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1 Liesegang Phenomena

Liesegang phenomenon is pattern formation appeared in a gel-containing system [1]. We
can observe striped patterns like in Fig.1, 2, especially in the presence of concentration
gradients in initial data. These striped patterns are called “the Liesegang band” and “the
Liesegang ring” respectively, because they were discovered by R. E. Liesegang in 1896 for
the first time. In this paper, we discuss about the mechanism of this kind of striped pattern
formation.

The Liesegang band is obtained by, for example, the following procedure. A solution of one
soluble electrolyte, for instance, lead nitorate (Pb(NO3)2), at relatively low concentration
is placed in a test tube to which a gel-forming material is added. After a gel is formed,
another electrolyte solution, such as the potasium iodide (KI), normally at substantially
higher concentration, is poured on the top of the gel containing Pb(NQOj3);. The iodine-ions
(I7) diffuse into the gel and react with lead ions (Pb*) to form lead iodide (Pbly) which is
almost insoluble.

Pb%* + 21 — Pbl,

After an interval of minutes there appear bands, so-called the Liesegang band like a Fig.1.
The times after the start of the experiment at which pictures (a) to (c) were taken, are as
follows: (a) 2 hours, (b) 8 hours, and (c) 48 hours.
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We can make the Liesegang ring similarly. A solution of KI is set up in the inner part of
a petri dish whose outer part is occupied by Pb(NO3), contained in gel. Here, KI solution
is much higher concentration than Pb(NO3)2. As I™ diffuse into an outer solution, the
insoluble salt Pbl, precipitates and rings, so-called the Liesegang ring appear like a Fig.2.

It is also well-known that these striped patterns satisfy three periodic laws, spacing law,
time law, and width law in chemical experiments practically [5]. spacing law can be described
as Xn41 = pXn, where Xy is the distance of N-th band (ring) location from an original
junction and p is a positive constant (Fig.3). time law and width law are expressed as
VI~ = ¢Xn and wy = rXn respectively, where ty, wn, q and r are the interval from time
when the experiment started to formation time of the N-th band (ring), width of the N-th
band (ring) and positive constants.

There are a lot of mathematical models known, which describes the interesting phenomena.
We adopt the reduced KR model which is reduced from the well-known Keller-Rubinow
model. We can refer to the forthcoming paper [2] about the detail of the KR model and the
reduction.
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Fig. 1: the Liesegang band [3] Fig. 2: the Liesegang ring [4]
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Fig. 3: spacing law (the courtesy of Kai) [6] »
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Fig. 4: Pictures of experiments and the three laws



2 Mathematically rigorous Analysis for the reduced KR model
2.1 Existence of a time local weak solution

Without loss of generality, we make D, = 1 as we change the reduced KR model to the
dimension less form.

ct = Ac+boS'(t)6 (r — S(t)) — ¢P(c,d), 0<t<T, x € R,

dy = gP(c,d), 0<t<T, xeR" 91
(B.C.) rl-!-vngo c(t,x) =0, 0<t<T, (2.1)
(1.C.) ¢(0,x)=0, d(0,x)=0, x € R,

where § means the Dirac ¢ in one space dimension,

P(c,d) = (c=Ca)yy, on {x€R™c>C, ord> 0},
, 0, otherwise,

g>0,b>0,Cs>2C,>0 : given constants,
S(t) = av/t (@ >0) : given function.

7 is defined by

r=|x|=\/xﬁ_1+m§+---+x$l, X = (z1,%2, -+ ,2n) € R™.

In this chapter we consider (2.1) in case of C, = 0.
We first define a weak solution of (2.1). Let c(,-) € L!(0,T; WL=(R™), d(-,-) €
L% ((0,T) x R™). If these satisfy

t 1 _x__‘32 , B
ot,x) = / / nme G5 05 (5)(A — S(s)) dEds
5 b .
[ [ (4ﬁ(t_3))-’% 7 P, d) de ds, (22)
d(t,x) = /Pc,d)ds,

then we call a couple of them a weak solution of (2.1), where we define ) by

=lkl=ye+g+-+a,
for E = (€11 tee afn) € R"
We adopt the following form of the polar coordinate in R" to rewrite (2.2):

§1 = Asinfy_; sinB,_y---sinf; cosfy,

= Asinfp_1 sinfp—3---sinB; sin Gy,
§2 ' ,Hn 1 ﬂn 2 ﬂ2 181 (2.3)

n = AC()Sﬂn—h




0< A< o0,
0< B < 2m,
0<Bi<m (j=23,--,n—-1).

The rewritten form of (2.2) is

L e s
ot x) = / / "me O boS'(5)5(A — S(5))J(\, B) dAdB ds,

1 e
/ Re (47r(t—s)) =" P(c,d)J (A, B) dAdB ds, (2.4)

where ﬁ = (,317 e ’ﬁn—1)1 dﬂ = dﬂl *e 'dﬂn—-ls and

J(AB) = A""1sin"2 By sin™ 3 Bz - -sin By

is the Jacobian of the polar coordinates, and &(A)(= (£1(A),&2(A), -+ ,&n(A))) means the ‘
variables changed by use of (2.3). We emphasize the dependency only upon A because there
is the term of the Dirac & on A in the first term of the right-hand side of (2.4).

We remark that, if n = 1 and the boundary condition of c at z = 0 is the homogeneous
Neumann, the corresponding integral equation of c is

t d (@-5(s))? _(z+S()?
c(t,:!:) = /_b.f_@_(e Wi—s) e At-9) >ds

0 4r(t—s)
t oo _(z=8)? _(z+)?
_q// __1 (e e ‘arr) P(c,d) d€ ds.
0o Jo +/4rm(t—23s)
Therefore we should also define the weak solution separately in one space deimension by use
of the above expression. But the mathematical argument in this chapter is appricable to
the case of one space dimension.
We define the operator G by

G(c) = (the right-hand side of (2.4))
and the space of functions K by
K = L'(0,T; L*(R")).

Let us define the norm of K by

T
Mm=£um»hwa

and K is a Banach space. We note that G is a compact operator on K for any d(-,-) €
L ((0,T) x R™), and note that let us

={ceK; |ldlx <1},

and K is a bounded, convex, and closed set in K.



Theorem 2.1 (existence of a time local weak solution) If T > 0 is small sufficiently,
there exists a weak solution of (2.1) such that c € K and d € L* ((0,T) x R"™).

pr.) We first note that, for any ¢ € K, d(t,x) (0 < t < T) satisfies
¢
d(t,x) = q/ P(c,d)ds
0

t
_ {q/o' c(s,x)ds, ifc>Cs or d>0, | (2.5)

0, otherwise,

and d(-,+) € L*((0,T) x R"). Therefore we regard d as a function of c. If we put the
function d(c) into P(c,d) of (2.2), then we consider of (2.2) as only ¢’s equation. We will
prove the existence of a solution ¢ € K of (2.2). Let us decide d by use of (2.5) for ¢
constructed already, and we can make a weak solution of (2.1) eventually.

Now we will estimete (2.4) for any c € K.

[Estimate for the first term of the right-hand side of (2.4)1
Let us make the following change of variables to the first term of the right-hand side of (2.4),

P = I
(-] s

i = Sty (t=1,2,---,n),
and we get
t x—&(S(s ‘2
[ g 8 050 (5(6), ) d s
0 Jsn-1 (47t —s))2
1 200 2
boa" _af(y—&»)
= —e -, J(p,B)dfdp, 2.7
[l e T Al 1)
where y = (y1,%2,-- ,yn) and S®! means the unit sphere in (n — 1) space dimensions.
The right-hand side of (2.7) is independent from ¢, and moreover it takes a bouded value at
y =(0,0,---,0) and converges to 0 as |[y| — co. Therefore it takes a positive maximum in

R". There exists a positive constant M; independent of both ¢ and x such that

|the first term of the right-hand side of (2.4)] < M;. (2.8)

Thus we get

T
/ |lthe first term of the right-hand side of (2.4)||z~ dt < MyT.
0



" [Estimate for the x-derivative of the first term of the right-hand side of (2.4)]

Let us note that
© 8 1 8

Be = 5@ (LA

and
|z1-derivative of the first term of the right-hand side of (2.4)|

= [stgon U Lo omdaus)]

Therefore there exists a positive constant My such that

|z1-derivative of the first term of the right-hand side of (2.4)|

For any j = 2,3,--- ,n, letb us estimate zj-derivative in the same manner, and there exists
a positive constant M3 independent of both t and x such that

|the x-derivative of the first term of the right-hand side of (2.4)| < nM; \E .

Thus we get

T .
/ ||x-derivative of the first term of the right-hand side of (2.4)|z dt < 2nM; VT.
0

[Estimate for the second term of the right-hand side of (2.4)]

-—€ Lﬂi‘—(%_
Rn (41r(t-- i P(c,d)J (X, B)dAdB ds
—1——e—%t:—§%; (3. M roo ds
S‘/O /n (47T(t—s))% dé” ( ’ )“L ds. (2.9)

Let us remark that

S P
oo G =

and we get

t
(the right-hand side of (2.9)) = / llc(8, Mz ds < llellk-
0

Therefore r T
/ (the left-hand side of (2.9)) dt < [lc|lx / dt = ||cl|xT.
0 0

[Estimate for the x-derivative of the second term of the right-hand side of (2.4)]



3‘”1/ R (47r(t-s))%e T Ple, 170, B) drdp s

s /ot(/: e (‘f&_—%)“"’%ﬁ“"
/m 1 ( ) %@1.)

~00 2¢/7(t — 8) (t - 8)

-—2(3_1’—5)
/ e T dhy d (s, 1 s
Rn-1 (47(t — s)) 3

+

(2.10)

Let us make the following chenge of variable

PR e T-&
2\/t—-s

and

(@y-t)?
/ ._____(ml &) -Gar ¢ = ~61 49,

_L_/wgle
1 8\/_(t—s) 2\/1r(1t—s) 0
4/n(t —s)

Let us estimate the integral term on (—o0, z;) in the same way as above, and note that

_(z-—E
/R TS g, =1,

n-—l

not (4m(t—s)) T
and
t 1
(the right-hand side of (2.10)) = /0 mllc(& )llzeds.

Therefore

T T st 1
the left-hand side of (2.10))dt < / / —l||c(s, ) || Lo dsdt
A @iopie < [ [ ool )l

N sz—w\/—(—lt—_;;)IIc(s,-)llLoodtds
- fT \1/_||c(s, e (/T\/tlTEdt)ds

= /0 le(s, 1z (T — 5)3ds

< \/%ICIIK-

For any j = 2,3,--- ,n, we estimate the zj-derivative in the same manner.
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Therefore, if T > 0 is small sufficiently, then for any ¢ € K; (C K)

IG)llk < M1T+nM2\/T+ (T+n\/—-f-:) llellx

< 1.

Thus G is a compact operator from K into K;. By use of the Schauder’s fixed point
theorem, we conclude that there exists ¢ € K; such that ¢ = G(c). O

Remark 2.2 We see the solution ¢ be bounded in W1 (R") uniformly in time except the
time point ¢t = 0 from the above proof.

2.2 Time global solution and its regularity

The weak solution satisfies the following:

e ‘Gap’ in time occurs at the moment when ¢ becomes positive in the meaning of sup-
norm because of the non-homogeneous term of the Dirac §. But the solution is Lips-
chitz continuous in time if ¢t > 0.

e We cannot expect that the solution on r = S(t) is smoother than in W1 °(R"),
although it is smooth in r # S(t)

In fact, let us calculate it directly by use of (2.4), and if the solution exists on a time
interval (0,T) for some positive constant T', it is Lipschitz continuous in 0 < ¢ < T" and is
in C?(R™ \ @Dgy)), and moreover

ce L0, T; Wh°RMNLP(R™)) (1<p< oo).

Here D, = {x € R"; |x| < a} for any a > 0.
Next, we will prove that a time global solution exists. If ¢ = 0, then the following
differencial inequality holds:

¢ < Ac+byS' (B3t — S@) - ¢P(c,d)
lim ¢(t,x) =0
r—00
c(0,x) =0

Therefore, as long as it exists, the solution of (2.4) satisfies

c(t,x) = 0.

We see precipitation occur continuously in space and time, if Cs = C, = 0.
We estimate on the second term of the right-hand side of (2.4).

/ R"(47r(t—s))2 P(c,d)J() B)dAdBds < 0.



As (2.7) and (2.8) are taken into account,

ot
-/ /n—l (471-(1 — )% ¢ ) J(P, ﬁ) dﬁdp
s (2.11)

0 cft,x)

AN

uniformly for x. Therefore for any T > 0,

[ et M < a7 (2.12)
0

We estimate on cx(t,x) in the same manner as in the proof of Theorem 2.1. In fact, we
make the same calculation as in [Estimate for the x-derivative of the first term of the right-
hand side of (2.4)] and [Estimate for the x-derivative of the second term of the right-hand
side of (2.4)], and we use (2.11) on the way. Therefore there exists a positive constant M3
such that, fori =1,2,.-. ,n,

T
[ st 0l < MoV, (2.13)
Thus there exists a positive constant M, such that for any fixed T > 0
el < Ma (VT +T), (2.14)

by use of (2.12) and (2.13). From (2.14) we see the solution be in a bounded set for any
T > 0. This means that a time global solution exists.

Remark 2.3 In the end of the section 2.2, we consider about radially symmetric solutions
of (2.1). If it is assumed that the solution of (2.1) is radially symmetric, then it satisfies the
equations of the radially symmetric problem:

o= cor + "L+ boS' ()6 (r — 5(2)) — aP(c,d),
d: = gP(c,d),

(B.C.)) rli.nolo c(t,r) =0,

(1.C.) ¢(0,7) =0,d(0,r) =0

(2.15)

By putting x = (r,0,0,---,0) into (2.4), we naturally derive the integral equation of the
weak formulation in the following:

ct,r) = —_’%{&Fbos'(s)a(,\ S(s))J (A, B) dAdB ds,

-/ R (47r(t - s)) 3¢
o [ o TR b i prdsds 10
n (41r(t - s)) a
dit,r) = ¢ /0 P(c,d)ds,

We make the same argument as in the sections 2.1 and 2.2 to get the same kind of results
about existence and smoothness of a radially symmetric time global solution. But, as we

1




have no uniquness result of the solution of (2.1) because of the discoutinuity of P(c,d),
we do not conclude that the solution of (2.1) is only radially symmetric. Furthermore we
note that, even if we assume that the solution is radially symmetric, we cannot immediately
prove that the solution is unique, although in the following sections we focus on a radially
symmetric solution to analyse the pattern formation of Liesegang phenomena.

2.3 Analysis to discontinuous precipitation

For (2.15), let us make a rescaling in the following:
r=S(t)y,

2.17

{ t=e¢, (217)

let u(T,y) = c(t,r), and we get

1 y n-1 bod(y — 1) - =
( 1f, = ;u-w +~(§ + a—2y) uy + — e"qP(u,d), (—o0,logT) x (0,00),
‘ d: = e"qP(u,d), (—o00,log T') x (0, 00),
yl_iglo u(t,y) = 0,~ %(1—, 0)=0, —00 < 7 < logT,
u(—o00,y) =0, d(—o0,y) =0, 0<y< oo,

(2.18)
Here we use 1
8(az) = Eé(x),
and we define
P(u,d) = P(c,d), d(r,y) =d(t,7).

We have the corresponding existence and smoothness results to the ones in the original scale.
Namely, (2.18) has a time global solution u, and for any T > 0 it is Lipschitz continuous in
time 7 and C?([0,1) U (1,00)) in y. Moreover for any 1 < p < oo,

u € L (0,log T; WH*°[0, 00) N LP(0,00) ).

We now consider about the equation (2.15) without the term of P(c,d) to focus only on
c. If we define ¥ by

2_2r a 2
Wer) = [ e T
Rn (4m(t - s))7
from (2.16) we see this be a solution of (2.15) without the term of P. In (2.19), we make
the following rescaling:
{ r = S(t)y,

J(S(s), B) dB ds, (2.19)

2 (2.20)

p:

b

| ®

and we get

1 n _ a2 -28 (9)+p?) :
(the right-hand side of (2.19)) = / / —M—-—Te g (p, B) dB dp.
0 Sn—-1 41(' — p2))'2.
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This integral does not depend upon ¢ (or 7). If ¥(y) is defined as the right-hand side of the
above equality, then this is a stationary solution of (2.18) without the term of P. N amely,

¥ (y) solves

_ 1 y n-—1 bo
0= azuw + (2 + a2y )uy + 9 J(y 1)7 (2'21)
yli.lf,lo u(y) =0, uy(0) =0

We define C* by

boa" _ 2(1:2;6_: +p?
~vw=[ [ T O e
Lemma 2.4 (Estimate for ¥)

U(y) =cC* 0<y<1)

U(y) <¥(1) and Tu(y) <0 (y>1)

pr.) If 0 < y < 1, then (2.21) has a singularity apparently at y = 0. Therefore we return to
the original equation in n space dimensions. The solution ¢ of (2.1) without P(c,d) satisfies

ce = ch, +boS'(t) 6 ( lzz'z S(t)) (2.22)
j=1

Let us make the following change of variables:

{ 2 = S®X; (G=12,n), (229)
t = e,
and, if (X1, X2, -+, Xp,7) = c(z1, 23, - - ,Zn,t), then u satisfies

ur = Z <a2 (ux,x,) + 5 (XJuX )) ( |Zx2 - 1) (2.24)
et

and the extended function of ¥(y) constantly to the direction of 3 is a stationary solution
of (2.24). Therefore this satisfies

0= Z(ag( x X )+ (X Uy, )) in D? = {(Xla“‘ ’Xn);ix.? < 1}, (2.25)
j=1 J=1

and this is equal to the constant C* on ODT. By use of the uniformly elliptic type of the
strong maximum principle, this is equal to the constant C* in D?. Thus we get

Yy)=C* (0<y<).
If y > 1, then ¥(y) satisfies

¥(1) = C*, -~ (2.26)
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If there is yo € (1, 00) such that W, (yo) = 0, then the constant function ¥(y) = ¥(yo)
satisfies the first equation of (2.26). By use of the uniqueness of the solution of the initial
value problem of the second order linear ordinary differencial equations, the solution of
(2.26) must be the constant, which equals to C* > 0 by the boundary condition at the
origin. This is contradict to yl_i_'l{.lo U(y) = 0. Therefore Wy(y) # 0 for any y € (1,00). As ¥

is smooth enough in (1,00) and C* > 0, it is seen that ¥, (y) <0 (1<y<oo). O

v
A

C*

0 1
Fig. 5: Shape of ¥(y)

Theorem 2.5 (The first precipitation)

e IfCs < C*, then there are t* > 0 and r* > 0 such that the first precipitation occurs in
{(t,7) € [0,00) x [0,00); 0 <t < t*,0 < 7 < r*}.

o IfCs > C*, then the precipitation never occurs.

pr.) For any t > 0, the solution of (2.15) without P(c,d) is the following integral:

t (r2—2r&1 (S(a)+5(2)%)
[y e S'(6)7(S(e), 8) dBds.
0 Jso1 (dn(t—5))3

Moreover, we remark that this integral is mapped to the stationary solution ¥ of (2.21) by
the rescaling (2.17). This means that, if Cs < C*, then there are t* > 0 and r* > 0 such
that the first precipitation must occur in {(t,r) € [0,00) x [0,00); 0 <t < t*,0 < r < r*},
and else if Cy > C*, then the precipitation never occurs. O

In what follows, we assume that (0 =)C, < Cs < C*. We next prove that, if ¢ becomes
greater than C, in some interval, then ¢ must go down less than C, after some finite time
passes by.

Theorem 2.6 (discontinuous precipitation) We define é(t,y) = c(t,r) by use of the
rescaling r = S(t)y. It is assumed that there are Tp > 0 and a subinterval (y1,y2) € [0, 00)
such that
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&(To,y) > Cs, Yy € (y1,92),
&(To,y) < Cq, otherwise.

Then, there is a finite time T* > Ty such that

é(T*:y) S Cs,
for all y € [0, 00).

pr.) We first note that

t r2—2r 1(S(38) 3)2
dtr) = [ [ e T 5 (5(), 6) dgds,
- Jo Jsn-1 (dm(t —8))2 v
t r?-3rg; (\)+a?
—q/ / ——1—,,-6_ z:‘(’—ﬁ“ P(c,d)J(A, B) d\dB ds.
0 Jrn (4n(t - 5))2

By use of (2.20), the first term of the right-hand side is changed to ¥(y), which is independent
from ¢. By use of the following change of variables:

r = Sty
A= S(tn (2.27)
=

to the second term, we get

n 1 o 2y m+n®) . .
S [ [ e T R b dy sn, s,
(4m)z Jo Jsn-1Jo (1-p)?

where
P(¢,d) = P(c,d),
d(t,y) = d(t, ).
Therefore
ety) = &é(Toy) (2.28)
n(s T 00 _az(vzlzrel(ﬂ)+v2)p . d. 7
— -p.
qa ( 0 / / / € n(c’ ) (n’ﬁ)dndﬁdp
(4m)% gn-1 (1-p)2

As P(&,d) = ¢ at least in the moving interval (\/%yl, ﬁyg) (t > tg),
0o ad(y?-2
i go R (6, d) 10, B
o (1- P) 2
VFn g
/ =) ¢&(n, t)J (n, B)dn

111 (1_17)’

/’ —2;:6 n)+n ( d
_(—1‘8-——_,, ,
By (1 P -’_ P 77
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as long as é > | for any fixed [ € (0,C;).
By use of Lemma 2.4, there is yp > 0 such that ¥(y) < Cs in [y, 00). Therefore, if t > Tp,
then

é(t,y) < ¥(y) < Cs,

in [yo,00). Let us take such a yp and fix it, and there exists Ms > 0 such that, if y € [0, yo],
then

a2(y?-2y¢ T
/ / / 7zt Ay J(n, B) dndBdp > M5|y2"y1l\/’£'
Sn-1 2 (1- p) 2 t

ga™lMsly2 — |t - To)\/
(4m)3

e(ty) <é(Toy) - (2.29)

as long as é > [.
On the other hand, there is a constant Mg > 0 such that

¢ > Mge~?T)  in the moving interval (\/ Tiqyl, \/ -Tiqyz) .

In fact, this is because the rescaling r = S(t)y makes the moving interval pulled back to
(v1,y2) and the solution satisfies the differential inequality:

n .
¢t = crr + e —qe, in (y1,y2)-

Therefore, as we take [ in (2.29) as Mse“I(t‘T@,.there exists a constant M7 > 0 such that

g™ My yp — y1|e~ 9t~ T")(t—To)\/—
(4m)3

Now we note that the function e~9*~T0)(¢t — Ty)4/22 attains the maximum M, at a time
point 77 > Ty. Therefore, we conclude that

6(t? y) S é(TOa y)

ga™ Mylys — 11| M,
(47r)%

__It];aqg{( —a(t-To) (¢ — T0)1/ )>0_

It é(To, y)— = < C4, then the conclusion of the theorem holds. Otherwise,

é(TI’ y) S é(T[h y) -

H

where we define

there is a subinterval (ys,y4) C (¥1,¥2) such that &Ty,y) > —Ql for any y € (ys,ys) because



of Lipschitz continuity of the solution & Therefore, let us replace T1 to Tp and (y3,y4) to
(¥1,¥2), and let us continue to make the same argument as above finite times. Hence, there
is a finite time T* > Tp such that

é(T*a y) S Cs,

for all y € [0, 00), because & is bounded in W1:%°([0, 00)) uniformly on time by Remark 2.2.
Here we remark that there is a positive constant M} such that My > M? > 0 in the
above finite-time operation, and remark that there is a positive constant M3 such that
M,y > M3 > 0 as Ty is bigger and bigger. O

Remark 2.7 From Theorem 2.6, once ¢ becomes bigger than Cs, ¢ goes down and will
become less than C; after some finite time passes by. Therefore precipitation occurs dis-
continuously spatially and temporarily. Moreover, Theorem 2.6 tells us that the interval
where precipitation occurs must be very small because ¢ must go down at once if ¢ exceeds
Cs a little. But it is difficult that we estimate how small the interval is, because of the
discontinuity of P(c, d).

2.4 time law & spacing law

We first consider of the problem in the original scale. (Ry, Ry) is defined as the maximum
open interval where the N’th precipitation happens, and (> 0) is defined as the solution
of the equation: S(fy) = Ry. Especially, by Theorem 2.5, R; = 0. By Theorem 2.6 and
the definition of P(c,d), (Rn, Rn) must be a finite open interval.

We now think about the dynamics of the system after the N’th precipitation’s being
settled down and until N + 1’st precipitation’s occuring. For this purpose, we separate the
half line [0, 00) to [0, Ry] and (Ry,00). We prove that

(1) The N + 1’st precipitation will never occur in [0, Ry], and

(2) The N +1’st precipitation really occurs in (R, 00), which satisfies time law rigorously
and spacing law approximately.

We first prove (1).
Theorem 2.8 The N+1’st precipitation will not occur in [0, Ry).

pr.) We define £, as T* of Theorem 2.6 with (y1,%2) = (BN, RN). If t§, > Iy, then it is
seen that the next precipitation does not occur in (Zy,? N) by Theorem 2.6. Therefore we
consider about the next precipitation only in ¢ > %, N

Now, in t > t and 0 < r < Ry, c satisfies
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¢t <cor+%te, 0<r<Ry, t>ty
c('t-’}‘;,r) < Cs, 0<r<Ry.

Therefore, by use of the maximum principle of parabolic type equation, the maximum value
is taken either on c(t%;, ), on c(t,0) or on c(t, Rx). Therefore, if ¢ exceeds C; in [0, Ry], it
must be either c(¢,0) or c(t, Ry).

In what follows we prove that both ¢(¢,0) and c(t Ry) do not exceed C; actually. We
show that if c(¢, r)|,._0 %, takes the maximum, then it goes down. For the purpose, we use
the integral expression in the rescaled system. 3 denotes either 0 or Ry. For 8 =0or Ry,
we define t5(> ¢ ty) as the time when c(t, §) takes the maximum in [0, Ry). In the integral
expression (2.28), let us substitute ¢} for Tp, and we get

¢ (tv y) = é(t;ga y) (230)
_gat(t—tp) ﬁﬁ—l‘_gs_%mﬁp (&) J(n. )
(4r) ’2' _/ /,._ _/ (i-p)% dndBdp.

By the rescaling (2.17), the precipitation interval moves to the left-hand side. Therefore, we
estimate the value of ¢ (t, \/ ffy) On the moving point 4/ Etﬂy, it is seen that

* t*
é (t, —fly) =é (t;g, —f—y) (2.31)

-{’-n’(yz—zvel(oﬂ’

qan(t—t) (t;;) [ e V20 I 4o 5

am? \1 i-p)f

where ( is defined by

We take a constant | € (0,Cs) and a subinterval [y}, y5] C [0, Rn] such that é (t, \@g) >1

for any y € (v},¥5), and fix them. Therefore, there exists a constant B* > 0, which is
dependent on ¥, y; and is independent from y,,15,

: . ga”(t — tE) Z] i
(the second term of the right-hand side of (2.31)) < ——W— (?> IB*
T) 2

On the other hand, it is easily seen that there is a constant 6; > 0 such that for any
y € (tﬁ,t% + 61),




t*
&(t58) > ¢ (t};, \/%ﬂ) )

because 8 = 0 or because § = Ry and ¢ takes the maximum value at Ry. Moreover, let us

define M’E by
5\ %
My = sup | (t —t3) (-——) > 0.
b sty t
(By simple calculation, it is seen that, if n = 2, then Mg = i3 and, if n > 3, then
Mg = 2 (=2 ) .) We note that there is a constant d2 > 0 such that (t — t%) (—@-)

n—2
monotone increasing int € {tﬂ, tﬂ+62], and also note that Mt- becomes bigger as t"‘ becomes

bigger. It is, therefore, seen that there is a constant d3 > O and 44 > 0 such that for any
t € (th,th + d3)

R t5 A Lok .. ty o
cit, 't‘ﬂ <c(tﬁ,ﬁ),andc tﬁ+53, mﬂ <c(tﬁ,ﬁ).—-64. (2.32)

Therefore, both c(t,0) and c(t, Ry) cannot exceed C;,. 0O

Next, we will prove (2). We remark that ¢ has never reached Cj so far in r > Ry, t<In.
We define functions @ (t), nn(t), and ¥ (r) by

on(t) = c(t,Rn) (t>1n),
UN(t) = C,-(t, R_N) (t > {;)s
Yn(r) = c(n,r) (0<r< o),

for the solution c of the original equation (2.15). By Theorem 2.6 and the maximality of
(B, Rn),

0<¥n(r)<Cs (RN <T < ). (2.33)

c solves the following evolutionary equation:

Ct = Crr + %Le + bpS'(8)0(r — S(2)), t>in, Ry <t < o0,

(B.C.) c(t,Ry) = (,DN(t), t> N,
(B.C)) hm c(t T) = t>1In, (234)
(IC)C(_,T) ¢N1”), Ry <7< oo,

int>%yand Ry <7 < oo.

One of our main tools is the comparison principle of the parabolic type equation with
the problem with Homogeneous Dirichlet boundary condition at r = 0. Therefore, we must
extend the equation (2.34) naturally into the interval [0, Ry]. For this purpose, we consider
the following evolutionary equation:
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& = & + 2126, t>1y, 0<r< Ry,
(B.C) &(t, ) = on(®), 1>,

(B.C.) &(t, Bn) =nn(t), t>7n,

(I1.C.) én,7) = ¥n(r), 0<r<Ry.

(2.35) has a unique solution ¢, and by use of the comparison principle,

(2.35)

ét,r) > c(t,r) =20
is satisfied in t > Ty, 0 < r < Ry. Finally, let us consider the following evolution equation:

v = v + Lo + 65 (8)0(r — S(), t>Tn, 0<T <00,

(B.C.) v(t,0) = nn(2), t>tn,
(B.C.) ranolo v(t,r) =0, t>1n, (2.36)
(I.C.) v(tn,r) = ¢¥N(r), 0<r<oo,

and (2.36) has a unique solution v. Moreover, v satisfies
u(t,r) = é(t,r) > c(t,r)
int > 1y, 0<r < Ry, and satisfies

v(t,r) = c(t, 1)

int >y, Ry <1 <o0.
Without loss of generality, we normalize y = 1, as we fix N € N. In order to investigate
behavior of the solution of (2.36), we study the following homogeneous problem:

fr=frr + 221, + 0oS'(t)6(r — S(2)), t>1,7>0,

F(t,0) =0, t>1,
rlirgo flt,r) =0, t>1, (2.37)
f(11T)=0, T>0,

Furthermore, we need to consider the next problem to see properties of a solution of (2.37).

9t = grr + B2 gr + boS'(8)0(r — S()), t>0,7>0,

g(t50)=0’ t>0s

. _ (2.38)
rli»l{.lo g(t,r) =0, t>0,
g(0,7) =0, r>0

A important difference between (2.37) and (2.38) is the time when the initial data is given.
It is 1 in (2.37), although it is 0 in (2.38).

(2.38) has a unique time global solution. As g(t,) is transformed by the following change
of variables:

t = A%
' 2.
{ r' = Ar, (2.39)



g(t',') solves the quite same equation (2.38). Therefore it is satisfied that
g(t,r) = g(\2t,\r) () > 0). (2.40)
Welet)\z—‘}?, and we see
r
g9(t,m) =g(1, %)- (2.41)
Moreover we use the rescaling: r = S(t)y to get

9(t,r) = g(1, ay). (2.42)
We remark that the right-hand side of (2.42) is independent from t. Let us define ¥2 by

TP (y) = g(1, ay),
and this is a stationary solution of the equation rescaled by r = S(t)y. Namely, ¥P solves

0=r¥y,+ (¥ + %00, + B6y-1), y>0,

¥(0) = 0, (2.43)
g, T =0.

This means that the solution of (2.38) has the ”similar” shape to U2 and its maximum
point moves to the right-hand side.

On the other hand, we make the change of variables, 7 = S(t)y and t = €", for the
equation (2.37). If we define h by h(7,y) = f(t,r), then the rescaled equation is

he = grhyy + (§ + Z5h)hy + 8(y — 1), 7>0,5>0,

h(7,0) =0, (2.44)
Jim h(r,y) =0,
h(0, y) =0.

Now, let us consider the function ¥P — h, which satisfies the heat equation with homoge-
neous Dirichelet boundary condition and with the initial condition ¥2. Therefore, U2 — h
converges to 0 uniformly in y, which means that f is monotone increasing and

f(t,5@t)y) - ¥P(¥)(= g(1,09)), uniformly in y,
as t — oo (namely 7 — 00).
We next define C** by C** := ¥P(1) > 0, and study the shape of ¥ (y) minutely.

Lemma 2.9 (Estimate for ¥2(y))
¥2(y) >0, in (0,00),
¥P(y) >0, in (0,1),
v2(y) <0, in (1,00),

and UP(y) attains its mazimum C** aty = 1.
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pr.) ¥P(y) > 0 in (0, c0) is clear.

We will show that W2 (y) > 0 in (0, 1) by contradiction. In (0,1), ¥® solves

0=2%vD + (4 +2)¥), in (0,1),

TP(0) =0,
¥0(1) = C** > 0.

(2.45)

If there exists yo € (0,1) such that \115 (yo) = 0. Let us define G(y) by
G(y) = ¥P(yp) (the constant function),

and G solves

0 = HGu+H+25)Gy,

GU(yO) = 0’
G(yw) = ¥P(yo).

By use of the uniqueness theorem of the solution of the initial value problem of the second
order linear partial differential equations, this does not have any solution more than G.
Therefore the solution of (2.45) must correspond to G. Thus we see ¥(y) = 0 (for any
y € (0,1)) from ¥P(0) = 0. But it contradicys that C** > 0, so that

D (y) # 0 ( for any y € (0,1)).

Taking C** > 0 into account, we get \Ilé) (y) > 0 (for any y € (0,1)). We can prove that
iIlf(y) < 0, ( for any y € (1,00)) in the same manner, so we omit it. (J

0 1
Fig. 6: T2(y)

For the non-homogeneous problem (2.36), we make a change of variables (2.17) and we

define w(r,y) = v(t,r) to get

wr = Frwyy + (§ + 52wy + Py -1) 7>0,>0,

w(r,0) = nn(eT),
lim w(r,y) =0,

Yy—

’W(O, y) = ¢N(ay)1

>0,

r0 (2.46)

-y >0.



Lemma 2.10 (Estimate for (2.46)) If Cs < C**, then the solution of (2.46) continues
to attain its mazimum at y = 1 after some finite time passed by.

pr.) The difference w — h between solutions of (2.46) and (2.44) solves classically the
following equation:

zT=algzw+(§+%§-j)zy, >0, y>0,

z(1,0) =nn(e”) > 0, >0, (2.47)
limy 00 2(7,0) = 0, >0,
z(0,y) = ¥n(ay) >0, y > 0.
By use of preserving the positivity, we see
w > h, (2.48)

forany 7 >0,y > 0.

We now separate the interval where w defines to (0,1) and (1,00). In (0,1), w solves

wr=$§ww+(g+2—;;)wy 7>0,0<y<1,

classically. We apply the parabolic type of strong maximum principle to see w(7, y) attaining
its maximum either at 7 = 0, y = 0 or y = 1. On the other hand, we have already known
that the next precipitation does not occur in [0, Ry] by Theorem 2.8. Moreover, as taking
(2.48), Lemma 2.9, and the fact that h — 2 as t — oo into account, we conclude that,
if C; < C**, then w continues to attain its maximum at y = 1 after some finite time passes
by.

In (1,00), we take R > 0 large enough and fix it. We prove the same property in [1, R].
Finally we use the fact that ylirgo w(7,y) = 0. We eventually see w attaining its maximum

at y = 1 after some finite time. a

In what follows, we define 7}, +1 8s the time when the solution w of (2.44) hits C;, N +1st
time, and also define

t;v_i_l = eTI’VH .

In original temporary and spatially scale, R)y,, is defined as the spatial point where the
solution ¢ hits C,, N + 1’st time.

Theorem 2.11 (time law) If C; < C**, then Ry =4/t

pr.) By Lemma 2.10, w(r,1) continues to attain the maximum value and hits C; in some
finite time, if C; < C**. Therefore, in original scale, it means that

! —_
By = o[ty

23




24

which means time law. O

We define 7, , as the time when the solution A of (2.46) hits Cs, N + 1’st time, and also
define tiy, = e"N+1, Moreover, we define RY; +1 = S(t}4,) and 7§ = login,.

Theorem 2.12 (spacing law) It is assume that there exists a small constant €1 > 0 such
that, for any i,j € N,

sup [i(r + R) = 9(r + By)| <er. (2.49)

Then there are constants C* > 0 and 8y > 0 such that

/
N+1 * L.}
—== = C* + o(e?°),
a2 )

if C** > Cy and if |C** — C,| is small enough.

pr.) In the interval [Ry, co), we can separate the solution v of (2.36) to the following three
parts:

v(t,r) = ft,r) +U (L) + V()
Here f(t,r) solves (2.37), U(t,r) solves the following:

Ut=Urr+ﬁ:—1Ura t>1%n, > Rn,
U(t,0) =0, t>tn,

lim U(t,r) =0, t> 1y, (2.50)
U(t_l\-;a T) = ¢N(7‘), r> ma
and v(t,r) solves the following:
.Vt=V1‘T+'n%1'I/‘ra t>ma T>ﬁ;1
V(t,Bn) = on(t), t>1n,
(t,Rn) = on(t) N (25)

rll»lgo V(t,r)=0, t>ty,
V(n,7) =0, > RN.
For the solution U of (2.50), there exists a positive constant Mg such that

’ 27 poo
sup |U(t,7)] < ﬁ/ / YN (r)rdrdd
r€[0,00) ) 0 ]

Mg

< —t———)O, (t — 00).

Taking the assumption of (2.49) into account, there exists a positive constant Mg such that

sup [UD(t+ti,r +R) - UD(t+1t,r+Rj)| < Moey, (2.52)
r>0,t>0



for any ¢,j € N. Here U® is the corresponding solution to (2.50) with N = i for any ¢ € N.
The solution of (2.51) satisfies that

tlilg) [V(t,7)] =0 (exponentially), (2.53)

because of lims—,o ¢n(t) = O (exponentially). Therefore f is only related to the N + 1’st
precipitation. We first consider about the solution f of (2.37). We have already made a
rescale of (2.37) by (2.17) to get (2.44).

Let us remark that the right-hand side of (2.44) is independent from 7, and there exists
a positive constant Mg independent of N such that, for any N € N, it holds that

TN+1 — TN = Mao.
In the original scale of space anf time, it means that
logth,, —logiy = My,
thi1
iN
Furthermore, because Ry, ; = S(t%, ), we get

R;Iv'f'l — tyv‘f‘l
Ry in '
= 0.

We next think of the solution w of (2.46). By use of both (2.52) and (2.53), we see the
difference between the solutions of (2.44) and (2.46) be at most in O(e;) (¢; is small enough).
Thus there exists dp > 0 such that

= Mo,

7 Mo

Nil _ o3 + o(€30),
Ry

because of Theorem 2.11 O

Remark 2.13 The assumption (2.49) means that small is the difference between the shape
of the solution in r > r; at the moment when ¢ = ¢; and the shape of the solution in r > T at
the moment when t = ¢; for any i,j € N. It apparently seems to be difficult that we prove
this in mathematically rigorous manner, because of the hystericis happening. According to
numerical simulations that we have already done, it seems that this is satisfied very well. We
therefore think that we have made the essential mechanism by which Liesegang phenomena
occurs clear.

As we state in Remark 2.7, we can consider of the interval (Bn, Ry) as very small.
Therefore, as Ry € (Rn,Ry), we can regard the difference between R}, and Ry as much
smaller than the difference between Ry and Ry41. Hence we can regard Theorem 2.12 as
spacing law. But it is difficult that we estimate how small the interval is because of the
discontinuity of P(c, d).
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