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ABSTRACT. In this paper, we introduced a broad class of sequences which
covers nonexpansive sequences, generalized hybrid sequences and 2‐generalized
hybrid sequences. Then, we get nonlinear ergodic theorems for the se‐
quences by using the idea of attractive points. Furthermore, we get weak
convergence theorems for weakly asymptotically regular sequences.

1. INTRODUCTION

Let H be a real Hilbert space and let  C be a nonempty subset of H.  A

mapping  T :  Carrow H is called nonexpansive if  \Vert Tx-Ty\Vert\leq\Vert x-y\Vert for all
 x,  y\in C . For a mapping  T:Carrow H , we denote by  F(T) the set of fixed points
of  T . In 1975, Baillon [3] proved the following first nonlinear ergodic theorem
in a Hilbert space (see also [17]):

Theorem 1.1. Let  C be a nonempty bounded closed convex subset of a Hilbert
space  H and let  T be a nonexpansive mapping of  C into itself. Then, for any
 x\in C,  S_{n}x= \frac{1}{n}\sum_{i=0}^{n-1}T^{i}x converges weakly to a fixed point of  T.

Kohsaka and Takahashi [8], and Takahashi [18] introduced the following
nonlinear mappings. A mapping  T:Carrow H is called nonspreading [8] if

 2\Vert Tx-Ty\Vert^{2}\leq\Vert Tx-y\Vert^{2}+\Vert Ty-x\Vert^{2}
for all  x,  y\in C . A mapping  T:Carrow H is called hybrid [18] if

 3\Vert Tx-Ty\Vert^{2}\leq\Vert x-y\Vert^{2}+\Vert Tx-y\Vert^{2}+\Vert Ty-
x\Vert^{2}
for all  x,  y\in C . They proved fixed point theorems for such mappings (see also
[5, 9, 21]). In general, nonspreading and hybrid mappings are not continuous
mappings. Aoyama, Iemoto, Kohsaka and Takahashi [1] introduced the class
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of  A‐hybrid mappings in a Hilbert space. This class contains the classes of
nonexpansive mappings, nonspreading mappings, and hybrid mappings in a
Hilbert space. Kocourek, Takahashi and Yao [6] introduced a more broad class
of nonlinear mappings than the class of  \lambda‐hybrid mappings in Hilbert spaces.
A mapping  T:Carrow E is called generalized hybrid [6] if there are real numbers
 \alpha,  \beta such that

 \alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta\Vert Tx-
y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2}

for all  x,  y\in C . The nonlinear ergodic theorem by Baillon [3] for nonexpansive
mapping has been extended to generalized hybrid mappings in a Hilbert space
by Kocourek, Takahashi and Yao [6]. Takahashi and Takeuchi [19] proved a
nonlinear ergodic theorem of Baillon’s type without convexity for generalized
hybrid mappings by using the concept of attractive points.

Maruyama, Takahashi and Yao [13] defined a broad class of nonlinear map‐
ping called 2‐generalized hybrid which contains generalized hybrid mappings
in Hilbert spaces. Let  C be a nonempty subset of  H . A mapping  T:Carrow C

is said to be 2‐generalized hybrid [13] if there exist real numbers  \alpha_{1},  \beta_{1},  \alpha_{2},  \beta_{2}
such that

 \alpha_{1}\Vert T^{2}x-Ty\Vert^{2}+\alpha_{2}\Vert Tx-Ty\Vert^{2}+(1-\alpha_{1}
-\alpha_{2})\Vert x-Ty\Vert^{2}
 \leq\beta_{1}\Vert T^{2}x-y\Vert^{2}+\beta_{2}\Vert Tx-y\Vert^{2}+(1-\beta_{1}-
\beta_{2})\Vert x-y\Vert^{2} (1.1)

for all  x,  y\in C . Kondo and Takahashi [10] introduced the following class
of nonlinear mapping which covers 2‐generalized hybrid mappings in Hilbert
spaces. A mapping  T:Carrow C is said to be normally 2‐generalized hybrid [10]

if there exist real numbers  \alpha_{0},  \beta_{0},  \alpha_{1},  \beta_{1},  \alpha_{2},  \beta_{2} such that   \sum_{n=0}^{2}(\alpha_{n}+\beta_{n})\geq 0,  \alpha_{2}+

 \alpha_{1}+\alpha_{0}>0 and

 \alpha_{2}\Vert T^{2}x-Ty\Vert^{2}+\alpha_{1}\Vert Tx-Ty\Vert^{2}+\alpha_{0}
\Vert x-Ty\Vert^{2}
 +\beta_{2}\Vert T^{2}x-y\Vert^{2}+\beta_{1}\Vert Tx-y\Vert^{2}+\beta_{0}\Vert x
-y\Vert^{2}\leq 0 (1.2)

for all  x,  y\in C.
On the other hand, Rouhani [14] introduced the notion of generalized hybrid

sequences in Hilbert spaces. A sequence  \{x_{n}\} in  H is said to be generalized
hybrid sequence if there exist real numbers  \alpha,  \beta such that

 \alpha\Vert x_{i+1}-x_{j+1}\Vert^{2}+(1-\alpha)\Vert x_{i}-x_{j+1}\Vert^{2}\leq
\beta\Vert x_{i+1}-x_{j}\Vert^{2}+(1-\beta)\Vert x_{i}-x_{j}\Vert^{2}

for all  i,  j\in \mathbb{N} . Further, Rouhani [15] also introduced the notion of 2‐
generalized hybrid sequences in Hilbert spaces. A sequence  \{x_{n}\} in  H is said
to be 2‐generalized hybrid sequence if there exist real numbers  \alpha_{1},  \beta_{1},  \alpha_{2},  \beta_{2}
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such that

 \alpha_{1}\Vert x_{i+2}-x_{j+1}\Vert^{2}+\alpha_{2}\Vert x_{i+1}-x_{j+1}
\Vert^{2}+(1-\alpha_{1}-\alpha_{2})\Vert x_{i}-x_{j+1}\Vert^{2}
 \leq\beta_{1}\Vert x_{i+2}-x_{j}\Vert^{2}+\beta_{2}\Vert x_{i+1}-x_{j}\Vert^{2}
+(1-\beta_{1}-\beta_{2})\Vert x_{i}-x_{j}\Vert^{2} (1.3)

for all  i,  j\geq 0 . Such a sequence  \{x_{n}\} is said to be an  (\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}) ‐generalized
hybrid sequence. We note that the class of  (0, \alpha, 0, \beta) ‐generalized hybrid se‐
quences is the class of generalized hybrid sequences. Rouhani [15] proved a
nonlinear ergodic theorem of Baillon’s type for the sequences (see also [14]).

In this paper, motivated by Baillon [3], Hojo [4], Kondo and Takahashi [10]
and Rouhani[14, 15], we introduced a broad class of sequences which covers
nonexpansive sequences, generalized hybrid sequences [14] and 2‐generalized
hybrid sequences [15]. Then, we get nonlinear ergodic theorems for the se‐
quences by using the idea of attractive points. Furthermore, we get weak
convergence theorems for weakly asymptotically regular sequences.

2. PRELIMINARIES AND NOTATIONS

Throughout this paper, we denote by  \mathbb{N} and  \mathbb{Z}^{+} the set of all positive
integers and the set of all nonnegative integers, respectively. We also denote
by  \mathbb{R} and  \mathbb{R}^{+} the set of all real numbers and the set of all nonnegative real
numbers, respectively. Let  H be a real Hilbert space with inner product  \langle\cdot,  \cdot\rangle
and norm  \Vert .  \Vert.

Let  H be a real Hilbert space and let  C be a nonempty subset of H.  A

mapping  T :  Carrow H is called nonexpansive if  \Vert Tx-Ty\Vert\leq\Vert x-y\Vert for all
 x,  y\in C . For a mapping  T:Carrow H , we denote by  F(T) the set of fixed points
of  T.

Let  C be a closed and convex subset of  H . For every point  x\in H , there
exists a unique nearest point in  C , denoted by  P_{C}x , such that

 \Vert x-P_{C}x\Vert\leq\Vert x-y\Vert

for all  y\in C . The mapping  P_{C} is called the metric projection of  H onto  C.

It is characterized by
 \langle P_{C}x-y, x-P_{C}x\rangle\geq 0

for all  y\in C . See [17] for more details. The following result is well‐known;
see [17].

Lemma 2.1. Let  C be a nonempty, bounded, closed and convex subset of a
Hilbert space  H and let  T be a nonexpansive mapping of  C into itself. Then,
 F(T)\neq\emptyset.

We write  x_{n}arrow x (or   \lim_{narrow\infty}x_{n}=x ) to indicate that the sequence  \{x_{n}\} of

vectors in  H converges strongly to  x . We also write  x_{n}harpoonup x (or  w-1\dot{{\imath}}mx_{n}narrow\infty=x )
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to indicate that the sequence  \{x_{n}\} of vectors in  H converges weakly to  x . In
a Hilbert space, it is well known that  x_{n}harpoonup x and  \Vert x_{n}\Vertarrow\Vert x\Vert imply  x_{n}arrow x.

Let  H be a Hilbert space and let  \{x_{n}\} be a sequence in  H . We use the
following notations:

 F_{1}= {  q\in H : the sequence  \{\Vert x_{n}-q\Vert\} is nonincreasing};
 F_{\ell}= {  q\in H :   \lim_{narrow\infty}\Vert x_{n}-q\Vert exists}.

Lemma 2.2. Let  H be a Hilbert space and let  \{x_{n}\} be a sequence in H. Then,
 F_{1} and  F_{\ell} are closed convex subset of  H.

Using a mean, we obtain the following results (see [16]): Let  H be a real
Hilbert space, let  \{x_{n}\} be a bounded sequence in  H and  \mu be a mean on  \ell\infty

Then, there exists a unique point  z_{0}\in H\overline{co}\{x_{n} : n\in \mathbb{N}\} , where  \overline{co}A is the
closure of convex hull of  A such that

 (\mu)_{n}\langle x_{n}, z\rangle=\langle z_{0}, z\rangle \forall z\in H.

We call such a unique point  z_{0}\in H the mean values of  \{x_{n}\} for  \mu.

3. NONLINEAR MEAN ERGODIC THEOREMS

In this section, motivated by Baillon [3], Hojo [4], Kondo and Takahashi [10]
and Rouhani [14, 15], we introduced a broad class of sequences which covers
nonexpansive sequences, generalized hybrid sequences [14] and 2‐generalized
hybrid sequences [15]. Then, we get a strong convergence theorem and a
nonlinear mean ergodic theorem for normally 2‐generalized hybrid sequences
in a Hilbert space  H (see [2]). A sequence  \{x_{n}\} in  H is said to be normally
2‐generalized hybrid if there exist real number  \alpha_{0},  \beta_{0},  \alpha_{1},  \beta_{1},  \alpha_{2},  \beta_{2} such that

 0\geq\alpha_{2}\Vert x_{i+2}-x_{j+1}\Vert^{2}+\alpha_{1}\Vert x_{i+1}-x_{j+1}
\Vert^{2}+\alpha_{0}\Vert x_{i}-x_{j+1}\Vert^{2}
 +\beta_{2}\Vert x_{i+2}-x_{j}\Vert^{2}+\beta_{1}\Vert x_{i+1}-x_{j}\Vert^{2}+
\beta_{0}\Vert x_{i}-x_{j}\Vert^{2} (3.1)

for all  i,  j\in \mathbb{Z}^{+} (see [2]). We call such a sequence an  (\alpha_{0}, \beta_{0}, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}) ‐
normally 2‐generalized hybrid sequence. We note that the class of  (1-\alpha,  -(1-
 \beta),  \alpha,  -\beta,  0,0) ‐normally 2‐generalized hybrid sequences is the class of gener‐
alized hybrid sequences (see [14]).

As in the proof of [12, Theorem 4], we have the following theorem (see also
[11, 20]).

Theorem 3.1. Let  H be a Hilbert space and let  \{x_{n}\} be an  (\alpha_{0}, \beta_{0}, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2})
‐normally 2‐generalized hybrid sequence in H. Assume that  \{x_{n}\} is bounded.
Then,  \{Px_{n}\} converges strongly to some  v\in H , where  P is the metric pro‐
jection from  H onto  F_{1}.
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Using the idea of attractive points and Theorem 3.1, we get a nonlinear
ergodic theorem for normally 2‐generalized hybrid sequences (see also [3, 4,
10, 14, 15]).

Theorem 3.2 ([2]). Let  H be a Hilbert space. Let  \{x_{n}\} be an  (\alpha_{0}, \beta_{0}, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2} ) ‐

normally 2‐generalized hybrid sequence in H. Assume   \sum_{n=0}^{2}(\alpha_{n}+\beta_{n})\geq 0 and

 \alpha_{2}+\alpha_{1}+\alpha_{0}>0 . Then, the following are equivalent.

(i)   F_{1}\neq\emptyset ;
(ii)   F_{\ell}\neq\emptyset ;

(iii
 \cdot

)  \{x_{n}\} is bounded in  H ;

(iv)   \{\frac{1}{n}\sum_{k=0}^{n-1}x_{k}\} converges weakly to an element  w\in H.

Moreover, in this case  w= \lim_{narrow\infty}Px_{n}\in F_{1}.
Remark 3.3. In Theorem 3.2, we obtain that  q=w- \lim_{narrow\infty}S_{n} is the asymptotic

center of  \{x_{n}\} (see, for instance [17]).

By Theorem 3.2, we get the following nonlinear ergodic theorem by Rouhani [14]
for generalized hybrid sequences (see also [2]).

Theorem 3.4 ([14]). Let  H be a Hilbert space and let  \{x_{n}\} be a generalized
hybrid sequence. Then, the following are equivalent.

(i)   F_{1}\neq\emptyset ;
(ii)   F_{\ell}\neq\emptyset ;

(iii
 \cdot

)  \{x_{n}\} is bounded in  H ;

(iv)   \{\frac{1}{n}\sum_{k=0}^{n-1}x_{k}\} converges weakly to some  w\in H.

Moreover, in this case  w= \lim_{narrow\infty}Px_{n}\in F_{1}.
By Theorem 3.2, we get the following nonlinear ergodic theorem by Rouhani [15]

for 2‐generalized hybrid sequences (see also [2]).

Theorem 3.5 ([15]). Let  H be a Hilbert space and let  \{x_{n}\} be a 2‐generalized
hybrid sequence in H. Then, the following are equivalent.

(i)   F_{1}\neq\emptyset ;
(ii)   F_{\ell}\neq\emptyset ;

(iii
 \cdot

)  \{x_{n}\} is bounded in  H ;

(iv)   \{\frac{1}{n}\sum_{k=0}^{n-1}x_{k}\} converges weakly to some  w\in H.
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Moreover, in this case  w= \lim_{narrow\infty}Px_{n}\in F_{1}.

4. WEAK CONVERGENCE THEOREMS

In this section, we get weak convergence theorems for weakly asymptotically
regular sequences (see also[14, 15]).

Theorem 4.1 ([2]). Let  H be a Hilbert space and let  \{x_{n}\} be a normally 2‐

generalized hybrid sequence in H. Assume   \sum_{n=0}^{2}(\alpha_{n}+\beta_{n})\geq 0 and  \alpha_{2}+\alpha_{1}+

 \alpha_{0}>0.

And suppose that  \{x_{n}\} is weakly asymptotically regular, i. e.,

 x_{n+1}-x_{n}harpoonup 0.

Then, the following are equivalent.

(i)   F_{1}\neq\emptyset ;
(ii)   F_{\ell}\neq\emptyset ;

(iii)  \{x_{n}\} is bounded in  H ;
(iv)  \{x_{k}\} converges weakly to some  u\in H.

Moreover, in this case  u= \lim_{narrow\infty}Px_{n}\in F_{1}.
Remark 4.2. In Theorem 3.2, we have that   u=w-1\dot{{\imath}}mx_{n}narrow\infty is the asymptotic

center of  \{x_{n}\} (see, for instance [17]).

By Theorem 4.1, we also get the following weak convergence theorem by
Rouhani [14] for generalized hybrid sequences (see also [2]).

Theorem 4.3 ([14]). Let  H be a Hilbert space and let  \{x_{n}\} be a generalized
hybrid sequence in H. Suppose that  \{x_{n}\} is weakly asymptotically regular, i. e.,

 x_{n+1}-x_{n}harpoonup 0.

Then, the following are equivalent.

(i)   F_{1}\neq\emptyset ;
(ii)   F_{\ell}\neq\emptyset ;

(iii)  \{x_{n}\} is bounded in  H ;
(iv)  \{x_{k}\} converges weakly to some  u\in H.

By Theorem 4.1, we also get the following weak convergence theorem by
Rouhani [15] for 2‐generalized hybrid sequences (see also [2]).

51



52

Theorem 4.4 ([15]). Let  H be a Hilbert space and let  \{x_{n}\} be a 2‐generalized
hybrid sequence in H. Suppose that  \{x_{n}\} is weakly asymptotically regular, i. e.,

 x_{n+1}-x_{n}harpoonup 0

Then, the following are equivalent.

(i)   F_{1}\neq\emptyset ;
(ii)   F_{\ell}\neq\emptyset ;

(iii)  \{x_{n}\} is bounded in  H ;
(iv)  \{x_{k}\} converges weakly to some  u\in H.
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