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EQUIVALENCES BETWEEN BLOCKS
OF ALTERNATING GROUPS

ANDREI MARCUS
(“$\mathrm{B}$ ABE\S -BOLYA\Gamma ’ University)

ABSTRACT. This article contains the talk given at the meeting on “Cohomology Theory
of Finite Groups” , held at RIMS, Kyoto University, September 1-5, 2003. We present the
results of [10] establishing Broue’s abelian defect group conjecture for the alternating groups,
using the Chuang-Rouquier theorem proving this for the symmetric groups and a descent
result coming from Clifford theory. We also discuss some connections with the conjectures
of Dade, and of Donovan-Puig.

1. INTRODUCTION

Let $G$ be the alternating group An, $\mathcal{O}$ a complete discrete valuation ring with algebraically
closed residue field $k$ of characteristic $p>0,$ let $b$ be a block of $\mathcal{O}G$ with defect group $D$ , and
let $c$ be the Brauer corresponding of $\mathrm{O}\mathrm{N}\mathrm{q}(\mathrm{D})$ .

We have shown in [10] that $D$ if is abelian, then the algebras $A=b\mathcal{O}G$ and $B=$ cONg(D)
are splendidly derived equivalent, that is, there is a bounded complex $X$ of $(A, B)-$ modules
such that its components are $p$-permutation modules whose indecomposable summands have
vertices contained in $5(\mathrm{D})=\{(u, u)|u\in D\}$ , and such that $X\otimes_{B}X^{\vee}\simeq A$ in the homotopy
category of complexes of $(A, \mathrm{A})$ -bimodules, and $X^{\vee}\otimes_{A}X\simeq B$ in the homotopy category of
$(B, B)$-modules where $X^{\vee}$ denotes the $\mathcal{O}$-dual of $X$ . Moreover, there is such an equivalence
which is compatible with $p’$-outer automorphism groups, which means in our case the existence
of a tilting complex having an Aut $(G)/G$-grading. This additional condition is especially
important in the case of principal blocks, where it is used to reduce the conjecture to the case
of simple groups.

We have used that the conjecture is known to hold for the symmetric group $S_{n}$ by the work
of J. Rickard, J. Chuang, R. Kessar and R. Rouquier, and we show how to “go down” to $A_{n}$ ,
by using techniques of graded equivalences, as in [8]. Inspiration also came from the paper [5]
of P. Fong and M. Harris, who verified the weaker “isotypy form” of the conjecture for An,
by using Rouquier’s paper [14] on $S_{n}$ . A similar procedure was developed by E. Dade in [4]
leading to the verification of his Invariant Projective Conjecture for $A_{n}$ .

Recall that Donovan’s conjecture states that for a fixed -group $P$ , there are only finitely
many Morita equivalence classes of blocks of group algebra having $P$ as a defect group. Similar
methods have been used to verify these two conjectures in several particular cases, probably
most notable being the case of blocks of symmetric groups, and also other blocks with similar
combinatorial structure, by Scopes, Kessar, Hiss, Chuang and Rouquier. It is conjectured that
even a refinement of this conjecture would hold. Two blocks with defect group $P$ are called
Puig equivalent if their source algebras are isomorphic as $\mathcal{O}P$-interior algebras, or equivalently,
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they are splendidly Morita equivalent. Puig’s refinement of Donovan’s conjecture states that
there are only finitely many Puig equivalence classes of blocks of group algebras having $P$ as
a defect group.

For symmetric groups, Donovan’s conjecture holds by the work of J. Scopes [17], while
the refined conjecture was verified by a different method by L. Puig [12]. For alternating
groups, G. Hiss [6] deduced the validity of Donovan’s conjecture from [17] by an easy general
argument, and Puig’s conjecture is deduced in a similar manner by R. Kessar [7]. But these
arguments do not provide explicit Morita equivalences as in [17] or [12]. In [7, Theorem
1.7] it is shown that Scopes’ Morita equivalence between certain blocks of symmetric groups
induce Morita equivalence between the blocks of alternating groups covered by them. Our
method give a very easy proof of [7, Theorem 1.7] when $p$ is odd, see 3.7 below, and we
are also able to deal with Rickard’s tilting complex that generalizes Scopes’ bimodule. Note
that in [7, Theorem 1.9], explicit bounds are given for the number of possible Morita or Puig
equivalence classes that can occur in blocks of alternating groups with fixed defect groups.

2. ALGEBRAS GRADED BY A CYCLIC GROUP

The main technical ingredient is that a bimodule over two $\mathcal{O}$-algebras graded by the cyclic
group $C_{n}$ of order $n$ not divisible by $p$ is $C_{n}$-graded if and only if the group $\hat{C}_{n}$ of linear
characters of $C_{n}$ acts on it. If a complex $X$ induces a Rickard equivalence between two
strongly $C_{n}$-graded algebras $R$ and $S$ , then we obtain a Rickard equivalence between the
1-components $R_{1}$ and $S_{1}$ provided that $X$ is a complex of $C_{n}$-graded bimodules.

2.1. Let $C_{n}=\langle$(7 $\rangle$ be the cyclic group of order $n$ , and let $(\mathcal{K}, \mathcal{O}, k)$ be a -modular system,
where $p$ does not divide $n$ , such that $\mathcal{K}$ contains a primitive $n$-th root $\epsilon$ of unity. The group
$\hat{C}_{n}:=\mathrm{H}\mathrm{o}\mathrm{m}(C_{n}, \mathcal{K}^{\mathrm{x}})$ of characters of $C_{n}$ is isomorphic to Cn, and we have that $\hat{C}_{n}=\langle\hat{\sigma}\rangle$ ,
where $\mathrm{a}(\mathrm{a})=\epsilon$.

2.2. Let $R=\oplus_{g\in C_{\hslash}}R_{g}$ be a $C_{n}$ graded $\mathcal{O}$-algebra, not necessarily strongly graded. Then $\overline{C}_{n}$

acts on $R$ as automorphisms of $C_{n}$-graded algebras by $\hat{\rho}r_{g}=\hat{\rho}(g)r_{g}$ , for aU $g\in C_{n},\hat{\rho}\in\hat{C}_{n}$ ,
and $R_{\sigma^{\mathrm{j}}}=\{r\in R|\hat{\sigma}r=\epsilon^{j}r\}$ , for $j=0$ , $\ldots$ , $n-$ $1$ . We may form the skew group algebra
$R*\hat{C}_{n}=\{\mathrm{r}\mathrm{p}|r\in R,\hat{\rho}\in\hat{C}_{n}\}$ .
Proposition 2.3. The category $R$-Gr of $C_{n}$ -graded (left) $R$ -modules is isomorphic to the
category $R*\hat{C}_{n}$-Mod.

Indeed, if $M=\oplus_{g\in C_{n}}M_{\mathit{9}}$ is a $C_{n}$ graded $R$-module, then $M$ becomes an $R*C_{n}$ module
with multiplication defined by $(r\hat{\rho})m_{g}=\hat{\rho}(g)rm_{g}$ , for all $r\in R,$ $g\in C_{n}$ , $m_{g}\in M_{g}$ and
$\hat{\rho}\in\hat{C}_{n}$ . Conversely, if $M$ is an $R*\hat{C}_{n}$-module, then the components of the corresponding
graded module $M$ are Maj $=\{m\in M|\hat{\sigma}m=\epsilon’ 7m|\}$ .

2.4. Let $R$ and $S$ be two $C_{n}$ graded $\mathcal{O}$ algebras Then $\overline{C}_{n}$ acts on $R\otimes \mathrm{o}S^{\mathrm{o}\mathrm{p}}$ diagonally, by
$\hat{\rho}(r\otimes s)=\hat{\rho}r\otimes\hat{\rho}^{-1}$ s, for all $\hat{\rho}\in\hat{C}_{n}$ , $r\in R$ and $s\in S,$ so we may consider the skew group
algebra (ff $\otimes oS^{\mathrm{o}\mathrm{p}}$ ) $*\hat{C}_{n}$ . As above, the category R-Gt-S of $C_{n}$ graded $(R, 5)$ -bimodule is
isomorphic to the category ( $R\otimes_{\mathcal{O}}S^{o}$p) $*\hat{C}_{n}$ -Mod.

If $\mathit{1}VI$ is an $(R, S)$ bimodule and $\hat{\rho}\in\hat{C}_{n}$ , then the $\hat{\rho}$-th conjugate $\hat{\rho}M$ of $M$ is defined by

$\hat{\rho}M=$ (ff $\otimes_{0}S^{\mathrm{o}\mathrm{p}}$ ) $\hat{\rho}\otimes_{R\emptyset oS^{\circ \mathrm{p}}}M$ .

Observe that we obtain an isomorphic $(R, S)$-bimodule if we set $\hat{\rho}M=M$ as $\mathcal{O}$-modules, and
multiplication $(r\otimes s)\cdot\hat{\rho}m=\hat{\rho}^{-1}(r\otimes s)$ . $m$ , for all $m\in M$ , $r\in R$ , $s\in$ $S$ and $\hat{\rho}\in\hat{C}_{n}$ .
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2.5. The above constructions are used to obtain a descent theorem for Rickard equivalences,
which can also be regarded as an analogue of [4, Theorem 12.2].

Let $G^{+}$ be a normal subgroup of the finite group $G$ , with $G/G^{+}\simeq C_{n}$ . Let $b$ be a block
of $\mathcal{O}G$ with defect group $D\leq G^{+}$ , let $H=N_{G}(D)$ , $H^{+}=N_{G}+(D)$ , and let $c\in \mathcal{O}H$ be the
Brauer correspondent of $b$ . If $e$ is a block of $\mathcal{O}G^{+}$ covered by $b$ , then the Brauer correspondent
$f\in \mathcal{O}H^{+}$ of $e$ is covered by $c$ , by the Harris-Kn\"orr correspondence.

The group $\hat{C}_{n}$ acts on on the blocks of $\mathcal{O}G$ and $\mathcal{O}H$ , and for each $\hat{\rho}\mathrm{E}$
$\hat{C}_{n}$ , the Brauer

correspondent of $\hat{\rho}b$, i $\mathrm{s}$

$\hat{\rho}$ c. We denote by $\hat{C}_{n}$ , $b$ the stabilizer of $b$ under this action. The group
$C_{n}$ acts by conjugation of the blocks of $\mathcal{O}G^{+}$ and $\mathcal{O}H^{+}$ , and for each $g\in C_{n}$ , the Brauer
correspondent of $ge$ is $gf$ . Let $C_{n}$ , $e$ denote the stabilizer of $e$ in $C_{n}$ . Consider the central
idempotent

$b^{+}=E$
$\sum$

$\hat{p}b=\sum_{g\in[c_{n}\mathit{1}c_{n,e}]}ge$

$\hat{\rho}E[\hat{C}_{n}/\hat{c}_{n}$, $b1$

of $\mathcal{O}G^{+}$ , where $[C_{n}/C_{n,e}]$ denotes a full set of representatives for the left cosets of $C_{n}$ , $e$ in
$C_{n}$ . The second equality follows by [4, Lemma 9.9]. Let $c^{+}$ be the similarly defined central
idempotent of $\mathcal{O}H^{+}$ , and consider the strongly $C_{n}$-graded algebras $R=b^{+}\mathcal{O}G=$ OGeOG
and $S=c^{+}\mathcal{O}H$ $=\mathcal{O}He\mathcal{O}H$ . Note that $R$ is Morita equivalent to $e\mathcal{O}Ge$ and $S$ is Morita
equivalent to $f\mathcal{O}Hf$ .

The following result is more general than we need in the case of alternating groups.

Theorem 2.6. Let $X$ be a complex of $(b\mathcal{O}G, c\mathcal{O}H)$ -bimodules inducing a Rickard equivalence
betrneen $b\mathcal{O}G$ and $c\mathcal{O}H$ , and consider the complex

$\mathrm{Y}=$ $\oplus$
$\hat{\rho}X$

$\hat{\rho}E\overline{[}C_{n}f\hat{C}_{n,b}]$

of $(R, S)$ bimodules. If $\dot{\rho}\mathrm{Y}$

$\mathit{2}$

$\mathrm{Y}$ as complexes of $(R, S)$ -bimodules for all $\hat{\rho}\in\hat{C}_{n}$ , then the
block algebras $e\mathcal{O}G^{+}$ and $f\mathcal{O}H^{+}$ are Rickard equivalent.
of $(R, S)$ bimodules. If $\rho\dot{\mathrm{Y}}\simeq \mathrm{Y}$ as complexes of $(R, S)$ -bimodules for all $\rho\wedge\in\hat{C}_{n}$ , then the
block algebras $e\mathcal{O}G^{+}$ and $f\mathcal{O}H^{+}$ are Rickard equivalent.

3. BLOCKS OF SYMMETRIC AND ALTERNATING GROUPS

For Broue’s conjecture, we only need to consider the case $p>2.$ Irideed, if $p=2,$ then by
[5, Lemma (7.A)], $D2$ $C_{2}\cross C_{2}$ . In this case Broue’s conjecture holds (even in the extended
form) by [16, Section 6.3].

Theorem 3.1. Let $p>2$ , $G=S_{n}$ , $G^{+}=A_{n}$ , $G=\mathrm{A}\mathrm{u}\mathrm{t}(G^{+})$ , $b^{+}$ a block of $\mathcal{O}G^{+}$ with
nontrivial abelian defect group $D$ , $H^{+}=N_{G}+(D)$ , and $c^{+}\in \mathcal{O}H^{+}$ the Brauer correspondent
of $b^{+}$ . Then there exists a splendid tilting complex of $\tilde{G}/G^{+}$ -graded $(b^{+}\mathcal{O}\tilde{G}, c’ \mathcal{O}\tilde{H})$ bimodules.

We briefly present the steps in the proof of the theorem.

3.2. The block $b^{+}$ i $\mathrm{s}$ $C_{2}$-invariant. Let $b$ be a block of $\mathcal{O}G$ covering $b^{+}$ and let $c\in \mathcal{O}H$

be the Brauer correspondent of $b$. We denote $\hat{\sigma}b$ $=b^{*}$ , where $C_{2}=\langle\hat{\sigma}\rangle$ . If $b\neq b^{*}$ , then
$b\mathcal{O}G\simeq b^{+}\mathcal{O}G^{+}$ and $c\mathcal{O}H\simeq c^{+}\mathcal{O}H^{+}$ . Consequently, if $X$ is a splendid tilting complex
of $(\mathrm{b}\mathrm{O}\mathrm{G}, c\mathcal{O}H)$ -bimodules, then $X$ is also a splendid tilting complex of $(b^{+}\mathcal{O}G^{+}, c^{+}\mathcal{O}H^{+})-$

bimodules.

3.3. Assume that $b=b^{*}$ , that is, $b$ is self associated. Then $b=b^{+}$ , $c=c^{*}=c^{+}$ , and $WG$ and
$c\mathcal{O}H$ are strongly $C_{2}$-graded algebras. We can aply Theorem 2.6 if we show that the splendid
equivalence constructed in [2] and [3] is induced by a complex of $C_{2}$-graded bimodules. As
this equivalence is a composition of several equivalences, we shall examine the steps one by
one.
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The bloc $b$ corresponds uniquely to a $p$-core $\kappa$ and a $p$-weight $w<p,$ and $D\simeq C_{p}\cross\cdots\cross C_{p}$

( $w$ times). Write $n=pw+t.$ Then, by [2, Section 3], $cOH\simeq \mathcal{O}N_{S_{pw}}(D)\otimes o$ OStco, where
$c_{0}$ is the block of defect zero of $\mathcal{O}S_{t}$ corresponding to the -core $\kappa$ . Recall also that since $b$ is
self associated, $\kappa$ is also self associated, that is, its diagram is symmetric with respect to the
main diagonal. Moreover, $\mathcal{O}N_{S_{pw}}(D)\simeq \mathcal{O}((C_{p}\aleph C_{p-1})/S_{w})$ .

3.4. It was conjectured by R. Rouquier that there are blocks of weight $w$ of symmetric groups
which are Morita equivalent to the principal block $B_{0}$ $(S_{p}1 S_{w})$ of $\mathcal{O}(S_{p}l S_{w})$ . This conjecture
was proved in [2, Section 4], where one of these blocks was defined as follows.

Consider an abacus having $w+i(w-1)$ beads on the $i$-th runner, $i=0,1$ , $\ldots$ , $p-$ l, and
let $\rho$ be the $p$-core having this abacus representation. Note that the core $\rho$ is self-associated,

Let $V$ be a set containing the disjoint union $U=U_{1}\cup\cdots\cup U_{w}$ of sets of cardinality $p$ , and
let $e$ be a block of $\mathcal{O}S(V)$ with defect group $D$ corresponding to the $p$-core $\rho$ . Let $\tilde{N}$ be the
subgroup of $S(U)$ consisting ofpermutations sending each $U_{i}$ to some $U_{j}$ , let $N=\tilde{N}\mathrm{x}S(V\backslash U)$ ,
and let $f\in \mathcal{O}N$ be the Brauer correspondent of $e$ .

Then $\tilde{N}\simeq S_{p}l$ $S_{w}$ , and $fON\simeq B_{0}(S_{p}l S_{w})\mathit{9}\mathit{0}$ OStco, where $f_{0}$ is the block of defect zero
corresponding to the core $\rho$ , and $r=|V\backslash U|$ .

By [2, Theorem 2], the Green correspondent $M$ of $\mathrm{e}\mathrm{O}\mathrm{S}(\mathrm{V})$ with respect to $(S(V)\mathrm{x}$

$S(V)$ , $\mathrm{S}(\mathrm{V})\cross N,$ $\mathrm{S}(\mathrm{D}))$ induces a Morita equivalence

$\mathrm{e}\mathrm{O}\mathrm{S}(\mathrm{V})$ -Mod $\sim f\mathcal{O}N$-Mod,

and we have shown in [10] that $M$ is a $C_{2}$-graded $\mathrm{e}\mathrm{O}\mathrm{S}(\mathrm{V})f\mathcal{O}N)$-bimodule.

3.5. To see that there is a $C_{2}$-graded Rickard equivalence
$\mathcal{H}^{b}(\mathcal{O}$ ( $(C_{p}$ \sim Cp-i) 1 $S_{w}$ ) $\otimes 0$ OStco, $\sim \mathcal{H}^{b}$ ($B_{0}(S_{p}lS_{w})\otimes \mathit{0}$ OStco,) $1$

note first that if $R=R_{1}\oplus R_{-1}$ and $S=S_{1}\oplus S_{-1}$ are $C_{2}$-graded algebras, then $R\otimes \mathrm{o}S$ is
$C_{2}$-graded in a natural way. Moreover, the wreath product $Rl$ $S_{w}=R^{\otimes w}*S_{w}$ is $C_{2}$-graded
by

$\deg(r_{1}\otimes\cdots\otimes r_{w})\sigma=$ sgn(cr) $\deg r_{1}\ldots$ $\deg r_{w}$ ,
where $r_{1}$ , $\ldots$ , $r_{w}\in R$ are homogeneous elements and $\sigma\in S_{w}$ .

By [15] there is a Rickard equivalence between $\mathcal{O}(C_{p}\aleph C_{\mathrm{L}^{-\underline{1}},2},)$ and $B_{0}(A_{p})$ , which, by [8,
Example 5.5], extends to a $C_{2}$-graded equivalence between $\mathcal{O}$ ( $C_{p}\aleph$ Cp-i) and $B_{0}(S_{p})$ , induced
by a complex $X$ . Then by [8, Theorem 4.3], the complex $X\mathrm{t}$ $S_{w}$ induces a Rickard equivalence
between $()((C_{p}\aleph C_{p-1})\mathit{1}S_{w})$ and $B_{0}(S_{p}l S_{w})$ .

Moreover, by [10, 3.5], $X\mathrm{t}$ $S_{w}$ is a complex of $C_{2}$-graded ( $\mathcal{O}$ (( $C_{p}\aleph$ $C_{p-1}$ ) $]$ Sw), $B_{0}(S_{p}l$ $S_{w})$ ) $-$

bimodules.

3.6. A $C_{2}$-graded Morita equivalence between the block $c_{0}\mathcal{O}S_{t}$ and $f_{0}\mathcal{O}S$, of defect zero is
obtained as follows.

We have that $c_{0}\in \mathcal{O}A_{t}$ and $f_{0}\in \mathcal{O}A_{r}$ since the -cores $\kappa$ and $\rho$ are self-associated, but
these idempotents decompose as $c_{0}=d$ $+d’$ and $f_{0}=f’+f’$ in $\mathcal{O}A_{t}$ and $\mathcal{O}A_{r}$ respectively,
where $d$ , $c”$ , respectively $f’$ , $f’$ are $C_{2}$-conjugated.

Let $V$’ be a $(d\mathcal{O}A_{t}, f’\mathcal{O}A_{r})$ -bimodule inducing a Morita equivalence. We may take $V’=$
$U’\otimes_{\mathcal{O}}W’$ , where $U’$ is the unique simple left $d\mathcal{O}A_{t}$-module, and $W$’ is the unique simple
right $f’\mathcal{O}A_{r}$-module. Let $V’=U’\otimes_{O}W’$ , where $U’$’ and $W’$ are the $C_{2}$-conjugates of
$U$’ and $W’$ respectively. Then $V:=V’\oplus V’$’ is a $(c_{0}\mathcal{O}A_{t}\otimes o(f_{0}\mathcal{O}A_{r})^{\mathrm{o}\mathrm{p}})$ -module, which
extends to the diagonal subalgebra $\Delta=\Delta bca\mathcal{O}s_{t}\mathit{9}\mathit{0}$ $(f_{0}\mathcal{O}S_{r})^{op})$ , hence by [8, Theorem 3.4],
$\mathrm{I}\mathrm{n}\mathrm{d}_{\Delta}^{c_{0}\mathcal{O}S_{t}\otimes_{\mathcal{O}}(f\mathrm{o}\mathcal{O}S_{r})^{\mathrm{o}\mathrm{p}}}V$ induces the desired $C_{2}$-graded Morita equivalence.
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3.7. There is a $C_{2}$CVgraded derived equivalence

$T\ell^{b}(b\mathcal{O}S_{n})\sim H^{b}(e\mathcal{O}S(V))$ .
In fact, Rickard [13] has conjectured that any two blocks of the same weight $w$ of symmetric
groups are derived equivalent. He proposed a candidate for a tilting complex which is a
generalization of Scopes’ Morita equivalence [17]. The conjecture has been recently verified
by Chuang and Rouquier [3]. Actually, the derived equivalence between $b\mathcal{O}S_{n}$ and $e\mathcal{O}S(V)$

is obtained as a composition of equivalences between blocks forming a so called $[w : k]$ pair,
defined as follows.

Assume that $a\mathcal{O}S_{n}$ is a block of weight $w$ of $\mathcal{O}S_{n}$ corresponding to an abacus whose j-
th runner has $k$ more beads than the $(j-1)$-th runner. Switching the number of beads
on these two runners, we obtain a block $b\mathcal{O}S_{n-k}$ of weight $w$ of $\mathcal{O}S_{n-k}$ . If $k\geq w,$ Scopes
[17] proved that $a\mathcal{O}S_{n}$ and $b\mathcal{O}S_{n-k}$ are Morita equivalent. Observe that $M.\cdot.=$ aOSnb is an
$(a\mathcal{O}S_{n}, bOSn-k\otimes_{O}\mathcal{O}S_{k})$-bimodule. Then the Morita equivalence is induced by $M\otimes_{oS_{k}}\mathcal{O}$ ,
and we show in [10, 3.7.1] that $M\otimes os_{k}\mathcal{O}$ is an $(A\otimes_{\mathit{0}}B^{\mathrm{o}\mathrm{p}})*\hat{C}_{2}$ -module, hence a $C_{2}$ CVgraded
$(A, B)$-bimodule by 2.4.

For arbitrary $k$ , Rickard’s complex is a generalization of Scopes’ bimodule. We recall its
construction following [13] and [3]. Let $r= \max\{i\in \mathrm{N}|i(k+i)\leq w\}$, and for $0\leq i\leq r$

let $b_{i}$ be the block of $\mathcal{O}S_{n-k-i}$ having $w-i(k+i)$ and represented by an abacus obtained
fiiom the abacus of $b$ by moving $i$ of the beads on the $\mathrm{j}$-th runner onto the $(j-1)$-th runner.
Consider the ( $a\mathcal{O}S_{n},$ $bOSn-k$ bimodule

$\mathrm{Y}_{i}=a\mathcal{O}S_{n}b_{i}\otimes_{b_{\mathrm{i}}\mathcal{O}S_{n-k-:}}b_{i}\mathcal{O}S_{n-k}$ b.

Using the map

$b_{i-1}\mathcal{O}S_{n-k-i}$
$l$

$1b_{i}$ $SJ_{b}:os_{n-h-;}$ $b_{i}\mathcal{O}S_{n-k-i}$
$f$

$1b_{i-1}$ $arrow b_{i}\mathcal{O}S_{n-7-i+1}$

induced by multiplication, and the bimodule isomorphisms
$a\mathcal{O}S_{n}b_{i-1}$ $\otimes_{b_{:-1}\mathcal{O}S_{n-k-:+1}}b_{i-1}$ OSn-k-i $l$

$1bi\simeq$ aOSnbi
$b_{i}\mathcal{O}S_{n-k-i+1}b_{i-1}\otimes b.\cdot-1os_{n-k-:+1}$ $b_{:-1}\mathcal{O}S_{n-k}b\simeq b_{i}\mathcal{O}S_{n-k}$b,

one obtains a map $\mathrm{Y}_{i}arrow$ } $i-1$ of (aOSn, $b\mathcal{O}_{n-k}$ )-bimodules. In order to obtain a complex, the
additional structure of these bimodules is needed. Let

$b_{i}\mathcal{O}S_{n-k-i+1}b_{i-1}\otimes b_{-1}.\cdot os_{n-k-:+1}b:-1\mathcal{O}S_{n-k}b$ $\simeq$ bOSn-kb,

one obtains a map $\mathrm{Y}_{i}arrow$ Yi-i of $(a\mathcal{O}S_{n}, b\mathcal{O}_{n-k})$-bimodules. In order to obtain a complex, the
additional structure of these bimodules is needed. Let

$X_{i}=(a\mathcal{O}S_{n}b_{i}\otimes os_{k+:}\mathcal{O})\otimes_{b}\mathit{0}:s_{n-k-:}$ $(\mathcal{O}^{-} \otimes \mathrm{o}s_{j} b_{\dot{\iota}}\mathcal{O}S_{n-k}b)$ .
The map $\mathrm{Y}_{i}arrow \mathrm{Y}_{i-1}$ induces a map $X_{i}arrow X_{i-1}$ . By [2],

$X:=$ ( $\ldotsarrow$p $0arrow X_{r}arrow\cdotsarrow X_{1}arrow X_{0}arrow$i $0arrow$ . . .
is a splendid tilting complex of (aOSn, $bOSn-k$ -bimodules, and we show in [10] that the map
$X_{i}arrow$ Xi-i is $(A\otimes_{\mathcal{O}}B^{\mathrm{o}\mathrm{p}})*\hat{C}_{2}$-linear.

3.8. Finally, the compatibility with $p’$-outer automorphism groups also holds, and in fact
there are very few cases to look at. With the notations of 3.1, assume that $b^{+}$ is the principal
block of $\mathcal{O}G^{+}$ a $\mathrm{d}$ $b$ the principal block of $\mathcal{O}G$ .

Denoting $\tilde{G}=\mathrm{A}\mathrm{u}\mathrm{t}(G^{+})$ and $\tilde{H}=N_{\overline{G}}(D)$ , we have that $G\leq\tilde{G}$ , and $G=\tilde{G}$ if $n\neq 6$ and
$|G/G|=2$ if $n=6.$

Let $n\mathit{4}6$ . If $b\neq b^{*}$ , then the algebras $b\mathcal{O}G$ and $b^{+}\mathcal{O}G^{+}$ a $\mathrm{e}$ isomorphic, and in this
case, the compatibility holds by [8, (5.4)]. If $b=b^{*}=b^{+}$ , then the required compatibility
just means that there is a $C_{2}$-graded Rickard equivalence between $bOG$ and $c\mathcal{O}H$ , and this
is what we have proved above.
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Let $n=6,$ so $|G^{+}|=2^{3}\cdot 3^{2}\cdot 5$ . If $p=5,$ then there is a $\overline{G}\oint G^{+}$-graded Rickard equivalence
between $b^{+}\mathcal{O}\tilde{G}$ and $c’ \mathcal{O}H$ by [15] and [8, Example 5.5]. If $p=3,$ then $D\simeq C_{3}\cross C_{3}$ . In
this case Okuyama constructed in [11] (by using a different method) a Rickard equivalence
between $b^{+}\mathcal{O}G^{+}$ and $c^{+}\mathcal{O}G^{+}$ , and this is compatible with $p’$-extensions by [9, Example 3.11].
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