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1. Introduction

We discuss traveling waves for a curvature-driven motion of plane curves in a band domain Q.,
where € > 0 is a certain small parameter and the boundaries of Q. undulate quasi-periodically
as specified below. The law of motion of the curve is given by the equation

(1) V=x+A,

where V' denotes the normal velocity of the curve, £ denotes the curvature and A is a positive
constant representing a constant driving force. The domain €2, is defined as follows: Let ¢;(y)
and g,(y) be smooth quasi-periodic functions satisfying

9i(y) > 0, infgi(y) =0, supgi(y) =tanay, infgi(y)=—tang; (i=1,2),
Y Yy
for some o;, B; € (0,%) and o + ; < Z(1=1,2). Q. is defined by

Qe = {(z,9) €R | —g1:(y) <7 < g2e(y), y € (~00,00)}

with gie(y) := 1+ €g; (£) (i =1,2) (see Figure 1).
In this paper, by a solution of (1) we mean a time-dependent simple curve I'; in Q. which
satisfies (1) and contacts the each boundary of §), vertically. To avoid sign confusion, the
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normal to the curve I', will always be chosen toward the direction of the right-hand side region,
and the sign of the normal velocity V' and the curvature x will be understood in accordance
with this choice of the direction of the normal. Consequently, x is negative at those points

where the curve is concave (sce Figure 1).

=-1-29,(3)

X x=1+agz(¥)

Fig.1 Domain and Curves

We will only consider the case where the curves are expressed as a graph of a certain function
y = y(z, t), so (1) is equivalent to

2) y4=1?f22+14\/1+y3, t>0,
L

with boundary conditions

(’3) ya:(xs t)‘(—gu(y). y) = y{(y/e), y?(:E’t)'(g?S(y), y) = "g;(y/EL

and restrictions
(4) —91:(y) < 7 < g2e(y)-

Let Qo = {(z,4) € R? | — 1 < z < 1} be a straight band domain which is formally a limit
of Q, as ¢ —+ 0. For ( one can easily see that equation (1) has a traveling wave solution
Ty = {(z.yo + At) | — 1 < = < 1} which moves at a constant speed A remaining its shape (a
line segment).

On the other hand, for €}, traveling wave solutions of (1) in the usual sense do not exist in
general. For such undulating band domains, the notion of traveling waves has to be extended
to the more general one in the same way as in [1]. '

Case 1. Periodic traveling waves. In the case where g, and g, are 1-periodic functions, a
solution Y¢(z,t) of (2)-(4) is called a periodic traveling wave if

Vi, t+ Te) = Vo(x,t) +¢
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for some T, > 0. Such a periodic traveling wave propagates in y-direction with average speed -
¢ = ¢/T,, changing its profile periodically in time.

Fig.2 Periodic travling wave

Case 2. Quasi-periodic traveling waves. Roughly speaking, a quasi-periodic traveling wave
for (1) is a curve which moves rightward changing its profile and speed quasi-periodically in
time. To give a precise definition of quasi-periodic traveling waves, we introduce some notation
and terminology. For any solution y(z,t) of (2)-(4), we call

£(t) := y(0,t) the current position;

oty = by + &(t)) € H, the current landscape. where

L (R) % L (R)

b(y) = (91c(y), 92c(y) ) and H,:= {0,b]7 € R} ~ T™ for some m € N;

y(z,t) — £(t) the current profile.

Definition. A solution Y*(z,t) of (2)-(4) is called a quasi-periodic traveling wave if there exists
v(z,8) € C(Hp x R, R) such that

ye(zat) - gs(t) = U(UE‘(t)b, 1:),

where £°(¢) = Y#(0,t) is the current position of Y*(z,t). This means that the current profile
depends continuously on the current landscape. A quasi-periodic traveling wave is called regular
if iItlf &(t) > 0.

Note that this definition agrees with that of traveling waves for the homogeneous and the
periodic cases. Moreover, we say that a quasi-periodic traveling wave has the average speed c.
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if
e+T) - £0)

T — ¢, as T — oo uniformly in ¢.

Recently, Matano has proved the existence of a regular quasi-periodic traveling wave having
average speed for (2)-(4) on the assumption that A > (sina; + sin y)/2. Moreover, one can
discuss the uniqueness and stability of the traveling wave by using an argument similar to that
in [3, 4].

The goal of this paper is to determine the homogenization limit of quasi-periodic traveling
waves for (2)-(4). Our result is the following:

Main Theorem. Assume that A > (sinoy + siny)/2 and let Y*(z,t) be the quasi-periodic
traveling wave of (2)-(4), then
(i) The average speed c. satisfies

(5) o < € < o+ Moy, o, A)ell?
for small €, where co = co(a, o, A) < A is independent of €, and is given by

2+ F(Q'I:CO) +F((127CO) =0,

with
' o 24 A+c o
Y, C) 1= — — ———— ¢ — - tan—].
F(a,c) PRy s arctan ( T, tan 2)

(i) Y*(z,t) converges (locally in C*!) to a homogenization limit (z; co)+co t, where p(z; o)

is defined by
1

A — ¢gcos(arctan v
(v; o) = —_log c cos{ )

14.—' C()
z(v; ¢y) = F(arctanv, ¢o) — 1 — F(ay,c),

b}

by a parameter v € (— tan oy, tanay).

Remark 1. (i) The above theorem implies that the effect of spatial inhomogeneity appears
in the homogeneization limit, although €. tends to {Jy as ¢ — 0. Indeed, the homogenized
traveling wave has non-planar profile ¢ and its propagation speed ¢y is less than A.

(ii) The function p(z; cp) satisfies

C‘o=1—(p_;%;+l4\/1+¢3, z € (—X1,X2)
T

for some i, x2 > 1, and @,(—1) = tanau, p.(1) = —tanoy (cf. [2]).



2. Proof of Main Theorem

In this section, by constructing a lower solution and an upper solution we prove Main Theorem
in the symmetric case: g, = ¢o. The proof for the general case is similar and we omit it. In
what follows, we write g = g1(= g2), @ = a1 (= a3) and ¢ = ¢(; p).

By Remark 1 (ii), we obtain

Lemma 2.1 y(z,t) := ¢(z;cg) + cot is a lower solution of (2)-(4), and ¢; < ¢,.

Let Y*(z,t) be a periodic traveling wave of (2)-(4). We note that J)’s(a:,z‘.)lI is nothing

but the solution of

-1,1]

§t=13_’|_"!72+‘4\/1+gg, “l<z<1,t>0,
r
(6) G(EL 1) = Ve(£1, ), £>0,

9(z,0) = V*(z,0), “l1<z<l.

Without loss of generality, we may assume ¢(+1) = 0, Y*(z,0) < ¢(z) for z € {~1,1] and
Yé(xo,0) = @(xo) for some o € [-1,1]. Take L > 1‘“)':;5%2 and define

. 7(’2 ale -
v(z,t) = Les (1 —e 7t gin —15—(—1—;—1‘)) , ze[-1,1, t>0.

Lemma 2.2. §(z,t) := v(x,t) + ¢(z) + cot is an upper solution of (6) on ¢ € [0, 1], and hence

(7 g(x,t) > Yo(x,t), z € [-1,1], t € [0,1].

Sketch of the Proof. To prove the Lemma. it suffices to show that

(8) 7 > 1%}2 +AVIT R zel[-1,1], t>0,
and
(9) Ve(£1,8) < g(£1,8),  te[o,1].

The inequality (8) can be easily verified by our construction. Now we show that
(10) Yo(—-1,1) < g(—1,1), t e [0,1).

The other inequality in (9) can be treated similarly.
~ Suppose that £ < 1 and

ye(_lvt) < g(—'l:t)v t O»E]

m

Let yo € (0,1) be such that ¢'(yo) = tano and g(yo) = £ = O(1). Let {(z) be an arc with
curvature —4 and satisfying ((—~1 — 9¥) =0, ¢’(-1 — 9) = tanc. Then we have

((z) = —%cosa+ -}4—\/0052a+2Asina-(1 +9+z)— 42(1 +9 + z)2.

17
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Since

il — £ )= e _ - l
p(-1+1ve) = tana \/_+(2c.osza 2005304) Bt
for | = ’ﬂ—t%:—?—ge‘g, we have
A .
C(—1+l\/§)=tana-(l\/§+ﬁ)—zcoqsa (Ve +8) 4+ 2 tana -9+ o(—1+1ve) — Me

for small ¢, where M = E%QE%QE .
Suppose that ((z) + H(f) intersects g(z,f) at z = —1 + I/ for some H (1), that is,

((-1+E)+H{) = §=1+iVet)
Then we obtain

H@) = v(-1+I/E 1) +o(-1+1ve) +af — ((-1+IvE)

v(-1 +l\/5,f) —tana -9+ Me + ¢t

- -xﬁ ~
L\ — L—%l e T —tana -9+ Me + ¢t

In

IA

(1,1 — L7—;E e~ Te—tana -9+ Me.

On the other hand, there exists a & € [0,¢) such that the arc {(z) + H (f) + & intersects O

at some point (z*,y*), where
*=-1-9 and gl(y*)=4'(y"/e) =tana.

This implies that the arc {(z) + H(f) + 6 is a stationary curve of (2)-(4) on [-1-9,-1+1/e .
Since

VE(—1+ 16, 1) < g1+ e, §) < ((—1+1Ve) + H(E) +6,
we have YV*(z,8) < ¢(z) + H(}) + 6 for z € [-1 -9, =1 +14/e ]. Especially,

Ve(-1,9) < ((-1)+H(@E)+6<tana-9+H(E) +e
g(-1,%) + [M+1 - L%Ee'ﬂ e < g(-1,f) — 2

IA

by the choice of [ and L. Therefore we have
g(-1,7+1) 2 5(-1,9) > ¥ (-L,5) +e 2 Y (-1, i+ 1), t €0, ]

This means that Y*(—1,) < §(=1,t) on t € [0,f + T.].
Repeating the above discussion finite times, we get (10). This proves the Lemma.
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Fig. 3  Upper Solution

Proof of Main Theorem. By Lemma 2.1 we only need the upper bound of c;.
Denote by [x] the integer part of x > 0. By Lemma 2.2 we have

Ye(z,1) — p(z) < 9(z,1) — p(a) = v(z,1) + & < [ 56—5-5—(3 +1 } €.

On the other hand,

. Le? + ¢
y .’L’, ____..+.1
€ €

3
-TE) < elz)+ [w+1] - €,

and “equality” holds at some zy € [~1,1]. Therefore we obtain

Let 4 ¢ Le?
1< [_2__’__6.9._{,.1 T, < (_Ez_:'ﬂ+1).T€7

and hence

This proves (5).
Statement (ii) follows from the comparison theorem, standard parabolic estimates and (5).
Remark 2. To give a scent to the readers for the relation between ¢y and A, as well as that

between ¢y and o, we consider the problem in a band domain with ratchet boundaries (see
Figure 4).
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Fig.4 Band domain with ratchet boundaries

We divide the traveling wave into two parts: the part near the boundaries (we call it boundary
solution), and the part away from the boundaries (we call it interior solution). Via a rather
intriguing asymptotic expansion approach, we find that the interior solution is approximately a
traveling wave with constant speed and profile, while the behavior of the boundary solution is
complex. In one period the motion of the boundary solution consists of three stages (see Figure
5).

Stage 1 — Contact points (where the solution curves contact with the boundary) are on PQ.
In this stage the profile of the solution is like ¢ and the propagation speed is of order O(1).

Stage 2 — Contact points are on QR. In this stage, the contact point (¢) moves rapidly from
Q to R in a short time O(e?), while the interior solution almost remains stationary.

Stage 3 - Contact points stay at R. In this stage the propagation speed of the boundary
solution varies from of order O($) to of order O(1).

one period

Fig.5 Three Stages of Boundary Behavior
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