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Paramodularity

Cris Poor

Abstract

We survey results motivated by the Paramodular conjecture of Brumer and Kramer.
These include systematic computations of spaces of weight two paramodular cusp forms.
constructions of nonlift newforms using Borcherds products, proofs that specific examples of
abelian surfaces are paramodular, and counterexamples due to Calegari.

Contents

1 Elliptic curves are modular 2
11 L‐functions of elıiptic curves over  \mathbb{Q} . . . . . . . 3
12 Modular newforms. . . . . . 4

2 Abelian surfaces are paramodular 4
2.1 Abelian varieties. . . . . . 5

2.2 Constructing examples of abelian surfaces. . . . . . 6
2.3  L‐functions of abelian surfaces over  \mathbb{Q} . . . . . . 6
2.4 Paramodular forms. . . . . . 7

2.5 Fourier‐Jacobi expansions. . . . . . 8
26 Methods for constructing paramodular newforms. . . . . . 9
2.7 Examples of paramodular newforms. . . . . . 10

3 A counterexample and the modified Paramodular conjecture. 12

Introduction

The Paramodular conjecture asserts the modularity of abelian surfaces defined over  \mathbb{Q} with min‐
imal endotnorphisms and tells us exactly where to look for the corresponding nonlift paramod‐
ular newform. When the endomorphism ring is not minimal, modularity is already known,
There is some evidence for the conjecture. In [20] spaces of paramodular cusp forms were stud‐
ied for prime levels  p<600 and it was shown that weight two nonlifts could exist only for
 p\in\{277,349,353,389,461, 523, 587\} . Although abelian surfaces are known for each of these
conductors, the existence of a nonlift was shown in [20] only for the level 277; the existence of
the nonlift in all cases was completed in [12, 18] using the theory of Borcherds products.

In each of these cases the first few Euler factors of the abelian surface and the paramodular
form match. For the levels 277, 353, 587‐, enough eigenvalues have been computed in [6] to
actually prove the equality of  L‐functions. Additionally, using the theory of Galois deformations,
Berger and Klosin have proved modularity for an abelian surface of conductor 731 in [2], the
first resut for a composite level. See the website siegelmodularforms.org for a heuristic table of
paramodular newforms of level  N<1000 , and whether a potential match has been found yet.
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Infinite families exhibiting paramodularity have also been constructed. In [16] Johnson‐
Leung and Roberts constructed a theory of twisting paramodular forms consistent with the
formation of  L‐functions, so that the modularity of one pair  (A, f) implies the modularity of all
the twists  (A^{\chi}, f^{\chi}) , at least when the conductor of  \chi is prime to the level of  f , Furthermore,
Johnson‐Leung and Roberts have a theory of lifting [15] Hilbert modular forms to paramodular
forms so that when a Hilbert modular form  h shows the modularity of an elıiptic curve  E

over a real quadratic field  K , which is not isogenous to its conjugate, the lifted paramodular
form  \hat{h} shows the modularity of the abelian surface given by the Weil restriction of  E/K . For
imaginary quadratic  K , Berger, Dembélé, Pacetti, and Sengun have a similar theory [1] lifting
Bianchi eigenfor1ns to paramodular eigenforms, so that the modularity of the Weil restriction
of  E/K is known whenever the modularity of  E/K is known. All in all, we can say that when
an abelian surface  A is known and the conductor  N is within the range of present theory or
computation, evidence for a weight two nonlift paramodulai newfortn  f has been found.

The converse direction of the Paramodular conjecture has been more troublesome. First,
there is evidence for paramodular newforms where no matching abelian surface, or any arithmetic
object, has yet been found, level 550 for example. Second, the original Paramodular conjecture
overlooked the circumstance that some nonlift, weight two, paramodular newforms correspond
to abelian fourfolds with quaternionic multiplication, as pointed out by Calegari. We include
Brumer and Kramer’s revised version of the Paramodular conjecture in section three.

In the above cases of Weil restriction, the abelian surface acquires extra endomorphisms over
a quadratic extension. Our focus in this article is on the typical case, when the abelian surface
retains minimal endomorphisms over  \overline{\mathbb{Q}} . Counted among these are the levels 277, 353, 587‐,
where modularity has been proven by the direct construction of the paramodular newforms
and a generalization of the method of Faltings‐Serre to GSp(4). Our main goal is to give the
flavor of these constructions of paramodular newforms in terms of Gritsenko lifts and Borcherds
products. Finally, we can say that for  N=277 we have a complete proof of one instance of
the Paramodular conjecture. It is proven that there is a single isogeny class of abelian surafces
defined over  \mathbb{Q} with mininal endomorphisms of conductor 277, see [3]. It is proven that there
is a single line of nonlift newforms in  S_{2}(K(277)) with rational eigenvalues, see [20]. And it is
proven that the associated Galois representations and  L‐functions match, see [6].

I thank Yoshinori Mizuno and the RIMS Symposium on the Analytic and Arithmetic Theory
of Automorphic Forms for the opportunity to participate in this excellent conference. I thank
Armand Brumer for his help.

1 All elliptic curves defined over  \mathbb{Q} are modular.

The Modularity Theorem relating elliptic curves and elliptic modular forms is the model for
questions of modularity

1.0.1 Modularity Theorem. (Wiles; Wiles & Taylor; Breuil, Conrad, Diamond & Tayıor.)
Let  N\in \mathbb{N} . There is a bijection between

i) isogeny classes of elliptic curves  E/\mathbb{Q} with conductor  N , and

ii) normalized Hecke eigenforms  f\in S_{2}(\Gamma_{0}(N))^{new} with rational eigenvalues.
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In this correspondence wc have  L (  E,  s , Hasse)  =L (  f,  s , Hecke).

Eichlet proved the first examples of this in 1954, see [7]. Eom his work we conclude, for
example,

 L (  X_{0}(11),  s , Hasse)  =L (  \eta(\tau)^{2}\eta(11\tau)^{2},  s , Hecke).

Looking ahead to the Paramodular conjecture, the case of abelian surfaces and paramodular
forms, we are still trying to be like Eichler. We are trying to prove specific examples of what
is expected to be a general phenomenon. And we will indeed succeed in giving a few beautiful
formulae that generalize Eichler’s equality of  L‐functions above.

Returning to the Modularity Theorem, Shimura gave a construction from ii) to i). Weiı
added  N=N , that the analytic conductor and the arithmetic conductor should be equal. We
should credit Taniyama (1956) and Shimura  (\sim 1963) for important modularity conjectures. In
its final form, however, the Modularity Theorem is a classification theorem. Cremona has led
the classification of  E/\mathbb{Q} up to conductor  N\leq 400000 , (johncremona.github.io/ecdtata).

1.1  L‐functions of elliptic curves over  \mathbb{Q}.

We mention both the definition of the Hasse  L‐function and the manner in which it is typically
computed. The local  p‐Euler factor is the characteristic polynomial of Frobenius acting on the
Tate module  \mathbb{T}_{\ell}(E) of the elliptic curve  E,

 Q_{p}(E, t)=\det(I-tFrob_{p}|\Gamma_{\ell}(E)^{I_{p}}) .

The local Zeta function can be computed by counting points on the elliptic curve  E over finite
fields,

 Z_{p}(E, t)= \exp(\sum_{n=1}^{\infty}\#\{ Points   on E/\Gamma_{p^{n}}\}\frac{t^{n}}{n})=\frac{Q_{p}(E,t)}{(1-t)(1-pt)}.
The global  L‐function is defined by an Euler product that converges for  \Re(s)>3/2,

 L (  E,  s , Hasse)  = \prod_{P^{rimes}p}Q_{p}(E,p^{-s})^{-1}
Here is an example of finding an Euler 2‐factor. Take the elliptic curve over  \mathbb{Q} of conductor 11,

 y^{2}+y=x^{3}-x^{2} , which has label ıl.a3 on the lmfdb, and write the projectivized set of points
over a field  \mathbb{F} of the elliptic curve  E as

 E[\mathbb{F}]=\{(x, y, z)\in \mathbb{P}^{2}(\Gamma) : y^{2}z+yz^{2}=x^{3}-x^{2}
z\}.

It is not too hard, even without a computer, to count the number of points over small finite
fields.

The Zeta function at  p=2 can be computed from the first two data points, but the consis‐
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tency of all the data illustrates the rationality of the Zeta function,

 Z_{2}(E, t)= \exp(5t+5\frac{t^{2}}{2}+5\frac{t^{3}}{3}+25\frac{t^{4}}{4}+
\cdots)=\frac{1+2t+2t^{2}}{(1-t)(1-2t)}.
From this we obtain the Euler 2‐factor  Q_{2}(E, t)=1+2t+2t^{2} Continuing in this way, we can
get the beginning of the global  L‐function of  E,

 L (  E,  s , Hasse)  = \prod_{P^{rimes}p}Q_{p}(E,p^{-s})^{-1}=1-\frac{2}{2^{s}}-\frac{1}{3^{s}}+
\frac{2}{4^{S}}+\frac{1}{5^{s}}+
1.2 Modular newforms.

On the automorphic side of the above example, the space  S_{2}(\Gamma_{0}(11)) is one dimensional and
 S_{2}(\Gamma_{0}(1)) is trivial, and so there is a normalized elliptic modular newform fıl  \in S_{2}(\Gamma_{0}(11))
that is necessarily a Hecke eigenform with rational coefficients. The  q‐expansion can be looked
up on the lmfdb, where it was computed by the method of modular symbols,

 f_{11}(\tau)=q-2q^{2}-q^{3}+2q^{4}+q^{5}+

and we see that the Fourier coefficients of  f_{11} match the Dirichlet coefficients of the Hasse L‐

function. Instead of holding the  L‐functions as the primary object, a more sophisticated point of
view is to consider the equality of the Galois representations associated to the abelian variety and
to the modular form, but here we favor a computational point of view and focus on  L‐functions.

One could also expand  f_{11}( \tau)=\eta(\tau)^{2}\eta(11\tau)^{2}=q\prod_{n=1}^{\infty}(1-q^{n})^{2}
(1-q^{11n})^{2} , or use theta
series to construct the newform. The theta series  \vartheta[Q] of an even m‐by‐m quadratic form is
defined by   \vartheta[Q](\tau)=\sum_{n\in Z^{m}}e  ( \frac{1}{2}Q[n]\tau) . If  \ell Q^{-1} is aıso even then  \vartheta[Q]\in M_{7r\iota/2}(\Gamma_{0}(\ell), \chi) for
some character  \chi . The character is trivial when  \det(Q) is a square and 4  |m , see [9], page 203.
In this case we have

  f_{11}( \tau)=\frac{1}{2}\vartheta  \{\begin{array}{ll}
211   {\imath}
1201   
1084   
1148   
\end{array}\}  ( \tau)-\frac{1}{2}\vartheta\{\begin{array}{l}
2010
0201
1060
0106
\end{array}\}(\tau) .

The variety of ways to construct modular forms has always been part of the charm of the subject,

2 All abelian surfaces over  \mathbb{Q} with minimal endomorphisms are paramodular.

We state the Paramodular conjecture as it was given by Brumcr and Kramcr in 2009. The
direction that i) implies ii) is still believed but Calegari pointed out a counterexample to the
converse in 2018. Brumer and Kramer have given an amended version in [4] and we will also
reproduce it here in section 4. It is still interesting to give the original version, however, both
to discuss related work and to discuss counterexamples.

2.0.1 Paramodular Conjecture 1.0 (Brumer and Kramer 2009.) Let  N\in \mathbb{N} . There is a
bijection between

i) isogeny classes of abelian surfaces  A/\mathbb{Q} of conductor  N and endomorphisms  End_{\mathbb{Q}}(A)=\mathbb{Z},
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ii) lines of Hecke eigenfoTms  f\in S_{2}(K(N))^{new} that have rational eigenvalues and are not
Gritsenko lifts from  J_{2,N}^{cusp}.

In this correspondence we have  L (  A,  s , Hasse‐Weil)  =L (  f,  s , spin).

The subtle condition in the Paramodular conjecture is that the ring of endomorphisms defined
over  \mathbb{Q} should be minimal:  End_{\mathbb{Q}}(A)=\mathbb{Z} . The Paramodular conjecture addresses the essential
case, because when  End_{\mathbb{Q}}(A)>\mathbb{Z} , modularity is known by the theory of  GL(2) ‐type. It is
natural to ask why we did not see the condition on the endomorphism ring in the elliptic case.
The answer is that  End_{\mathbb{Q}}(E)=\mathbb{Z} for every elliptic curve  E/\mathbb{Q}.

Just as certain abelian surfaces were excluded, we also exclude certain paramodular forms,
the Gritsenko ıifts. Gritsenko has an injective map [11] from the space of Jacobi cusp forms to
the space of paramodular forms, Grit :  J_{k,N}^{cusp}arrow S_{k}(K(N)) , and the  L‐functions of Gritsenko
lifts, which are built up from GL(2) eigenforms, have poles and do not respect the Weil bounds.
Furthermore, we insist that the paramodular forms be new. Notice that it is not even possible
to state the Paramodular conjecture without the global theory of paramodular newforms due to
Roberts and Schmidt in [21, 22]. Thus we exclude oldforms, which come from discrete subgroups
of lower level, and Gritsenko lifts, which come from a group of lower rank.

We can learn something by comparing the Paramodular conjecture to Yoshida’s earlier
work. In 1980, see [25], Yoshida conjectured that For every abelian surface  A/\mathbb{Q} there ex‐
ists a Siegel modular form  \mathcal{F} of weight 2 of a suitable level such that  L(s, A)=L(s, \mathcal{F}) , and
gave examples with  End_{\mathbb{Q}}(A)\neq \mathbb{Z} . Three example that Yoshida gave were  J_{0}(p)=Jac(X_{0}(p))
with conductor  p^{2} and   End_{\mathbb{Q}}(J_{0}(p))=\mathbb{Z}[\frac{i+\sqrt{5}}{2}],  \mathbb{Z}[\sqrt{2}],   \mathbb{Z}[\frac{i+\sqrt{5}}{2}] , for  p=23,29,31 , respec‐

tively. Yoshida proved that  L (  J_{0}(p),  s , H‐W)  =L(Y_{p}, s, spi_{11}) where  Y_{p}\in S_{2}(\Gamma_{0}^{(2)}(p)) is the

Yoshida lift of a newform  f_{p}\in S_{2}(\Gamma_{0}^{(1)}(p)) and its conjugate. It is instructive to trace,

Tr :  S_{2}(\Gamma_{0}^{(2)}(p))arrow S_{2}(K(p2)) , because a nonzero image would contradict the Paramodu‐

lar conjecture. The point is that the endomorphisms of the associated abelian surface would
be too big. Due to a lemma of Ralf Schmidt, however, a nonzero trace cannot occur in this
situation because  S_{k}(K(N))_{(Yosh)}=\{0\} , eigenforms of Yoshida type do not have paramodular
fixed vectors, see [24].

2.1 Abelian varieties.

Let  K\subseteq \mathbb{C} be an algebraic number field.

2.1.1 Definition. An abelian variety  A/K is a projective variety defined over  K with an alge‐
braic group law also defined over  K.

In particular, the identity element of the group law is defined over  K , so that  A/K aıways has
at lcast one  K‐rational point. The group structure of an abelian variety is more visible in the
holomorphic category. If we consider the complex points of  A to form a complex manifold,  A_{ho{\imath}},
then  A_{ho{\imath}} is biholomorphic to a complex torus. When the torus has complex dimension one
we are in the case of elliptic curves and  A_{ho1}\cong \mathbb{C}^{1}/(\mathbb{Z}+\tau \mathbb{Z}) for  \tau\in \mathcal{H} . When the torus has
complex dimension two we are in the case of abelian surfaces and

 A_{ho{\imath}}\cong \mathbb{C}^{2}/(D\mathbb{Z}^{2}+Z\mathbb{Z}^{2}) for  Z\in \mathcal{H}_{2},
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where  D=diag(1, d) for  d\in \mathbb{N} gives the type of “polarization” of  A . Here we use the Siegel
upper half space,  \mathcal{H}_{2}=\{Z\in M_{2\cross 2}^{sym}(\mathbb{C}) : {\rm Im} Z>0\} , which is also fundamental in the subject
of Siegel modular forms. This modern definition of an abeıian variety, however, hides the fact
that, for  g>1 , the equations defining  A irrside a projective space are complicated. So for  g>1,
it requires skill to produce examples of abelian varieties over  K at all.

2.2 Constructing examples of abelian surfaces.

In this section we content ourselves with constructing some abelian surfaces defined over  \mathbb{Q} . If
 C is a curve of genus 2 defined over  \mathbb{Q} , then

 A= Jac(C)

is an abelian surface defined over  \mathbb{Q} with a principal polarization, i.e., type  D=diag(1,1) .
Many examples of Jacobians can be found on the lmfdb. If a genus 3 cuive  C_{3} is a ramified
degree  d cover of a genus 1 curve  C_{1} , simply branched at four points, then the abelian surface

 A= Prym  (C_{3}/C_{1})= Jac  (C_{3})/ Jac  (C_{1})

has a natural polarization of type  D=diag(1, d) . These constructions, however, are by no
means exhaustive and when the isogeny class of an  A/\mathbb{Q} does not contain a representative given
by a common construction, a representative may be hard to find.

2.3  L‐functions of abelian surfaces over  \mathbb{Q}.

The local  p‐Euler factor is the characteristic polynomial of Frobenius acting on the Tate mod‐
ule  \Gamma p(A) of the abelian surface  A,

 Q_{p}(A, t)=\det(I-tFrob_{p}|\Gamma_{\ell}(A)^{I_{p}}) .

The global Hasse‐Weil  L‐function is defined by an Euler product and converges in the half‐
plane  \Re(s)>3/2,

 L (  A,  s , H‐W)  = \prod_{P^{rimes}p}Q_{p}(A, p^{-s})^{-1}.
In the special case when  A=Jac(C) is the Jacobian of a genus two curve  C , we have

 L (  A,  s , H‐W)  =L (  C,  s , H‐W).

The local Hasse‐Weil  p‐Euıer factors  Q_{p}(C, t) for  C are accessible by counting points

 Z_{p}(C, t)= \exp(\sum_{n=1}^{\infty}\#\{Points   on C/\mathbb{F}_{p^{n}}\}\frac{t^{n}}{n})=\frac{Q_{p}(C,t)}{(1-t)(1-pt)}
If an abelian surface has been given as a Prym,  A=Prym(C_{3}/C_{1}) , then we have  L (  A,  s , H‐W)  =

 L(C_{3}, s, H-W)/L (  C_{1} ,  s , H‐W), so this case is amenable to computation as well.

Here is one example. Consider the hyperelliptic curve  C_{277} of genus two given by the equation
 y^{2}+(x^{3}+x^{2}+x+1)y=-x^{2}-x and its Jacobian  A_{277}=Jac(C_{277}) of conductor 277. The
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label on the lmfdb is 277.a.277.1. Magma will compute Hasse‐Weil Euler factors of a curve, the
general form of the input is  y^{2}+G(x)y=F(x) .

 >G:=x^{\wedge}3+x^{\wedge}2+x+1;\Gamma:=-x^{\sim}2-x ;

 >C:=Hyperellipt icCurve (  \Gamma , G) ;
 >J:=Jacobian (  C) ;
 > h2:  =EulerFactor (  J , GF (2)); h2;
 4*x^{\sim}4+4*x^{\wedge}3+4*x^{\wedge}2+2*x+1

 > h3:  =EulerFactor (  J, GF(3)) ; h3;
 9*x^{\wedge}4+3*x^{\wedge}3+x^{\wedge}2+x+1

 > h5:  =EulerFactor (  J , GF (5)); h5;
 25*x^{arrow}4+5*x^{\sim}3-2*x^{\sim}2+x+1

2.4 Paramodular forms.

We introduce Siegel modular forms, which are a natural generalization of elliptic modular forms,
We begin with the symmetric space, the Siegel upper half space,

 \mathcal{H}_{n}=\{Z\in M_{n\cross n}^{sym}(\mathbb{C}) : {\rm Im} Z>0\}.

The symplectic group  Sp_{n}(\mathbb{R}) acts transitively on the Siegel upper half space via linear fractional
transformations:

 \sigma=\{\begin{array}{ll}
A   B
CD   
\end{array}\}  \in Sp_{n}(\mathbb{R}) acts on  Z\in \mathcal{H}_{n} by  \sigma\cdot Z=(AZ+B)(CZ+D)^{-1}.

We let the action of the group transform complex functions on the Siegel upper half space
according to powers of the Siegel factor of automorphy  \mu(\sigma, Z)=\det(CZ+D) :

For  f:\mathcal{H}_{n}arrow \mathbb{C} and  \sigma\in Sp.(R) , let  (f|_{k}\sigma)(Z)=\det(CZ+D)^{-k}f(\sigma Z) .

We select a discrete subgroup  \Gamma\subseteq Sp_{n}(\mathbb{R}) such that  \Gamma\cap Sp_{n}(\mathbb{Z}) has finite index in  \Gamma and  Sp_{n}(\mathbb{Z}) .
We fix an integer  k and define the  \mathbb{C}‐vector space  M_{k}(\Gamma) of Siegel modular forms of weight  k,
automorphic with respect to  \Gamma:M_{k}(\Gamma) is the  \mathbb{C}‐vector space of holomorphic  f :  \mathcal{H}_{n}arrow \mathbb{C} that
are (bounded at the cusps”’ and that satisfy  f|_{k}\sigma=f for all  \sigma\in\Gamma . We define the subspace
of cusp forms:  S_{k}(\Gamma)= {  f\in M_{k}(\Gamma) that “vanish at the cusps”}. More precisely, the condition
that  f be “boundcd at the cusps” is that

 \forall\sigma\in Sp_{n}(\mathbb{Q}),  \forall Y_{O}>0,  (f|_{k}\sigma) is bounded on  \{Z\in \mathcal{H}_{n} : {\rm Im} Z>Y_{o}\}.

For  n\geq 2 , this boundedness condition is redundant by the Koecher principle, but the bounded‐
ness condition is still a natural part of the definition and is necessary when  n=1 . In any case,
we need to mention the cusps to define what is meant by  f “vanishing at the cusps.” Introduce
the Siegel map  \Phi :  M_{k}(\Gamma)arrow \mathcal{O}(\mathcal{H}_{n-1}) given by

 (\Phi f)(Z_{n-1})=   \lim_{\lambdaarrow+\infty}  f  \{\begin{array}{ll}
Z_{n-1}   0
0   i\lambda
\end{array}\} .

The condition that  f “vanish at the cusps” is that

 \forall\sigma\in Sp_{n}(\mathbb{Q}), \Phi(f|_{k}\sigma)=0.
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We now specialize to degree  n=2 and give the definition of Siegcl paramodular forms.  A

paramodular form is a Siegel modular form for a paramodular group. In degree 2, the paramod‐
ular group of level  N , is

 \Gamma=K(N)=(****/N*N\cdot\cdot)\cap Sp_{2}(\mathbb{Q}) , *\in \mathbb{Z}.
This definition of  K(N) in terms of divisibilities is nice for the computer. An intrinsic definition
is that  K(N) is the stabilizer in  Sp_{2}(\mathbb{Q}) of the lattice  \mathbb{Z}\oplus \mathbb{Z}\oplus \mathbb{Z}\oplus N\mathbb{Z} , where the elements
of the lattice are written as column vectors. Siegel, Christian, and Igusa studied paramodular
groups because of their connection to moduli spaces. If we let  \tau_{K(N)} denote the transposed
group, then  \tau_{K(N)\backslash \mathcal{H}_{2}} is naturally a moduli space for complex abelian surfaces with polar‐
ization type  ( 1,  N) . This property, however, is not what connects the paramodular groups to
questions of modularity. The connection to modularity comes from the realization of  K(N)
as the integral stable speciaı orthogonal group (of spinor norm one) for the quadratic form
 Q= antidiag(l,  1,  -2N,  1,1 ), just as  \Gamma_{0}(N) corresponds to  Q= antidiag(l,  -2N,  1 ). The Tate
module  \Gamma(A) of an abelian variety gives rise to a symplectic Galois representation. According
to the Langlands’ program, the modularity of this Galois representation should be shown by an
automorphic form on the dual group, and the dual groups of symplectic groups are orthogonal
groups. In the general case of an abelian variety of degree  g , an automorphic form on the split
orthogonal group  O(g, g+1) will not be holomorphic for  g>2 . So we should count ourselves
lucky that for modularity in  g=1 and  g=2 we still get to work with holomorphic functions.

As in the elliptic case for  \Gamma_{0}(N) , there is a Fricke involution  \mu_{N} that splits paramodular
forms into plus and minus spaces.

 \mu_{N}=\{\begin{array}{ll}
F_{N}^{*}   0
0   F_{N}
\end{array}\}, where  F_{N}= \frac{1}{\sqrt{N}}  \{\begin{array}{ll}
0   -1
N   0
\end{array}\} ;

 S_{k}(K(N))=S_{k}(K(N))^{+}\oplus S_{k}(K(N))^{-}

We have described all the objects in the Paramodular conjecture except the Gritsenko lift. We
do this in terms of the Fourier‐Jacobi expansion.

2.5 Fourier‐Jacobi expansions.

Every paramodular form  f\in M_{k}(K(N)) has a Fourier expansion:

 f(Z)= \sum_{t\geq 0}a(t;f)e(\{Z, t\}) ,

where the sum is over  t\in \mathcal{X}_{2}^{semi}(N)=\{ \{\begin{array}{ll}
n   r/2
7\cdot/2   Nm
\end{array}\}\geq 0:n, r, m\in \mathbb{Z}\} , and where  \{Z, t\}=tr (Zt).
The Fourier expansion of a paramodular cusp form  f\in S_{k}(K(N)) may be rearranged to

give the Fourier‐Jacobi expansion, setting  Z=\{\begin{array}{ll}
\tau   z
z\omega   
\end{array}\}  \in \mathcal{H}_{2} , and  q=e(\tau),  \zeta=e(z) ,

 f(Z)= \sum_{j=1}^{\infty}\phi_{j}(\tau, z)e(Nj\omega) , (1)

  \phi_{j}(\tau, z)=\sum_{n,r\in Z4nNj>r^{2}}a( \{\begin{array}{ll}
n   r/2
r/2   N_{\dot{j}}
\end{array}\}f)q^{n} \zeta^{r}.
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The Fourier‐Jacobi expansion of a paramodular form is a more suggestive analogue to the elliptic
case than the full Fourier expansion, even though the coefficients are now Jacobi forms. We recall
the definition of a Jacobi form and the following subgroups, for rings  R\subseteq \mathbb{C},

 P_{2,1}(R)=(\begin{array}{l}
*0**
****
000**0**
\end{array})  nSp(4, R) ;  GP_{2,1}(R)=(\begin{array}{l}
*0**
****
000**0**
\end{array})  nGSp(4, R) .

A Jacobi form  \phi\in J_{k,m}(\chi) of weight  k \in\frac{1}{2}\mathbb{Z} and index  m\in \mathbb{Z}_{\geq 0} is a holomorphic function
 \phi  \mathcal{H}\cross \mathbb{C}arrow \mathbb{C} such that the associated function   E_{rn}\phi  \mathcal{H}_{2}arrow \mathbb{C} given by  (E_{m}\phi)(Z)=
 \phi(\tau, z)e(m\omega) transforms by a multiplier  \chi under  P_{2,1}(\mathbb{Z}) , and is bounded on domains of the type
 \{Z\in \mathcal{H}_{2} : {\rm Im} Z>Y_{o}\} . The boundedness condition is essential and, given the other assumptions,
is equivaıent to a Fourier expansion for  \phi of the form   \phi(\tau, z)=\sum_{n,r\in Zn\geq 0,4nm\geq r^{2}}c(n, r;\phi)q^{n}\zeta^{r}.
For Jacobi cusp forms  \phi\in J_{k,m}^{cusp}(\chi) , we require  4mn>r^{2} . For a weakly  hol_{omo7}phic\psi\in J_{k,m}^{wh}
we drop the boundedness condition and require that  n be bounded from below.

The subgroup  K_{\infty}(N)=P_{2,1}(\mathbb{Q})\cap K(N) stabiıizes the Fourier‐Jacobi expansion (1) term by
term, so that each  \phi_{j}\in J_{k,Nj}^{cusp} is a Jacobi form with trivial character and the Fourier coefficients
of the  \phi_{j} are

 c(n, r;\phi_{j})=a( \{\begin{array}{ll}
n   r/2
r/2   Nj
\end{array}\}f)
Following [8], we define the raising operator  V_{\ell} :  J_{k,m}arrow J_{k,rn\ell} for  \ell\in \mathbb{N} by

 ( \phi|V_{\ell})(\tau, z)=a,d\in \mathbb{N}ad=\sum_{p}a^{k-1}(\frac{1}{d}
\sum_{bmod d}\phi(\frac{a\tau+b}{d}, az)) ,

or equivalently by

 c(n, r; \phi|V_{\ell})= \sum a^{k-1}c(\frac{n\ell}{a^{2}}, \frac{r}{a};\phi) .

 a|gcd(n,r,\ell)

The invariance properties of the raising operator, i.e., that it sends Jacobi forms to Jacobi forms,
can be obtained by considering it as the Hecke operator  V_{\ell}=K_{\infty}(N)diag(l, P, 1,1)K_{\infty}(N) for
the noncommutative Jacobi Hecke algebra for  K_{\infty}(N) inside  GP_{2,1}(\mathbb{Q}) , see [11].

Any Jacobi cusp form can be the leading Fourier‐Jacobi coefficient of a paramodular form.

2.5.1 Theorem. (Gritsenko) For  \phi\in J_{k,r\tau\iota}^{cusp} the series Grit (  \phi ) converges and defines a map

Grit :  J_{k_{7}n}^{cusp}arrow S_{k}(K(m))^{\epsilon}  \epsilon=(-1)^{k},

Grit (  \phi )   \{\begin{array}{ll}
\tau   z
z\omega   
\end{array}\}=\sum_{\ell\in \mathbb{N}}(\phi|V_{\ell})(\tau, z)e(\ell m\omega) .

2.6 Methods for constructing paramodular newforms.

We now turn to the task of actually constructing examples of paramodular newforms. We have
seen that we can compute the Euler factors of an abelian surface defined over  \mathbb{Q} of conductor 277,
but how can we make a newform in  S_{2}(K(277)) that has a chance of having the same Euler
factors? The construction of modular forms has a long history and we review some possibilities.
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Eisenstein series arc a standard way to construct automorphic forms but, for squarefree
level  N , we have  M_{2}(K(N))=S_{2}(K(N)) and so there are no Eisenstein series. Furthermore,
there are no dimension formulas in weight 2 and degree 2, so we cannot directly use a dimension
formula to show the existence of a nonlift. The Gritsenko lift, Grit :  J_{2,N}^{cusp}arrow S_{2}(K(N))^{+},
does give one way into the space of cusp forms; we do not want the  L‐series of a Gritsenko
lift for modularity purposes but at least we are in the space. If we multiply by weight two
Gritsenko lifts, we can put general weight two paramodular forms in the weight four space,
where the dimension formulae of Ibukiyama [13] allow rigorous calculations for prime levels. For
squarefree levels, Ibukiyama and Kitayama [14] provide dimension formulae for  k\geq 3 . Theta
series will give us modular forms in  M_{2}(\Gamma_{0}^{(2)}(N)) and we can trace them over to  M_{2}(K(N))
but, when  N is prime, this gives zero. There is, at the moment, no theory of modular symbols
for paramodular forms. Borcherds products, when they exist, provide an important way to
construct paramodular forms of low weight. In conclusion, we will build our examples out of
Borcherds products and Gritsenko lifts.

2.6.1 Theorem. (Borcherds, Gritsenko, Nikulin) Given  \psi\in J_{0,N}^{wh}(\mathbb{Z}) , a weakly holomorphic
weight zero, index  N Jacobi form with integral coefficients,

  \psi(\tau, z)=\sum_{n,r\in Z:n\geq-N_{o}}c(n, r)q^{n}\zeta^{r},
there is a weight  k'\in \mathbb{Z} , a character  \chi , and  a meromorphic paramodular form Borch (  \psi ) in
 M_{k^{f}}^{mero}(K(N))(\chi) , defined by

Borch  ( \psi)(Z)=q^{A}\zeta^{B}\xi^{C}\prod_{n,m,7\in \mathbb{Z}}(1-q^{n}\zeta^{r}
\xi^{Nm})^{c(nm,r)}
in the sense that this product converges, as an infinite product, in a neighborhood of infinity
and defines Borch(  \psi ) on  \mathcal{H}_{2} by analytic continuation.

See [ı7] for an algorithm that works well when  kN<600 and that, given world enough and
time, would find all Borcherds products in  S_{k}(K(N)) .

2.7 Examples of paramodular newforms.

Both Borcherds products and Gritsenko lifts have Jacobi forms as their source data. An excellent
source of Jacobi forms is given by the theory of theta blocks, which is due to Gritsenko, Skoruppa,
and Zagier. Let  \epsilon be the muliplier of the Dedekind Eta function and view the Dedekind Eta
function as a Jacobi cusp form of index zero and weight one‐haıf,

 \eta\in J_{1/2_{)}0}^{csp}(\epsilon) ;   \eta(\tau)=q^{1/24}\prod_{n\in \mathbb{N}}(1-q^{n}) .

Let  \vartheta\in J_{1/2,1/2}^{cusp}(\epsilon^{3}v_{H}) be the odd Jacobi theta function

  \vartheta(\tau, z)=q^{1/8}(\zeta^{1/2}-\zeta^{-1/2})\prod_{n\in \mathbb{N}}(1-
q^{n})(1-q^{n}\zeta)(1-q^{n}\zeta^{-1}) .
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The simple theta blocks we will use are all of the following form

  TB_{k}[d_{1}, d_{2}, . . . d_{\ell}](\tau, z)=\eta(\tau)^{2k-\ell}\prod_{j=1}^
{\ell}\vartheta(\tau, d_{j}z)\in J_{k,m}^{wh}(\epsilon^{2k+2\ell}) ,

where  2m=d_{1}^{2}+d_{2}^{2}+  +d_{\ell}^{2} and  d_{i}\in \mathbb{N}.

Example  N=277 . We have  \dim S_{2}(K(277))=11 , whereas the dimension of Gritsenko lifts
in  S_{2}(K(277)) is  \dim J_{2,277}^{cusp}=10 . Therefore, there is one nonlift eigenform in  S_{2}(K(277)) ,
necessarily a new form, because 277 is prime. Let  G_{i}= Grit  (TB_{2}(\Sigma_{i}))\in S_{2}(K(277)) for
 1\leq i\leq 10 be the lifts of the 10 theta blocks given by:

 \Sigma_{i}\in\{[2,4,4,4,5,6,8,9,10,14] , [2, 3, 4, 5, 5, 7, 7, 9, 10, ı4] , [2, 3, 4, 4, 5, 7, 8, 9, 11, 13],
[2, 3, 3, 5, 6, 6, 8, 9, 11, 13], [2, 3, 3, 5, 5, 8, 8, 8, 11, 13], [2, 3, 3, 5, 5, 7, 8, 10, 10, 13],
[2, 3, 3, 4, 5, 6, 7, 9, 10, 15], [2, 2, 4, 5, 6, 7, 7, 9, 11, 13], [2, 2, 4, 4, 6, 7, 8, 10, 11, ı2],
[2, 2, 3, 5, 6, 7, 9, 9, 11, 12] }.
In [20] the rational function  f_{277}=Q/L in these Gritsenko lifts was proven to be holomorphic

and an eigenform, where

 Q=-14G_{1}^{2}-20G_{8}G_{2}+11G_{9}G_{2}+6G_{2}^{2}-30G_{7}G_{10}+{\imath} 
5G_{9}G_{10}+15G_{10}G_{1}
 -30G_{10}G_{2}-30G_{10}G_{3}+5G_{4}G_{5}+6G_{4}G_{6}+17G_{4}G_{7}-3G_{4}G_{8}-
5G_{4}G_{9}

 -5G_{5}G_{6}+20G_{5}G_{7}-5G_{5}G_{8}-10G_{5}G_{9}-3G_{6}^{2}+13G_{6}G_{7}+
3G_{6}G_{8}
 -10G_{6}G_{9}-22G_{7}^{2}+G_{7}G_{8}+15G_{7}G_{9}+6G_{8}^{2}-4G_{8}G_{9}-2G_{9}
^{2}+20G_{1}G_{2}
 -28G_{3}G_{2}+23G_{4}G_{2}+7G_{6}G_{2}-31G_{7}G_{2}+15G_{5}G_{2}+45G_{1}G_{3}-
10G_{1}G_{5}

 -2G_{1}G_{4}-13G_{1}G_{6}-7G_{1}G_{8}+39G_{1}G_{7}-16G_{1}G_{9}-34G_{3}^{2}+8G_
{3}G_{4}
 +20G_{3}G_{5}+22G_{3}G_{6}+10G_{3}G_{8}+21G_{3}G_{9}-56G_{3}G_{7}-3G_{4}^{2},

 L=-G_{4}+G_{6}+2G_{7}+G_{8}-G_{9}+2G_{3}-3G_{2}-G_{1}.

In [6] the method of Faltings‐Serre for proving the equality of Galois representations was gen‐
eralized to GSp(4) and the modularity of  A_{277} was proven by demonstrating the equality of
 L‐functions

 L (  A_{277},  s , Hasse‐Weil)  =L (  f_{277},  s , spin).

This verification required calculating the  T(p) ‐eigenvalues of  f_{277} up to  p\leq 43.

Example  N=587^{-} In [12] a new eigenform  f_{587}^{-}\in S_{2}(K(587))^{-} was constructed by using a
Borcherds product. Construct theta blocks  \phi\in J_{2,587}^{cusp} and  \Xi\in J_{2,2587}^{cusp} :

 \phi=TB_{2}[1,1,2,2,2,3,3,4,4,5,5,6,6,7,8,8,9,10,11,12,13,14],
 ---=TB_{2}[1,10,2,2,18,3,3,4,4,15,5,6,6,7,8,16,9,10,22,12,13, {\imath} 4].

Construct a weakly holomorphic Jacobi form  \psi=(\phi|V_{2}----)/\phi\in J_{0,587}^{wh}(\mathbb{Z}) and the correspond‐
ing Borcherds product  f_{587}^{-}=Borch(\psi)\in S_{2}(K(587))^{-} by

  \psi(\tau, z)=\sum_{n,r}c(n, r;\psi)q^{n}\zeta^{r}=4+\frac{{\imath}}{q}+\zeta^
{-14}+\cdots+q^{134}\zeta^{56\perp}+
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 f_{587}^{-}  \{\begin{array}{l}
z\tau
 z\omega
\end{array}\}=q^{2}\zeta^{68}\xi^{587}\prod_{(n,m,r)\geq 0}(1-q^{n}\zeta^{r}\xi^
{N_{7}n})^{c(nnt,7;\psi)}
In [6] the Faltings‐Serre method for GSp(4) was also successful in proving

 L (  A_{587}^{-},  s , Hasse‐Weil)  =L (  f_{587}^{-},  s , spin).

The  T(p) eigenvalues of  f_{587}^{-} were checked up to  p\leq 47 with the Euler factor of  A_{587}^{-}=Jac(C) ,
with  C given by  y^{2}+(x^{3}+x+1)y=-x^{2}-x.

Exampıe  N=249 . The smallest known conductor of an abelian surface defined over  \mathbb{Q}
with minimal endomorphisms is  N=249 . It is proven [5] that this is the smallest possible
odd conductor. Modularity has not been proven for this example but here is the candidate
paramodular form  f_{249}=Borch(\psi_{249})\in S_{2}(K(249)) , see [19].

  \psi_{249}(\tau, z)=\frac{\vartheta(\tau,8z)}{\vartheta(\tau,z)}
\frac{\vartheta(\tau,18z)}{\vartheta(\tau,6z)}\frac{\theta(\tau,14z)}{\vartheta(
\tau,7z)}\in J_{0,249}^{wh}(\mathbb{Z}) ;

 f_{249}  \{\begin{array}{l}
z\tau
 z\omega
\end{array}\}=14q^{2}\zeta^{63}\xi^{498}

  \prod_{nm' r\in Z:m\geq 0,\dot{}fm=0thenn\geq 0}(1-q^{n}\zeta^{r}\xi^{mN})
^{c(nm,r,\psi_{249})}
if m  =n=0 then r  <0

 -6 Grit  (TB_{2}(2,3,3,4,5,6,7,9,10,13))-3 Grit  (TB_{2}(2,2,3,5,5 , 6, 7, 9, 11, 12)  )
 +3 Grit  (TB_{2} (1, 3, 3, 5, 6, 6, 6, 9, 11,  12 )  )+2 Grit  (TB_{2}(1,1,2,3,4,5,6,9,10,15))
 +7 Grit  (TB_{2}(1,2,3,3,4,5,6,9,11,14)) .

An abelian surface of conductor 249 is given by the Jacobian of the hyperelliptic curve given by
 y^{2}=x^{6}+4x^{5}+4x^{4}+2x^{3}+1 , see [5].

3 A counterexample and the modified Paramodular conjecture.

Frank Calegari has pointed out counterexamples to the Paramodular conjecture. We begin with
some perspective on classification results. For isogeny classes of  E/\mathbb{Q} , the Modularity Theorem
gives a bijection with normalized  Q‐newforms in  S_{2}(\Gamma_{0}(N)) . What is the situation for elliptic
curves defined over quadratic extensions?

For real quadratic  K , the bijection with isogeny classes of normalized Hilbert  \mathbb{Q}‐newforms in
 S_{2}(SL(\mathcal{O}_{K}\oplus \mathfrak{a})) is believed but is not quite complete. The modularity of elliptic curves over real
quadratic fields is proven, but the association of an  E/K to each appropriate Hilbert form is
not finished, see the discussion in [10] for a reference. For imaginary quadratic  K , it is believed
that each  E/K has its modularity shown by some Bianchi  \mathbb{Q}‐newform in  S_{2}(\Gamma_{0}(n)) ; however,
there is a problem in going from Bianchi newforms to  E/K.

Ciaran Schembri is my source for the following example, see [23]. Define a hyperelliptic curve
 C_{o}/\mathbb{Q}(i) of genus two by  y^{2}=x^{6}+4ix^{5}-(6+2i)x^{4}+(7-i)x^{3}-(9-8i)x^{2}-10ix+(3+4i) . Then
 A_{O}=Jac(C_{o}) is an abelian surface over  \mathbb{Q}(i) of conductor  P_{5}^{4},{}_{1}P_{37,2}^{4} of norm 342252  =185^{4} . We

are in the case of quaternionic multiplication because we have  \mathcal{O}_{6}arrow End_{\mathbb{Q}(i)}(A_{o}) , where  \mathcal{O}_{6} is the
maximal order of the rational quaternion algebra of discriminant 6. There is a Bianchi newform

 f_{0}\in S_{2}(\Gamma_{0}(p_{5,{\imath}}^{4}p_{37,2}^{4})) with  \mathbb{Q}‐rational eigenvalues such that  L (  A_{o},  s , Hasse‐Weil)  =L(f_{0}, s)^{2}
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We now show that there can be no  E/\mathbb{Q}(i) with  L (  E,  s , Hasse)  =L(f_{0}, s) . By a theorem
of Faltings, the Hasse‐Weil  L‐function determines the isogeny class of an abelian variety. Note
further that the ring of endomorphisms tensored with  \mathbb{Q} is an invariant of the isogeny class.
Thus, if there were an  E/\mathbb{Q}(i) with  L (  E,  s , Hasse)  =L(f_{0}, s) , then  A_{o} and  E\oplus E would have
the same  L‐function and hence would be in the same isogney class. This is impossible since
 End_{\mathbb{Q}}(A_{o})\otimes \mathbb{Q} and  End_{\mathbb{Q}}(E\oplus E)\otimes \mathbb{Q} differ. Thus, the pairing between  E/\mathbb{Q}(i) and Bianchi
newforms is not perfect. This same mismatch can be transported by lifting and Weil restriction
to the paramodular case.

By Weil restriction,  B=WR(A_{o}/\mathbb{Q}(i)) is an abelian fourfold defined over  \mathbb{Q} with  End_{\mathbb{Q}}(B)\otimes
 \mathbb{Q} an indefinite quaternion algebra. The lift of Berger, Dembélé, Pacetti, and Sengun gives
 f=1ift(f_{0})\in S_{2}(K(N)) , see [1]. Therefore, we have  L (  B,  s , H‐W)  =L (  f,  s , spin)2 and there can
be no abelian surface  A/\mathbb{Q} with  L (  A,  s , H‐W)  =L (  f,  s , spin) due to the different endomorphism
rings of  End_{\mathbb{Q}}(B)\otimes \mathbb{Q} and  End_{\mathbb{Q}}(A\oplus A)\otimes \mathbb{Q} , using the same argument as above. Note that the
conductor  N=(16\cdot 185)^{2}=8761600 is quite a bit higher than any computations done so far.

In light of this counterexample, Brumer and Kramer have modified the conjecture in the
following way, see [4]. An abelian fourfold  B/\mathbb{Q} has quaternionic multíplication (QM) if  End_{\mathbb{Q}}(B)
is an order in a non‐split quaternion algebra over  \mathbb{Q} . A cuspidal, nonlift Siegel paramodular
newform  f\in S_{2}(K(N)) with rational Hecke eigenvalues will be called a suitable paramodular
form of level  N.

3.0.1 Paramodular Conjecture 2.0 (Brumer‐Kramer.) Let  N\in \mathbb{N} . Let  \mathcal{A}_{N} be the set of
isogeny classes of abelian surfaces  A/\mathbb{Q} of conductor  N with  End_{\mathbb{Q}}A=\mathbb{Z} . Let  \mathcal{B}_{N} be the set
of isogeny classes of  QM abelian fourfolds  B/\mathbb{Q} of conductor  N^{2} Let  \mathcal{P}_{N} be the set of suitable
paramodular forms of level  N , up to nonzero scaling. There  is^{1} a bijection  \mathcal{A}_{N}\cup \mathcal{B}_{N}rightarrow \mathcal{P}_{N} such
that

 L (  X,  s , Hasse‐Weil)  =\{\begin{array}{ll}
L (f, s, spin),   if X\in \mathcal{A}_{N},
L (f, s, spin)2,   if XEB_{N}.
\end{array}
We should note that Brumer and Kramer have shown in [4] that QM implies  N=M^{2}s with

 s|gcd(30, M) . Thus the original conjecture is unaltered for squarefree  N and, in particular, for
the examples discussed here.
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