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1 Introduction

Multi‐agent networked systems arise frequently in real world applications and have
been vastly interesting in the literature, for example [6−8] and references therein. Let
 \mathcal{H},  \mathcal{H}_{i}  (i=1 . , m) are finite dimensional Hilbert spaces. In this work, we will consider
a multi‐agent networked system consisting of a centralized mediator in principal domain
 \mathcal{H} and a finite number of independent agents  i(i=1, \ldots, m) in each individual domains
 \mathcal{H}_{i} . We assume that each agent  i can communicate only to the mediator with an ability
operator  A_{i} :  \mathcal{H}arrow \mathcal{H}_{i}(i=1, \ldots, m) and it is endowed with a possible decision which
can be represented by a fixed point set of operator  S_{i}:\mathcal{H}_{i}arrow \mathcal{H}_{i} and an  i ’s cost function
 g_{i} :  \mathcal{H}_{i}arrow \mathbb{R} . We assume that the mediator has its own possible decision which can be
represented by a fixed point set of a nonlinear operator  T:\mathcal{H}arrow \mathcal{H} and take into account
global decision. It is worth noting that, in this model, the mediator may only coordinate
everything in the system and need not to know any utilities information of agents.

The main target of this centralized multi‐agent networked model (in short, CMNM)
is to find a feasible point  x^{*}\in Fix(T)\subset \mathcal{H} such that  A_{i}x^{*}\in Fix(S_{i})\subset \mathcal{H}_{i} , for all
 i=1,  m , coupling solve

minimize   \sum_{i=1}^{m}g_{i}(A_{i}y)
(1.1)subject to  A_{i}y\in Fix(S_{i}),  i=1,  m.

In order to deal with this problem, we need to recall some useful notions. Let  T :
 \mathcal{H}arrow \mathcal{H} be an operator. We denote the set of all fixed points of  T by Fix(T)  :=\{x\in \mathcal{H} :
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 x=Tx\} . An operator  T with a nonempty fixed point is called cutter if

 \langle x-Tx , z—Tx  \}  \leq 0,

for all  x\in \mathcal{H} and all  z\in Fix(T) . An operator  T is said to be satisfying the demiclosed
principle if whenever the sequence  \{x_{k}\}_{k\in \mathbb{N}}\subseteq \mathcal{H} converges weakly to an element  x\in \mathcal{H}

and the sequence  \{Tx_{k}-x_{k}\}_{k\in \mathbb{N}} converges strongly to  0 , then  x is a fixcd point of the
operator  T . For any bounded linear operator  A from a Hilbert space  \mathcal{H}_{1} into a Hilbert
space  \mathcal{H}_{2} , we denote its adjoint by  A^{*} . We denote the range of  A by Ran(A)  :=\{y\in
 \mathcal{H}_{2} :  y=Ax , for some  x\in \mathcal{H}_{1} }. For a subset  D\subset \mathcal{H}_{2} , we denote the inverse image of  D

under  A by  A^{-1}(D)  :=  \{x\in \mathcal{H}{\imath} : Ax\in D\}.
Let  f :  \mathcal{H}arrow \mathbb{R} and  \overline{x}\in \mathcal{H} . We remind that an element  x^{*}\in \mathcal{H} satisfies the inequality

 \langle x^{*},  x-\overline{x}\}+f(\overline{x})\leq f(x) , for all  x\in \mathcal{H},

is called a subgradient of  f at  \overline{x} , and the set of all such subgradient is called the subdiffer‐
ential of  f at  \overline{x} ; denoted by  \partial f(\overline{x}) . It is well known that if  f :  \mathcal{H}arrow \mathbb{R} is convex and lower
semicontinuous, we ensure that  \partial f(\overline{x}) is a nonempty set, for all  \overline{x}\in \mathcal{H} , see [10, Theorem
2.4.4].

2 Problem Formulation

For the systematic problem solving, we first assume the following assumption.

Assumption 2.1 Assume that, for all  i=1,  m , there hold
(I)  T:\mathcal{H}arrow \mathcal{H},  S_{i} :  \mathcal{H}_{i}arrow \mathcal{H}_{i} are cutter operators with fixed points and satisfying the

demiclosed principle;
(II)  g_{i}:\mathcal{H}_{i}arrow \mathbb{R} is a convex functíon;
(III)  A_{i} :  \mathcal{H}arrow \mathcal{H}_{i} is a bounded linear operator.

Recall that the product of Hilbert spaces  H  :=\mathcal{H}_{1}x\mathcal{H}_{2}\cross  x\mathcal{H}_{m} equipped with
the addition  x+y  :=  (x_{1}+y_{1}, x_{2}+y_{2} . , x_{m}+y_{m}) , the scalar multiplication  \alpha x  :=

 (\alpha x_{1}, \alpha x_{2}, \ldots, \alpha x_{m}) with the inner product defined by

  \langle\langle x, y\}\}_{H}:=\sum_{i=1}^{m}\langle x_{i}, y_{i}
\rangle_{\mathcal{H}_{i}},
and the norm by

 \Vert x\Vert_{H}:=\sqrt{\langle\langle x,x\rangle\}_{H}},
for all  x=(x_{1}, x_{2}, \ldots, x_{m}),  y=(y_{1}, y_{2}, \ldots, y_{m})\in H , is again a Hilbert space (see [1,
Example 2.1]). Let us consider an operator  A:\mathcal{H}arrow \mathcal{H}_{1}\cross \mathcal{H}_{2}\cross  x\mathcal{H}_{m} which is defined
by

 A(x) :=(A_{1}x, A_{2}x, \ldots, A_{m}x) ,

for all  x\in \mathcal{H} and operator  S:\mathcal{H}_{1}\cross \mathcal{H}_{2}\cross  \cross \mathcal{H}_{m}arrow \mathcal{H}_{1}\cross \mathcal{H}_{2}\cross  \cross \mathcal{H}_{m} defined by

 S(y)  := (Sı yl  S_{2}y_{2},  \ldots,  S_{m}y_{m} ),
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for all y  = (yı,  y_{2},  \ldots,  y_{m} )  \in \mathcal{H}_{1}\cross \mathcal{H}_{2}\cross\cdots\cross \mathcal{H}_{m} . Note that the operator A is a bounded
linear operator and  S is cutter with Fix(S)  =Fix(S_{1})\cross  \cdot\cdot\cdot  \cross Fix(S_{m}) . Further, defining
a function  g:Harrow \mathbb{R} by

  g(x):=\sum_{i=1}^{m}g_{i}(x_{i}) ,

for all  x=(x_{1}, x_{2}, \ldots, x_{m})\in H , we also have that the function  g is a convex function
(see [1, Proposition 8.25]). By above setting, we can rewrite CMNM as the problem of
finding a feasible point  x^{*}\in Fix(T)\subset \mathcal{H} such that  Ax^{*}\in Fix(S)\subset H solves

minimize  g(Ax)
subject to  Ax\in Fix(S) ,

Notice that this multi‐agent network system is a problem of finding a feasible point in
a feasible region in a space and its coupling image solves a common decision problem of
some corresponding agents in a coupling space. This means that this system is nothing
else but the split hierarchical optimization problem which was considered by Nimana
and Petrot [9]: let  \mathcal{H}_{1} and  \mathcal{H}_{2} be two finite dimensional Hilbert spaces,  A :  \mathcal{H}_{1}arrow \mathcal{H}_{2}
be a bounded linear operator,  f :  \mathcal{H}_{1}arrow \mathbb{R},  T :  \mathcal{H}_{1}arrow \mathcal{H}_{1} be such that Fix  (T)\neq\emptyset,
and  g :  \mathcal{H}_{2}arrow \mathbb{R},  S :  \mathcal{H}_{2}arrow \mathcal{H}_{2} be such that   A^{-1}(Fix(S))\neq\emptyset . The split hierarchical
optimization problem (in short, SHOP) is to find  x^{*}\in Fix(T) , and such that its image
 Ax^{*} solves

minimize  g(x)
subject to  x\in Ran(A)nFix(S) ,

Here, we will denote the solution set of SHOP by  \Gamma , and the intersection Fix  (T)\cap
 A^{-1}(Fix(S)) by  \Omega . And, of course, we will consider the method for approximating a
solution of SHOP and the convergence properties of such considered method.

3 Convergence Results

We firstly state the core assumption as follows.

Assumption 3.1 Assume that
(I)  T :  \mathcal{H}_{1}arrow \mathcal{H}_{1},  S :  \mathcal{H}_{2}arrow \mathcal{H}_{2} are cutter operators with fixed points and satisfying

the demiclosed principle;
(II)  g:\mathcal{H}_{2}arrow \mathbb{R} is a convex function;
(III)  A:\mathcal{H}_{1}arrow \mathcal{H}_{2}iS a bounded linear operator.

In order to find a solution of SHOP, Nimana and Petrot [9] introduced the the so‐
called subgradient‐splitting method as follows.

Algorithm 3.2 (Subgradient‐Splitting Method [9]) Choose the positive sequences
 \{\alpha_{k}\}_{k\in N} and  \{\gamma_{k}\}_{k\in N} and take arbitrary  x_{1}\in \mathcal{H}_{1}.

Step 1: For a given current iterate  x_{k}\in \mathcal{H}_{1}(\forall k\geq 1) , define  z_{k}\in \mathcal{H}_{2}(\forall k\geq 1) by

 z_{k}  :=SAx_{k}-\alpha_{k}d_{k} , where  d_{k}\in\partial g(SAx_{k}) .
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Step 2: Evaluate  x_{k+1}\in \mathcal{H}_{1}(\nabla k\geq 1) as

 x_{k+1} :=T(x_{k}+\gamma_{k}A^{*}(z_{k}-Ax_{k})) .

Update  k:=k+1 and go to Step 1.

For simplicity, we will denote  y_{k}  :=x_{k}+\gamma_{k}A^{*}(z_{k}-Ax_{k}) for all  k\geq 1.

This algorithm 32 is a particular situation of the one introduced by the authors in [9]
where  f\equiv 0 . One can observe that this algorithm is an integrating ideas of the well
known subgradient method and the algorithm for solving the split common fixed point
problem [2].

To consider the convergence results for the considered problem, we need an additional
key tool. Let  C be a nonempty subset of  \mathcal{H} . We say that a sequence  \{x_{k}\}_{k\in \mathbb{N}}\subset \mathcal{H} is quasi‐
Fejér monotone relative to  C , if for all  c\in C there exists a sequence  \{\delta_{k}\}_{k\in N}\subset[0, +\infty )
such that   \sum_{k\in \mathbb{N}}\delta_{k}<+\infty and

 \Vert x_{k+1}-c\Vert^{2}\leq\Vert x_{k}-c\Vert^{2}+\delta_{k}, \forall k\geq 1.

The following proposition provides some essential properties of a quasi‐Fejér monotone
sequence, for further information the readers may consult the work of Combettes [3].

Proposition 3.1 [3] Let  \mathcal{H} be a real Hilbert space and  \{x_{k}\}_{k\in N}\subset \mathcal{H} be a quasi‐Fejér
monotone sequence relative to a nonempty subset  C\subset \mathcal{H} . Then,

(i)   \lim_{karrow+\infty}\Vert x_{k}-c\Vert exists for all  c\in C.

(ii) If at least one cluster point of  \{x_{k}\}_{k\in N} lies in  C , then  \{x_{k}\}_{k\in \mathbb{N}} converges strongly to
a point in  C.

Now, we will recall some important convergence properties and assumptions used in [9].

Lemma 3.2 [9, Lemma 3.1] Suppose that  \Omega is a nonempty set. Then, the following
statements hold:

(i) For all  k\geq 1 and   q\in\Omega , we have

 \Vert x_{k+1}-q\Vert^{2}  \leq  \Vert x_{k}-q\Vert^{2}-\gamma_{k}(2-\gamma_{k}\Vert A\Vert^{2})\Vert z_{k}-
Ax_{k}\Vert^{2}+2\alpha_{k}\gamma_{k}\Vert d_{k}\Vert\Vert z_{k}-Ax_{k}\Vert
 +2\alpha_{k}\gamma_{k} (g(Aq) -g(SAx_{k})) , (3.1)

(ii) For all  k\geq 1 and   q\in\Omega , we have

 \Vert y_{k}-q\Vert^{2} \leq \Vert x_{k}-q\Vert^{2}+2\alpha_{k}\gamma_{k}\Vert 
d_{k}\Vert\Vert z_{k}-Ax_{k}|| (3.2)

Assumption 3.3 The following inclusion holds:

 \Gamma\subset\{z\in\Omega : g(Az)\leq g(SAx), \forall x\in \mathcal{H}_{1}\}.

If we let  C\subset \mathcal{H}_{1} and  Q\subset \mathcal{H}_{2} be two nonempty closed convex subsets and it holds
that  Q\subset Ran(A) , then we can set  T  :=proj_{C} and  S  :=proj_{Q} , where  proj_{C} and  proj_{Q}
are metric projection onto the set  C and  Q , respectively, and in this case the assumption
3.3 is satisfied.

Moreover, in this work, we deal with the following control condition.
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Condition 3.4 The sequences  \{\gamma_{k}\}_{k\in \mathbb{N}} and  \{\alpha_{k}\}_{k\in \mathbb{N}} are satisfying

(C‐1)  0<\underline{\gamma}  := \inf_{k\in N}\gamma_{k}\leq\overline{\gamma}:=\sup_{k\in \mathbb{N}}
\gamma_{k}<\frac{{\imath}}{\Vert A\Vert^{2}}.
 (C-2) \sum_{k\in \mathbb{N}}\alpha_{k}=+\infty,   \lim_{karrow+\infty}\alpha_{k}=0 , and   \sum_{k\in \mathbb{N}}\alpha_{k}\Vert d_{k}\Vert<+\infty.

Now, we present some useful convergence properties.

Lemma 3.3 Suppose that  \Gamma\neq\emptyset , and Assumption 3.3 and Condition 34 hold. If any
sequence  \{x_{k}\}_{k\in N} generated by Algorithm 3.2 is bounded then

(i)  \{x_{k}\}_{k\in N} is quasi‐Fejér monotone with respect to  \Gamma , and   \lim_{karrow+\infty}\Vert x_{k}-q\Vert exists for
all  q\in\Gamma.

(ii)   \lim_{karrow+\infty}\Vert z_{k}-Ax_{k}\Vert=0.

(iii)   \lim_{karrow+\infty}\Vert x_{k}-x_{k+1}\Vert=0.

 (lv) \lim_{karrow+\infty}\Vert SAx_{k}-Ax_{k}\Vert=0.

(v)   \lim_{karrow+\infty}\Vert Ty_{k}-y_{k}\Vert=0 , and   \lim_{karrow+\infty}\Vert x_{k}-y_{k}\Vert=0.

Proof. (i) Let   q\in\Gamma be given. By Lemma 3.2 and Condition 3.  i , we note that

 \Vert x_{k+1}-q\Vert^{2} \leq \Vert x_{k}-q\Vert^{2}+2\alpha_{k}
\overline{\gamma}\Vert d_{k}\Vert||z_{k}-Ax_{k}\Vert , \forall k\geq 1.

Since   \sum_{k\in N}\alpha_{k}^{2}<+\infty and   \sum_{k\in N}\alpha_{k}\Vert d_{k}\Vert<+\infty , we obtain that (i) holds.
(ii) It has been proved in [9, Lemma 3.2 (ii)].
(iii) It is an immediate consequence of the definition of  x_{k+1} and (ii).
(iv) Observes that  \Vert SAx_{k}-Ax_{k}\Vert\leq\Vert z_{k}-Ax_{k}\Vert+\alpha_{k}\Vert d_{k}\Vert for all  k\geq 1 . Thus, by using

(ii) and Condition, we obtain the result in (iv).
(v) Let   q\in\Gamma . Since  xk+{\imath}=Ty_{k} , and  T is cutter, and using Lemma  \backslash 3.2 (ii), we have

 \Vert Ty_{k}-y_{k}\Vert^{2} \leq \Vert y_{k}-q\Vert^{2}-\Vert Ty_{k}-q\Vert^{2}
 \leq  \Vert y_{k}-q\Vert^{2}- llxk  + ı  -q\Vert^{2}
 \leq \Vert x_{k}-q\Vert^{2}-\Vert x_{k+1}-q\Vert^{2}+2\overline{\gamma}
\alpha_{k}\Vert d_{k}\Vert\Vert z_{k}-Ax_{k}\Vert, \forall k\geq 1,

and hence   \lim_{karrow+\infty}\Vert Ty_{k}-y_{k}\Vert=0 , as required. Note that, by using this togethers with
(iii), we also have   \lim_{karrow+\infty}\Vert x_{k}-y_{k}\Vert=0.  \blacksquare

To obtain the convergence of iterate, we need the following proposition.

Proposition 3.4 (Silverman‐Toeplitz’  s theorem) [4,  y Let  \mathbb{R}^{n} be  a Euclidean space.
Let  a_{lk}\in(0, +\infty) , for all  l\geq 1 and  k=1,  l be such that   \sum_{k={\imath}}^{l}a_{lk}=1 for all
 l\geq 1 and   \lim_{larrow+\infty}a_{lk}=0 for all  k>1 . If  \{u_{k}\}_{k\in \mathbb{N}}\subset \mathbb{R}^{n} is a sequence such that
  \lim_{karrow+\infty}u_{k}=u\in \mathbb{R}^{n} , then   \lim_{larrow+\infty}\sum_{k=1}^{\iota^{-}}a_{lk}u_{k}=u.

By using the Silverman‐Toeplitz’  s theorem, we can obtain the following result.

Lemma 3.5 Let  \mathbb{R}^{n} be  a Euclidean space and  \{\alpha_{k}\}_{k\in \mathbb{N}}\subset(0, +\infty) be a sequence such that
  \sum_{k\in N}\alpha_{k}=+\infty . If  \{u_{k}\}_{k\in N}\subset \mathbb{R}^{n} is a sequence such that  {\imath} im_{karrow+\infty}u_{k}=u\in \mathbb{R}^{n} , then

  \lim_{larrow+\infty}\frac{\Sigma_{k=1}^{l}\alpha_{k}u_{k}}{\Sigma_{k=1}
^{\iota}\alpha_{k}}=u.
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 1 \dot{{\imath}}m_{larrow+\infty}a_{lk}=1\dot{{\imath}}m_{larrow+\infty}\frac{}
{}=Proof.Setting a  := \frac{\alpha_{k}}{\Sigma_{k=1}^{l}\alpha_{k}\sum_{\alpha_{k}}^{l}k=
1\alpha_{k}}\in 0. Thus,  forallsequence {  u_{k}\}_{k\in N}\subset \mathbb{R}^{n} such t  hat(0,+\infty),foralll\geq l,wehave\sum_{k=1}^{l}a_{lk}=land
  \lim_{karrow+\infty}u_{k}=u\in \mathbb{R}^{n} , we have

  \lim_{larrow+\infty}\frac{\sum_{k--1}^{l}\alpha_{k}u_{k}}{\sum_{k={\imath}}
^{l}\alpha_{k}}=\lim_{larrow+\infty}\sum_{k=1}^{l}\frac{\alpha_{k}u_{k}}{\sum_{k
=1}^{l}\alpha_{k}}=larrow+\infty 1\dot{{\imath}}m\sum_{k=1}^{l}a_{lk}u_{k}=u,
as desired.  \blacksquare

Now, we are in position to state the main convergence theorem.

Theorem 3.6 Suppose that  \Gamma\neq\emptyset , and Assumption 3.3 and Condition 34 hold. If any
sequence  \{x_{k}\}_{k\in \mathbb{N}} generated by Algorithm 3.2 is bounded, then  \{x_{k}\}_{k\in \mathbb{N}} converges to an
element in  \Gamma.

Proof. By Proposition 31 (ii) and Lemma 3.3 (i), we only need to show that there is at
least one cluster point of  \{x_{k}\}_{k\in \mathbb{N}} lies in  \Gamma . Since  \{x_{k}\}_{k\in \mathbb{N}} is bounded, we let  p\in \mathcal{H}_{1} be
a cluster point of  \{x_{k}\}_{k\in \mathbb{N}} and a subsequence  \{x_{k_{j}}\}_{j\in \mathbb{N}} of  \{x_{k}\}_{k\in N} such that  x_{k_{j}}arrow p as
  jarrow+\infty . It follows that  Ax_{k_{j}}arrow Ap and  y_{k_{j}}arrow p as   jarrow+\infty , by Lemma  3.3(v) . Also,
by employing the demiclosed principles of  T and  S together with Lemma 3.3  (iv)-(v) , we
obtain that  p\in\Omega.

Next, let   q\in\Gamma be given. In views of Lemma 3.2 and Assumption 33, we note that
for every  k\geq 1

 2\alpha_{k}\underline{\gamma}(g(SAx_{k})-g(Aq)) \leq \Vert x_{k}-q\Vert^{2}-
\Vert x_{k+1}-q\Vert^{2}+2\alpha_{k}\overline{\gamma}D\Vert z_{k}-Ax_{k}\Vert,

where  D  := \sup_{k\in \mathbb{N}}\{\Vert d_{k}\Vert\} . Summing up for 1,  k_{j} , we get

2   \sum_{i=1}^{k_{j}}\alpha_{i}\underline{\gamma}(g(SAx_{i})-g(Aq))  \leq   \Vert x_{1}-q\Vert^{2}-\Vert x_{k_{j}+1}-q\Vert^{2}+2\overline{\gamma}D\sum_{i
=1}^{k_{j}}\alpha_{i}\Vert z_{i}-Ax_{i}\Vert
and then

 \underline{2\sum_{i=}^{k_{j}}}ı

  \underline{\gamma}(g(SAx_{i})-g(Aq))\sum_{i=1}^{k_{j}}^{\alpha_{i}}\alpha_{i}  \leq   \frac{\Vert x_{1}-q||^{2}}{\sum_{i=1}^{k_{j}}\alpha_{\dot{i}}}+
2\overline{\gamma}D\frac{2_{;=1}^{k_{j}}\alpha_{i}||z_{i}-Ax_{i}\Vert}{\sum_{i=
1}^{k_{j}}\alpha_{i}}.
Since   \lim_{karrow+\infty}\Vert z_{k}-Ax_{k}\Vert=0 and by using Lemma 35, we have

  \lim_{jarrow+\infty}\frac{\sum_{i=1}^{k_{j}}\alpha_{i}||z_{i}-Ax_{i}\Vert}
{\sum_{i=1}^{k_{j}}\alpha_{i}}=0,
and hence, for every   q\in\Gamma , we have

 1 \dot{{\imath}}m\dot{{\imath}}nf\frac{\sum_{\dot{z}=1}^{k_{j}}\alpha_{i}
\underline{\gamma}(g(SAx_{i})-g(Aq))}{\sum_{i=1}^{k_{j}}\alpha_{i}}jarrow+\infty
\leq 0.
By using the convexity of  g , we obtain

 g( \frac{\sum_{i={\imath}}^{k_{j}}\alpha_{i}SAx_{i}}{\sum_{i\check{=}1}^{k_{J}}
\alpha_{i}})\leq\frac{\sum_{i=1}^{k_{j}}\alpha_{i}g(SAx_{i})}{\sum_{i=1}^{k_{j}}
\alpha_{i}}, \forall j\geq 1.
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Since  SAx_{k_{j}}arrow Ap as   jarrow+\infty , then by using Lemma 3.5, we have   \lim_{jarrow+\infty}\frac{\Sigma_{i--1}^{k_{j}}\alpha_{i}SAx_{\dot{i}}}
{\Sigma_{i={\imath}}^{k_{j}}\alpha_{\dot{i}}}=
Ap. This implies, for every   q\in\Gamma , that

 g(Ap) \leq\lim\dot{{\imath}}nfgjarrow+\infty(\frac{\sum_{i--{\imath}}^{k_{j}}
\alpha_{i}SAx_{i}}{\sum_{i=1}^{k_{j}}\alpha_{i}})\leq g(Aq) .

This means   p\in\Gamma . Therefore, invoking Theorem 3.1 (iii), we conclude that the sequence
 \{x_{k}\}_{k\in \mathbb{N}} converges to an element in  \Gamma.  \blacksquare

Note that the assumption   \sum_{k\in \mathbb{N}}\alpha_{k}\Vert d_{k}\Vert<+\infty is always satisfying whenever  g is a
constant function. Moreover, if  S is the identity operator, then this assumption can be
removed. In fact, from Lemma 3.3, we have

 \Vert x_{k+1}-q\Vert^{2} \leq \Vert x_{k}-q\Vert^{2}+2\alpha_{k}
\overline{\gamma}\Vert d_{k}\Vert\Vert z_{k}-Ax_{k}\Vert+\alpha_{k}^{2}||c_{k}
||^{2},

for alı   q\in\Gamma and  k\geq 1 . Since  S=I , we have  \Vert z_{k}-Ax_{k}\Vert=\alpha_{k}\Vert d_{k}|| , which implies that

 \Vert x_{k+1}-q\Vert^{2} \leq \Vert x_{k}-q\Vert^{2}+2\alpha_{k}^{2}
\overline{\gamma}\Vert d_{k}\Vert^{2}+\alpha_{k}^{2}\Vert c_{k}\Vert^{2},

for all   q\in\Gamma and  k\geq 1 . This means  \{x_{k}\}_{k\in \mathbb{N}} is a quasi‐Fejér monotone with respect to  \Gamma.

4 Implication for centralized multi‐agent networked
system

Accordingly, in order to solve the considered multi‐agent network problem, we can rewrite
Algorithm 3.2 by doing the suitable substitutions and obtain the following algorithm.

Algorithm 4.1 Choose the positive sequences  \{\alpha_{k}\}_{k\in N},  \{\gamma_{k}\}_{k\in \mathbb{N}} , and take arbitrary   x_{1}\in

 \mathcal{H}.

Step 1: For a given current iterate  x_{k}\in \mathcal{H}(\forall k\geq 1) , the mediator inform it to all agents
in the system. Each agent  i(i=1, \ldots, m) then computes the estimate  z_{k,i}\in \mathcal{H}_{i} as

 z_{k,i}  :=S_{i}A_{i}x_{k}-a_{k}d_{k,i} , where  d_{k,i}\in\partial g_{i}(S_{i}A_{i}x_{k}) ,

and transmits this estimate back to the mediator.

Step 2: The mediator computes

 x_{k+1} :=T(x_{k}+ \gamma_{k}\sum_{j=1}^{m}A_{j}^{*}(z_{k,j}-A_{j}x_{k})) .

Update  k  :=k+1 and go to Step 1.

We now establish a convergence result for CMNM which is a consequence of Theorem
3.6.

Theorem 4.1 Suppose that  \Psi\neq\emptyset and the Assumption 21 holds. the following condi‐
tions hold:
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(i)  0< \inf_{k\in N}\gamma_{k}\leq\sup_{k\in \mathbb{N}}\gamma_{k}<1/\sum_{j=1}^{m}
\Vert A_{j}\Vert^{2}.

(ii)   \Psi\subset\{z\in Fix(T)\cap\bigcap_{i=1}^{m}A_{i}^{-1}(Fix(S_{i})) : g_{i}(A_
{i}z)\leq g_{i}(S_{i}A_{i}x), \forall x\in \mathcal{H},i=1, , m\}.

(iii)   \sum_{k\in \mathbb{N}}\alpha_{k}=+\infty,   \lim_{karrow+\infty}\alpha_{k}=0 , and   \sum_{k\in N}\alpha_{k}\sqrt{\sum_{i={\imath}}^{m}\Vert d_{i}
\Vert_{\mathcal{H}_{i}}^{2}}<+\infty.
If any sequence  \{x_{k}\}_{k\in \mathbb{N}} generated by Algorithm 41 is bounded, then  \{x_{k}\}_{k\in \mathbb{N}} converges

to an element in  \Psi.

Proof. Firstly, as an above consequence, we define an adjoint operator  A^{*} :  Harrow \mathcal{H} of
A by

  A^{*}(x):=\sum_{j=1}^{m}A_{j}^{*}x_{j},
for all  x=  (x_{1}, x_{2}, \ldots , x_{m})\in H. Then, we know that  \partial g(SAx_{k})=\partial g_{1}(S_{1}A_{1}x_{k})\cross
. . .  \cross\partial g.(S_{m}A_{m}x_{k}) , see [10, Corollary 2.4.5]. Let us put  d_{k}  :=(d_{k,1}, \ldots, d_{k,m}) where
 d_{k,i}\in\partial g_{i}(S_{\dot{i}}A_{i}x_{k}),  i=1 , . . . ,  m , for all  k\geq 1 . It follows that  (k\geq 1)

 z_{k} := (z_{k,1}, \ldots , z_{k,m})=SAx_{k}-\beta_{k}d_{k}.

Also, we observe that, for all  k\geq 1 , it holds

  A^{*}(z_{k}-Ax_{k})=\sum_{j=1}^{m}A_{j}^{*}(z_{k,j}-A_{j}x_{k}) .

So, we can rewrite Algorithm 4.1 as

 z_{k}:=SAx_{k}-\alpha_{k}d_{k} ;
(4.1) x_{k+1}:=T(x_{k}+\gamma_{k}A^{*}(z_{k}-Ax_{k})) ,

where  d_{k}\in\partial g(SAx_{k}) for all  k\geq 1 . Note that, the form (4.1) is a specialization of
Algorithm 3.2. On the other hand, we note that  T and  S satisfy the demiclosed principle.
Further, we have

 \Psi\subset\{x\in Fix(T)\cap A^{-1}(Fix(S)) : g(Ax)\leq g(SAx), \forall x\in 
\mathcal{H}\}.

Finally, since   \Vert A\Vert^{2}\leq\sum_{j=1}^{m}\Vert A_{j}\Vert^{2} , the result therefore follows from Theorem 3.6.  \blacksquare

5 Conclusion

This paper discussed the centralized multi‐agent network problem by means of the split
hierarchical optimization problem introduced by Nimana and Petrot [9]. This introduced
model seems a generalization of some multi‐agent networked problems. To solve the
considerede problem, we employed the algorithm introduced by Nimana and Petrot [9],
which we called it by the subgradient‐splitting method. We proved the convergence results
for this considered problem. It is worth noting that the main result of this work is different

  \lim_{karrow+\infty}\frac{||x_{k+1}-x_{k}||one\dot{{\imath}}n}{\alpha_{k}}=0,
but,\dot{{\imath}}nhere,itisnotnecessary,andfromt he[9] because (  l)theconvergence r  esu1t\dot{{\imath}}n[^{(}J](2)ourconvergenceresultneedtheassumptionthat
holds true in finite dimensional Hilbert spaces, however, the result in [9] is true even in
infinite dimensional Hilbert spaces.
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