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ON THE GROSS-KEATING INVARIANTS OF A
HERMITIAN FORM OVER A NON-ARCHIMEDEAN
LOCAL FIELD

TAMOTSU IKEDA AND HIDENORI KATSURADA

It is known that the Siegel series of a quadratic form over a non-
archimedean local field is determined by the Gross-Keating invariant
and it related invariants. Here, we discuss an analogue for a semi-
integral hermitian form with respect to a quadratic extension of a non-
archimedean local field.

1. REVIEW OF THE THEORY OF GROSS-KEATING INVARIANT FOR
A QUADRATIC FORM

Here, we briefly review the theory of the Gross-Keating invariant
for a quadratic form over a non-archimedean local field ([4], [5]). The
symbols defined for quadratic form are distinguished by adding the
subscript "quad” to avoid possible confusion. For example, S(B) for
quadratic form is denoted by S(B)quad-

Let F' be a non-archimedean local field of characteristic 0, and 0 = op
its ring of integers. The order ord(z) of x € F'* is normalized so that
ord(w) = 1 for a prime element w of F. We understand ord(0) = +o0.

The set of symmetric matrices B € M,,(F) of size n is denoted by
Sym, (F). For B € Sym,(F) and X € GL,(F), we set B[X] ='XBX.
We say that B = (b;;) € Sym,,(F') is a half-integral symmetric matrix
if

biiGOF (1<’L<TL)7
2b;; € op (1<i<j

The set of all half-integral symmetric matrices of size n is denoted by
H,(0). An element B € H, (o) is non-degenerate if det B # 0. The set
of all non-degenerate elements of H,(0) is denoted by H(o).

The equivalence class of B € H,(0) is denoted by {B}quaa, 1€,
{B}quada = {B[U]|U € GL,(0)}. We write B ~quaq B’ if B’ € {B}quaq-
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Definition 1.1. Let B = (b;;) € H2(0). Let S(B)quaa be the set of
all non-decreasing sequences (ai, ..., a,) € 7% such that

Ord(b“') Z a; (1 S 1 S ’I’L),

ord(2b;;) > (a;i + a;)/2 (1<i<j<n).

Put
S({B})auad = U S(B')quad = U S(B[U])quad-
B'e{B} UeGLn (o)
The (quadratic) Gross-Keating invariant GK(B)quaq of B is the greatest
element of S({ B})quaa With respect to the lexicographic order = on ZZ%,,.

It is easy to see that S({B})quad is a finite set.

A sequence of length 0 is denoted by ). When B is the empty ma-
trix, we understand GK(B)quaqa = 0. By definition, the Gross-Keating
invariant GK(B)quad 18 determined only by the equivalence class of B.

Definition 1.2. B € H24(0) is optimal if GK(B)quad € S(B)quad-

By definition, a non-degenerate half-integral symmetric matrix B €
H14(0) is equivalent to an optimal form.
For B € H*(0), we put Dp = (—4)*?ldet B. If n is even, we denote
the discriminant ideal of F'(v/Dg)/F by ®p. We also put
1 if Dy e F*2,
E(B)quaa = —1 if F(y/Dg)/F is unramified and [F(/Dpg) : F] = 2,
0 if F(v/Dg)/F is ramified.
Here, F*? = {z% |z € F*}.
Definition 1.3. For B € H"(0), we put

ord(Dpg) if n is odd,
ord(Dg) — ord(Dp) + 1 — &(B)? if n is even.

quad

-
Theorem 1.1. Suppose that a = (ay,az,...,a,) = GK(B)quad for
B € H™ (o). Then we have

a; +az + -+ a, = A(B)quad-
For a non-decreasing sequence a = (a1, as, . .., a,) € Z%;, we set
Gaquad = {9 = (gij) € GLn(0) | ord(g;;) > (a; — a:)/2, if a; < a;}.

Theorem 1.2. Suppose that B € H(0) is optimal and GK(B)quad =
a. Let U € GL,(0). Then B[U] is optimal if and only if U € Gy quad-
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For B = (bij)i<ij<n € Ha(0) and 1 < m < n, we denote the up-
per left m x m submatrix (b;)1<ij<m € Hm(0) by B™. For a =
(ar,az,. .., a,) € Z%,, we put a™ = (ay,ay,... ay) for m <n.

Theorem 1.3. Suppose that B € H24(0) is optimal and GK(B)guad =
a. If ap < agpyq, then B® is also optimal and GK(B(k))quad =g,

Definition 1.4. The Clifford invariant of B € H24(0) is the Hasse
invariant of the Clifford algebra (resp. the even Clifford algebra) of B
if n is even (resp. odd).

We denote the Clifford invariant of B by n(B).

Theorem 1.4. Let B,B; € H;‘Ld(o). Suppose that' B ~quaa B1 and
both B and B are optimal. Let a = (ay,a,...,a,) = GK(B)quad =
GK(B1)quad- Suppose that ay, < axiq for 1 < k < n. Then the following
assertions (1) and (2) hold.

(1) If k is even, then £(B®) g = §(B§k))quad.

(2) If k is odd, then n(B®) = n(B®).

Let ¢ : F' — C* be an additive character of order 0. For B € H24(o),

we define the Siegel series b(B, s) by

b(B, s) — / P(te(BR))[Ro™ + o™ : 0| dR.
ReSym,, (F)

This integral is convergent for Re(s) > 0, and is analytically continued
to the whole s-plane. Put

n/2
1 — X 3 . .
(1 —<q"/2§(l)3)X) H(l —¢*X?) ifnis even,
B X) = i=1
(B, X) = ¢ 1y
1-x) J] a-¢x? if n is odd.

i=1
Theorem 1.5 (Kitaoka, Feit, Shimura). There exists a polynomial
F(B,X) € Q[X] such that

b(B,s) =(B,q*)F(B,q"*).
Put
F(B,X) = XPa)2p(p, gD/ x),
Then we have a functional equation
F(B,X') = n(B)"F(B, X).

Theorem 1.6. The Siegel series F(B, X) is determined by the follow-
ing data:
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(1) The Gross-Keating invariant a = GK(B)quad-
(2) The Kronecker invariants f(B(k))quad for ar, < agyq,, with k
even.

(3) The Clifford invariants n(B%)) for ay < ags1, with k odd.

2. THE GROSS-KEATING INVARIANT FOR HERMITIAN FORMS

Let I be a non-archimedean local field. Let E/F be a ramified
quadratic extension, and ® = D g, p be its relative different. The trace
and the norm for F/F are denoted by trg/rp and Ng/p, respectively.
The non-trivial automorphism of F/F is denoted by = + Z. We fix a
prime element wg of og and put w = NE/F(wE). Thus w is a prime
element of /. We denote the discriminant ideal of E/F by D = Dp /F-
Thus we have D = Ng/p(D). The order of z € E* is normalized so
that ord(w) = 1. In particular, ord(wg) = 1/2. Similarly, the order of
an og-ideal is defined by ord(p%) = k/2.

For a matrix X = (z;;) € M,,n(F), the hermitian conjugate X* =
(3;) € Myum(E) is defined by z; = Z;,. We say that B = B* = (b;;) €
M,(F) is a semi-integral hermitian matrix if

b € oF, bij:l;jiéfgﬁl (1 SZ,]STL)

The set of all semi-integral hermitian matrices of size n is denoted by
H,(0)g/p. When there is no fear of confusion, we just write 3(,(0) for
Hn(0)g/r. An element B € H,(0) is non-degenerate if det B # 0. The
set of all non-degenerate elements of 3(,(0) is denoted by H24(o).

Definition 2.1. For B € (o), set

&8 = &(B) = xueyr((=1)"* det B),
where xg/p : F'* — {%1} is the character corresponding to F/F by

the local class field theory. Put eg = ord(det B-DI"/?). One can easily
see that eg > 0 for any B € 3*4(0). Put

A(B) = {63-—1 if niseven and ég = —1,

€RB otherwise.

One can also show that A(B) > 0 for any B € H"(o).
Definition 2.2. Let S(B) be the set of all non-decreasing sequences
(ai,...,an) € Z%, such that
ord(bii) > ai, (1 <i<n),

ord(b;;D) > (a; +a;)/2 (1<4,j<n).
We also write S(¢) for S(B).
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Definition 2.3. Set
s{Bh= |J sBY= |J s
B'e{B} UeGLyn(ok)

The Gross-Keating invariant a = (a1, as,...,a,) of B is the greatest
element of S({B}) with respect to the lexicographic order > on Z2,
The Gross-Keating invariant is denoted by GK(B). A sequence of

length 0 is denoted by ). When B is the empty matrix, we understand
GK(B) = 0.

By definition, the Gross-Keating invariant GK(B) is determined only
by the equivalence class of B.

Definition 2.4. B € 7(,(0) is optimal if GK(B) € S(B).

Recall that B € H,(0) is maximal if B[U™'] € H,(o) for some
Ue M,(og), then U € GL,(0g).

Proposition 2.1. Suppose that B € 3H* (o). Then B is mazimal if
and only if GK(B) = (0,0,...,0).

For a non-decreasing sequence a = (a3, as, ..., a,) € Zgo, we set
G = {9 = (955) € GL,(0g) | ord(gi;) > (a; — a;)/2, if a; < a;}.
Definition 2.5. For a = (ay, ..., a,) € Z%,, put

ord(by;) > a;, g
Ol‘d( bz]) = (ai + aj)/2? (1 sts / : n)} ’

Mia) = {B= (8, € 50,0)
Note that for B € H24(0), we have
a € S(B) < Be M(a).

3. REDUCED FORMS

Let a = (ay,. .., ) be a non-decreasing sequence. We define n, n?,
and I; for s = 1,...,r is in the previous section. For an involution
o€ G, we set

n, a; > aa(i)}v

PH =P o) = {ill <i<n, ai > ap + 1},
P =P (0)={ill<i<n, a<au}

P =P (0)={ill<i<n, a;i+1<a,m}
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For each block I, ..., I, put
PP=P'NnI, P7=P NI,
Pl=P"ni, PH =P nI,,

Pr=P nl, P =P NI

Definition 3.1. An involution o € &,, is a-admissible, if

i P+ Z Py < Z {P* + 2
i=1 1=1 1=1

fors=1,...,7.
Note that if aj ; > aZ + 1 or s = r, then we have

Zﬁ? +Zﬁ7>0 <Zu7>++2

=1
since

Y o4Pr =Y #PF =H{ilai < a}, app) > al}
=1 =1

=t{i|a; < al, aq(y > ay + 1}

I S
i=1 =1

in this case.

Lemma 3.1. Let a € Z%, be a non-decreasing sequence and o an a-
admissible involution. Then we have fP° < 2. We also have §PF+ < 2
and fP;- <2 fors=1,...,r

Proof. Put Q, = {i € P~ |a; < af, aps) > at}. Then we have
PIELED DL L2

i=1 i=1
It follows that

tiQﬁiﬁRQ <2

for s =1,...,r. In particular, we have 1P? < 2. We also have 1P~ <
2, since P~ C Q,. Note that if ¢ € PF* then we have o(i) € Q,_;.
Hence we have iP}F+ < 2.

ad
For B = (by;) € H,(0) and 1 < 7,j < n, we write B = ( . ”)
bij

.7]
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Definition 3.2. B = (b;;) € M(a) is a reduced form of GK type (a, o),
if the following conditions (1), (2), (3), and (4) hold.

(1) For i < j = o(i), we have
GK(Bj)) = (as,a;), B, = 1.
(2) If i € PP U P, then we have
ord(by;) = a;.

(3) Suppose that 7,7 € P°UP~~ and that i < j. Suppose also that
either s € P% or o(i) > j. Then we have

GK(Bij) = (ai,a;), €y, = —L.
(4) For j # i,0(i), we have
a; + a;
2

Theorem 3.1. Suppose that B € 3, (o) is optimal and GK(B) = a.
Then there exists U € G4 and an a-admissible involution o such that

BlU] is a reduced form of GK type (a, o).

Theorem 3.2. Suppose that B € H™(0) and GK(B) = a = (ay,...,an,).
Then we have

ord(bij@) >

n

> a,=A(B).

1=1

4. THE MODIFIED GROSS-KEATING INVARIANT MGK(B)

Let a € Z>( be a sequence which is not necessarily non-decreasing
and o € G,, an involution. We say that (g, o) is a generalized GK type
is there exists a permutation 7 € & such that (a-(1y, ar2), . - ., @rm)), 707 1)
is a GK type. We also say that B € H,(0) is a reduced form of
generalized GK type (a, o) if there exists a permutation 7 € &,, such
that B[F,] is a reduced form of GK type (a,qy), r@2), - .., arm)), 707 1)
where P, is the permutation matrix associated with o.

7

Definition 4.1. Let (a,0) be a generalized GK type. Put
a; if ¢ ¢ P+
C; =
a; — 1 if 4 S 7)+.

Definition 4.2. A GK type (a,0) is well-arranged if the following
condition holds.

o If i € P} and j € P, \ P/}, then we have i < j.
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Note that if (a,0) is well-arranged, then @ is a non-decreasing se-
quence.

Definition 4.3. Suppose that (a,0) is a well-arranged GK type. We
define the subgroup G , C GL,(0g) by

g € GL,(0g),
Gho =149 =(gi)| ord(gi;) > (a; — a;)/2, if a; < aj,
ord(gij) 2 1/2, lf 51,2 = ELJ‘, Z € P:,j ¢ P:
Then U € G, if and only if U stabilizes KJ, KT, .. ..
Let Iy, ..., I, be the blocks. Put

PI% =Pr0) = PY\PI = {i € Pula = a — 1},
P,m =P, (o) =P, \ P, ={i € Ps|ayu = a; + 1},
for s =1,...,r. Then we have
I,=PrupP uprP;uPlupr, ~uP;".
Let I, I, ..., I; be the block for the non- decreasing sequence a. We

alsosetnswjj] and n} = ni+- - +nsf0r5~1 7. Fors=1,...,7,
define (™) € &;. by

o) () = {i ’ if o(i) > 7}

o(i) otherwise.

Then (a{™), 0(™)) is a standard GK type.
Suppose that B € H, (o) is a reduced form of standard GK type
(a,0). Then B() is a reduce form of GK type (a(™) o@3)).

Theorem 4.1. Suppose that B, B" € H,(0) are mutually equivalent
reduced form of GK type (a,0) and (a,0’), respectively. We assume
both o and o' are standard a-admissible involutions. Then we have
G, =G . Moreover, if B'= B[U] with U € GL,(og), then we have
UeG,,

Corollary 1. The sequence ¢ = (cj,¢g,...,¢,) depends only on the
equivalence class of B.

We call ¢ the modified Gross-Keating invariant of B. It is denoted
by MGK(B).

Theorem 4.2. Suppose that B € H,,(0) is a reduced form of GK type
(a,0). Then we have GK(B) = a. In particular, B is optimal.

Theorem 4.3. Suppose that B € H,(0) is a reduced form of GK type

(a,0).
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(1) If it is even, then £(B™) depends only on the equivalence class
of B.

(2) Ifn% is odd and if cs41 > c;+ord(D), then £(B™) depends only
on the equivalence class of B.

5. A CONJECTURE ON THE SIEGEL SERIES

Let ¢ : F' — C* be an additive character of order 0.
For B € H"4(0) we define the Siegel series b(B, s) by

b(B,s) = / W(tr(BR))[Ro’ + o : o] /2 dR.
ReHery, (F)

This integral is convergent for Re(s) > 0, and is analytically continued
to the whole s-plane. Put

[(n—1)/2] ‘
ver(X) = [ (1-¢"X).
i=0
Then there exists a unique polynomial F(B, X) in X such that

b(B,s) =F(B,q *)vg/r(q ")
We then define a Laurent polynomial F (B, X) by

F(B,X)=X®F(B,qg "X ?).
It is known that the following functional equation holds.
F(B, XY =¢B)™'F(B, X).

Conjecture 5.1. The Laurent polynomial ﬁ(B, X) obtained from the
Siegel series for B is determined by GK(B), MGK(B), and {£(B™ )} is even-
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