<table>
<thead>
<tr>
<th>Title</th>
<th>Crossed homomorphisms and the Schur-Zassenhaus theorem (Cohomology Theory of Finite Groups and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Asai, Tsunenobu; Takegahara, Yugen; Chigira, Naoki; Niwasaki, Takashi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2004), 1357: 23-30</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25197</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Crossed homomorphisms and the Schur-Zassenhaus theorem

1 Theorems

We can find several proofs, for example, in [6–13], of the following classical theorem of Frobenius:

Theorem 1.1 (Frobenius). Let n be an integer and G a finite group. Then

$$|\{g \in G \mid g^n = 1\}| \equiv 0 \pmod{\gcd(n, |G|)},$$

where $|X|$ denotes the cardinality of a set X.

This theorem is equivalent to the fact that

$$|\text{Hom}(C, G)| \equiv 0 \pmod{\gcd(|C|, |G|)}$$

for any finite cyclic group C, where Hom denotes the set of group homomorphisms. Yoshida has generalized the theorem as follows:

Theorem 1.2 (Yoshida [12]). Let A be a finite abelian group and G a finite group. Then

$$|\text{Hom}(A, G)| \equiv 0 \pmod{\gcd(|A|, |G|)}.$$

Another way of generalization is due to P. Hall:

Theorem 1.3 (P. Hall [10]). Let G be a finite group and θ an automorphism of G. If the order of θ divides a positive integer n, then

$$|\{g \in G \mid g \cdot \theta(g) \cdot \theta^2(g) \cdots \theta^{n-1}(g) = 1\}| \equiv 0 \pmod{\gcd(n, |G|)}.$$
We denote by $Z^1(A, G)$ the set of crossed homomorphisms from A to G. For example, the zero map $0: A \to G$ sending all the elements of A onto $1 \in G$ is a crossed homomorphism. If the action φ is trivial, then $Z^1(A, G) = \text{Hom}(A, G)$. On the other hand, if G is abelian, then $Z^1(A, G)$ coincides with the first cocycle group of the $\mathbb{Z}A$-module G with respect to the standard resolution of A. However, unless G is abelian, $Z^1(A, G)$ may be only a set; it may not have a group structure in general.

Now, Hall’s theorem is equivalent to the fact that

$$|Z^1(C, G)| \equiv 0 \pmod{\gcd(|C|, |G|)}$$

for any finite cyclic group C and for any action of C on G. Yoshida and the first author of this report have conjectured the following:

Conjecture 1.4 ([5]). If a finite group A acts on a finite group G, then

$$|Z^1(A, G)| \equiv 0 \pmod{\gcd(|A/A'|, |G|)},$$

where A' denotes the commutator subgroup of A.

This conjecture is a generalization of all the theorems above, and is still open. Recent progress for this conjecture is found in [1–4]. In particular, in order to prove the conjecture completely, it suffices to prove the conjecture in the case where A is an abelian p-group and G is a p-group for a prime p ([1]). This reduction mainly owes to the functorial properties of $Z^1(A, G)$ on the variables A and G, where the latter is first observed by Brauer [6] in a certain case (see §3.3 for generalization). In addition, Brauer has based his alternative proof of the theorem of Frobenius on the following lemma:

Lemma 1.5 (Brauer [6]). Let G be a finite normal subgroup of a group E. Then, for any $g \in G$ and $x \in E$, $(gx)^{|G|}$ and $x^{|G|}$ is conjugate by an element of G.

In this report, we shall generalize this Brauer’s lemma as the formula

$$\text{res}_{A, A^{|G|}}(Z^1(A, G)) = B^1(A^{|G|}, G)$$

for abelian A (Theorem 4.1), where B^1 denotes the set of coboundaries, which will be introduced in the next section. Throughout the report, our main tools are the functorial properties of $Z^1(A, G)$, and our principle is to compare $Z^1(A, G)$ with $B^1(A, G)$. As a corollary of our arguments together with the Feit-Thompson theorem, we shall also prove Theorem 4.2 which is equivalent to the second statement of the following classical theorem:

Theorem 1.6 (Schur-Zassenhaus). Let G be a finite normal subgroup of a finite group E such that $\gcd(|E : G|, |G|) = 1$. Then

1. There exists a subgroup A of E such that $E = G \rtimes A$.
2. If $E = G \rtimes A = G \rtimes B$, then A and B are conjugate by an element of G.

Note that if G is abelian, then it is well known that the first statement of the Schur-Zassenhaus theorem is equivalent to $H^2(A, G) = 0$, and the second is so to $H^1(A, G) = 0$. In fact, we shall prove $Z^1(A, G) = B^1(A, G)$ for any finite group A and G whose orders are relatively prime.
Notation. For the remainder of the report, we fix the following notation: let A and G be groups, which need not be finite, and let A act on G by a group homomorphism $\varphi: A \to \text{Aut}(G)$. With respect to this action φ, we denote by $Z^1(A, G)$ the set of crossed homomorphisms from A to G, and by $G \rtimes A$ the semidirect product of G and A. For $x \in G \rtimes A$, we denote by $\text{Inn}(x)$ the inner automorphism associated with x, so that $\text{Inn}(x)(y) = x y x^{-1}$ for all $y \in G \rtimes A$.

2 Coboundaries

For a given map $\lambda: A \to G$, consider the map $\tilde{\lambda}: A \to G \rtimes A$ which is defined by

$$\tilde{\lambda}(a) = \lambda(a) a \quad \text{for all } a \in A.$$

It is easy to show that $\lambda \in Z^1(A, G)$ if and only if $\tilde{\lambda} \in \text{Hom}(A, G \rtimes A)$, and in this case, $\tilde{\lambda}$ becomes a splitting monomorphism of the canonical epimorphism $\pi: G \rtimes A \to A$. On the other hand, any splitting monomorphism θ of π defines a complement $\theta(A) \leq G \rtimes A$ of G, and vice versa. From these observations, we obtain the following well-known result:

Theorem 2.1. There are two bijections

$$Z^1(A, G) \xrightarrow{\Phi} \{ \theta \in \text{Hom}(A, G \rtimes A) \mid \pi \circ \theta = \text{id}_A \}$$

$$\xrightarrow{\Psi} \{ B \leq G \rtimes A \mid GB = G \rtimes A, G \cap B = 1 \},$$

where $\Phi(\lambda) = \tilde{\lambda}$ and $\Psi(\theta) = \theta(A)$.

As in homological algebra, we introduce the concept of 'coboundary' as well as cocycle. For arbitrary $g \in G$ and $a \in A$, regarding them as elements in $G \rtimes A$, we consider their commutator $[g, a]$, where

$$[g, a] = gag^{-1}a^{-1} = g \cdot \sigma(g^{-1}) \in G.$$

Then this induces a map $[g, -]: A \to G$ sending $a \in A$ to $[g, a] \in G$. We call this map $[g, -]$ a coboundary or an inner derivation induced from g (with respect to φ), and set

$$B^1(A, G) = \{ [g, -] \mid g \in G \}.$$

Easy calculation shows that $B^1(A, G) \subseteq Z^1(A, G)$. In fact, if G is abelian, then $B^1(A, G)$ coincides with the first coboundary group of the ZA-module G with respect to the standard resolution of A. However, in general cases, $B^1(A, G)$ may not have a group structure. Our principle of this report is to compare $B^1(A, G)$ with $Z^1(A, G)$. First we emphasize the following lemma on the relation between the coboundary $[g, -]$ and conjugation by g. Since $[g, a]a = \sigma a$

in $G \rtimes A$, we have

Lemma 2.2. Given $g \in G$, set $\gamma = [g, -]$. Then $\gamma(a) = \sigma a$ for all $a \in A$.

In other words, $\Phi([g, -]) = \text{Inn}(g)$ on A. Note that $\sigma A \neq A$ in general.

3 Parameters

Both $Z^1(A, G)$ and $B^1(A, G)$ have three parameters: groups A, G and action φ. We shall consider functorial properties on these parameters.
3.1 Change of actions

We fix $\lambda \in Z^1(A, G)$. For given $a \in A$, the inner automorphism $\text{Inn}(\tilde{\lambda}(a))$ on $G \rtimes A$ leaves the normal subgroup G invariant. This induces a new action $\text{Inn} \tilde{\lambda} : A \to \text{Aut}(G)$, namely,

$$(\text{Inn} \tilde{\lambda})(a)(g) = \tilde{\lambda}(a)g = \lambda(a)^a g \quad \text{for } a \in A \text{ and } g \in G.$$

We denote simply by $Z^1_\lambda(A, G)$ the set of crossed homomorphisms with respect to $\text{Inn} \tilde{\lambda}$.

Since $G \rtimes A = G \rtimes \tilde{\lambda}(A)$, Theorem 2.1 states that both $Z^1(A, G)$ and $Z^1_\lambda(A, G)$ correspond to the same set — the set of complements of G in $G \rtimes A$. This is a group-theoretic meaning of the following theorem.

Theorem 3.1 (Change of actions). Let $\lambda \in Z^1(A, G)$. Then right multiplication by λ induces a bijection $\lambda_r : Z^1_\lambda(A, G) \to Z^1(A, G)$, which is defined by

$$\lambda_r(\eta)(a) = \eta(a)\lambda(a) \quad \text{for all } \eta \in Z^1_\lambda(A, G) \text{ and } a \in A.$$

We often write $\lambda_r(\eta) = \eta \cdot \lambda$.

Let us determine the image of the coboundaries by this bijection λ_r. Set

$$B^1_\lambda(A, G) = \{[g, -]_\lambda \mid g \in G\},$$

where $[g, -]_\lambda : A \to G$ denotes the coboundary induced from g with respect to the action $\text{Inn} \tilde{\lambda}$, i.e.,

$$[g, a]_\lambda = g \cdot \tilde{\lambda}(a)(g^{-1}) \in G \leq G \rtimes A \quad \text{for all } a \in A.$$

We indicate $\lambda_r([g, -]_\lambda) = [g, -]_\lambda \cdot \lambda \in Z^1(A, G)$ by $\lambda_r \lambda$, so that

$$(\lambda_r \lambda)(a) = [g, a]_\lambda \cdot \lambda(a) = \lambda(\tilde{\lambda}(a)) \cdot a^{-1}.$$

On the other hand, G acts on $\text{Hom}(A, G \rtimes A)$ by

$$g \theta = \text{Inn}(g) \circ \theta \quad \text{for } g \in G \text{ and } \theta \in \text{Hom}(A, G \rtimes A).$$

Lemma 3.2. Let $\lambda \in Z^1(A, G)$. Then we have

1. $\lambda_r(B^1_\lambda(A, G)) = \{\lambda_r \lambda \mid \lambda \in G\}$.
2. $\lambda_r \lambda = \lambda_r \lambda$ for any $\lambda \in G$. (In other words, $\lambda_r \lambda$ is the 'G-part' of $\lambda_r \lambda$.)

As the easiest case, we consider the zero map.

Lemma 3.3. Let $0 \in Z^1(A, G)$ be the zero map. Then we have

1. $\lambda_r(A) : A \to G \rtimes A$ is the inclusion map (the canonical monomorphism).
2. $\lambda_r 0 = [g, -]$ and $\lambda_r 0 = \text{Inn}(g)$ on A for any $g \in G$.

This implies the following at once:

Corollary 3.4. All the complements of G in $G \rtimes A$ are conjugate if and only if $B^1(A, G) = Z^1(A, G)$.

Note that any two conjugate complements of G in $G \rtimes A$ are conjugate by an element of G.

We can also show the following by easy calculation:

Lemma 3.5. For any $g, h \in G$, we have

$$g[h, -] = [g, -][h, -] : [h, -] = [gh, -].$$
3.2 Contravariant parameter A

Suppose that there is a short exact sequence of groups $1 \to B \to A \to \tilde{A} \to 1$. We consider a problem whether there exists an exact sequence such as

$$1 \to Z^1(\tilde{A}, G_T) \xrightarrow{\text{incl}} Z^1(A, G) \xrightarrow{\text{res}_{A,B}} Z^1(B, G),$$

where G_T is some subgroup of G on which B acts trivially, incl is the inclusion map, and res$_{A,B}$ is the restriction map (although exactness of a sequence is not defined in the category of sets). Whereas we can not find such a common subgroup G_T, we can locally do as follows:

Theorem 3.6. Suppose that $\mu \in Z^1(B, G)$ lies in res$_{A,B}(Z^1(A, G))$, namely, $\mu = \text{res}_{A,B}(\lambda)$ for some $\lambda \in Z^1(A, G)$. Then $\lambda_r : Z^1(A, G) \to Z^1(A, G)$ induces a bijection

$$\lambda_r : Z^1(\tilde{A}, C_G(\tilde{\mu}(B))) \to Z^1(A, G; B, \mu),$$

where we regard $Z^1(\tilde{A}, C_G(\tilde{\mu}(B))) \subseteq Z^1(A, G)$ in a natural way, and where we set

$$Z^1(A, G; B, \mu) = \text{res}_{A,B}^{-1}(\mu) = \{\tau \in Z^1(A, G) \mid \text{res}_{A,B}(\tau) = \mu\}.$$

By Lemma 3.2, we have

Corollary 3.7. Under the notation in Theorem 3.6, we have

$$\lambda_r(B^1(\tilde{A}, C_G(\tilde{\mu}(B)))) = \{^{h}\lambda \mid h \in C_G(\tilde{\mu}(B))\}.$$

3.3 Covariant parameter G — Brauer's argument

Suppose that there is a short exact sequence of groups $1 \to K \to G \to K \setminus G \to 1$. We consider a similar problem whether there exists an exact sequence such as

$$1 \to Z^1(A, K_T) \xrightarrow{\text{incl}} Z^1(A, G) \xrightarrow{\text{mod}_K} \text{Map}(A, K \setminus G),$$

where K_T is some subgroup of G, and Map denotes the set of maps, which may be replaced by Z^1 if K is A-invariant. For this problem, Brauer [6] gave an answer in the case where A is cyclic with trivial action on G, i.e., $Z^1(A, G) = \text{Hom}(A, G)$. Moreover, it is remarkable that he assumed K is neither normal nor A-invariant. We can generalize his answer as follows.

For $K \leq G$ and $\lambda \in Z^1(A, G)$, let K_λ be the maximal $\lambda(A)$-invariant subgroup of K, namely,

$$K_\lambda = \bigcap_{a \in A} \lambda(a)K.$$

Theorem 3.8. Let K be a subgroup of G, and $\lambda \in Z^1(A, G)$. Then $\lambda_r : Z^1(A, G) \to Z^1(A, G)$ induces a bijection

$$\lambda_r : Z^1(A, K_\lambda) \to \{\eta \in Z^1(A, G) \mid K\eta(a) = K\lambda(a) \text{ for all } a \in A\}.$$

By Lemma 3.2, we have

Corollary 3.9. Under the notation in Theorem 3.8, we have

$$\lambda_r(B^1(A, K_\lambda)) = \{^{k}\lambda \mid k \in K_\lambda\}.$$
4 Applications

For given $B \leq A$ and $g \in G$, we indicate the coboundary $[g, -]: B \to G$ by $[g, -]_B$ to avoid ambiguities, so that $\text{res}_{A,B}([g, -]_A) = [g, -]_B$. Note that it always holds that

If n is an integer and A is abelian, then $A^n = \{a^n \mid a \in A\}$ is a subgroup of A. The following is a generalization of Brauer's lemma (Lemma 1.5).

Theorem 4.1. Let A be a finitely generated abelian group and let G be a finite group. Then

Proof. We use induction on the rank of A.

(1) Suppose that A is cyclic. We reduce this case to Hall's theorem (Theorem 1.3) as follows. Taking an epimorphism $F \simeq Z \to A$, we have a commutative diagram

$$\begin{array}{ccc}
Z^1(A,G) & \overset{\text{res}}{\longrightarrow} & Z^1(A[G], G) \\
\inf \downarrow & & \inf \downarrow \\
Z^1(F,G) & \overset{\text{res}}{\longrightarrow} & Z^1(F[G], G).
\end{array}$$

This allows us to assume that $A = F$. Since $F \simeq Z$, we have $|F : F[G]| = |G| = |Z^1(F,G)|$. On the other hand, we have $B^1(F[G], G) = \{[g, -]_{F[G]} \mid g \in [G/C_G(F[G])]\}$, where $[G/H]$ denotes a set of representatives for left cosets in G modulo a subgroup H. Thus, by definition,

$$\text{res}_{F,F[G]}^{-1}(B^1(F[G], G)) = \bigoplus_{g \in [G/C_G(F[G])]} Z^1(F,G; F[G], [g, -]_{F[G]}).$$

However, Theorem 3.6 and usual argument for conjugation yield that

$$Z^1(F,G; F[G], [g, -]_{F[G]}) \simeq Z^1(F,F[G], C_G(\{g\oint C_G(F[G])\}) \simeq Z^1(F,F[G], C_G(F[G])).$$

Therefore Hall's theorem implies that

$$\left|\text{res}_{F,F[G]}^{-1}(B^1(F[G], G))\right| = |G : C_G(F[G])| \cdot \left|Z^1(F,F[G], C_G(F[G]))\right| \equiv 0 \pmod{|G|},$$

which forces $\left|\text{res}_{F,F[G]}^{-1}(B^1(F[G], G))\right| = |G| = |Z^1(F,G)|$, as desired.

(2) Suppose that $A = B \times C$ for nontrivial subgroups B and C, and $\lambda \in Z^1(A,G)$. By the equation (\ast) and the inductive assumption, we have

so that $\text{res}_{A,B[G]}(Z^1(A,G)) = B^1(B[G], G)$. Hence $\lambda \in Z^1(A,G; B[G], [h, -]_{B[G]})$ for some $h \in G$. However, we have also $[h, -]_A \in Z^1(A,G; B[G], [h, -]_{B[G]})$. Theorem 3.6 yields that

$$[h, -]_A : Z^1(A/G; C_G(h(B[G]))) \to Z^1(A,G; B[G], [h, -]_{B[G]})$$
is bijective. Thus $\lambda = \eta \cdot [h, -]_A$ for some $\eta \in Z^1_{[h, -]}(A/B|G), C_G^h(B|G))$. Again applying induction to $C_G \leq A/B|G| \cong (B/B|G|) \times C$ as in (**), we have

$$\text{res}_{A/B|G|C|G|} (Z^1_{[h, -]}(A/B|G), C_G^h(B|G))) = B^1_{[h, -]}(C|G|, C_G^h(B|G))).$$

Hence there exists $g \in C_G^h(B|G))$ such that $\text{res}_{A/B|G|C|G|} (\eta) = [g, -]_{[h, -]}$, the commutator of g with respect to the action $\text{Inn}[h, -]$. This means that

$$\lambda(bc) = \eta(c) \cdot [h, bc] = [g, c]_{[h, -]} \cdot [h, bc] = [g, bc]_{[h, -]} \cdot [h, bc] \quad \text{for all } b \in B|G|, \ c \in C|G|.$$

Consequently, $\text{res}_{A, A|G|}(\lambda) = [g, -]_{[h, -]} \cdot [h, -] = [gh, -]$ on $A|G|$ by Lemma 3.5, as desired. \qed

As observed in Corollary 3.4, the second statement of the Schur-Zassenhaus theorem (Theorem 1.6) is equivalent to the following theorem, which can be reduced to the case where either A or G is abelian by the Feit-Thompson theorem and by our arguments.

Theorem 4.2. If A and G are finite groups with $\gcd(|A|, |G|) = 1$, then $Z^1(A, G) = B^1(A, G)$.

Proof. We use induction on $|A|$ and $|G|$. By the Feit-Thompson theorem, we may assume that either $A' \leq A$ or $G' \leq G$.

(1) Suppose that $A' \leq A$, and consider the short exact sequence $1 \to A' \to A \to A/A' \to 1$. By induction, we have $Z^1(A', G) = B^1(A', G)$, so that

$$Z^1(A, G) = \bigcup_{h \in G/C_G(A')} Z^1(A, G; A', [h, -]_{A'}).$$

By applying Theorem 3.6 to $[h, -]_A \in Z^1(A, G; A', [h, -]_{A'})$,

$$[h, -]_r : Z^1_{[h, -]}(A/A', C_G^h(A')) \to Z^1(A, G; A', [h, -]_{A'})$$

is bijective. However, A/A' is abelian and $(A/A')^{|H|} = A/A'$ for all $H \leq G$ by hypothesis. Hence Theorem 4.1 implies that

$$Z^1_{[h, -]}(A/A', C_G^h(A')) = B^1_{[h, -]}(A/A', C_G^h(A')).$$

Consequently, it follows from Lemma 3.5 that every element of $Z^1(A, G)$ is of the form $[g, -]_{[h, -]} : [h, -] = [gh, -]$ for some $g, h \in G$.

(2) Suppose that $G' \leq G$, and consider the short exact sequence $1 \to G' \to G \to G/G' \to 1$. We have a natural map $Z^1(A, G) \to Z^1(A, G/G')$. However, G/G' is an A-module of order relatively prime to $|A|$. Hence it is well known in cohomology theory that $Z^1(A, G/G') = B^1(A, G/G')$. Therefore, for each $\lambda \in Z^1(A, G)$, there exists some $g \in G$ such that $G' \lambda(a) = G'[h, a]$ for all $a \in A$. By Theorem 3.8,

$$[h, -]_r : Z^1_{[h, -]}(A, G') \to \{ \eta \in Z^1(A, G) \mid G'\eta(a) = G'[h, a] \text{ for all } a \in A \}$$

is a bijection. However, $Z^1_{[h, -]}(A, G') = B^1_{[h, -]}(A, G')$ by induction. Consequently, it follows from Lemma 3.5 that $\lambda = [g, -]_{[h, -]} : [h, -] = [gh, -]$ for some $g \in G'$.

As stated in the proof, this theorem is a generalization of a well known theorem in cohomology theory for A-modules G. Although we have used the Feit-Thompson theorem, the arguments of (1) and (2) in the proof are very parallel.
References

