and  N_{F/\mathbb{Q}}(\varepsilon)=1.

(iv) If  N_{F/\mathbb{Q}}(\varepsilon)=-1 , then by (ii) and (iii) both  F(\sqrt{-1})/F and  F(\sqrt{-3})/F
are of type I. In this case ord(ũ)  =2,3 , then there is no element in  \mathcal{O}^{\star} of
order 4 nor 6, and hence  \mathcal{O}^{\star} cannot be isomorphic to  S_{4} nor  D_{6}.

(v) If  N_{F/\mathbb{Q}}(\varepsilon)=1 , and  K/F is a CM‐extension of type II with  \mu_{K}=\{\pm 1\}
(so  [O_{K}^{\cross} :  O_{F}^{\cross}]=2 ), then  K=F(\sqrt{-\varepsilon}) and  3\varepsilon\not\in F^{\cross 2} . Thus, if  K/F is a
CM‐extension with  [O_{K}^{\cross} : O_{F}^{\cross}]>1 , then

(5.1)  K=\{\begin{array}{ll}
F(\sqrt{-1}) or F(\sqrt{-3})   if N_{F/\mathbb{Q}}(\varepsilon)=-1;
F(\sqrt{-1}), F(\sqrt{-\varepsilon}) , or F(\sqrt{-3})   if N_{F/\mathbb{Q}}
(\varepsilon)=1.
\end{array}
(vi) Note that   2\varepsilon and   3\varepsilon cannot be perfect squares in  \mathbb{Q}(\sqrt{d}) simultaneously

unless  d=6 , in which case it does happen.
(vii) Let  \mathcal{O}^{1} be the subgroup of  \mathcal{O}^{\cross} consisting of elements of reduced norm 1.

Then  [\mathcal{O}^{\star} : \mathcal{O}^{1}/\{\pm 1\}]\leq 2 , and the equality holds if and only if  N_{F/\mathbb{Q}}(\varepsilon)=1
and there exists  u\in \mathcal{O}^{X} such that  Nr(u)=\varepsilon . Since  A_{4} has no subgroup of
index 2, if  \mathcal{O}^{\star}\simeq A_{4} for a maximal order  \mathcal{O} , then  \mathcal{O}^{\cross}=O_{F}^{\cross}\mathcal{O}^{1}

According to the above discussion, we list possible values of ord(ũ) and possible
reduced unit groups that may occur.

If  d=p is an odd prime, then
 \bullet  N_{F/\mathbb{Q}}(\varepsilon)=-1 if  p\equiv 1 (mod4), so  \{2\varepsilon, 3\varepsilon\}\cap F^{\cross 2}=\emptyset ;
 \bullet  2\varepsilon\in(F^{\cross})^{2} if  p\equiv 3(mod 4) .

Let  d=6 and  B=B_{\infty_{1},\infty_{2}} . We know that  h(\mathbb{Q}(\sqrt{6}))=1 and  h(\mathbb{O})=3 for any
maximal  O_{F} ‐order  \mathbb{O} in  B . By (ii) and (iii), we have  h(D_{6})=1 and at least one of
 D_{4} and  S_{4} occurs. On the other hand,  \zeta_{F}(-1)=1/2 , so Mass  (\mathbb{O})=1/4 . The only
possibility is  1/|S_{4}|+1/|D_{4}|+1/|D_{6}|=1/4 . Therefore,  h(D_{4})=h(D_{6})=h(S_{4})=
 1 . On the other hand, if  B\neq B_{\infty_{1},\infty_{2}} , then  \mathbb{O}^{\star} is cyclic for every maximal order  \mathbb{O}
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in  B/\mathbb{Q}(\sqrt{6}) (See Proposition 12).

Below we list the conditions on  F for which order ord(ũ) may occur, and their
characteristic polynomials  P_{\overline{u}}(x) . If  2\varepsilon\in F^{x2} , then we write  \varepsilon=2\vartheta^{2} with  \vartheta\in F,
and if  3\varepsilon\in F^{\cross 2} , we write  \varepsilon=3\varsigma^{2} with  \varsigma\in F.

Remark that

 e for each  r\in\{3,4,6\} , the representatives of elements of order  r are  B^{\cross}-

conjugate up to sign;
 e there are two different kinds of units of order 2 if  N_{F/\mathbb{Q}}(\varepsilon)=1.

6. MINIMAL  G‐ORDERS

In this section, let  F=\mathbb{Q}(\sqrt{d}) be a real quadratic field with a square free  d\geq 6
and  B be a totalıy definite quaternion  F‐algebra.

Definition 10. Let  G be a non‐cyclic group in  \mathcal{G} in (4.1). An  O_{F}‐order  \mathcal{O} in  B is
called a minimal  G ‐order if

 \bullet  \mathcal{O}^{\star}=\mathcal{O}^{X}/O_{F}^{\cross} contains a subgroup isomorphic to  G ;
 \bullet  \mathcal{O} is generated over  O_{F} by the representatives of elements of  G.

If  G=D_{2} or  D_{3} , we say  \mathcal{O} is of type  I if every element of order 2 in  G has minimal
polynomial  x^{2}+1 . Otherwise, we say  \mathcal{O} is of type II.

If  \mathcal{O} is a maximal order with  \mathcal{O}^{\star}\supseteq G , then  \mathcal{O} contains a minimal  G‐order.
For  G=D_{4},  D_{6} or  S_{4} , there always exist elements of order 2 in  G with minimal
polynomial   x^{2}+\varepsilon . On the other hand, if  G=A_{4} then every element of order 2 in
 G has minimal polynomial  x^{2}+1 (See property (vii) in Section 5).

Theorem 11 (Uniqueness of minimal  G‐orders). Fix a non‐cyclic group  G and
a type (I or II if necessary). If a minimal  G ‐order of that t?jpe exists,  then\uparrow t is
unique up to  B^{\cross} ‐conjugation.

Below we list the conditions on  F and  B in order for a minimal  G‐order to occur

and explicit representatives of minimal  G‐orders.

87



88
UNIT GROUPS

Here  \xi=(1+i+j+k)/2\in  ( \frac{-1,-1}{F}) and  \mathfrak{d}(\mathcal{O}) is the (reduced) discriminant of  \mathcal{O}.

From this table, we can draw a few conclusions:

(i) We have  t(S_{4})\in\{0,1\} , and  t(S_{4})=1 if and only if  2\varepsilon\in F^{\cross 2} and   B\simeq

 ( \frac{-1,-1}{F})\simeq B_{\infty_{1},\infty_{2}}.
(ii) We have  t(D_{6})\in\{0,1\} , and  t(D_{6})=1 if and only if  3\varepsilon\in F^{\cross 2} and

 B \simeq(\frac{-1,-3}{F})\simeq B_{\infty_{1},\infty_{2}}.

 (\dot{{\imath}}\dot{{\imath}}i)(iv)Ift(D_{4})Ift(A_{4})\geq 1, then B \simeq\geq 1,then 2   \varepsilon\in(\frac{-1,-l}{F}). Convers,if B  \simeq(\frac{-i^{2}-1\infty}{F})F^{\cross 2}andB\simeq(\frac{-1,-1}{e1yF})
\simeq B_{\infty_{1}},, and 2 splits in
 F , then any minimal  A_{4}‐order is maximal and  t(A_{4})=1.

(v) If   B\simeq  ( \frac{-1,-3}{F}) and 3 splits in  F , then any minimal  D_{3}^{I} ‐order is maximal
and  t(D_{3}^{I})=1.

(vi) If  N_{F/\mathbb{Q}}(\varepsilon)=1 and   B\simeq  ( \frac{-\varepsilon,-3}{F}) has reduced discriminant  3O_{F} , then any
minimal  D_{3}^{II} ‐order is maximal and  t(D_{3}^{II})=1.

(vii) If  B\not\simeq B_{\infty_{1},\infty_{2}} and neither 2 nor 3 splits in  F , then  t(G)=0 for any

(viii)  IfN_{F/\mathbb{Q}}(\varepsilon)=1, then t  hequate\Gammanion F -a1gebra (  \frac{exam-\varepsilon,-1}{(respF})(respunram\dot{{\imath}}fied a ta11 finite p  1 aces vof F  w\dot{{\imath}}thv(2. with v
 non-cyc1\dot{{\imath}}cg

roup G   Th\dot{{\imath}}sapp1iestothecase' forp{\imath} e,F=(\frac{-\varepsilon,-
3(\sqrt{6}}{3)F}))is\mathbb{Q}.)(This
follows from results of  \mathfrak{d}(\mathcal{O}) .

Proposition 12. Let  F be a real quadratic field and  B a totally definite quaternion
 F ‐algebra. Then any reduced unit group of an order in  B is cyclic except when

 B \in\{(\frac{-1,-1}{F}), (\frac{-1,-3}{F})\} if  N_{F/\mathbb{Q}}(\varepsilon)=-1 ,  or

 B \in\{(\frac{-1,-1}{F}), (\frac{-1,-3}{F}), (\frac{-\varepsilon,-1}{F}), 
(\frac{-\varepsilon,-3}{F})\} if  N_{F/\mathbb{Q}}(\varepsilon)=1.

Proposition 12 and (2.1) may be generalized to arbitrary totally real fields.

Proposition 13. Let  F be a totally real field. Then there exists a finite set  \mathscr{B}_{F} of
totally definite quaternion  F ‐algebras depending only on  F such that for any totally
definite  F ‐algebra  B\not\in \mathscr{B}_{F} , the reduced unit group of any  O_{F} ‐order in  B is cyclic.
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7. COMPUTATION OF  t(G) FOR NON‐CYCLIC GROUPS  G

In this section,  F=\mathbb{Q}(\sqrt{d}) with  d\geq 7 and  B is a totally definite quaternion
 F‐algebra. For a minimal  G‐order  \mathcal{O} with a noncyclic  G\in \mathcal{G} , we write  \aleph(\mathcal{O}) for the
number of maximal orders containing  \mathcal{O} , and  \supset(\mathcal{O}) for the number of conjugacy
classes of maximal orders containing  \mathcal{O} . Clearly,  \supset(\mathcal{O})\leq\aleph(\mathcal{O}) .

Proposition 14. We have

(7.1)  t(D_{6})=\{\begin{array}{ll}
1   if B= (\frac{-1,-3}{F}) and 3e\in F^{\cross 2};
0   otherwise;
\end{array}
(7.2)  t(S_{4})=t(D_{4})=\{\begin{array}{ll}
1   if B= (\frac{-1,-1}{F}) and 2e\in F^{\cross 2};
0   otherwise;
\end{array}
(7.3)  t(A_{4})=\{\begin{array}{ll}
1   if B= (\frac{-{\imath},-{\imath}}{F}) and 2\varepsilon\not\in F^{\cross 2};
0   otherwise_{f}.
\end{array}

Note that  2\varepsilon\in(F^{\cross})^{2} implies that 2 is ramified in  F . Thus,  t(D_{4})=t(S_{4})=0
if 2 is unramified in  F . Similarly, if 3  (d , then  3\varepsilon\not\in(F^{\cross})^{2} , and hence  t(D_{6})=0.

Proposition 15. We have

(7.4)  t(D_{2}^{I})=\{\begin{array}{ll}
1   if B= (\frac{-1,-1}{F}) , (\frac{F}{2})=0 and 2\varepsilon\not\in F^{\cross 
2};
0   otherwise.
\end{array}
Here the Artin symbol  ( \frac{F}{2})=0 if and only if 2 is ramified in  F.

The computation of  t(D_{2}^{II}) requires much detailed case studies. By the table in
Section 6,  t(D_{2}^{II})=0 if  B is not isomorphic to  ( \frac{-1,-\varepsilon}{F}) . Now let  B=  ( \frac{-1,-\varepsilon}{F}) and
 \mathscr{O}_{2}^{II} be the minimal  D_{2}^{II}‐order in the table of Section 6, whence we assume that

 N_{F/\mathbb{Q}}(\varepsilon)=1 . One can show that if  d\equiv 1(mod 8) then  \varepsilon=a+b\sqrt{d}\in \mathbb{Z}[\sqrt{d}] with
 a odd.

Lemma 16. Suppose that  N_{F/\mathbb{Q}}(\varepsilon)=1 . Then  B=  ( \frac{-1,-\varepsilon}{F}) splits at all finite
places of  F except when  d\equiv 1(mod 8) and  \varepsilon=a+b\sqrt{d} with  a\equiv 1(mod 4) . In
the exceptional case,  B is ramified at the two dyadic places of  F.

We have the following table for  \aleph(\mathscr{O}_{2}^{II}) and  =(\mathscr{O}_{2}^{II}) .

Proposition 17. Suppose that  d\geq 7 and  B=  ( \frac{-1_{)}-\varepsilon}{F}) . Then

(7.5)  t(D_{2}^{II})+t(D_{4})+t(S_{4})+t(D_{6})=\supset(\mathscr{O}_{2}^{II}) .

In most cases, formula (7.5) can be simplified further. The fact that   2\varepsilon and   3\varepsilon

cannot simutaneously be perfect squares in  F for  d\geq 7 implies that  t(D_{6})(t(S_{4})+
 t(D_{4}))=0 . For example, if  d\equiv 1(mod 4) , then  2\varepsilon\not\in F^{\cross 2} and hence  t(S_{4})=
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 t(D_{4})=0 . So in this case  t(D_{2}^{II})+t(D_{6})=\supset(\mathscr{O}_{2}^{II}) . If further  d\equiv 1(mod 8) and

 a\equiv 1(mod 4) , then  t(D_{2})=t(D_{2}^{II})=1.

Finally we turn to the computation of  t(D_{3}^{I}) and  t(D_{3}^{II}) .
We first consider the case  B=  ( \frac{-1,-3}{F}) , which is necessary for  t(D_{3}^{I})\neq 0 . One

can show that the minimal  S_{4}|‐order  \mathbb{O}_{24} in the table of Section 6 does not contain

any minimal  D_{3\backslash }^{I} ‐order and the minimal  D_{6} ‐order there contains the minimal  D_{3^{-}}^{I}
order  \mathscr{O}_{3}^{I}.

Note that  \mathscr{O}_{3}^{I}\simeq O_{3,\infty}\otimes O_{F} , where  O_{3,\infty} is the unique maximal order up to

conjugation of the quaternion  \mathbb{Q}‐algebra  B_{3,\infty}=( \frac{-1,-3}{\mathbb{Q}}) . If 3 splits in  F , then  B

is ramified at two places of  F over 3 and  \mathscr{O}_{3}^{I} is maximal. If 3 is ramified in  F , then
one can show that there is a unique maximal order containing  \mathscr{O}_{3}^{I} . If 3 is inert in
 F , then  \mathscr{O}_{3}^{I} is an Eichler order of prime level  3O_{F} and the two maximal over‐orders
are mutually conjugate. Therefore, we always have  \supset(\mathscr{O}_{3}^{I})=1.

Proposition 18. There is only one maximal order up to conjugation containing
 \mathscr{O}_{3}^{I} and  t(D_{3}^{I})+t(D_{6})=1 . Thus,

(7.6)  t(D_{3}^{I})=\{\begin{array}{ll}
1   if B= (\frac{-1,-3}{F}) and 3\varepsilon\not\in F^{\cross 2};
0   other?rise.
\end{array}
Lastly, suppose that  N_{F/\mathbb{Q}}(\varepsilon)=1 . Let  B:=  ( \frac{-\varepsilon,-3}{F}) and  \mathscr{O}_{3}^{II} be the minimal

 D_{3}^{II} ‐order in the table of Section 6. Write   \varepsilon=\frac{a+b\sqrt{d}}{2} with  a\equiv b(mod 2) . If  d\equiv 1

 (mod 3) and  N_{F/\mathbb{Q}}(\varepsilon)=1 , then 3  |b . This is immediately seen by taking both
sides of  a^{2}-b^{2}d=4 modulo 3. We have  \varepsilon\equiv\pm 1(mod 3O_{F}) in this case. Note

that  ( \frac{F}{3})=0,1,  -1 according to  d\equiv 0,1,2(mod 3) .

Lemma 19. The quaternion algebra  B=  ( \frac{-\varepsilon,-3}{F}) splits at all finite places of  F

coprime to 3. If  d\not\equiv 1(mod 3) , then  B splits at the unique prime of  F above 3 as
well. When  d\equiv 1(mod 3) .  B splits at the two places of  F above 3 if and only if
 \varepsilon\equiv-1(mod 3O_{F}) .

We list  \aleph(\mathscr{O}_{3}^{II}) and  \supset(\mathscr{O}_{3}^{II}) in the following table.

Here  p=(3,\sqrt{d}) denotes the unique prime ideal of  F above 3 when 3  |d.

Proposition 20. Suppose that  d>6 and  B=  ( \frac{-\varepsilon,-3}{F}) . Then

(7.7)  t(D_{3}^{II})+t(S_{4})+t(D_{6})=\supset(\mathscr{O}_{3}^{II}) .

As mentioned before,  t(D_{6})=0 in (7.7) when  d\not\equiv 0(mod 3) . If further  d\equiv 1

 (mod 3) and  \varepsilon\equiv 1(mod 3O_{F}) , then  \mathscr{O}_{3}^{II} is maximal in  B and  t(D_{3}^{II})=1.

90



QUN LI, .JIANGWEI XUE, AND CHIA‐FU YU
 g1

8. OPTIMAL EMBEDDINGS AND CLASS‐TYPE NUMBER RELATIONS

In previous sections we determine the refined type numbers  t(G) for non‐cyclic
groups  G . As described in the previous section, for  G=D_{2} or  D_{3} one actually
needs finer invariants and conditions on  B and  F in order to deterlnine the numbers

 t(G) explicitly. The next step is to colnpute  h(G) for each non‐cyclic group  G . In
this section we discuss a class‐and‐type number relation in sufficient generality.

Let  F be a number field with the ring of integers  O_{F} . Let  B be a division
quaternion  F‐algebra, and  Tp(B) the set of types of maximal orders in  B . For
any maximal  O_{F}‐order  \mathbb{O} in  B , we write  C1(\mathbb{O}) for the set of right ideal classes
of  \mathbb{O} , and  \mathcal{N}(\mathbb{O}) for the normalizer of  \mathbb{O} . By [10, Theorem 22.10], the set of
nonzero two‐sided fractional ideals of  \mathbb{O} forms a commutative multiplicative group
 \mathscr{I}(\mathbb{O}) , which is a free abelian group generated by the prime ideals of  \mathbb{O} . Let
 \mathscr{P}(\mathbb{O})\subseteq \mathscr{I}(\mathbb{O}) be the subgroup of principal two‐sided fractional ideals of  \mathbb{O} , and
 \mathscr{P}(O_{F}) the group of principal fractional  O_{F}‐ideals, identified with a subgroup of
 \mathscr{P}(\mathbb{O}) via  xO_{F}\mapsto x\mathbb{O},  \forall x\in F^{\cross}

Fix a maximal order  \mathbb{O}_{0} in  B . There is a surjective map of finite sets

(8.1)  T :  C1(\mathbb{O}_{0})arrow Tp(B) ,  [I]\mapsto[\mathcal{O}_{l}(I)I  :=D^{\cross} ‐conjugacy class of  \mathcal{O}_{l}(I) .

The cardinality of each fiber of  T may be calculated as follows. For each maximal
order  \mathbb{O} , then there is bijection [12, Lemma III.5.6]

(8.2)  T^{-1}([\mathbb{O}\square )\ovalbox{\tt\small REJECT} \mathscr{I}(\mathbb{O})
/\mathscr{P}(\mathbb{O}) .

The quotient group  \mathscr{I}(\mathbb{O})/\mathscr{P}(\mathbb{O}) sits in a short exact sequence

(8.3)  1arrow \mathcal{N}(\mathbb{O})/(F^{\cross}\mathbb{O}^{\chi})arrow 
Pic(\mathbb{O})arrow \mathscr{I}(\mathbb{O})/\mathscr{P}(\mathbb{O})arrow 1.

Here  Pic(\mathbb{O}) denotes the Picard group  \mathscr{I}(\mathbb{O})/\mathscr{P}(O_{F}) , whose cardinality can be
calculated using the short exact sequence

(8.4)  1 arrow C1(O_{F})arrow Pic(\mathbb{O})arrow\prod_{p|\mathfrak{d}(B)}(\mathbb{Z}
/2\mathbb{Z})arrow 0.
It follows that

(8.5)  | T^{-1}([\mathbb{O}I)|=\frac{2^{\omega(B)}h(F)}{|\mathcal{N}(\mathbb{O})
/(F^{\cross}\mathbb{O}^{\cross})|},
where  \omega(B) denotes the number of finite primes of  F that are ramified in  B.

Let  \mathbb{O}_{1} , . . . ,  \mathbb{O}_{t(G)} be representatives for maximal orders with non‐cyclic reduced
unit group  G . Then by (8.5), one gets

(8.6)  h(G)= \sum_{i=1}\frac{2^{\omega(B)}h(F)}{|\mathcal{N}(\mathbb{O}_{i})
/(F^{\cross}\mathbb{O}_{i}^{\cross})|}.
 t(G)

Lastly, we describe the strategy for coinputing  h(C_{n}) . Suppose further that  B

is a totally definite quaternion  F‐algebra, and  \mathcal{O} is an  O_{F}‐order in  B . For an
 O_{F} ‐order  R inside a CM‐extension  K/F , we write  E_{I}nb(R, \mathcal{O}) for the finite set of
optimal  O_{F} ‐embeddings of  R into  \mathcal{O} . In other words,

 Emb(R, \mathcal{O}) :=\{\varphi\in Hom_{F}(K, B)|\varphi(K)\cap \mathcal{O}=
\varphi(R)\}.

The group  \mathcal{O}^{X} acts on  Emb(R, \mathcal{O}) from the right by  \varphi\mapsto u^{-1}\varphi u for all  \varphi\in

 Emb(R, \mathcal{O}) and  u\in \mathcal{O}^{\cross} We denote  m(R, \mathcal{O}, \mathcal{O}^{\cross})  :=|Emb(R, \mathcal{O})/\mathcal{O}^{\cross}| . For each
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nonzero prime ideal  p of  O_{F} , we set  m_{p}(R)  :=m(R_{p}, \mathcal{O}_{p}, \mathcal{O}_{p}^{\cross}) . Let  h=h(\mathcal{O}) , and
 I_{1} , . . . ,  I_{h} be a complete set of representatives of the right ideal class  C1(\mathcal{O}) . Define
 \mathcal{O}_{i}  :=\mathcal{O}_{l}(I_{i}) for each  1\leq i\leq h . By [12, Theorem 5.11, p. 92],

(8.7)   \sum_{i=1}^{h}m(R, \mathcal{O}_{i}, \mathcal{O}_{i}^{\cross})=h(R)\prod_{p}m_{
\mathfrak{p}}(R) ,

where the product on the right hand side runs over all nonzero pritne ideals of  O_{F}.
A priori, Theorem 5.11 of [12] is stated for Eichler orders, but it applies in much
more generality. See [14, Lemma 3.2] and [15, LeInma 3.2.1]. When  \mathcal{O}=\mathbb{O} is
maximal, we have

(8.8)  m_{p}(R)  :=\{\begin{array}{ll}
1-- (\frac{R}{\mathfrak{p}})   if p|\mathfrak{d}(B) ,
1   otherwise,
\end{array}
where  ( \frac{R}{p}) is the Eichler symbol [12, p. 94].

Let  \mathscr{R}_{n} be the finite set of  O_{F}‐orders  R in CM‐extension of  F such that   R^{\cross}/O_{F}^{\cross}\simeq
 C_{n} . We also define two subsets of  Tp(B) :

 Tp^{o}(B)  :=\{[\mathbb{O}I\in Tp(B)|\mathbb{O}^{\star} is cyclic}, and  Tp^{\#}(B)  :=Tp(B)-Tp^{\circ}(B) .

If  [\mathbb{O}_{i}I\in Tp^{\circ}(B) , then  \mathbb{O}_{i}^{\star}\simeq C_{n} if and only if  Emb(R, \mathbb{O}_{i})\neq\emptyset for some  R\in \mathscr{R}_{n}.
When the latter condition holds, such an order  R is uniquely determined, and
 m(R, \mathbb{O}_{i}, \mathbb{O}_{i}^{\cross})=2 . For each fixed  R\in \mathscr{R}_{n} , let

 h  (C_{n}, R)=h(B, C_{n}, R)  :=\# {  [I]\in C1(\mathbb{O}_{0})|\mathcal{O}_{l}(I)^{\star}\simeq C_{n} , and  Emb(R, \mathcal{O}_{i}(I))\neq\emptyset }.

Then we have

(8.9)  h(C_{n})= \sum_{R\in \mathscr{B}_{n}}h(C_{n}, R) .

Combining (8.6) and (8.7), we obtain

(8.10)  2^{\omega(B)}h(F) \sum_{I[\mathbb{O}\in Tp^{f}(B)}\frac{m(R,\mathbb{O},
\mathbb{O}^{\cross})}{|\mathcal{N}(\mathbb{O})/(F^{\cross}\mathbb{O}^{\cross})|}
+2h(C_{n}, R)=h(R)\prod_{p}m_{p}(R) .

It is a calculation intensive process to list  \mathcal{N}(\mathbb{O}) for each  [\mathbb{O}I\in Tp^{\#}(B) . Once this
is completed, it then reduces to compute the numbers of global optimal embeddings
 m(R, \mathbb{O}, \mathbb{O}^{\cross}) for all  R\in \mathscr{R}_{n} and  [\mathbb{O}I\in Tp^{\#}(B) , which is comparably much more
managable.
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