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§O Introduction

Let  \mathbb{G} be a reductive linear algebraic group defined over  k , and  \mathbb{X} be an affine algebraic
variety defined over  k which is  G‐homogeneous, where and henceforth  k stands for a
non‐archimedian local field of characteristic  0 . The Hecke algebra  \mathcal{H}(G, K) of  G with
respect to  K acts by convolution product on the space of  C^{\infty}(K\backslash X) of  K‐invariant  \mathbb{C}-

valued functions on  X , where  K is a maximal compact open subgroup of  G=\mathbb{G}(k) and
 X=\mathbb{X}(k) . A nonzero function in  \mathcal{C}^{\infty}(K\backslash X) is called a spherical function on  X if it is a
common  \mathcal{H}(G, K) ‐eigen function.

Sherical functions on the spaces of susquilinear forms are particularly interenting,
sincce they have a close relation to classical number theory, e.g., local densities of rep‐
resentations of corresponding forms. For the case of alternating forms and unramified
hermitian forms, the main terms of the explicit formulas are related to Hall‐Littlewood
polynomials of type  A_{n} , which are well studied. Hence it is possible to extract local den‐
sities of forms. For the case of unitary hermitian forms, the main terms of the explicit
formulas are related to Hall‐Littlewood polynomials of type  C_{n}.

In the present paper, we consider the space  X of quaternion hermitian forms on a
 p‐adic field  k of odd residual characteristic, define typical spherical functions and describe
the relation to the local densities of forms in §1 and §2. Then we study the functional
equations and location of possible poles and zeros of the spherical functions in §3, and
give explicit formulas by a general method introduced in [H4] in §4. In this case we obtain
a different kind of symmetric polynomials as the main terms of the spherical functions.
In §5, we put some remarks and recall previous results on sesquilinear forms.
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§1 The space  X and spherical functions on it

Let  k be a  p‐adic field of odd residual characteristic, and denote by  0 the ring of integers,
 \pi a fixed prime element, and  q the cardinality of  0/(\pi) . Let  D be a division quaternion
algebra over  k and  \mathcal{O} be the maximal order in  D . Then there is an unramified quadratic
extension  k' of  k in  D , for which  k'=k(\epsilon),  \epsilon^{2}\in 0^{\cross} and we may take the prime element
 \Pi of  D such that  \Pi^{2}=\pi,  \Pi\epsilon=-\epsilon\Pi and the set  \{1, \epsilon, \Pi, \Pi\epsilon\} forms a standard basis of

 \mathcal{O}/0 . Then the standard involution  * on  D is defined by

 \alpha=a+b\epsilon+c\Pi+d\Pi\epsilon\mapsto\alpha^{*}=a-b\epsilon-c\Pi-
d\Pi\epsilon, (a, b, c, d\in k) , (1.1)

and where  \alpha\alpha^{*}\in k.

There is a  k‐algebra inclusion  \varphi :  Darrow M_{2}(k') such that

 \alpha(1, \Pi)=(1, \Pi)\varphi(\alpha), \varphi(\alpha)=(\begin{array}{ll}
a+b\epsilon   (c-d\epsilon)\pi
 c+d\epsilon   a-b\epsilon
\end{array}) \in l\downarrow I_{2}(k') ,

 \det(\varphi(\alpha))=\alpha\alpha^{*}=N_{rd}(\alpha)\in k,
 trace(\varphi(\alpha))=\alpha+\alpha^{*}=T_{rd}(\alpha)\in k , (1.2)

where  \alpha is written as in (1.1),  N_{rd} is the reduced norm, and  T_{rd} is the reduced trace.
Based on  \varphi , we have a  k‐algebra inclusion  \varphi_{n}  M_{n}(D)arrow M_{2n}(k') and the reduced
norm and trace of an element of  A\in M_{n}(D) are give by

 N_{rd}(A)=\det(\varphi_{n}(A)) , T_{rd}(A)=trace(\varphi_{n}(A))(\in k) . (1.3)

In particular, we see

 N_{rd}(a)=\det(a)^{2},  T_{rd}(a)=2trace(a) , for  a\in M_{n}(k) . (1.4)

Since  N_{rd} and  T_{rd} do not depend on the choice of splitting fields, we will use also another
 k‐algebra inclusion  \varphi_{n}' :  M_{n}(D)arrow M_{2n}(k(\Pi)) based on

 \alpha(1, \epsilon)=(1, \epsilon)\varphi'(\alpha) , \varphi'(\alpha)=
(\begin{array}{ll}
a+c\Pi   (b+d\Pi)\epsilon^{2}
b-d\Pi   a-c\Pi
\end{array})
 N_{rd}(A)=\det(\varphi_{n}'(A)) , T_{rd}(A)=trace(\varphi_{n}'(A))(\in k) . (1.5)

We extend the involution  * on  A=(a_{ij})\in M_{mn}(D) by  A^{*}=(a_{ji}^{*})\in M_{nm}(D) . We define
the space  X_{n} of quaternion hermitian forms and the action of  G_{n}=GL_{n}(D) as follows

 X_{n}=\{x\in G_{n}|x^{*}=x\},
 g\cdot x=gxg^{*}=x[g^{*}] , for  (g, x)\in G_{n}\cross X_{n} . (1.6)

Denote by  K_{n} the maximal order in  G_{n} , i.e.,  K_{n}=G_{n}(\mathcal{O}) . Then, it is known ([Jac]) the
set  K_{n}\backslash X_{n} of  K_{n}‐orbits in  X_{n} is bijectively correspond to

 \Lambda_{n}= {  \alpha=(\alpha_{1}, \ldots, \alpha_{n})\in \mathbb{Z}^{n}| if  \alpha_{i}isodd, then # \{j\alpha_{1}\geq\alpha_{2}\geq\cdots\geq\alpha_{n},|\alpha_{j}=\alpha_{i}\} is even }. (17)
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In fact, we associate each  \alpha\in\Lambda_{n} with the matrix  \pi^{\alpha}\in X_{n} as follows. Writing

 \alpha=  P_{i}>0,   \sum_{\dot{\lambda}}\ell_{i}=n , (1.8)

we set

 \pi^{\alpha}=\{\pi^{\alpha_{1}^{l_{1}}}
\rangle\perp\cdots\perp\langle\pi^{\alpha_{f}^{p_{r}}}\}, \{\pi^{\alpha_{i}
^{\ell_{z}}}\}\in X_{\ell_{i}},

 \{\pi^{\alpha_{i}^{\ell_{i}}}\}=\{\begin{array}{ll}
Diag (\pi^{e}, \ldots, \pi^{e})   if \alpha_{i}=2e,
(_{-\pi^{e}\Pi}0 \pi_{0}^{e}\Pi)\perp\cdots\perp(_{-\pi^{e}\Pi}0 \pi_{0}^{e}\Pi)
  if \alpha_{i}=2e+1.
\end{array} (1.9)

For  g\in G_{n} , we denote by  g^{(i)} the upper left  i\cross i‐block of  g,  1\leq i\leq n . For  x\in X_{n},
 x^{(i)}=x^{(i)*} and  x^{(i)}\in X_{i} if  N_{rd}(x^{(i)})\neq 0 . Because of the  K_{n}‐orbit decomposition of  X_{n},
we see

  N_{rd}(\pi^{\alpha})=\pi^{|\alpha|}, (|\alpha|=\sum_{i=1}^{n}\alpha_{i}\in 
2\mathbb{Z}) ,

 N_{rd}(x)\in k^{2}, (x\in X_{n}) . (1.10)

We set  B_{n} the Borel subgroup of  G_{n} consisting of lower triangular matrices. Since  (p.
x  )^{(i)})=p^{(i)}\cdot x^{(i)} , we see for  (p, x)\in B_{n}\cross X_{n} and  i

 N_{rd}((p\cdot x)^{(i)})=\psi_{i}(p)^{2}N_{rd}(x^{(i)}) , \psi_{i}(p)=N_{rd}(p^
{(i)}) . (1.11)

For  x\in X_{n} and each  i with  1\leq i\leq n , set

 d_{i}(x)\in k , by  d_{i}(x)^{2}=N_{rd}(x^{(i)}),  1\leq i\leq n , (1.12)

then each  d_{i}(x) is a  B_{n}‐relative invariant associated with  k‐rational character  \psi_{i},   1\leq i\leq
 n . We define spherical function  \omega(x;s) , for  x\in X_{n} and  s\in \mathbb{C}^{n} , set

  \omega(x;s)=\int_{K_{n}}|d(k\cdot x)|^{s}dk, |d(y)|^{s}=\{\begin{array}{ll}
\prod_{i=1}^{n}|d_{i}(y)|^{s_{i}}   if y\in X_{n}^{op}
0   otherwise,
\end{array} (1.13)

where  dk is the normalized Haar measure on  K_{n},  || is the absolute value on  k , and

 X_{n}^{op}=\{x\in X_{n}|d_{i}(x)\neq 0,1\leq i\leq n\} . (1.14)

The integral in (1.13) is absolutely convergent if  {\rm Re}(s_{i})\geq 0,1\leq i\leq n-1 , and continued
to a rational function of  q^{s_{1}} , . . . ,  q^{s_{n}} . It is easy to see that  \omega(x;s) is  K_{n}‐invariant and
becomes a common eigenfunction with respect to the Hecke algebra  \mathcal{H}(G, K) , in fact

 (f* \omega(;s))(x) (= \int_{G_{n}}f(g)\omega(g^{-1}\cdot x;s)dg)
 = \lambda_{s}(f)\omega(x;s) , (f\in \mathcal{H}(G, K)) . (1.15)
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Here

 \lambda_{s} :  \mathcal{H}(G, K)arrow \mathbb{C}(q^{s_{1}} . , q^{s_{n}}) ,

 f \mapsto\int_{B_{n}}f(p)\prod_{i=1}^{n}|\psi_{i}(p)|^{-s_{i}}\delta(p)dp , (1.16)

where  dp is the left invariant measure on  B_{n} with modulus character  \delta . The Weyl group  S_{n}
of  G_{n} acts on  \{s_{1}, . . . , s_{n}\} through its action on the rational characters  \{|\psi_{i}|^{s_{i}}|1\leq i\leq n\}.
It is convenient to introduce a new variable  z\in \mathbb{C}^{n} related to  s\in \mathbb{C}^{n} by

 s_{i}=-z_{i}+z_{i+1}-2(1\leq i\leq n-1) , s_{n}=-z_{n}+n-1 , (1.17)

and denote  \omega(x;s)=\omega(x;z) and  \lambda_{s}=\lambda_{z} . Then  S_{n} acts on  \{z_{1}, . . . , z_{n}\} by permutation,
and the  \mathbb{C}‐algebra map  \lambda_{z} is the Satake isomorphism

 \lambda_{z} :  \mathcal{H}(G, K)arrow^{\sim}\mathbb{C}[q^{\pm z_{1}}, , q^{\pm z_{n}}]^{S_{n}} . (1.18)

§2 Local densities and spherical functions

We state the induction theorem (Theorem 2.1) of spherical functions, with which we may
regard spherical functions as generating functions of local densities of representations. We
start with the definition of local densities. For  A\in X_{m} and  B\in X_{n} with  m\geq n , we
define

  \mu(B, A)=\lim_{\ellarrow\infty}\frac{N_{\ell}(B,A)}{q^{\ell n(4m-2n+1)+n(n-1)
}} , (2.1)

  \mu^{pr}(B, A)=\lim_{\ellarrow\infty}\frac{N_{p}^{pr}\ell(B,A)}{q^{\ell n(4m-
2n+1)+n(n-1)}} , (2.2)

where

 N_{\ell}(B, A)=\#\{u\in M_{mn}(\mathcal{O}/\mathcal{P}^{2\ell})|A[u]-B\in H_{n}
(\mathcal{P}, P)\},
 N_{p}^{pr}(B, A)=\#\{u\in M_{mn}^{pr}(\mathcal{O}/\mathcal{P}^{2\ell})|A[u]-
B\in H_{n}(\mathcal{P}, \ell)\},
 H_{n}(\mathcal{P}, \ell)=\{A=(a_{ij})\in M_{n}(\mathcal{O})|A=A^{*}, a_{ii}\in 
p^{p}, a_{ij}\in \mathcal{P}^{2\ell-1}, (^{\forall}i,j)\},

 I)_{J}I_{mn}^{pr}(\mathcal{O}/\mathcal{P}^{2\ell})=GL_{m}(\mathcal{O}
/\mathcal{P}^{2e})  (\begin{array}{l}
1_{n}
0
\end{array}) ,  \mathcal{P}=\Pi \mathcal{O},  p=\pi 0.

Set  \Lambda_{n}^{+}=\{\alpha\in\Lambda_{n}|\alpha_{n}\geq 0\} . Then

 X_{n}( \mathcal{O})(=X_{n}\cap M_{n}(O))=\bigcup_{\alpha\in\Lambda_{1}^{+}},
K_{n}\cdot\pi^{\alpha}.
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For  r\in \mathbb{Z},  x\in X_{n} and  y\in X_{m} with  m\geq n , we see

 \mu^{(pr)}(\pi^{r}x, \pi^{r}y)=q^{rn(2n-1)}\mu^{(pr)}(x, y) , (2.3)

 \omega(\pi^{r}x;s)=q^{-\Sigma_{i=1}^{n}is_{i}}\omega(x;s)=q^{r(z_{1}+\cdots+
z_{n})}\omega(x;s) , (2.4)

where  \mu^{(pr)}  ( ,  ) means that the identity holds both local density  \mu( ,  ) and primitive local
density  \mu^{pr}( ,  ) .

Theorem 2.1 Let  m>n . Then, for any  \xi\in X_{m}^{+} , one has

 \omega(\pi^{\xi};s{\imath}, . . . s_{n}, 0, \ldots, 0)
 =   \frac{w_{n}(q^{-2})w_{m-n}(q^{-2})}{w_{m}(q^{-2})}
\cross\sum_{\alpha\in\Lambda_{n}^{+}}\frac{\mu^{pr}(\pi^{\alpha},\pi^{\xi})}{\mu
(\pi^{\alpha},\pi^{\alpha})} .  \omega(\pi^{\alpha};s_{1}\ldots, s_{n})

 =   \frac{w_{n}(q^{-2})w_{m-n}(q^{-2})}{w_{m}(q^{-2})}\prod_{\dot{i}=1}^{n}(1-q^{-
(s_{i}+\cdots+s_{n}+2m-2i+2)})\cross\sum_{\alpha\in\Lambda_{n}^{+}}
\frac{\mu(\pi^{\alpha},\pi^{\xi})}{\mu(\pi^{\alpha},\pi^{\alpha})} .  \omega(\pi^{\alpha};s_{1}\ldots, s_{n}) ,

where  w_{m}(t)= \prod_{i=1}^{m}(1-t^{i}) .

The above theorem can be proved in a similar way to the case for alternating, hermitian
or symmetric forms (cf. [HS1], [H1]). For the present case the result is proved in the master
thesis of Y. Ohtaka ([Oh]) in a slightly different definition, and he used it to obtain the
explicit formula of spherical functions of size 2.

In general, it is not easy to obtain the value of (primitive) local density in a good
form. The following formula by using character sum is useful for the calculation. For
 B=(b_{ij}),  C=(c_{i_{J}'})\in X_{n} , set

  \{B, C\rangle=\sum_{\dot{i}=1}^{n}b_{ii^{C_{\dot{i}}}i}+\sum_{1\leq i<j\leq n}
T_{rd}(b_{ij}c_{ij})\in k . (2.5)

Proposition 2.2 Let  \ell\geq 1 and take a character  \chi=\chi_{\ell} of  0/p^{\ell} such that  \chi is nontrivial
on  p^{p-1}/p^{p} . For  A\in X_{m}^{+} and  B\in X_{n}^{+} with  m\geq n , one has

 N_{\ell}^{(pr)}(B, A)=q^{-\ell n(2n-{\imath})} \sum_{Y\in M_{n}(\mathcal{O}
/\mathcal{P}^{2\ell})}\sum_{X\in l\iota I_{mn}^{(pr)}(\mathcal{O}/\mathcal{P}
^{2p})}\chi(\{A[X]-B, Y\}) . (2.6)

 Y=Y^{*}

It is not so difficult to obtain the density of itself  \mu(\pi^{\alpha}, \pi^{\alpha})=\mu^{pr}(\pi^{CY} , \pi^{\alpha}) , and we have
the following result.

Proposition 2.3 Assume  \alpha\in\Lambda_{n} is given as in (1.8). Then one has

  \mu(\pi^{\alpha}, \pi^{\alpha})=q^{2n(\alpha)+\frac{1}{2}|\alpha|+\frac{1}{2}
\Sigma_{i:2v\alpha_{i}}\ell_{2}}\prod_{\dot{b}=1}^{r}  \{\begin{array}{ll}
w_{\ell_{\iota}}(-q^{-{\imath}})   \dot{i}f2|\alpha_{i}
w_{\Delta}p_{2}(q^{-4})   \int if2\alpha_{i}
\end{array}\} , (2.7)

where

 w_{p}(t)= \prod_{i=1}^{\ell}(1-t^{i}) . (2.8)
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We define an integral transform  F_{0} on the Schwartz space

 \mathcal{S}(K\backslash X)= {  \varphi :  Xarrow \mathbb{C}| left  K‐invariant, compactly supported},

by using spherical function  \omega(x;z) as the kernel function. We will modify  F_{0} into  F in
§3.

Proposition 2.4 For each  \varphi\in S(K\backslash X)_{f} set

 F_{0} :  \mathcal{S}(K\backslash X)  arrow  \mathbb{C}(q^{s_{1}}, \ldots, q^{s_{n}}) ,
(2.9)

  \varphi \mapsto \int_{X}\varphi(x)\omega(x;s)dx,

where  dx is a  G ‐invariant measure on X. Then the spherical Fourier transform  F_{0} is
injective and compatible with the action of  \mathcal{H}(G, K) :

 F_{0}(f*\varphi)=\lambda_{z}(f)F_{0}(\varphi) , f\in \mathcal{H}(G, K) , 
\varphi\in S(K\backslash X) ,

where  \lambda_{z} is defined in (1.18).

The injectivity of  F_{0} is proved by using the lemma below and induction on the size  n.

The similar lemma for symmetric forms and hermitian forms was used in [H1] to prove
the injectivity, and the original lemma for symmetric forms had proved by Kitaoka ([Ki]).
We define an order  \geq in  \Lambda_{n} by

 \gamma\geq\alpha\Leftrightarrow\gamma=\alpha or  \gamma_{n-i}=\alpha_{n-i},  1\leq i<r , and  \gamma_{n-r}>\alpha_{n-r} for some  r\geq 0.

Lemma 2.5 Let  n be an integer with  n\geq 2 . For any  \alpha\in\Lambda_{n}^{+} , there exists  \beta\in\Lambda_{n-1}^{+}
which satisfies the following properties.

(1)  \mu^{pr}(\pi^{\beta}, \pi^{\alpha})\neq 0.
(2) If  \gamma\in\Lambda_{n}^{+} satisfies

(i)  |\gamma|=|\alpha| , (ii)  \gamma\geq\alpha and (iii)  l^{L^{pr}(\pi^{\beta}},  \pi^{\gamma} )  \neq 0_{f}

then  \gamma=\alpha.

§3 Functional equations of spherical functions

First we note the result for size 2, which can be obtained by Theorem 2.1.
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Proposition 3.1 For any  \alpha\in\Lambda_{2} , one has

 \omega(\pi^{\alpha};z)

 =  \{\begin{array}{ll}
\frac{q^{\langle\lambda,z_{0}\rangle}}{1+q^{-2}}\cdot\frac{1}{q^{z_{2}}-
q^{z\perp+1}}\sum_{\sigma\in S_{2}}\sigma(q^{\langle\lambda,z\rangle}(q^{z_{1}}-
q^{z_{2}-2})(q^{z_{1}}-q^{z_{2}+1})q^{z_{1}}-q^{z_{2}})   if \alpha=2\lambda,
q(1-q^{-1})\frac{q^{e(z_{1}+z_{2})}}{q^{z_{2}}-q^{z_{1}+1}}   if \alpha=(2e-1, 
2e-1) ,
\end{array}
where  z_{0}=(1, -1)rightarrow s=0,  \{\lambda,  z\rangle=\lambda_{1}z_{1}+\lambda_{2}z_{2} and  S_{2} acts on {zı,  z_{2} } by permutation.
Especially, for any  x\in X_{2} , one has

 (q^{z_{2}}-q^{z_{1}+1})\cdot\omega(x;z)\in \mathbb{C}[q^{\pm z_{1}}, q^{\pm 
z_{2}}]^{S_{2}} . (3.1)

We use the similar method for the study the functional equations and holomorphy for
general  n to the case of unramified hermitian forms. We introduce, for  \varphi\in S(K\backslash X)

  \Phi(s, \varphi)=\int_{X}|d(x)|^{s}\varphi(x)dx,  |d(x)|^{s}=\{\begin{array}{ll}
\prod_{i=1}^{n}|d_{i}(x)|^{s_{i}}   if x\in X^{op}
0   otherwise,
\end{array} (3.2)

where  dx is a  G‐invariant measure on  X . The integral is absolutely convergent if  {\rm Re}(s_{i})\geq
 0,1\leq i\leq n-1 , and continued to a rational function of  q^{s_{1}} , . . . ,  q^{s_{n}} . Keeping the relation
(1.17) between  s and  z , we denote  \Phi(z, \varphi) .

Lemma 3.2 Let  n\geq 2 and take  \alpha with  1\leq\alpha\leq n-1 . Then for any  \varphi\in \mathcal{S}(K\backslash X) , one
has

  \Phi(z, \varphi)=\int_{X^{op}}\prod_{i\neq\alpha,\alpha+1}|d_{i}(x)|^{s_{i}}
\prod_{j=\alpha\pm 1}|d_{j}(x)|^{\lrcorner^{s_{2}}x+s_{j}} .   \varphi(x)\cdot\omega^{(2)}(\overline{x};s_{\alpha}, -\frac{s_{\alpha}}{2})dx , (3.3)

where  \overline{x} to be the lower right  (2\cross 2) ‐block of  (x^{(\alpha+1)})^{-1} and  \omega^{(2)}(y;s) indicates the spherical
function of size of 2.

Proposition 3.3 The function

  \prod_{1\leq i<j\underline{<}n}(q^{z_{j}}-q^{z_{i}+1})\cross\Phi(z, \varphi)
is holomorphic in  \mathbb{C}^{n} and  S_{n} ‐invariant, hence it is an element of

 \mathbb{C}[q^{\pm z_{1}}, . . . q^{\pm z_{n}}]^{S_{n}}.

When we take the characteristic function of  K\cdot x for  x\in X_{n} as  \varphi , we have
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Theorem 3.4  G_{n}(z)\cdot\omega(x;z) is holomorphic for  s\in \mathbb{C}^{n} and  S_{n} ‐invariant, where

 G_{n}(z)= \prod_{1\leq i<j\leq n}(q^{z_{j}}-q^{z_{i}+1}) .

Especially one has

 G_{n}(z)\cdot\omega(x;z)\in \mathbb{C}[q^{\pm z_{1}}, q^{\pm z_{n}}]^{S_{n}}.

By Theorem 3.4, we modify the spherical Fourier transform  F_{0} in (2.9) as follows.

Corollary 3.5 Define the normalized spherical Fourier transform by

 F :  S(K\backslash X)  arrow  \mathbb{C}[q^{\pm z_{1}} , , q^{\pm z_{n}}]^{S_{n}} (  =\mathcal{R} , say)

 \varphi  \mapsto   \hat{\varphi}(z)=\int_{X}\varphi(x)\cdot\omega(x;z)G_{n}(z)dx . (34)

Then  F is an injective  \mathcal{H}(G, K) ‐module map, hence one has the commutative diagram

 \mathcal{H}(G,K)\lambda_{z}\downarrow?\mathcal{R} \cross\cross \mathcal{S}
(K\backslash X)F\downarrow \mathcal{R} arrow^{arrow 0*} S(K\backslash X)
F\downarrow \mathcal{R}, (3.5)

where the  upper* is the action of  \mathcal{H}(G, K) on  \mathcal{S}(K\backslash X) , the lower arrow is the multipli‐
cation in  \mathcal{R} and  \lambda_{z} is the Satake isomorphism defined in (1.18).

§4 Explicit formula for  \omega(x;z)
As for the explicit formula of  \omega(x;z) , it suffices to determine at a representative for every
 K‐orbit in  X , hence at  \pi^{\alpha},  \alpha\in\Lambda_{n} (cf. (1.9)). Since we have obtained the functional
equation of  \omega(x;z) in a good shape, we may apply the general expression formula given
in [H4] of spherical function on homogeneous spaces. We note here that  X_{n} is a single
 B_{n}‐orbit.

Proposition 4.1 For general  x\in X and  z\in \mathbb{C}^{n} , one has

  \omega(x;z)=\frac{1}{Q_{n}\cdot G_{n}(z)}\cross\sum_{\sigma\in S_{n}}
\sigma(\gamma_{n}(z)G_{n}(z)\delta(x;z)) . (4.1)
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Here  G_{n}(z) is given in Theorem 3.4,

 Q_{n}= \frac{\prod_{i=1}^{n}(1-q^{-2_{\dot{i}}})}{(1-q^{-2})^{n}},
  \gamma_{n}(z)=\prod_{1\leq i<j\underline{<}n}\frac{1-q^{z_{i}-z_{j}-2}}{1-
q^{z_{i}-z_{j}}}=\prod_{x<j}\frac{q^{z_{j}}-q^{z_{i}-2}}{q^{z_{j}}-
q^{z_{\lambda}}},
  \delta(x;z)=\delta(x;s)=\int_{U}|d(\nu\cdot x)|^{s}d\nu=\int_{U_{1}}
|d(\nu\cdot x)|^{s}d\nu,

where  U is the Iwahori subgroup of  K_{n} associated with the Borel groups  B_{7?}

We note here that  Q_{n}= \sum_{\sigma\in S_{n}}[U\sigma U : U]^{-1} and  \gamma_{n}(z) are determined by the group
 G_{n}=GL_{n}(D) , hence the problem is reduced to the calculation of  \delta(x;z) . For each
 \alpha=(\alpha_{i})\in\Lambda_{n} , we set

 \lambda_{\alpha}=(\lambda_{i})\in\Lambda_{n} by  \lambda_{i}=\{\begin{array}{ll}
\frac{\alpha_{i}}{2}   if 2 |\alpha_{i}
\frac{\alpha_{i}+1}{2}   if 2 \int\alpha_{i}
\end{array} (4.2)

If  \alpha has an odd entry, odd entries appear in pairs. We assume they are

 \alpha_{\ell_{1}},  \alpha_{\ell_{1}+1} , . . .  \alpha_{\ell_{k}},  \alpha_{P_{k}+1},  \ell_{1}<\ell_{2}<. . .  <\ell_{k} , (4.3)

and set

 I_{odd}(\alpha)=\{\ell_{1}, . . . \ell_{k}\}, c_{odd}(\alpha)=(1-q^{-1})^{k}
\cdot q^{\Sigma_{\ell\in I_{odd}(\alpha)}(n-2\ell+1)} . (4.4)

If  \alpha has no odd entry we say  \alpha is even, and set   I_{odd}(\alpha)=\emptyset and  c_{odd}(\alpha)=1 for convenience.

Onıy if  \alpha is even,  \pi^{\alpha} is diagonal and   \lambda_{\alpha}=\frac{\alpha}{2}.
We introduce some more notation. Take  j=j_{n} to be an element in  K whose anti‐

diagonal entries are 1 and the others are  0 , consider  j .  \pi^{\alpha}\in K .  \pi^{\alpha}\subset X , and set
 jz=(z_{n}, \ldots, z_{1}) . We write

 z_{0}= (-n+1, -n+3, \ldots , n-1)\in \mathbb{C}^{n} (4.5)

the corresponding value in  z‐variable to  s=0\in \mathbb{C}^{n} . For  \lambda\in \mathbb{Z}^{n} and  z\in \mathbb{C}^{n} , set
  \{\lambda, z\}=\sum_{i=1}^{n}\lambda_{i}z_{\dot{\lambda}}.

Lemma 4.2 For any  \alpha\in\Lambda_{n} , one has

  \delta(j\cdot\pi^{\alpha};z)=\frac{e_{odd}(\alpha)\cdot q^{\langle\lambda_{a},
z_{0}\rangle+(\lambda_{\alpha,\dot{f}}z\rangle}}{\prod_{\ell\in I_{odd}(\alpha)}
(q^{z_{n-\ell\cdot 1}}-q^{z_{\gamma t}-\ell+1})} . (4.6)

The calculation of the above lemma for odd  \alpha is rather troublesome. By proposition 4.1
and Lemma 4.2, we obtain the following explicit formulas of spherical functions.
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Theorem 4.3 For any  \alpha\in\Lambda_{n} , one has

  \omega(\pi^{\alpha};z)=\frac{c_{odd}(\alpha)\cdot q^{\langle\lambda_{\alpha},
z_{0}\rangle}}{Q_{n}\cdot G_{n}(z)}\cross\sum_{\sigma\in S_{n}}
\sigma(\frac{q^{\langle\lambda_{\alpha},z\rangle}}{\prod_{\ell\in I_{odd}
(\alpha)}(q^{z_{\ell}}-q^{zp+1}+1)}\prod_{\triangleleft i}\frac{(q^{z_{i}}-q^{z_
{f}+1})(q^{z_{i}}-q^{z_{j}-2})}{q^{z_{i}}-q^{z_{j}}}) .

(4.7)

§5 Remarks
 e We take the main term of spherical function for each  \alpha\in\Lambda_{n} , and set

  \Psi_{\alpha}(z)=\sum_{\sigma\in S_{n}}\sigma(\frac{q^{\langle\lambda_{\alpha}
,z\rangle}}{\prod_{\ell\in I_{\circ dd}(\alpha)}(q^{z_{\ell}}-q^{z_{\ell+1}+1})}
\prod_{i<j}\frac{(q^{z_{i}}-q^{z_{f}+1})(q^{z_{\lambda}}-q^{z_{j}-2})}
{q^{z_{\dot{i}}}-q^{z_{J}}}) (5.1)

Then we see  \Psi_{\alpha}(z) is holomorphic for  z\in \mathbb{C}^{n} and linearly independent with respect
to  \alpha\in\Lambda_{n} (cf. Theorem 3.4, Corollary 3.5).

 e In general, the image  {\rm Im}(F) of the spherical Fourier transform  F defined in (3.4) is
an ideal in

 \mathcal{R}_{n}=\mathbb{C}[q^{\pm z_{1}} , . . . , q^{\pm z_{n}}]^{S_{n}} (5.2)

generated by  \{\Psi_{\alpha}(z)|\alpha\in\Lambda_{n}\} (cf. the commutative diagram (3.5)). For size 2,  F is
surjective, since  \Psi_{(-1,-1)}(z) is constant, and we see  F gives an  \mathcal{H}(G, K) ‐module iso‐
morphism between  \mathcal{S}(K\backslash X) and  \mathcal{R}_{2}=\mathbb{C}[q^{z_{1}}+q^{z_{2}}, q^{\pm(z_{1}+z_{2})}] , and we may construct
the Plancherel formula.

In the following, we note some known cases of sesquilinear forms.

 e (The case of alternating forms, cf. [HS1]): Set  X_{n}=\{x\in GL_{2n}(k)|tx=-x\},
 G=GL_{2n}(k) and  K=GL_{2n}(\mathcal{O}_{k}) . (  k admits even characteristic.) Then  K\backslash X_{n} is
parametrized by the set

 \overline{\Lambda}_{n}=\{\lambda\in \mathbb{Z}^{n}|\lambda_{1}\geq. . . 
\geq\lambda_{n}\}(\supset\Lambda_{n}) , (5.3)

and wc have known the explicit formula of spherical functions  \omega(x;z) on  X_{n} , the
main term of  \omega(\pi^{\lambda};z) , where  \pi^{\lambda}\in X_{n} is associated with  \lambda\in\overline{\Lambda}_{n} , is given as

  \Psi_{\lambda}^{(A)}(z)=\sum_{\sigma\in S_{n}}\sigma(q^{\langle\lambda,
z\rangle}\prod_{i<j}\frac{q^{z_{?}}-q^{z_{j}-2}}{q^{z_{i}}-q^{z_{j}}}) (5.4)
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Then  \Psi_{\lambda}^{(A)}(z) are (constant multiple of specialized) Hall‐Littlewood polynomial of
type  A_{n} , and it becomes a constant when  \lambda=0 . Then the normalized spherical
Fourier transform  F is isomorphic onto  \mathcal{R}_{n} , and we have the commutative diagram

 \mathcal{H}(G,K)\mathcal{R}_{n}\downarrow\lambda_{z} \cross\cross S(K\backslash
X)F\downarrow?\mathcal{R}_{n} arrow^{arrow C^{*})} \mathcal{S}(K\backslash X)
\mathcal{R}_{n}F\downarrow?, (5.5)

where the adjusted Satake transform  \lambda_{z} is surjective and decomposed as  \mathcal{H}(G, K)arrow^{\sim}
 \mathcal{R}_{2n}arrow \mathcal{R}_{n} . It is known  S(K\backslash X)=\mathcal{H}(G, K)*\phi_{0} with the characteristic function

 \phi_{0} of  K\cdot\pi^{o},  \pi^{0}=(\begin{array}{ll}
0   1
-1   0
\end{array})  \perp\cdots\perp(\begin{array}{ll}
0   1
-1   0
\end{array})  \in X_{n} , and the Plancherel formula for

 F is known.

 e (The case of unramified hermitian forms, cf. [H1]): Taking an unramified
quadratic extension  k'/k , set  X_{n}=\{x\in GL_{n}(k')|x^{*}=x\} , where  * means the
conjugate tranpose,  G=GL_{n}(k') and  K=GL_{n}\underline{(}\mathcal{O}_{k'} ) .  (k admits even characteris‐
tic.) Then  K\backslash X_{n} is parametrized by the same  \Lambda_{n} as in (5.3), and we have known
the explicit formula of spherical functions  \omega(x;z) on  X_{n} , the main term of  \omega(\pi^{\lambda};z) ,
wherc  \pi^{\lambda}\in X_{n} is associated with  \lambda\in\overline{A}_{n} , is given as

  \Psi_{\lambda}^{(H)}(z)=\sum_{\sigma\in S_{n}}\sigma(q^{\langle\lambda,
z\rangle}\prod_{\triangleleft i}\frac{q^{z_{i}}+q^{z_{j-{\imath}}}}{q^{z_{i}}-q^
{z_{J}}}) (5.6)

Thcn  \Psi_{\lambda}^{(H)}(z) are (constant multiple of specialized) Hall‐Littlewood polynomials of
type  A_{n} , where the specialization is different from the case of alternating forms, and
it becomes a constant when  \lambda=0 . Then the normalized spherical Fourier transform
 F is isomorphic onto  \mathcal{R}_{n} , and we have the commutative diagram

 \mathcal{H}(G,,K)\lambda_{z}\downarrow?\mathcal{R}_{0n} \cross\cross 
S(K\backslash X)F\downarrow?\mathcal{R}_{n} arrow^{arrow C^{*})} \mathcal{S}
(K\backslash X)\mathcal{R}_{n}F\downarrow?, (5.7)

where  \mathcal{R}_{0,n}=\mathbb{C}[q^{\pm 2z_{1}}, . . . , q^{\pm 2z_{n}}]^{S_{n}} , and  \lambda_{z} is the (adjusted) Satake isomorphism.
Hence one sees  S(K\backslash X) is a free  \mathcal{H}(G, K) ‐module of rank  2^{n} , and the Plancherel
formula for  F is known.

 e (Reıations with local densities, cf. [H2], [H3], [HS1], [HS2]): There are many
works for Hall‐Littlewood polynomials of type  A_{n} (original Hall‐Littlewood polyno‐
mials), and their relations are well known. Hence one may extract local densities
from induction theorem of type Theorem 2.1. In the present case, we don’t know
well about  \Psi_{\alpha}(z) and general local densities.

 e (The case of unitary hermitian forms, cf. [HK1], [HK2], [H5]) Taking an
unramified quadratic extension  k'/k , set  G=U(j_{m})=\{g\in GL_{m}(k')|g^{*}j_{m}g=j_{m}\}
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and  K=G(\mathcal{O}_{k'}) , where  * means the conjugate tranpose and  j_{m}\in GL_{m}(k) is
the matrix whose anti‐diagonal entries are 1 and the others are  0 . Set  X_{m}=

 \{x\in G|x^{*}=x\},  n=[ \frac{m}{2}] , and  e=v_{\pi}(2) with an prime element  \pi in  k . We
assume  v_{\pi}(2)\leq 1 if  m is odd and  m\geq 5 . Then  K\backslash X_{m} is parametrized by the set

 \overline{\Lambda}_{n}^{+}=\{\lambda\in\overline{\Lambda}_{n}|\lambda_{n}\geq-e
\} , and we have known the explicit formula  \omega(x;z) on  X_{n},

the main term of  \omega(\pi^{\lambda};z) , where  \pi^{\lambda}\in X_{n} is associated with  \lambda\in\overline{\Lambda}_{n}^{+} , is given as

  \Psi_{\lambda}^{(U)}(z)=\sum_{\sigma\in W}\sigma(q^{\langle\lambda+e,z\rangle}
c(z;\{t\})) , c(z;\{t\})=\prod_{\alpha\in\Sigma^{+}}\frac{1-t_{\alpha}q^{\langle
\alpha,z\rangle}}{1-q^{\langle\alpha,z\rangle}} . (5.8)

Here  W\cong S_{n}\ltimes(\pm 1)^{n} is the Weyl group of  G with respect to the Borel subgroup
consisting of all the upper triangular matrices,  \Sigma^{+} is the set of positive roots, where
the root system of  G is of type  C_{n} (resp.  BC_{n} ) when  m=2n (resp.  m=2n+1 ),
and  t_{\alpha}\in\{\pm q^{-1}, q^{-2}\} is explicitly given depending on the length of  \alpha and the parity

of  m . We see  \Psi^{(U)} are (constant multiple of specialized) Hall‐Littlewood polynomial
of type  C_{n} , where the specialization is depend on the parity of  m . By the normalized
spherical Fourier transform we have the same shape of commutative diagram with
(5.7), with

 \mathcal{R}_{n}=\mathbb{C}[q^{\pm z_{1}}, . . . , q^{\pm z_{n}}]^{W}, 
\mathcal{R}_{0,n}=\mathbb{C}[q^{\pm 2z_{1}}, . . . , q^{\pm 2z_{n}}]^{W} (5.9)

Hence one sees  S(K\backslash X) is a free  \mathcal{H}(G, K) ‐module of rank  2^{n} , and the Plancherel
formula for  F is known.
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