<table>
<thead>
<tr>
<th>Title</th>
<th>An explicit construction of non-tempered cusp forms on $O(1,8n+1)$ (Analytic and Arithmetic Theory of Automorphic Forms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Li, Yingkun; Narita, Hiro-aki; Pitale, Ameya</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 = RIMS Kokyuroku (2019), 2100: 179-186</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2019-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/251803</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
An explicit construction of non-tempered cusp forms on
\(O(1, 8n + 1) \)

Yingkun Li, Hiro-aki Narita and Ameya Pitale

Abstract

This short note is a write-up of the results presented by the second named author at RIMS workshop “Analytic and arithmetic theory of automorphic forms”. The main result is an explicit construction of the real analytic cusp forms on \(O(1, 8n + 1) \) by a lifting from Maass cusp forms of level one. The lifting is proved to be Hecke-equivariant. Our results include an explicit formula for Hecke eigenvalues of the lifts and explicit determination of the cuspidal representations generated by them. This leads to showing the nontemperedness of the cuspidal representations at every finite place, namely our explicit construction provides “real analytic counterexamples to Ramanujan conjecture”.

1 Statement of the results

Let \(\mathfrak{h} := \{u + \sqrt{-1}v \in \mathbb{C} | v > 0\} \) and \(\Delta := v^2 \left(\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2} \right) \) be the hyperbolic Laplacian on \(\mathfrak{h} \). We then first review the definition of Maass cusp forms on \(\mathfrak{h} \).

Definition 1.1 A \(C^\infty \)-function \(f : \mathfrak{h} \rightarrow \mathbb{C} \) is called a Maass cusp form (of level one) if it satisfies the following:

1. \(f(\gamma(\tau)) = f(\tau) \) \(\forall \gamma \in SL_2(\mathbb{Z}) \),
2. \(\Delta \cdot f = -\left(\frac{1}{4} + \frac{r^2}{4}\right)f \) \((r \in \mathbb{R}) \),
3. The Fourier expansion of \(f \) has no constant term:

\[
 f(\tau) = \sum_{n \neq 0} c_f(n)W_{0, \frac{\sqrt{-1}r}{2}}(4\pi|n|v) \exp(2\pi\sqrt{-1}nu) \quad (\tau = u + \sqrt{-1}v).
\]

We next introduce Maass forms on real hyperbolic spaces (of higher dimension). Let \(H_n := \{(x, y) \mid x \in \mathbb{R}^n, y > 0\} \) be the \(n + 1 \)-dimensional real hyperbolic space, which can be identified with \(O(1, n+1)(\mathbb{R})/O(1, n+1)(\mathbb{R}) \cap O(n+2)(\mathbb{R}) \). For an arithmetic subgroup \(\Gamma \subset O(1, n+1)(\mathbb{R}) \) we introduce the following:

Definition 1.2 A \(C^\infty \)-function \(F : H_n \rightarrow \mathbb{C} \) is called a Maass form on \(H_n \) with respect to \(\Gamma \) if it satisfies the following:

1. \(F(\gamma(z)) = F(z) \) \(\forall (\gamma, z) \in \Gamma \times H_n \).
2. $\Omega \cdot F = \frac{1}{2n} (\rho^2 - \frac{n^2}{4}) F \ (\rho \in \mathbb{C})$ (Ω: Casimir operator).

3. F is of moderate growth.

We denote by $M(\Gamma, \rho)$ the space of Maass forms above.

In what follows, let f be a Maass cusp form of level one and (\mathbb{Z}^{8n}, S) be an even unimodular lattice with the quadratic form defined by a positive definite symmetric matrix S. We further let $O(Q)(\simeq O(1, 8n+1))$ be the orthogonal group defined by $Q := \begin{pmatrix} -S & 1 \\ 1 & 0 \end{pmatrix}$. We then see that

$$\{(x, y) \mid x \in \mathbb{R}^{8n}, \ y > 0\}$$

is $8n + 1$-dimensional real hyperbolic space, which can be identified with $O(Q)(\mathbb{R})/O(Q)(\mathbb{R}) \cap O(8n + 2)(\mathbb{R})$. We let $\Gamma_S := \{ \gamma \in O(Q)(\mathbb{Q}) \mid \gamma \mathbb{Z}^{8n+2} = \mathbb{Z}^{8n+2} \}$.

For a Maass cusp form f we now introduce a function on the $8n + 1$-dimensional hyperbolic space as follows:

$$F_f((x, y)) = \sum_{\lambda \in \mathbb{Z}^{8n} \setminus \{0\}} C_{\lambda} y^{4n} K_{\sqrt{-1}r}(4\pi|\lambda|_S y) \exp(2\pi\sqrt{-1}^{t}\lambda S x),$$

where $|\lambda|_S := \sqrt{\frac{1}{2}t\lambda S \lambda}$. Here, with the greatest common divisor d_λ of $\lambda \in \mathbb{Z}^{8n} \setminus \{0\}$,

$$C_{\lambda} := |\lambda|_S \sum_{d|d_\lambda} c(-\frac{|\lambda|_S^2}{d^2}) d^{4n-2}.$$

We are ready to state our first result:

Theorem 1.3 (1) F_f is a Maass cusp form in $M(\Gamma_S, \sqrt{-1}r)$, where $r \in \mathbb{R}$ is the parameter of the Δ-eigenvalue for f.

(2) $f \not\equiv 0 \Rightarrow F_f \not\equiv 0$.

(3) f is a Hecke eigenform \Rightarrow so is F_f.

Our next result concerns cuspidal representations generated by F_f. To this end we adelized F_f as an automorphic form on $O(Q)(\mathbb{A})$ by

$$F_f(g) := \sum_{\lambda \in \mathbb{Q}^{8n} \setminus \{0\}} A_\lambda (g_f) W_{\lambda, \infty}(g_\infty) \ (g = g_f g_\infty \in O(Q)(A_f) \times O(Q)(\mathbb{R}) = O(Q)(\mathbb{A}))$$

where

$$A_\lambda \left(\begin{pmatrix} 1 & h \\ & 1 \end{pmatrix} \right) = \delta(\lambda \in L_h) |\lambda| \sum_{d|d_\lambda} d^{4n-2} c(-\frac{|\lambda|^2}{d^2}) \forall h \in O(S)(A_f),$$

$$A_\lambda \left(\begin{pmatrix} \alpha & h \\ & \alpha^{-1} \end{pmatrix} \right) = ||\alpha||_{A_f}^{4n} A_{||\beta||_{A_f}^{-1}\lambda} \left(\begin{pmatrix} 1 & h \\ & 1 \end{pmatrix} \right), \ \forall (\alpha, h) \in A_f^\times \times O(S)(A_f),$$

$$A_\lambda (n(x)lk) = \Lambda(\lambda S x) A_\lambda (l) \forall (x, l, k) \in A_f^{8n} \times L(\mathbb{A}_f) \times K_f,$$
with the Levi subgroup $\mathcal{L} \cong \mathbb{G}_{m} \times O(S)$ and the archimedean Whittaker function $W_{\lambda, \infty}$ appearing in the non-adelic Fourier expansion.

Let $\pi_{F_{f}}$ be a cuspidal representation of $O(1, 8n+1)(\mathbb{A})$ generated by F_{f}. Our next result is stated as follows:

Theorem 1.4 (1) Let f be a Hecke-eigen cusp form with a Hecke eigenvalue λ_{p} at each prime p. Then $\pi_{F_{f}}$ is irreducible and thus decomposes into the restricted product $\otimes'_{v \leq \infty} \pi_{v}$. Every π_{v} for $v = p < \infty$ is explicitly determined by the Satake parameter

$$\text{diag} \left(\left(\frac{\lambda_{p} + \sqrt{\lambda_{p}^{2} - 4}}{2} \right)^{2}, p^{4n-1}, \cdots, p, 1, 1, p^{-1}, \cdots, p^{-(4n-1)}, \left(\frac{\lambda_{p} + \sqrt{\lambda_{p}^{2} - 4}}{2} \right)^{-2} \right).$$

(2) For $p < \infty$, π_{p} is non-tempered while π_{∞} is tempered (i.e. counterexample to the Ramanujan conjecture).

3) The standard L-function $L(\pi_{F_{f}}, \text{std}, s)$ has the following coincidence:

$$L(\pi_{F_{f}}, \text{std}, s) = L(\text{sym}^{2}(f), s) \prod_{i=0}^{8n-2} \zeta(s + (i - (4n - 1))).$$

In what follows, we overview the proofs of the two theorems above. For the detailed proof see [3].

2 Outline of the proof for the first theorem

In this section we explain mainly of the Γ_{S}-automorphy of F_{f}. Our original idea was to use the converse theorem by Maass [4] (cf. [5], [8]). A basic limitation of the Maass converse theorem is that it provides automorphy only with respect to a discrete subgroup generated by translations and one inversion. For the case of $n > 1$, it seems difficult to determine the generators of Γ_{S}. Hence, the Maass converse theorem method, though applicable, does not give automorphy with respect to all of Γ_{S}. Instead we use the notion of a theta lifting. For this we remind the readers that $SL_{2} \times O(1, m)$ forms a dual pair. It is natural to expect that our lift $f \mapsto F_{f}$ is a theta lift to $O(1, 8n+1)$. This new idea has enabled us to overcome the difficulty.

Theorem 2.1 With a suitable choice of a theta kernel $\Theta(\tau, (x, y))$ we have

$$F_{f}(x, y) = \int_{SL_{2}(\mathbb{Z}) \backslash \mathfrak{h}} f(\tau) \overline{\Theta(\tau, (x, y))} \nu^{4n-\frac{3}{2}} dudv,$$

namely, F_{f} is a theta lift from f.

We follow the formulation of the theta lift by Borcherds [1]. The theta integral kernel is given as $\Theta(\tau, \nu) := \sum_{\lambda \in \mathcal{L}} \exp(-\frac{\Delta_{n}}{8\nu v}) P(\iota_{\nu}(\lambda_{\nu})) e^{\pi \sqrt{-1}(q_{Q}(\lambda_{\nu})^{r} + q_{Q}(\lambda_{\nu}^{+}) \tau)}$, where

- $\Delta_{n} = \sum_{i=0}^{8n+1} \frac{\partial^{2}}{\partial t_{i}^{2}}$ denotes the standard Laplacian on \mathbb{R}^{8n+2},
• q_Q denotes the quadratic form defined by Q.

• H_{8n+1} is viewed as the Grassmanian D_{8n+1} of positive oriented lines in (\mathbb{R}^{8n+2}, Q). Each $\nu \in D_{8n+1} \cong H_{8n+1}$ defines an isometry

$$\iota_\nu : (\mathbb{R}^{8n+2}, Q) \ni \lambda \mapsto (t^{(\lambda Q \nu, \nu)} \lambda^-) \in \mathbb{R}^{1,0} \oplus \nu^\perp \cong \mathbb{R}^{1,8n+1}$$

with $\lambda^- := \lambda - \lambda^+_\nu$ with $\lambda^+_\nu := (t^{(\lambda Q \nu)} \cdot \nu)$.

• $P(x_0, x_1, \ldots, x_{8n}, x_{8n+1}) := 2^{-n/2 - 3} x_0^{4n}$, which is a non-harmonic homogeneous polynomial.

Since $\Theta(\tau, (x, y))$ is Γ_S-invariant, the automorphy of F_f follows. As the Fourier expansion of F_f indicates, F_f is a cusp form. Recall now that there has been the assertion of non-vanishing of F_f. We verify this by the argument similar to [5, Theorem 4.4]. For this, note that the set of the Γ_S-cusps are in bijection with the equivalence classes of even unimodular lattices of rank $8n$. To show the non-vanishing, we use the Fourier expansion of the Γ_S-cusp corresponding to E_8^n, where E_8 denotes the even unimodular lattice of rank 8 called the E_8-lattice. It is worth while to remark that the representability of every integer by the E_8-lattice is one essential point for the proof of the non-vanishing.

3 Outline of the proof for the second theorem

We discuss the Hecke theory of our lifting, which leads to overview of the proof for the second theorem. In fact, we will show that if f is a Hecke eigenform then so is the lift F_f. We can compute the Hecke eigenvalues of F_f explicitly in terms of those of f, which yields the theorem. The method is to use the non-archimedean local theory by Sugano [11, Section 7] for the Jacobi form formulation of the Oda-Rallis-Schiffmann lifting [7], [9].

To review the setting of Sugano’s local theory we first introduce the notation on groups and lattices:

• F: non-archimedean local field of char. $\neq 2$ with integer ring \mathfrak{O}.

• $Q_m := \begin{pmatrix} J_m & S_0 \\ J_m & \end{pmatrix}$ with

$$J_m := \begin{pmatrix} 1 & 1 \\ \ddots & \ddots \\ 1 & \end{pmatrix}, \quad S_0: \text{anisotropic part (rank}(S_0) = n_0 \leq 4).$$

• $O(Q_m)$: the orthogonal group defined by Q_m over F.

• $L_m := \mathfrak{O}^{2m+n_0}$: assumed to be a maximal lattice w.r.t. Q_m.

• $G_m := O(Q_m)(F) \supset K_m := \{ k \in G_m \mid kL_m = L_m \}$.
We now review the non-archimedean local “Whittaker functions” (nowadays known as “Special Bessel model”) studied by Sugano [11, Section 7]. To this end we need further notation. Let $G_m \supset P = LN$ be the standard maximal parabolic subgroup with the Levi subgroup L of split rank one and the abelian unipotent radical N. For a “reduced character” χ of N put $H^\chi := \text{Stab}_{O(2(m-1))}(\chi) \subset L$, where we say that χ is reduced if it comes from a reduced element in \mathbb{Q}^{2m-2}_p. For the precise definition see [11, Section 7, p44, p47]. We introduce

$$ W_\chi := \left\{ W \in C^\infty(O(2m) \mid W(hngk) = \chi(n)^{-1}W(g) \quad \forall(h,n,k) \in H_\chi \times N \times K_{2m,p} \right\}, $$

$$ W^\mathcal{M}_\chi := \left\{ W \in W_\chi \mid W \text{ satisfies the local Maass relation.} \right\}. $$

Here, for the definition of the local Maass relation, see [11, (7.48), (7.49)].

What is crucial for the Hecke theory of our lifting is the Hecke module structure for $W^\mathcal{M}_\chi$. We now introduce the Hecke operators $\{C_m^{(i)}\}_{1 \leq i \leq m}$ which form a generator of the Hecke algebra \mathcal{H}_m for (G_m, K_m):

- $\{C_m^{(i)} := \text{char}(K_m c_m^{(i)} K_m)\}_{1 \leq i \leq m}$, where

$$ c_m^{(i)} := \text{diag}(p, \cdots, p, 1, \cdots, 1, \cdots, p^{-1})_i. $$

To describe the Hecke module structure of $W^\mathcal{M}_\chi$ explicitly we need the following:

- $q := \# k_F \ (k_F := \mathfrak{o}/p: \text{residue field of } F)$
- $\partial := \dim_{k_F} (L_{m-1}')/L_{m-1}, \quad L_{m-1}' := \{\lambda \in L_{m-1}^\wedge \mid \frac{1}{2} t \lambda S \lambda \in p^{-1}\}$ (L_{m-1}^\wedge: dual lattice).

$$ R_m^{(i)} := \#(K_m/c_m^{(i)} K_m) = \prod_{i=1}^{m} f_{m,i}, $$

$$ f_{m,i} := \frac{q^{i-1}(q^{m-i}+1)-q^{i}(q^{m-i}+1)}{q^{i-1}-1}. $$

Proposition 3.1 (Sugano) (1) The Whittaker spaces W_χ and $W^\mathcal{M}_\chi$ are \mathcal{H}_m-stable.

(2) On W_χ the Hecke operators $C_m^{(i)}$ for $i \geq 3$ acts by

$$ C_m^{(i)} = R_{m-2}^{(i-2)}(C_m^{(2)}) - \frac{q^{i-2} - 1}{q^{i-1} - 1} \cdot f_{m-2,1} \cdot C_m^{(1)} + \frac{q^{i-2} - 1}{q^2 - 1} f_{m-2,1} f_{m+2,2}. $$

(3) On $W^\mathcal{M}_\chi$ the Hecke operator $C_m^{(i)}$ satisfies

$$ C_m^{(2)} = f_{m-2,1} C_m^{(1)} + q^4 f_{m-4,1} f_{m-4,2} + q^3 f_{m-4,1}^2 $$

$$ - q^2 (q^{m-4} - (q-2)q^\partial) f_{m-4,1} + (q-1)q^\partial f_{m-2,1} - q(f_{m+4} + q^\partial)^2. $$

Though the Hecke module structure $W^\mathcal{M}_\chi$ looks complicated as we have seen just above it turns out to be quite simple as follows:
Proposition 3.2 On $\mathcal{W}_{\lambda}^{M}$,

$$C_{m}^{(i)} = R_{m-1}^{(i-1)}(C_{m}^{(1)} - \frac{q^{i-1}-1}{q^{i}-1}f_{m,1}) \quad (i \geq 2).$$

We apply the above results to the situation as follows:

$$F = \mathbb{Q}_{p}, \quad m = 4n + 1, \quad n_{0} = \partial = 0,$$

for which note that $O(Q)$ is isomorphic to $O(8n + 2)$ over \mathbb{Q}_{p}. It can be shown that the adelic Fourier coefficient A_{λ} can be viewed as a local Whittaker functions on $O(8n + 2)(\mathbb{Q}_{p})$ for each prime p. With the notation above we thus have the results on the Hecke theory stated as follows:

Proposition 3.3 (1) If f is a Hecke eigenform, F_{f} is also a Hecke eigenfunction.

(2) Let λ_{p} be the Hecke eigenvalue of f at $p < \infty$. Then $C_{4n+1}^{(i)} \cdot F_{f} = \mu_{i}F_{f},$ where

$$\mu_{i} = \begin{cases}
\mu_{1}^{n}(\lambda_{p}^{2} + p^{4n-1} + \cdots + p + p^{-1} + \cdots + p^{-(4n-1)}) & (i = 1), \\
R_{4n}^{(i-1)}(\mu_{1} - \frac{p^{i-1}-1}{p^{i}-1}f_{4n+1,1}) & (i > 1).
\end{cases}$$

As a corollary to this proposition we have the following consequence on the cuspidal representation $\pi_{F_{f}}$.

Corollary 3.4 Suppose that f is a Hecke eigenform.

(1) The cuspidal representation $\pi_{F_{f}}$ is irreducible and decomposes into $\pi_{F_{f}} \simeq \otimes_{v \leq \infty}'\pi_{v}$.

(2) With $\beta_{p} := \frac{\lambda_{p}+\sqrt{\lambda_{p}^{2}-4}}{2}$, the Satake parameter of F_{f} at $p < \infty$ is

$$\text{diag}((\beta_{p}^{2},p^{4n-1},1,1,p^{-1},\cdots,p^{-(4n-1)},\beta_{p}^{-2}),$$

which means the explicit determination of π_{p} of $\pi_{F_{f}}$.

(3) The local components π_{p} is non-tempered at every $v = p < \infty$ while π_{∞} is tempered at $v = \infty$.

To show the irreducibility of π_{F} we prove that π_{∞} is given explicitly as an irreducible spherical principal series representation, and can then apply [6, Theorem 3.1] to π_{F}, in order to show its irreducibility. The second assertion is a consequence from Proposition 3.3. For the third assertion we remark that the Satake parameter at $v = p < \infty$ include that for the trivial representation of $G_{4n} = O(8n)(\mathbb{Q}_{p})$. We can deduce the non-temperedness of π_{p} from this. The temperedness of π_{∞} is verified by the explicit description of π_{∞} mentioned above.

4 Concluding remarks

1. Sugano’s non-archimedean local theory [11] is originally motivated by studying the non-archimedean local aspect of Oda-Rallis-Schifflmann lifting [7], [9]. One therefore naturally expects that the results similar to our two theorems hold also for this lifting. In the appendix of [3] we have included such results on the Oda-Rallis-Schifflmann lifting for the
Non-tempered cusp forms on $O(1,8n+1)$

orthogonal group $O(2,8n+2)$ defined by

\[
\begin{pmatrix}
1 & 1 & -S & 1 & 1 \\
-1 & -S & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{pmatrix},
\]

where S denotes an even unimodular matrix.

2. Our non-archimedean local theory needs the theory of unramified principal series representations of p-adic reductive groups. For this we should note that many relevant references assume the connected-ness of the reductive groups. For the orthogonal groups in our setting, we have justified the usefulness of the known theory on the unramified principal series based on [10] and [2] though the orthogonal group is not connected.

References

Yingkun Li
Fachbereich Mathematik
Technische Universität Darmstadt
Schloßgartenstr. 7
64289 Darmstadt, Germany
E-mail address: li@mathematik.tu-darmstadt.de

Hiro-aki Narita
Department of Mathematics
Faculty of Science and Engineering
Waseda University
3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan
E-mail address: hnarita@waseda.jp

Ameya Pitale
Department of Mathematics
University of Oklahoma
Norman, Oklahoma, USA
E-mail address: apitale@ou.edu