ON THE GROSS-KEATING INVARIANTS OF A HERMITIAN FORM OVER A NON-ARCHIMEDEAN LOCAL FIELD

TAMOTSU IKEDA AND HIDENORI KATSURADA

It is known that the Siegel series of a quadratic form over a non-archimedean local field is determined by the Gross-Keating invariant and it related invariants. Here, we discuss an analogue for a semi-integral hermitian form with respect to a quadratic extension of a non-archimedean local field.

1. REVIEW OF THE THEORY OF GROSS-KEATING INVARIANT FOR A QUADRATIC FORM

Here, we briefly review the theory of the Gross-Keating invariant for a quadratic form over a non-archimedean local field ([4], [5]). The symbols defined for quadratic form are distinguished by adding the subscript "quad" to avoid possible confusion. For example, S(B) for quadratic form is denoted by $S(B)_{\text{quad}}$.

Let F be a non-archimedean local field of characteristic 0, and $\mathfrak{o} = \mathfrak{o}_F$ its ring of integers. The order $\operatorname{ord}(x)$ of $x \in F^{\times}$ is normalized so that $\operatorname{ord}(\varpi) = 1$ for a prime element ϖ of F. We understand $\operatorname{ord}(0) = +\infty$.

The set of symmetric matrices $B \in M_n(F)$ of size n is denoted by $\operatorname{Sym}_n(F)$. For $B \in \operatorname{Sym}_n(F)$ and $X \in \operatorname{GL}_n(F)$, we set $B[X] = {}^t X B X$. We say that $B = (b_{ij}) \in \operatorname{Sym}_n(F)$ is a half-integral symmetric matrix if

$$b_{ii} \in \mathfrak{o}_F$$
 $(1 \le i \le n),$
 $2b_{ij} \in \mathfrak{o}_F$ $(1 \le i \le j \le n).$

The set of all half-integral symmetric matrices of size n is denoted by $\mathcal{H}_n(\mathfrak{o})$. An element $B \in \mathcal{H}_n(\mathfrak{o})$ is non-degenerate if det $B \neq 0$. The set of all non-degenerate elements of $\mathcal{H}_n(\mathfrak{o})$ is denoted by $\mathcal{H}_n^{\mathrm{nd}}(\mathfrak{o})$.

The equivalence class of $B \in \mathcal{H}_n(\mathfrak{o})$ is denoted by $\{B\}_{\text{quad}}$, i.e., $\{B\}_{\text{quad}} = \{B[U] \mid U \in GL_n(\mathfrak{o})\}$. We write $B \sim_{\text{quad}} B'$ if $B' \in \{B\}_{\text{quad}}$.

Definition 1.1. Let $B = (b_{ij}) \in \mathcal{H}_n^{\mathrm{nd}}(\mathfrak{o})$. Let $S(B)_{\mathrm{quad}}$ be the set of all non-decreasing sequences $(a_1, \ldots, a_n) \in \mathbb{Z}_{>0}^n$ such that

$$\operatorname{ord}(b_{ii}) \ge a_i \qquad (1 \le i \le n),$$

$$\operatorname{ord}(2b_{ij}) \ge (a_i + a_j)/2 \qquad (1 \le i \le j \le n).$$

Put

$$\mathbf{S}(\{B\})_{\text{quad}} = \bigcup_{B' \in \{B\}} S(B')_{\text{quad}} = \bigcup_{U \in GL_n(\mathfrak{o})} S(B[U])_{\text{quad}}.$$

The (quadratic) Gross-Keating invariant $GK(B)_{quad}$ of B is the greatest element of $S(\{B\})_{quad}$ with respect to the lexicographic order \succeq on $\mathbb{Z}_{>0}^n$.

It is easy to see that $S({B})_{quad}$ is a finite set.

A sequence of length 0 is denoted by \emptyset . When B is the empty matrix, we understand $GK(B)_{quad} = \emptyset$. By definition, the Gross-Keating invariant $GK(B)_{quad}$ is determined only by the equivalence class of B.

Definition 1.2. $B \in \mathcal{H}_n^{\mathrm{nd}}(\mathfrak{o})$ is optimal if $GK(B)_{\mathrm{quad}} \in S(B)_{\mathrm{quad}}$.

By definition, a non-degenerate half-integral symmetric matrix $B \in \mathcal{H}_n^{\mathrm{nd}}(\mathfrak{o})$ is equivalent to an optimal form.

For $B \in \mathcal{H}_n^{\mathrm{nd}}(\mathfrak{o})$, we put $D_B = (-4)^{[n/2]} \det B$. If n is even, we denote the discriminant ideal of $F(\sqrt{D_B})/F$ by \mathfrak{D}_B . We also put

$$\xi(B)_{\text{quad}} = \begin{cases} 1 & \text{if } D_B \in F^{\times 2}, \\ -1 & \text{if } F(\sqrt{D_B})/F \text{ is unramified and } [F(\sqrt{D_B}) : F] = 2, \\ 0 & \text{if } F(\sqrt{D_B})/F \text{ is ramified.} \end{cases}$$

Here, $F^{\times 2} = \{x^2 \mid x \in F^{\times}\}.$

Definition 1.3. For $B \in \mathcal{H}_n^{\mathrm{nd}}(\mathfrak{o})$, we put

$$\Delta(B)_{\text{quad}} = \begin{cases} \operatorname{ord}(D_B) & \text{if } n \text{ is odd,} \\ \operatorname{ord}(D_B) - \operatorname{ord}(\mathfrak{D}_B) + 1 - \xi(B)_{\text{quad}}^2 & \text{if } n \text{ is even.} \end{cases}$$

Theorem 1.1. Suppose that $\underline{a} = (a_1, a_2, \dots, a_n) = GK(B)_{quad}$ for $B \in \mathcal{H}_n^{nd}(\mathfrak{o})$. Then we have

$$a_1 + a_2 + \cdots + a_n = \Delta(B)_{\text{quad}}.$$

For a non-decreasing sequence $\underline{a} = (a_1, a_2, \dots, a_n) \in \mathbb{Z}_{>0}^n$, we set

$$G_{\underline{a},\text{quad}} = \{g = (g_{ij}) \in GL_n(\mathfrak{o}) \mid \text{ ord}(g_{ij}) \ge (a_j - a_i)/2, \text{ if } a_i < a_j\}.$$

Theorem 1.2. Suppose that $B \in \mathcal{H}_n^{\mathrm{nd}}(\mathfrak{o})$ is optimal and $\mathrm{GK}(B)_{\mathrm{quad}} = \underline{a}$. Let $U \in \mathrm{GL}_n(\mathfrak{o})$. Then B[U] is optimal if and only if $U \in G_{a,\mathrm{quad}}$.

For $B = (b_{ij})_{1 \le i,j \le n} \in \mathcal{H}_n(\mathfrak{o})$ and $1 \le m \le n$, we denote the upper left $m \times m$ submatrix $(b_{ij})_{1 \leq i,j \leq m} \in \mathcal{H}_m(\mathfrak{o})$ by $B^{(m)}$. For $\underline{a} = (a_1, a_2, \ldots, a_n) \in \mathbb{Z}_{>0}^n$, we put $\underline{a}^{(m)} = (a_1, a_2, \ldots, a_m)$ for $m \leq n$.

Theorem 1.3. Suppose that $B \in \mathcal{H}_n^{\mathrm{nd}}(\mathfrak{o})$ is optimal and $\mathrm{GK}(B)_{\mathrm{quad}} = \underline{a}$. If $a_k < a_{k+1}$, then $B^{(k)}$ is also optimal and $\mathrm{GK}(B^{(k)})_{\mathrm{quad}} = \underline{a}^{(k)}$.

Definition 1.4. The Clifford invariant of $B \in \mathcal{H}_n^{\mathrm{nd}}(\mathfrak{o})$ is the Hasse invariant of the Clifford algebra (resp. the even Clifford algebra) of B if n is even (resp. odd).

We denote the Clifford invariant of B by $\eta(B)$.

Theorem 1.4. Let $B, B_1 \in \mathcal{H}_n^{\mathrm{nd}}(\mathfrak{o})$. Suppose that $B \sim_{\mathrm{quad}} B_1$ and both B and B_1 are optimal. Let $\underline{a} = (a_1, a_2, \dots, a_n) = GK(B)_{quad} =$ $GK(B_1)_{quad}$. Suppose that $a_k < a_{k+1}$ for $1 \le k < n$. Then the following assertions (1) and (2) hold.

- (1) If k is even, then $\xi(B^{(k)})_{\text{quad}} = \xi(B_1^{(k)})_{\text{quad}}$. (2) If k is odd, then $\eta(B^{(k)}) = \eta(B_1^{(k)})$.

Let $\psi: F \to \mathbb{C}^{\times}$ be an additive character of order 0. For $B \in \mathcal{H}_n^{\mathrm{nd}}(\mathfrak{o})$, we define the Siegel series b(B, s) by

$$b(B,s) = \int_{R \in \operatorname{Sym}_n(F)} \psi(\operatorname{tr}(BR)) [R\mathfrak{o}^n + \mathfrak{o}^n : \mathfrak{o}^n]^{-s} dR.$$

This integral is convergent for $Re(s) \gg 0$, and is analytically continued to the whole s-plane. Put

$$\gamma(B,X) = \begin{cases} \frac{(1-X)}{(1-q^{n/2}\xi(B)X)} \prod_{i=1}^{n/2} (1-q^{2i}X^2) & \text{if } n \text{ is even,} \\ \\ (1-X) \prod_{i=1}^{(n-1)/2} (1-q^{2i}X^2) & \text{if } n \text{ is odd.} \end{cases}$$

Theorem 1.5 (Kitaoka, Feit, Shimura). There exists a polynomial $F(B,X) \in \mathbb{Q}[X]$ such that

$$b(B, s) = \gamma(B, q^{-s})F(B, q^{-s}).$$

Put

$$\widetilde{F}(B,X) = X^{-\operatorname{ord}(D_B)/2} F(B, q^{-(n+1)/2} X).$$

Then we have a functional equation

$$\widetilde{F}(B, X^{-1}) = \eta(B)^n \widetilde{F}(B, X).$$

Theorem 1.6. The Siegel series F(B,X) is determined by the following data:

- (1) The Gross-Keating invariant $\underline{a} = GK(B)_{quad}$.
- (2) The Kronecker invariants $\xi(B^{(k)})_{\text{quad}}$ for $a_k < a_{k+1}$, with k even.
- (3) The Clifford invariants $\eta(B^{(k)})$ for $a_k < a_{k+1}$, with k odd.

2. The Gross-Keating invariant for Hermitian forms

Let F be a non-archimedean local field. Let E/F be a ramified quadratic extension, and $\mathfrak{D}=\mathfrak{D}_{E/F}$ be its relative different. The trace and the norm for E/F are denoted by $\operatorname{tr}_{E/F}$ and $\operatorname{N}_{E/F}$, respectively. The non-trivial automorphism of E/F is denoted by $x\mapsto \bar{x}$. We fix a prime element ϖ_E of \mathfrak{o}_E and put $\varpi=\operatorname{N}_{E/F}(\varpi_E)$. Thus ϖ is a prime element of F. We denote the discriminant ideal of E/F by $\mathbf{D}=\mathbf{D}_{E/F}$. Thus we have $\mathbf{D}=\operatorname{N}_{E/F}(\mathfrak{D})$. The order of $x\in E^\times$ is normalized so that $\operatorname{ord}(\varpi)=1$. In particular, $\operatorname{ord}(\varpi_E)=1/2$. Similarly, the order of an \mathfrak{o}_E -ideal is defined by $\operatorname{ord}(\mathfrak{p}_E^k)=k/2$.

For a matrix $X = (x_{ij}) \in M_{mn}(E)$, the hermitian conjugate $X^* = (x_{ij}^*) \in M_{nm}(E)$ is defined by $x_{ij}^* = \bar{x}_{ji}$. We say that $B = B^* = (b_{ij}) \in M_n(E)$ is a semi-integral hermitian matrix if

$$b_{ii} \in \mathfrak{o}_F, \quad b_{ij} = \bar{b}_{ji} \in \mathfrak{D}^{-1} \quad (1 \le i, j \le n).$$

The set of all semi-integral hermitian matrices of size n is denoted by $\mathcal{H}_n(\mathfrak{o})_{E/F}$. When there is no fear of confusion, we just write $\mathcal{H}_n(\mathfrak{o})$ for $\mathcal{H}_n(\mathfrak{o})_{E/F}$. An element $B \in \mathcal{H}_n(\mathfrak{o})$ is non-degenerate if det $B \neq 0$. The set of all non-degenerate elements of $\mathcal{H}_n(\mathfrak{o})$ is denoted by $\mathcal{H}_n^{\mathrm{nd}}(\mathfrak{o})$.

Definition 2.1. For $B \in \mathcal{H}_n^{\mathrm{nd}}(\mathfrak{o})$, set

$$\xi_B = \xi(B) = \chi_{K/F}((-1)^{[n/2]} \det B),$$

where $\chi_{E/F}: F^{\times} \to \{\pm 1\}$ is the character corresponding to E/F by the local class field theory. Put $e_B = \operatorname{ord}(\det B \cdot \mathbf{D}^{[n/2]})$. One can easily see that $e_B \geq 0$ for any $B \in \mathcal{H}_n^{\operatorname{nd}}(\mathfrak{o})$. Put

$$\Delta(B) = \begin{cases} e_B - 1 & \text{if } n \text{ is even and } \xi_B = -1, \\ e_B & \text{otherwise.} \end{cases}$$

One can also show that $\Delta(B) \geq 0$ for any $B \in \mathcal{H}_n^{\mathrm{nd}}(\mathfrak{o})$.

Definition 2.2. Let S(B) be the set of all non-decreasing sequences $(a_1, \ldots, a_n) \in \mathbb{Z}_{\geq 0}^n$ such that

$$\operatorname{ord}(b_{ii}) \ge a_i, \qquad (1 \le i \le n),$$

$$\operatorname{ord}(b_{ij}\mathfrak{D}) \ge (a_i + a_j)/2 \qquad (1 \le i, j \le n).$$

We also write $S(\psi)$ for S(B).

Definition 2.3. Set

$$\mathbf{S}(\{B\}) = \bigcup_{B' \in \{B\}} S(B') = \bigcup_{U \in \mathrm{GL}_n(\mathfrak{o}_K)} S(B[U]).$$

The Gross-Keating invariant $\underline{a} = (a_1, a_2, \dots, a_n)$ of B is the greatest element of $\mathbf{S}(\{B\})$ with respect to the lexicographic order \succ on $\mathbb{Z}^n_{\geq 0}$. The Gross-Keating invariant is denoted by GK(B). A sequence of length 0 is denoted by \emptyset . When B is the empty matrix, we understand $GK(B) = \emptyset$.

By definition, the Gross-Keating invariant GK(B) is determined only by the equivalence class of B.

Definition 2.4. $B \in \mathcal{H}_n(\mathfrak{o})$ is optimal if $GK(B) \in S(B)$.

Recall that $B \in \mathcal{H}_n(\mathfrak{o})$ is maximal if $B[U^{-1}] \in \mathcal{H}_n(\mathfrak{o})$ for some $U \in M_n(\mathfrak{o}_E)$, then $U \in \mathrm{GL}_n(\mathfrak{o}_E)$.

Proposition 2.1. Suppose that $B \in \mathcal{H}_n^{\mathrm{nd}}(\mathfrak{o})$. Then B is maximal if and only if $GK(B) = (0, 0, \dots, 0)$.

For a non-decreasing sequence $\underline{a} = (a_1, a_2, \dots, a_n) \in \mathbb{Z}_{>0}^n$, we set

$$G_{\underline{a}} = \{ g = (g_{ij}) \in \operatorname{GL}_n(\mathfrak{o}_E) \mid \operatorname{ord}(g_{ij}) \ge (a_j - a_i)/2, \text{ if } a_i < a_j \}.$$

Definition 2.5. For $\underline{a} = (a_1, \dots, a_n) \in \mathbb{Z}_{\geq 0}^n$, put

$$\mathcal{M}(\underline{a}) = \left\{ B = (b_{ij}) \in \mathcal{H}_n(\mathfrak{o}) \middle| \begin{array}{l} \operatorname{ord}(b_{ii}) \ge a_i, \\ \operatorname{ord}(\mathfrak{D}b_{ij}) \ge (a_i + a_j)/2, \end{array} \right. (1 \le i < j \le n) \right\},$$

Note that for $B \in \mathcal{H}_n^{\mathrm{nd}}(\mathfrak{o})$, we have

$$\underline{a} \in S(B) \iff B \in \mathcal{M}(\underline{a}).$$

3. Reduced forms

Let $\underline{a} = (a_1, \ldots, a_n)$ be a non-decreasing sequence. We define n_s, n_s^* , and I_s for $s = 1, \ldots, r$ is in the previous section. For an involution $\sigma \in \mathfrak{S}_n$, we set

$$\mathcal{P}^{0} = \mathcal{P}^{0}(\sigma) = \{i \mid 1 \le i \le n, \ i = \sigma(i)\},\$$

$$\mathcal{P}^{+} = \mathcal{P}^{+}(\sigma) = \{i \mid 1 \le i \le n, \ a_{i} > a_{\sigma(i)}\},\$$

$$\mathcal{P}^{++} = \mathcal{P}^{++}(\sigma) = \{i \mid 1 \le i \le n, \ a_{i} > a_{\sigma(i)} + 1\},\$$

$$\mathcal{P}^{-} = \mathcal{P}^{-}(\sigma) = \{i \mid 1 \le i \le n, \ a_{i} < a_{\sigma(i)}\},\$$

$$\mathcal{P}^{--} = \mathcal{P}^{--}(\sigma) = \{i \mid 1 \le i \le n, \ a_{i} + 1 < a_{\sigma(i)}\}.$$

For each block I_1, \ldots, I_r , put

$$\mathcal{P}_{s}^{0} = \mathcal{P}^{0} \cap I_{s}, \quad \mathcal{P}_{s}^{=} = \mathcal{P}^{=} \cap I_{s},$$

$$\mathcal{P}_{s}^{+} = \mathcal{P}^{+} \cap I_{s}, \quad \mathcal{P}_{s}^{++} = \mathcal{P}^{++} \cap I_{s},$$

$$\mathcal{P}_{s}^{-} = \mathcal{P}^{-} \cap I_{s}, \quad \mathcal{P}_{s}^{--} = \mathcal{P}^{--} \cap I_{s}.$$

Definition 3.1. An involution $\sigma \in \mathfrak{S}_n$ is a-admissible, if

$$\sum_{i=1}^{s} \sharp \mathcal{P}_{i}^{--} + \sum_{i=1}^{s} \sharp \mathcal{P}_{i}^{0} \le \sum_{i=1}^{s} \sharp \mathcal{P}_{i}^{++} + 2$$

for $s = 1, \ldots, r$.

Note that if $a_{s+1}^* > a_s^* + 1$ or s = r, then we have

$$\sum_{i=1}^{s} \sharp \mathcal{P}_{i}^{-} + \sum_{i=1}^{s} \sharp \mathcal{P}_{i}^{0} \leq \sum_{i=1}^{s} \sharp \mathcal{P}_{i}^{+} + 2$$

since

$$\sum_{i=1}^{s} \sharp \mathcal{P}_{i}^{-} - \sum_{i=1}^{s} \sharp \mathcal{P}_{i}^{+} = \sharp \{ i \mid a_{i} \leq a_{s}^{*}, \ a_{\sigma(i)} > a_{s}^{*} \}$$

$$= \sharp \{ i \mid a_{i} \leq a_{s}^{*}, \ a_{\sigma(i)} > a_{s}^{*} + 1 \}$$

$$= \sum_{i=1}^{s} \sharp \mathcal{P}_{i}^{--} - \sum_{i=1}^{s} \sharp \mathcal{P}_{i}^{++}$$

in this case.

Lemma 3.1. Let $\underline{a} \in \mathbb{Z}_{\geq 0}^n$ be a non-decreasing sequence and σ an \underline{a} -admissible involution. Then we have $\sharp \mathcal{P}^0 \leq 2$. We also have $\sharp \mathcal{P}_s^{++} \leq 2$ and $\sharp \mathcal{P}_s^{--} \leq 2$ for $s = 1, \ldots, r$.

Proof. Put $Q_s = \{i \in \mathcal{P}^{--} \mid a_i \leq a_s^*, a_{\sigma(i)} > a_s^*\}$. Then we have

$$\sum_{i=1}^{s} \sharp \mathcal{P}_{i}^{--} - \sum_{i=1}^{s} \sharp \mathcal{P}_{i}^{++} = \sharp \mathcal{Q}_{s}$$

It follows that

$$\sharp \mathcal{Q}_s + \sum_{i=1}^s \sharp \mathcal{P}_i^0 \le 2$$

for s = 1, ..., r. In particular, we have $\sharp \mathcal{P}^0 \leq 2$. We also have $\sharp \mathcal{P}_s^{--} \leq 2$, since $\mathcal{P}_s^{--} \subset \mathcal{Q}_s$. Note that if $i \in \mathcal{P}_s^{++}$, then we have $\sigma(i) \in \mathcal{Q}_{s-1}$. Hence we have $\sharp \mathcal{P}_s^{++} \leq 2$.

For
$$B = (b_{ij}) \in \mathcal{H}_n(\mathfrak{o})$$
 and $1 \leq i, j \leq n$, we write $B_{(ij)} = \begin{pmatrix} b_{ii} & b_{ij} \\ \overline{b}_{ij} & b_{jj} \end{pmatrix}$.

Definition 3.2. $B = (b_{ij}) \in \mathcal{M}(\underline{a})$ is a reduced form of GK type (\underline{a}, σ) , if the following conditions (1), (2), (3), and (4) hold.

(1) For $i < j = \sigma(i)$, we have

$$GK(B_{(ij)}) = (a_i, a_j), \qquad \xi_{B_{(ij)}} = 1.$$

(2) If $i \in \mathcal{P}^0 \cup \mathcal{P}^{--}$, then we have

$$\operatorname{ord}(b_{ii}) = a_i.$$

(3) Suppose that $i, j \in \mathcal{P}^0 \cup \mathcal{P}^{--}$ and that i < j. Suppose also that either $i \in \mathcal{P}^0$ or $\sigma(i) > j$. Then we have

$$GK(B_{(ij)}) = (a_i, a_j), \qquad \xi_{B_{(ij)}} = -1.$$

(4) For $j \neq i, \sigma(i)$, we have

$$\operatorname{ord}(b_{ij}\mathfrak{D}) > \frac{a_i + a_j}{2}.$$

Theorem 3.1. Suppose that $B \in \mathcal{H}_n(\mathfrak{o})$ is optimal and $GK(B) = \underline{a}$. Then there exists $U \in G_{\underline{a}}$ and an \underline{a} -admissible involution σ such that B[U] is a reduced form of GK type (\underline{a}, σ) .

Theorem 3.2. Suppose that $B \in \mathcal{H}_n^{\mathrm{nd}}(\mathfrak{o})$ and $\mathrm{GK}(B) = \underline{a} = (a_1, \ldots, a_n)$. Then we have

$$\sum_{i=1}^{n} a_n = \Delta(B).$$

4. The modified Gross-Keating invariant MGK(B)

Let $\underline{a} \in \mathbb{Z}_{\geq 0}$ be a sequence which is not necessarily non-decreasing and $\sigma \in \mathfrak{S}_n$ an involution. We say that (\underline{a}, σ) is a generalized GK type is there exists a permutation $\tau \in \mathfrak{S}$ such that $(a_{\tau(1)}, a_{\tau(2)}, \dots, a_{\tau(n)}), \tau \sigma \tau^{-1})$ is a GK type. We also say that $B \in \mathcal{H}_n(\mathfrak{o})$ is a reduced form of generalized GK type (\underline{a}, σ) if there exists a permutation $\tau \in \mathfrak{S}_n$ such that $B[P_{\sigma}]$ is a reduced form of GK type $(a_{\tau(1)}, a_{\tau(2)}, \dots, a_{\tau(n)}), \tau \sigma \tau^{-1})$, where P_{σ} is the permutation matrix associated with σ .

Definition 4.1. Let (\underline{a}, σ) be a generalized GK type. Put

$$c_i = \begin{cases} a_i & \text{if } i \notin \mathcal{P}^+ \\ a_i - 1 & \text{if } i \in \mathcal{P}^+. \end{cases}$$

Definition 4.2. A GK type (\underline{a}, σ) is well-arranged if the following condition holds.

• If $i \in \mathcal{P}_s^+$ and $j \in \mathcal{P}_s \setminus \mathcal{P}_s^+$, then we have i < j.

Note that if (\underline{a}, σ) is well-arranged, then $\underline{\tilde{a}}$ is a non-decreasing sequence.

Definition 4.3. Suppose that (\underline{a}, σ) is a well-arranged GK type. We define the subgroup $G'_{a,\sigma} \subset \mathrm{GL}_n(\mathfrak{o}_E)$ by

$$G'_{\underline{a},\sigma} = \left\{ g = (g_{ij}) \middle| \begin{array}{l} g \in \mathrm{GL}_n(\mathfrak{o}_E), \\ \mathrm{ord}(g_{ij}) \geq (\tilde{a}_j - \tilde{a}_i)/2, \text{ if } \tilde{a}_i < \tilde{a}_j, \\ \mathrm{ord}(g_{ij}) \geq 1/2, \text{ if } \tilde{a}_i = \tilde{a}_j, i \in \mathcal{P}^=, j \notin \mathcal{P}^= \end{array} \right\}.$$

Then $U \in G'_{\underline{a},\sigma}$ if and only if U stabilizes $\mathcal{K}_0^+, \mathcal{K}_1^+, \ldots$. Let I_1, \ldots, I_r be the blocks. Put

$$\mathcal{P}_s^{+\square} = \mathcal{P}_s^{+\square}(\sigma) = \mathcal{P}_s^+ \setminus \mathcal{P}_s^{++} = \{ i \in \mathcal{P}_s \mid a_{\sigma(i)} = a_i - 1 \},$$
$$\mathcal{P}_s^{-\square} = \mathcal{P}_s^{-\square}(\sigma) = \mathcal{P}_s^- \setminus \mathcal{P}_s^{--} = \{ i \in \mathcal{P}_s \mid a_{\sigma(i)} = a_i + 1 \},$$

for $s = 1, \ldots, r$. Then we have

$$I_s = \mathcal{P}_s^{+\square} \sqcup \mathcal{P}_s^{++} \sqcup \mathcal{P}_s^{=} \sqcup \mathcal{P}_s^0 \sqcup \mathcal{P}_s^{--} \sqcup \mathcal{P}_s^{-\square}.$$

Let $\tilde{I}_1, \tilde{I}_2, \ldots, \tilde{I}_{\tilde{r}}$ be the block for the non-decreasing sequence $\underline{\tilde{a}}$. We also set $\tilde{n}_s = \sharp \tilde{I}_s$ and $\tilde{n}_s^* = \tilde{n}_1 + \cdots + \tilde{n}_s$ for $s = 1, \ldots, \tilde{r}$. For $s = 1, \ldots, \tilde{r}$, define $\sigma^{(\tilde{n}_s^*)} \in \mathfrak{S}_{\tilde{n}_s^*}$ by

$$\sigma^{(\tilde{n}_s^*)}(i) = \begin{cases} i & \text{if } \sigma(i) > \tilde{n}_s^*, \\ \sigma(i) & \text{otherwise.} \end{cases}$$

Then $(\underline{a}^{(\tilde{n}_s^*)}, \sigma^{(\tilde{n}_s^*)})$ is a standard GK type.

Suppose that $B \in \mathcal{H}_n(\mathfrak{o})$ is a reduced form of standard GK type (\underline{a}, σ) . Then $B^{(\tilde{n}_s^*)}$ is a reduce form of GK type $(\underline{a}^{(\tilde{n}_s^*)}, \sigma^{(\tilde{n}_s^*)})$.

Theorem 4.1. Suppose that $B, B' \in \mathcal{H}_n(\mathfrak{o})$ are mutually equivalent reduced form of GK type (\underline{a}, σ) and (\underline{a}, σ') , respectively. We assume both σ and σ' are standard \underline{a} -admissible involutions. Then we have $G'_{\underline{a},\sigma} = G'_{\underline{a},\sigma'}$. Moreover, if B' = B[U] with $U \in GL_n(\mathfrak{o}_E)$, then we have $U \in G'_{a,\sigma}$.

Corollary 1. The sequence $\underline{c} = (c_1, c_2, \dots, c_n)$ depends only on the equivalence class of B.

We call \underline{c} the modified Gross-Keating invariant of B. It is denoted by $\mathrm{MGK}(B)$.

Theorem 4.2. Suppose that $B \in \mathcal{H}_n(\mathfrak{o})$ is a reduced form of GK type (\underline{a}, σ) . Then we have $GK(B) = \underline{a}$. In particular, B is optimal.

Theorem 4.3. Suppose that $B \in \mathcal{H}_n(\mathfrak{o})$ is a reduced form of GK type (\underline{a}, σ) .

- (1) If \tilde{n}_s^* is even, then $\xi(B^{\tilde{n}_s^*})$ depends only on the equivalence class of B.
- (2) If \tilde{n}_s^* is odd and if $c_{s+1} \geq c_s + \operatorname{ord}(\mathbf{D})$, then $\xi(B^{\tilde{n}_s^*})$ depends only on the equivalence class of B.

5. A CONJECTURE ON THE SIEGEL SERIES

Let $\psi: F \to \mathbb{C}^{\times}$ be an additive character of order 0. For $B \in \mathcal{H}_n^{\mathrm{nd}}(\mathfrak{o})$ we define the Siegel series b(B,s) by

$$b(B,s) = \int_{R \in \operatorname{Her}_n(E)} \psi(\operatorname{tr}(BR)) [R\mathfrak{o}_E^n + \mathfrak{o}_E^n : \mathfrak{o}_E^n]^{-s/2} dR.$$

This integral is convergent for $\text{Re}(s) \gg 0$, and is analytically continued to the whole s-plane. Put

$$\gamma_{E/F}(X) = \prod_{i=0}^{[(n-1)/2]} (1 - q^{2i}X).$$

Then there exists a unique polynomial F(B, X) in X such that

$$b(B, s) = F(B, q^{-s})\gamma_{E/F}(q^{-s})$$

We then define a Laurent polynomial $\widetilde{F}(B,X)$ by

$$\widetilde{F}(B,X) = X^{e_B} F(B, q^{-n} X^{-2}).$$

It is known that the following functional equation holds.

$$\widetilde{F}(B, X^{-1}) = \xi(B)^{n-1} \widetilde{F}(B, X).$$

Conjecture 5.1. The Laurent polynomial $\tilde{F}(B,X)$ obtained from the Siegel series for B is determined by GK(B), MGK(B), and $\{\xi(B^{\tilde{n}_s^*})\}_{\tilde{n}_s^* \text{ is even}}$.

REFERENCES

- [1] ARGOS seminar on Intersections of Modular Correspondences, Astérisque **312** (2007).
- [2] I. I. Bouw, *Invariants of ternary quadratic forms*, Astérisque **312** (2007) 121–145.
- [3] B. Gross and K. Keating, On the intersection of modular correspondences, Inv. Math. 112 (1993) 225–245.
- [4] T. Ikeda and H. Katsurada, On the Gross-Keating invariant of a quadratic form over a non-archimedean local field, to appear in Amer. J. Math.
- [5] T. Ikeda and H. Katsurada, Explicit formula of the Siegel series of a quadratic form over a non-archimedean local field, in preparation.
- [6] R. Jacobowitz, Hermitian forms over local fields, Amer. J. Math. 84 (1962) 441–465.
- [7] R. Jacobowitz, Gauss sums and the local classification of hermitian forms, Amer. J. Math. **90** (1968) 528–552.

- [8] A. Johnson, Integral representations of hermitian forms over local fields, J. Reine Angew. Math. 229 (1968) 57–80.
- [9] H. Katsurada, An explicit formula for Siegel series, Amer. J. Math. 121 (1999) 415–452.
- [10] S. Kudla, M. Rapoport, and T. Yang, Modular Forms and Special Cycles on Shimura Curves, Princeton university press, (2006).
- [11] O. T. O'Meara, Introduction to Quadratic Forms, Springer, (1973).
- [12] W. Scharlau, Quadratic and Hermitian forms Springer (1985)
- [13] J.-P. Serre, Local Fields Springer, (1979)
- [14] G. Shimura, Euler products and Eisenstein series, AMS, (1997).
- [15] T. Yang, Local densities of 2-adic quadratic forms, J. Number Theory 108 (2004) 287–345.
- [16] T. Wedhorm, Calculation of representation densities Astérisque 312 (2007) 185–196.

Graduate school of mathematics, Kyoto University, Kitashirakawa, Kyoto, 606-8502, Japan

E-mail address: ikeda@math.kyoto-u.ac.jp

Muroran Institute of Technology 27-1 Mizumoto, Muroran, 050-8585, Japan

E-mail address: hidenori@mmm.muroran-it.ac.jp