BRI ST Se bk £52118% 20194F 1-8

Some results on the Mobius gyrovector space
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1 Mobius gyrovector space

Definition.(Ungar [U]) Let V = (V,-) be a real inner product space with a
positive definite inner product - and let V be the open ball

Vi={a€V: |a|l <s}

for any fixed s > 0. Then the Mdbius addition @y and the Mobius scalar multi-
plication ®y\ are given by the equations
(1 + s%wb—i— s%HbH?) a+ ( - S%HaHZ) b

1+ Za-b+ llal[(|b]|?

a @Mb =
B Lllall a _
T®Ma = s tanh (r tanh T) m (if @ #0), T®M0 =0

for a,b € V,, r € R. The operations @&y, ®u in the interval (—s,s) are defined
by

0@ b a+b
M 1+s%ab

r® a = stanh (r tanh ™! g)
M s
for a,b € (—s,s), r € R.

Then, (V,, ®m, ®\) satisfies the axioms of gyrovector space.



We simply denote G ], 85 ®,®, respectively.
We use @, ®; also, if we want to indicate the parameter s.

If several kinds of operations appear in a formula simultaneously, we always give
priority by the following order (i) ordinary scalar multiplication (ii) gyroscalar
multiplication ® (iii) gyroaddition @, that is,

ri@wia; © ra@weay = {11 ®(wia1)} @ {r2®(weas)},
and parentheses are omitted in such cases.

Gyro-operations are generally not commutative, associative or distribu-
tive:

adb#bda
ad(bdec)#(adb)de
r®(a®b) #rlad®reb
t(a®b) # ta ® tb.

Proposition.(Ungar)

ad;b—a+b (s— )

r®sa—ra (s— o00).

2 On mappings between Mo6bius gyrovector spaces
corresponding to Hilbert space operators

T. Abe raised the following problem in an oral presentation [A].

Problem. What are mappings between gyrolinear spaces corresponding to linear
mappings between linear spaces 7

The author thinks that the following two results (due to the author) will not
provide any satisfactory answer to the problem above.



Theorem. Let V be a real Hilbert space with dimV > 2. If f: V; — (-1,1)
satisfies that

feoy)=f(z)o f(y)
frez) =ref(z)
for any @,y € V1, r € R, then we have f = 0.

Theorem. Let V be a real Hilbert space. If f: V — R is a continuous map and
satisfies that

flx@sy) - {f(x) @ f(y)} =0 (s = o)
fr®sz) —re,f(x) =0 (s = o0)

for any z,y € V,r € R, then there exists a unique ¢ € V such that f(z) =
x-c (x € V). The converse is also true.

Theorem.(Molndr and Virosztek, 2015) Let 8 : R? — R? be a continuous
map. We have § is an algebraic endomorphism with respect to the operation ®g,
i.e., B satisfies

Blugw) = B(u) 8 B(v) (u, v €RY)

if and only if either (i) or (ii) of the following holds:
(i) there is an orthogonal matrix O € M3(R) such that

B(v) =0Ov, veR}
(i) B(v)=0, wveR:

Theorem.(Frenkel, 2016) For n > 2, continuous endomorphisms of the Ein-
stein gyrogroup (RY,@®g) are precisely the restrictions to R} of the orthogonal
transformations of R™ and 0-map.

e An attempt to formulate a class of mappings between Mdobius gyrovec-
tor spaces that is corresponding to Hilbert space operators.

Definition. We denote by M, ,,(R) the set of all n x m matrices whose entries
are real numbers.



The ordinary operation of matrices on vectors:

a1 a2 A1 a11%1 + a12%2
Ax = =
az1 Q2 H) QA21T1 + Q222
A:xie) + zoes = (a1121 + a12%9) 1 + (@211 + ag222) fo.

For simplicity, let us assume that U and V are finite dimensional real inner
product spaces. Suppose that {e,}2, (resp. {f,}7_;) be an orthonormal basis
in U (resp. V). For an arbitrary element & € U;, we can apply the orthogonal
gyroexpansion (see [W2]) to get a unique m-tuple (ry,--- ,7y) of real numbers
such that

€ €m
T = 7‘1®1? G111 7”m®1—2—-

Then we can define a map f : U; — V; by the equation

f(x) = (auri+---+ almrm)®11; &1

o @1 (anITI + -+ anmrm)®1%~
We say that f is the induced map from the matrix A.

For any map f : U; — V; and any s > 0, we can define a map f, : U; — V, by
the equation

L@ =sf(3) @eU.). 1)

Theorem. Let U and V be two real Hilbert spaces and A € M, ,(R). If f :
(U, ®1,®1) — (Vq,®1,®,) is the induced map from the matrix A and fs is
defined by (1), then, for arbitrary @, y € U and r € R, we have

filzd,y) > Alz +y)
fs() & fi(y) = Az + Ay
fs(r®sx) — Arx
r®sfs(x) = rAx

as s — o0.

Theorem. Let U, V, W be real Hilbert spaces. Let A = (a,;) € Mpn(R), B =
(bij) € Mpn(R). Suppose that {e,}i2;, {f;}7=1, {gx}r=1 be an orthonormal basis



inU, V, W, respectively. Let f (resp. g) be the induced map from matrix A (resp.
B). Then the composed map g o f is also an induced map from the matrix BA.

Theorem. Let f be the induced map from a matrix A and f* be the induced
map from the adjoint matrix A*. Then

—f:(a:)y Ds me(y) —0 (5 - OO)

Definition. Let U, V be two real Hilbert spaces. A mapping f : U; — V; is said
to be quasi gyrolinear operator if there exists an linear operator T : U — V such
that, for any «, y € U and r € R,

fslx@sy) > T(x+vy)
fs(@) ©s fs(y) = Tx + Ty

)

)
fs(r@sxz) = Tre

)= rTx

r® fs(

as s — o0o. It might be necessary to impose some conditions on order of conver-
gence, such as o(s%), O(s%), in some contexts.

3 Some inequalities
Properties of operations @ and ® on the open interval (—1,1). For a,b,c €
(_17 1)a r,Tr1,T2 S R:

1) a®b=b®da

2) a®(bdc)=(a®b)Bc

3) 0da=a®0=a, (—a)®a=a®(—a)=0

(

(

(

4) 1®a=a
(5) (mry)@a=r® (r, ®a)
6) r@(a®b)=r®edreb
(7) (n+m)R@a=rnQae®ra.

It seems not appropriate to say “((—1,1),®,®) is a one-dimensional real linear
space”.



Theorem.(Cauchy, 1821) If z;, y, are real numbers, then

[0

T+ Tagn < (@ 22)E (0 )

Theorem. If ry,--- ,7, > 0and 0 < zy,--- ,z, < 1, then we have

1

MO @ BTa®T, < (M2 4 +12) 2R (0@ B 1,2)?

The equality holds if and only if one of the following conditions is satisfied:
(i)rj=00G=1--,n)
(i) z,=0 (j=1,---,n)

(iii) r; = ; = 0 except for precisely one j.

Theorem. Let {z,}3°, be a sequence satisfying 0 < z, < 1 (n = 1,2,---).
Then, the series 1 ® 2o ® - D x,, B --- converges in the open interval (—1,1) if

and onlly if the series Z Z, < oo in the ordinary sense.
n=1
1
n+1

1
Example. z, = 7 Thenz: @ Pz, =1-—
n

Theorem.(Cauchy, Bunyakovsky 1859, Schwarz 1885) Let V be an inner
product space. Then

[(w, o) < lullllv]] (v, v € V).

The following theorem is a CBS type inequality related to the Mobius addition
in complex inner product spaces. One can get the classical CBS inequality by
putting v = 0.

Theorem. Let V be a complex inner product space and let w € V be a fixed
element with ||w|| < 1. For any u, v € V and for any s > max{||ul||,||v||}, the
following inequality holds

[lul|* = 2Re(u, v) + [[v]|?
~ V1= ZRe(u,v) + gllulP[v]]*

1- ‘31—2<’U., w) (Uy ’LU)
The equality holds if and only if one of the following conditions is satisfied:

i) u=v

(ii) [Jw|| =1 and u = Aw,v = pw for some complex numbers A, p.



We state the following theorem for the real inner product spaces, showing rela-
tion between the Mdbius addition (subtraction) and inner product.

Theorem. Let V be a real inner product space and let w € V be a fixed element
with ||w|| < 1. For any u, v € V and for any s > max{||u||, ||v||}, the following
inequality holds

(u, w) © (v, w)| < [|uSsv]].

That is,

(u, w) — (v,w) .<\/ [ul[2 = 2(u, v) +|[v]|?

1= Z(ww)o,w)| ~ || T—2(w,0) + Z[ul2llolP

The equality holds if and only if one of the following conditions is satisfied:

(i) u=w

(ii) v = Aw and v = pw for some real numbers A, p.
Remark. If ||w|| < 1, then the CBS inequality trivially shows that

[(u, w) = (v, w)| = [{u — v, w)| < [|u—v]. (2)
On the contrary, note that generally
(u, w) B (v,w) # (u S5 v,w).

So we cannot prove Theorem as (2).
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