AN ITERATIVE SEQUENCE FOR A FINITE NUMBER OF METRIC PROJECTIONS ON A COMPLETE GEODESIC SPACE

KENGO KASAHARA AND YASUNORI KIMURA

ABSTRACT. In this paper, we prove convergence of an iterative sequence to a common point of a finite number of closed convex subsets of a complete geodesic space with curvature bounded above by one.

1. Introduction and preliminaries

Let X be a metric space. For $x,y\in X$, a mapping $c:[0,l]\to X$ is called a geodesic if c satisfies

$$c(0) = x, c(l) = y, \text{ and } d(c(u), c(v)) = |u - v|$$

for every $u, v \in [0, l]$. An image [x, y] of c is called a geodesic segment joining x and y. If a geodesic segment exists for every $x, y \in X$, then we call X a geodesic space.

We consider to find a common point of a finite number of closed convex subsets by using a sequence generated by a finite number of metric projections on a complete geodesic space. Focusing on two properties of a sequence of mappings, we can handle the sequence of mapping more effectively; see [1]. We know that Halpern's iterative method [3] is an efficient method to find a fixed point of a mapping. We also know that the Halpern iteration method can be applied with two metric projections on a complete CAT(1) space [6]. In this paper, we propose a sequence approximating a common point of a finite number of closed convex sets based on this method.

Let X be a geodesic space. For a triangle $\triangle(x,y,z)\subset X$ such that $d(x,y)+d(y,z)+d(z,x)<2\pi$, let a comparison triangle $\triangle(\overline{x},\overline{y},\overline{z})$ in two-dimensional unit sphere \mathbb{S}^2 be such that each corresponding edge has the same length as that of the original triangle. X is called a CAT(1) space if for every $p,q\in\triangle(x,y,z)$ and their corresponding points $\overline{p},\overline{q}\in\triangle(\overline{x},\overline{y},\overline{z})$ satisfy that

$$d(p,q) \leq d_{\mathbb{S}^2}(\overline{p},\overline{q}),$$

where $d_{\mathbb{S}^2}$ is the spherical metric on \mathbb{S}^2 .

Let X be a CAT(1) space and let T be a mapping from X to X such that the set $F(T) = \{z \in X : z = Tz\}$ of fixed points of T is not empty. If $d(Tx,p) \leq d(x,p)$ for every $x \in X$ and $p \in F(T)$, then we call T a quasinonexpansive mapping. Let T be a quasinonexpansive mapping, and suppose that for every $p \in F(T)$ and $\{x_n\} \subset X$ with $\sup_{n \in \mathbb{N}} d(x_n, p) < \pi/2$ and $\lim_{n \to \infty} (\cos d(x_n, p)/\cos d(Tx_n, p)) = 1$, it follows that $\lim_{n \to \infty} d(x_n, Tx_n) = 0$. Such a mapping T is called a strongly quasinonexpansive mapping. We also define a strongly quasinonexpansive sequence. $\{T_n\}$ is said to be a strongly quasinonexpansive sequence if it is quasinonexpansive, and suppose that for every $p \in \bigcap_{n=1}^{\infty} F(T_n)$ and $\{x_n\} \subset X$ with $\sup_{n \in \mathbb{N}} d(x_n, p) < \pi/2$ and

 $\lim_{n\to\infty}(\cos d(x_n,p)/\cos d(T_nx_n,p))=1$, it follows that $\lim_{n\to\infty}d(x_n,T_nx_n)=0$; see [1].

Let X be a metric space. An element $z \in X$ is said to be an asymptotic center of $\{x_n\} \subset X$ if

$$\limsup_{n\to\infty} d(x_n,z) = \inf_{x\in X} \limsup_{n\to\infty} d(x,x)$$

Moreover, $\{x_n\}$ Δ -converges to a Δ -limit z if z is the unique asymptotic center of any subsequences of $\{x_n\}$.

Let X be a CAT(1) space and let T be a mapping from X to X such that $F(T) \neq \emptyset$. Suppose that for every $\{x_n\} \subset X$ with $\{x_n\}$ Δ -converges to z and $\lim_{n\to\infty} d(x_n,Tx_n)=0$, it follows that $z\in F(T)$. Such a mapping T is called a Δ -demiclosed mapping. We also define a Δ -demiclosed sequence. $\{T_n\}$ is said to be a Δ -demiclosed sequence if for every $\{x_n\} \subset X$ with $\{x_n\}$ Δ -converges to z and $\lim_{n\to\infty} d(x_n,T_nx_n)=0$, it follows that $z\in\bigcap_{n=1}^\infty F(T_n)$; see [1].

Let X be a CAT(1) space. For every $x,y \in X$ with $d(x,y) < \pi$ and $\alpha \in [0,1]$, if $z \in [x,y]$ satisfies that $d(y,z) = \alpha d(x,y)$ and $d(x,z) = (1-\alpha)d(x,y)$, then we denote z by $z = \alpha x \oplus (1-\alpha)y$. A subset $C \subset X$ is called π -convex if $\alpha x \oplus (1-\alpha)y \in C$ for every $x,y \in C$ with $d(x,y) < \pi$ and $\alpha \in [0,1]$.

Let X be a CAT(1) space. For every $x, y, z \in X$ with $d(x, y) + d(y, z) + d(z, x) < 2\pi$ and $\alpha \in [0, 1]$, the following inequality holds [5]:

$$\cos d(x, w) \sin d(y, z) \ge \cos d(x, y) \sin(\alpha d(y, z)) + \cos d(x, z) \sin((1 - \alpha)d(y, z))$$

where $w = \alpha y \oplus (1 - \alpha)z$.

Let X be a complete CAT(1) space and let $C \subset X$ be a nonempty closed π -convex subset such that $d(x,C) = \inf_{y \in C} d(x,y) < \pi/2$ for every $x \in X$. Then for every $x \in X$, there exists a unique point $x_0 \in C$ satisfying

$$d(x, x_0) = \inf_{y \in C} d(x, y).$$

We define the metric projection P_C from X onto C by $P_C x = x_0$. We know that the metric projection P_C is a strongly quasinonexpansive and Δ -demiclosed mapping such that $F(P_C) = C$ [2, 6]. These properties are important for our results. The following lemmas are also important.

Lemma 1.1. (Kimura-Satô [6]) Let X be a CAT(1) space such that $d(v, v') < \pi$ for every $v, v' \in X$. Let $\alpha \in [0, 1]$ and $u, y, z \in X$. Then

$$1-\cos d(\alpha u \oplus (1-\alpha)y,z)$$

$$\leq (1-\beta)(1-\cos d(y,z)) + \beta \left(1 - \frac{\cos d(u,z)}{\sin d(u,y)\tan(\frac{\alpha}{2}d(u,y)) + \cos d(u,y)}\right),$$

where

$$\beta = \begin{cases} 1 - \frac{\sin((1-\alpha)d(u,y))}{\sin d(u,y)} & (u \neq y), \\ \alpha & (u = y). \end{cases}$$

Lemma 1.2. (Saejung-Yotkaew [7]) Let $\{s_n\}$ and $\{t_n\}$ be sequences of real numbers such that $s_n \geq 0$ for every $n \in \mathbb{N}$. Let $\{\beta_n\}$ be a sequence in]0,1[such that $\sum_{n=0}^{\infty} \beta_n = \infty$. Suppose that $s_{n+1} \leq (1-\beta_n)s_n + \beta_n t_n$ for every $n \in \mathbb{N}$. If $\limsup_{k \to \infty} t_{n_k} \leq 0$ for every subsequence $\{n_k\}$ of \mathbb{N} satisfying $\liminf_{k \to \infty} (s_{n_k+1} - s_{n_k}) \geq 0$, then $\lim_{n \to \infty} s_n = 0$.

Lemma 1.3. (He-Fang-López-Li [4]) Let X be a complete CAT(1) space and $p \in X$. If a sequence $\{x_n\}$ in X satisfies that $\limsup_{n\to\infty} d(x_n,p) < \pi/2$ and that $\{x_n\}$ is Δ -convergent to $x \in X$, then $d(x,p) \leq \liminf_{n\to\infty} d(x_n,p)$.

2. The main result

In this section, we propose an iterative scheme converging to a common point of a finite number of closed convex subsets with nonempty intersection. To prove its convergence property, we prepare four lemmas with their corollaries.

 $\begin{array}{l} \textbf{Lemma 2.1.} \ \ Let \ X \ \ be \ a \ CAT(1) \ space \ such \ that \ d(v,v') < \pi/2 \ for \ every \ v,v' \in X. \\ For \ a \ given \ real \ number \ a \ \ in \ \big]0,\frac{1}{2}\big], \ let \ \sigma^l \in [a,1-a] \ for \ every \ l = 0,1,\ldots,N-\\ 1. \ \ For \ given \ points \ y,y^k \in X \ for \ every \ k = 0,1,\ldots,N, \ define \ w^l \in X \ by \\ w^N = y^N \ \ and \ w^l = \sigma^l y^l \oplus (1-\sigma^l)w^{l+1} \ for \ every \ l = 0,1,\ldots,N-1. \ \ Then \\ \cos d(w^0,y)\cos(ad(y^0,w^1)) \geq \min\{\cos d(y^0,y),\cos d(w^1,y)\}. \end{array}$

Proof. If $y^0 = w^1$, it is obvious. Otherwise, we have $\cos d(w^0, y) \sin d(y^0, w^1)$

$$\begin{split} &\geq \cos d(y^0,y) \sin(\sigma^0 d(y^0,w^1)) + \cos d(w^1,y) \sin((1-\sigma^0)d(y^0,w^1)) \\ &\geq \min\{\cos d(y^0,y),\cos d(w^1,y)\} (\sin(\sigma^0 d(y^0,w^1)) + \sin((1-\sigma^0)d(y^0,w^1))) \\ &= 2 \min\{\cos d(y^0,y),\cos d(w^1,y)\} \sin \frac{d(y^0,w^1)}{2} \cos \frac{(2\sigma^0-1)d(y^0,w^1)}{2}. \end{split}$$

Dividing above by $2\sin(d(y^0, w^1)/2)$, we have

$$\begin{split} \cos d(w^0,y) \cos \frac{d(y^0,w^1)}{2} \\ &\geq \min\{\cos d(y^0,y),\cos d(w^1,y)\} \cos \frac{(2\sigma^0-1)d(y^0,w^1)}{2} \\ &\geq \min\{\cos d(y^0,y),\cos d(w^1,y)\} \cos \frac{(1-2a)d(y^0,w^1)}{2}. \end{split}$$

Moreover, dividing above by $\cos((1-2a)d(y^0,w^1)/2)$, we have $\min\{\cos d(y^0,y),\cos d(w^1,y)\}$

$$\leq \cos d(w^0,y) \frac{\cos \frac{(1-2a)d(y^0,w^1)}{2} \cos (ad(y^0,w^1)) - \sin \frac{(1-2a)d(y^0,w^1)}{2} \sin (ad(y^0,w^1))}{\cos \frac{(1-2a)d(y^0,w^1)}{2}}$$

 $\leq \cos d(w^0, y) \cos(ad(y^0, w^1)).$

This completes the proof.

Corollary 2.2. Let X be a complete CAT(1) space such that $d(v,v') < \pi/2$ for every $v,v' \in X$. Let $C_k \subset X$ be a closed π -convex subset for every $k=0,1,\ldots,N$. Let P_{C_k} be a metric projection from X onto C_k for every $k=0,1,\ldots,N$. For a given real number $a \in \left]0,\frac{1}{2}\right]$, let $\sigma^l \in [a,1-a]$ for every $l=0,1,\ldots,N-1$. Define $U^l \in X$ by $U^N = P_{C_N}$ and $U^l = \sigma^l P_{C_l} \oplus (1-\sigma^l)U^{l+1}$ for every $l=0,1,\ldots,N-1$. Let $x \in X$ and $p \in \bigcap_{k=0}^N C_k$. Then $\cos d(U^0x,p)\cos(ad(P_{C_0}x,U^1x)) \geq \cos d(x,p)$.

Lemma 2.3. Let X be a CAT(1) space such that $d(v,v') < \pi/2$ for every $v,v' \in X$. Let T and T' be quasinonexpansive mappings from X to X such that $F(T) \cap F(T') \neq \emptyset$. For a given real number $a \in \left]0, \frac{1}{2}\right]$, let $\sigma \in [a, 1-a]$. Then $\sigma T \oplus (1-\sigma)T'$ is a quasinonexpansive mapping and $F(\sigma T \oplus (1-\sigma)T') = F(T) \cap F(T')$.

Proof. At first, we will show $F(\sigma T \oplus (1 - \sigma)T') = F(T) \cap F(T')$. It is obvious that $F(\sigma T \oplus (1 - \sigma)T') \supset F(T) \cap F(T')$. From Corollary 2.2, for $z \in F(\sigma T \oplus (1 - \sigma)T')$ and $p \in F(T) \cap F(T')$,

$$\cos(ad(Tz,T'z)) \geq \frac{\cos d(z,p)}{\cos d(\sigma Tz \oplus (1-\sigma)T'z,p)} = 1.$$

That is Tz = T'z, so $z = \sigma Tz \oplus (1 - \sigma)T'z = Tz = T'z$. Hence $z \in F(T) \cap F(T')$. Next, we will show $\sigma T \oplus (1 - \sigma)T'$ is a quasinonexpansive mapping. By Corollary 2.2, for $x \in X$ and $p \in F(T) \cap F(T')$, we have

 $\cos d(\sigma Tx \oplus (1-\sigma)T'x, p) \ge \cos d(\sigma Tx \oplus (1-\sigma)T'x, p) \cos(ad(Tx, T'x)) \ge \cos d(x, p).$

It follows that $d(\sigma Tx \oplus (1-\sigma)T'x, p) \leq d(x, p)$, and hence $\sigma T \oplus (1-\sigma)T'$ is a quasinonexpansive mapping. This completes the proof.

Corollary 2.4. Let X be a complete CAT(1) space such that $d(v,v') < \pi/2$ for every $v,v' \in X$. Let $C_k \subset X$ be a closed π -convex subset for every $k=0,1,\ldots,N$ such that $\bigcap_{k=0}^N C_k \neq \emptyset$. Let P_{C_k} be a metric projection from X onto C_k for every $k=0,1,\ldots,N$. For a given real number $a \in]0,\frac{1}{2}]$, let $\sigma^l \in [a,1-a]$ for every $l=0,1,\ldots,N-1$. Define $U^l \in X$ by $U^N = P_{C_N}$ and $U^l = \sigma^l P_{C_l} \oplus (1-\sigma^l)U^{l+1}$ for every $l=0,1,\ldots,N-1$. Then $F(U^0) = \bigcap_{k=0}^N C_k$.

Lemma 2.5. Let X be a CAT(1) space such that $d(v,v') < \pi/2$ for every $v,v' \in X$. Let $\{U_n\}$ be a strongly quasinonexpansive sequence. Let T be a strongly quasinonexpansive mapping from X to X such that $\bigcap_{n=1}^{\infty} F(U_n) \cap F(T) \neq \emptyset$. For a given real number $a \in]0, \frac{1}{2}]$, let $\{\sigma_n\} \subset [a, 1-a]$. Then $\{\sigma_n T \oplus (1-\sigma_n)U_n\}$ is a strongly quasinonexpansive sequence.

Proof. Let $V_n = \sigma_n T \oplus (1 - \sigma_n) U_n$ for every $n \in \mathbb{N}$. By Lemma 2.3, V_n is a quasi-nonexpansive mapping for every $n \in \mathbb{N}$. By Corollary 2.2, for $\{x_n\} \subset X$ and $p \in \bigcap_{n=1}^{\infty} F(V_n)$ such that $\sup_{n \in \mathbb{N}} d(x_n, p) < \pi/2$ and $\lim_{n \to \infty} \cos d(x_n, p)/\cos d(V_n x_n, p) = 1$, we have

$$\cos d(V_n x_n, p) \cos(ad(Tx_n, U_n x_n)) \ge \cos d(x_n, p)$$

and thus

$$\cos(ad(Tx_n, U_nx_n)) \ge \frac{\cos d(x_n, p)}{\cos d(V_nx_n, p)} \to 1.$$

That is, $\lim_{n\to\infty} d(Tx_n, U_nx_n) = 0$. So we have

$$\lim_{n \to \infty} d(U_n x_n, V_n x_n) = \lim_{n \to \infty} \sigma_n d(T x_n, U_n x_n) = 0.$$

Since $1 = \lim_{n \to \infty} \cos d(x_n, p) / \cos d(V_n x_n, p) = \lim_{n \to \infty} \cos d(x_n, p) / \cos d(U_n x_n, p)$, we have

$$\lim_{n \to \infty} d(U_n x_n, x_n) = 0.$$

Hence, we obtain

$$d(V_n x_n, x_n) < d(V_n x_n, U_n x_n) + d(U_n x_n, x_n) \to 0.$$

This completes the proof.

Corollary 2.6. Let X be a complete CAT(1) space such that $d(v,v') < \pi/2$ for every $v,v' \in X$. Let $C_k \subset X$ be a closed π -convex subset for every $k=0,1,\ldots,N$ such that $\bigcap_{k=0}^N C_k \neq \emptyset$. Let P_{C_k} be a metric projection from X onto C_k for every $k=0,1,\ldots,N$. For a given real number $a \in]0,\frac{1}{2}]$, let $\{\sigma_n^l\} \subset [a,1-a]$ for every $l=0,1,\ldots,N-1$. Define $\{U_n^l\} \subset X$ by $U_n^N = P_{C_N}$ and $U_n^l = \sigma_n^l P_{C_l} \oplus (1-\sigma_n^l) U_n^{l+1}$ for every $l=0,1,\ldots,N-1$. Then $\{U_n^0\}$ is a strongly quasinonexpansive sequence.

Lemma 2.7. Let X be a CAT(1) space such that $d(v,v') < \pi/2$ for every $v,v' \in X$. Let $\{U_n\}$ be a Δ -demiclosed sequence. Let T be a Δ -demiclosed mapping from X to X such that $\bigcap_{n=1}^{\infty} F(U_n) \cap F(T) \neq \emptyset$. For given real number a in $]0,\frac{1}{2}]$, let σ_n be in [a,1-a] for every n in \mathbb{N} . Then $\{\sigma_n T \oplus (1-\sigma_n)U_n\}$ is a Δ -demiclosed sequence.

Proof. Let $V_n = \sigma_n T \oplus (1 - \sigma_n)U_n$ for every $n \in \mathbb{N}$. Let $p \in \bigcap_{n=1}^{\infty} F(V_n)$, $\{x_n\} \subset X$, and $z \in X$ such that $\lim_{n \to \infty} d(V_n x_n, x_n) = 0$ and suppose that $\{x_n\}$ is Δ -convergent to z. Then

$$\cos d(V_n x_n, p) \cos(ad(Tx_n, U_n x_n)) \ge \cos d(x_n, p)$$

and thus

$$\begin{split} 1 & \geq \cos(ad(Tx_n, U_n x_n)) \geq \frac{\cos d(x_n, p)}{\cos d(V_n x_n, p)} \\ & \geq \frac{\cos(d(x_n, V_n x_n) + d(V_n x_n, p))}{\cos d(V_n x_n, p)} \rightarrow 1. \end{split}$$

Hence $\lim_{n\to\infty} d(Tx_n, U_nx_n) = 0$. Thus we have

$$d(Tx_n, V_n x_n) = (1 - \sigma_n) d(Tx_n, U_n x_n)$$

$$\leq (1 - a) d(Tx_n, U_n x_n) \to 0.$$

Since T is a Δ -demiclosed mapping, we have Tz = z. Similarly,

$$d(U_n x_n, V_n x_n) = \sigma_n d(U_n x_n, U_n x_n)$$

$$\leq (1 - a) d(T x_n, U_n x_n) \to 0.$$

Since $\{U_n\}$ is a Δ -demiclosed sequence, we have $U_nz=z$. Hence $V_nz=z$. This completes the proof.

Corollary 2.8. Let X be a complete CAT(1) space such that $d(v,v') < \pi/2$ for every $v,v' \in X$. Let $C_k \subset X$ be a closed π -convex subset for every $k=0,1,\ldots,N$ such that $\bigcap_{k=0}^N C_k \neq \emptyset$. Let P_{C_k} be a metric projection from X onto C_k for every $k=0,1,\ldots,N$. For a given real number $a \in]0,\frac{1}{2}]$, let $\{\sigma_n^l\} \subset [a,1-a]$ for every $l=0,1,\ldots,N-1$. Define $\{U_n^l\} \subset X$ by $U_n^N = P_{C_N}$ and $U_n^l = \sigma_n^l P_{C_l} \oplus (1-\sigma_n^l) U_n^{l+1}$ for every $l=0,1,\ldots,N-1$. Then $\{U_n^0\}$ is a Δ -demiclosed sequence.

Now we shall prove our main result showing the convergence property of the iterative sequence generated by metric projections.

Theorem 2.9. Let X be a complete CAT(1) space such that $d(v,v') < \pi/2$ for every $v,v' \in X$. Let $C_k \subset X$ be a closed π -convex subset for every $k=0,1,\ldots,N$ such that $\bigcap_{k=0}^N C_k \neq \emptyset$. Let P_{C_k} be a metric projection from X onto C_k for every $k=0,1,\ldots,N$. For a given real number $a \in]0,\frac{1}{2}]$, let $\{\sigma_n^l\} \subset [a,1-a]$ for every $l=0,1,\ldots,N-1$. Define $\{U_n^l\} \subset X$ by $U_n^N=P_{C_N}$ and $U_n^l=\sigma_n^lP_{C_l} \oplus (1-\sigma_n^l)U_n^{l+1}$ for every $l=0,1,\ldots,N-1$. Let $\{\alpha_n\}$ be a real sequence in [0,1[such

that $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=0}^{\infty} \alpha_n = \infty$. For given points $u, x_0 \in X$, let $\{x_n\}$ be the sequence in X generated by

$$x_{n+1} = \alpha_n u \oplus (1 - \alpha_n) U_n^0 x_n$$

for $n \in \mathbb{N}$. Suppose that one of the following conditions holds:

- (a) $\sup_{v,v'\in X} d(v,v') < \pi/2$;
- (b) $d(u, P_{\bigcap_{k=0}^{N} C_k} u) < \pi/4$ and $d(u, P_{\bigcap_{k=0}^{N} C_k} u) + d(x_0, P_{\bigcap_{k=0}^{N} C_k} u) < \pi/2;$ (c) $\sum_{n=0}^{\infty} \alpha_n^2 = \infty$.

Then $\{x_n\}$ converges to $P_{\bigcap_{k=0}^N C_k}u$.

We employ the technique proposed in [6] for the proof of this theorem. For the sake of completeness, we shall show the whole proof.

$$\begin{split} \textit{Proof. Let } p &= P_{\bigcap_{k=0}^{N} C_k} u \text{ and let} \\ s_n &= 1 - \cos d(x_n, p), \\ t_n &= 1 - \frac{\cos d(u, p)}{\sin d(u, U_n^0 x_n) \tan(\frac{\alpha_n}{2} d(u, U_n^0 x_n)) + \cos d(u, U_n^0 x_n)}, \\ \beta_n &= \begin{cases} 1 - \frac{\sin((1 - \alpha_n) d(u, U_n^0 x_n))}{\sin d(u, U_n^0 x_n)} & (u \neq U_n^0 x_n), \\ \alpha_n & (u = U_n^0 x_n) \end{cases} \end{split}$$

for $n \in \mathbb{N}$. Since U_n^0 is a quasinonexpansive mapping, it follows from Lemma 1.1 that

$$s_{n+1} \le (1 - \beta_n)(1 - \cos d(U_n^0 x_n, p)) + \beta_n t_n \le (1 - \beta_n)s_n + \beta_n t_n$$

for $n \in \mathbb{N}$. We have

$$\cos d(x_{n+1}, p) = \cos d(\alpha_n u \oplus (1 - \alpha_n) U_n^0 x_n, p)$$

$$\geq \alpha_n \cos d(u, p) + (1 - \alpha_n) \cos d(U_n^0 x_n, p)$$

$$\geq \alpha_n \cos d(u, p) + (1 - \alpha_n) \cos d(x_n, p)$$

$$\geq \min \{\cos d(u, p), \cos d(x_n, p)\}$$

for $n \in \mathbb{N}$. So we have

$$\cos d(x_n, p) \ge \min\{\cos d(u, p), \cos d(x_0, p)\} = \cos \max\{d(u, p), d(x_0, p)\} > 0$$

for $n \in \mathbb{N}$. Hence $\sup_{n \in \mathbb{N}} d(x_n, p) \leq \max\{d(u, p), d(x_0, p)\} < \pi/2$. Next, we will show each of the conditions (a),(b) and (c) implies that $\sum_{n=0}^{\infty} \beta_n = \infty$. For the conditions (a) and (b), let $M = \sup_{n \in \mathbb{N}} d(u, U_n^0 x_n)$. Thus we will show M < 0 $\pi/2$. In the case of (a), it is obvious. In the case of (b), since $\sup_{n\in\mathbb{N}} d(x_n,p) \leq$ $\max\{d(u,p),d(x_0,p)\}\$, we have

$$M \le \sup_{n \in \mathbb{N}} (d(u, p) + d(U_n^0 x_n, p))$$

$$\le \sup_{n \in \mathbb{N}} (d(u, p) + d(x_n, p))$$

$$\le \max\{2d(u, p), d(u, p) + d(x_0, p)\} < \pi/2.$$

Since $\sum_{n=0}^{\infty} \alpha_n = \infty$, each of the conditions (a) and (b) implies that $\sum_{n=0}^{\infty} \beta_n = \infty$. In the case of (c), we have

$$\beta_n \ge 1 - \sin\frac{(1 - \alpha_n)\pi}{2} = 1 - \cos\frac{\alpha_n}{2} \ge \frac{\alpha_n^2 \pi^2}{16}$$

for $n \in \mathbb{N}$. Hence the condition (c) also implies that $\sum_{n=0}^{\infty} \beta_n = \infty$. For $\{s_{n_i}\} \subset \{s_n\}$ such that $\liminf_{i \to \infty} (s_{n_i+1} - s_{n_i}) \geq 0$, we have

$$0 \leq \liminf_{i \to \infty} (s_{n_{i}+1} - s_{n_{i}})$$

$$= \liminf_{i \to \infty} (\cos d(x_{n_{i}}, p) - \cos d(x_{n_{i}+1}, p))$$

$$\leq \liminf_{i \to \infty} (\cos d(x_{n_{i}}, p) - (\alpha_{n_{i}} \cos d(u, p) + (1 - \alpha_{n_{i}}) \cos d(U_{n_{i}}^{0} x_{n_{i}}, p)))$$

$$= \liminf_{i \to \infty} (\cos d(x_{n_{i}}, p) - \cos d(U_{n_{i}}^{0} x_{n_{i}}, p))$$

$$\leq \limsup_{i \to \infty} (\cos d(x_{n_{i}}, p) - \cos d(U_{n_{i}}^{0} x_{n_{i}}, p)) \leq 0.$$

Hence $\lim_{i\to\infty}(\cos d(x_{n_i},p)-\cos d(U_{n_i}^0x_{n_i},p))=0$. Since $\sup_{n\in\mathbb{N}}d(U_n^0x_n,p)<\pi/2$, we have $\lim_{i\to\infty}(\cos d(x_{n_i},p)/\cos d(U_{n_i}^0x_{n_i},p))=1$. Since $\{U_{n_i}^0\}$ is strongly quasinonexpansive sequence, it follows that $\lim_{i\to\infty}d(x_{n_i},U_{n_i}^0x_{n_i})=0$. Let $\{x_{n_j}\}\subset\{x_{n_i}\}$ be a Δ -convergent subsequence such that $\lim_{j\to\infty}d(u,x_{n_j})=\liminf_{i\to\infty}d(u,x_{n_i})$. Since $\{U_n^0\}$ is a Δ -demiclosed sequence and $\lim_{j\to\infty}d(x_{n_j},U_{n_j}^0x_{n_j})=0$, the Δ -limit $z\in\{x_{n_j}\}$ belongs to $\bigcap_{k=0}^N C_k$. By Lemma 1.3, we have

$$\liminf_{i \to \infty} d(u, U_{n_i} x_{n_i}) = \liminf_{i \to \infty} d(u, x_{n_i}) = \lim_{j \to \infty} d(u, x_{n_j}) \ge d(u, z) \ge d(u, p).$$

Hence

$$\limsup_{i \to \infty} t_{n_i} = \limsup_{i \to \infty} \left(1 - \frac{\cos d(u, p)}{\sin d(u, U_{n_i} x_{n_i}) \tan(\frac{\alpha_{n_i}}{2} d(u, U_{n_i} x_{n_i}) + \cos d(u, U_{n_i} x_{n_i})} \right)$$

$$= \limsup_{i \to \infty} \left(1 - \frac{\cos d(u, p)}{\cos d(u, U_{n_i} x_{n_i})} \right) \le 0.$$

From Lemma 1.2, we have $\lim_{n\to\infty} s_n = 0$. Therefore $\{x_n\}$ converges to p. This completes the proof.

References

- K. Aoyama and Y. Kimura, Strong convergence theorems for strongly nonexpansive sequences, Appl. Math. Comput. 217 (2011), 7537-7545.
- [2] R. Espínola and A. Fernández-León, CAT(k)-spaces, weak convergence and fixed points, J. Math. Anal. Appl. 353 (2009), 410-427.
- [3] B. Halpern, Fixed points of nonexpanding maps, Bull. Am. Math. Soc. 73 (1967), 957-961.
- [4] JS. He, DH. Fang, G. López and C. Li, Mann's algorithm for nonexpansive mappings in CAT(κ) spaces, Nonlinear Anal. 75 (2012), 445-452.
- [5] Y. Kimura and K. Satô, Convergence of subsets of a complete geodesic space with curvature bounded above, Nonlinear Anal. 75 (2012), 5079-5085.
- [6] Y. Kimura and K. Satô, Halpern iteration for strongly quasinonexpansive mappings on a geodesic space with curvature bounded above by one, Fixed Point Theory Appl. 2013 (2013), 14pages.
- [7] S. Saejung and P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal. 75 (2012), 742-750.
- (K. Kasahara) Department of Information Science, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan

E-mail address: 6516003k@nc.toho-u.ac.jp

(Y. Kimura) Department of Information Science, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan

E-mail address: yasunori@is.sci.toho-u.ac.jp