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We are interested in the global structure of all solutions of several nonlocal
nonlinear boundary problems arising in various fileds. We show four examples.

The first problem is related with the Oseen’s spiral flow [11].
Find a function $U(x)$ such that

(O) $\{$

$\{U_{xx}+AU-U^{2}\}_{x}=0,$ $x\in(-\pi,\pi)$ ,

$U(-\mathrm{r})$ $=U(\pi)$ , $U_{x}(-\pi)=U_{x}(\pi)$ ,

$7_{\pi}^{\pi}U(x)\mathrm{d}x=0,$

for arbitrarily fixed $A$ .
It is easily seen that $U\equiv 0$ is the trivial solution of the above problem for

any fixed $A$ . Okamoto [10] started to investigate the global bifurcation structure
of this problem. Moreover, Ikeda-Mimura-Okamoto [4] obtained the asymptotic
shape of solutions as $Aarrow-\infty$ .

Let us recall the standard notation of complete elliptic integrals:

$K(k)$ $:=$
$I_{0}^{\pi/2} \frac{\mathrm{d}\varphi}{\sqrt{1-k^{2}\sin^{2}\varphi}}$ , $k\in[0,1)$ ,

$E(k)$ $:=$ $\int_{0}’/2\sqrt{1-k^{2}\sin^{2}\varphi}\mathrm{d}\varphi$ , $k\in[0,1)$ .

Jacobi’s elliptic functions $\mathrm{s}\mathrm{n}(x, k)$ and $\mathrm{c}\mathrm{n}(x, k)$ with the modulus $k$ are defined as
foUows:

sn-1 $(z, k):=7z$ $\frac{\mathrm{d}\xi}{\sqrt{(1-\xi^{2})(1-k^{2}\xi^{2})}}$ , $z\in[0,1]$ , $k\in[0,1)$ ,

and

$\mathrm{c}\mathrm{n}^{2}(z, k)=1-\mathrm{s}\mathrm{n}^{2}(z, k)$ .

We note that

$E(0)=K(0)= \frac{\pi}{2}$ , $\mathrm{E}(\mathrm{k})=1$ , $\mathrm{K}(\mathrm{k})\sim\frac{1}{2}\log(\frac{16}{1-k^{2}})$ as $karrow 1.$
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Ikeda-KondO-OkamotO-Yotsutani [3] have parameterized all solutions $(A, U)$

of (O) in terms of the elliptic functions, and clarified the global bifurcation struc-
ture by the following Theorems 1 and 2.

Theorem 1 All the solution $(A, U)$ of (O) are parameterized by

$\{$ $(n^{2}A(k)$ , $n^{2}U(nx-x_{0};\mathrm{A}(\mathrm{k}))$ : $0<k<1$ , - $7\mathrm{i}$ $<x_{0}$ $\leq\pi$ , $n=1,2,3\cdots$ },
where

$A(k)$ $:=$ $\frac{4K(k)}{\pi^{2}}(3E(k)+(k^{2}-2)K(k))$ ,

$U(x; \mathrm{A}(\mathrm{k}) := -\frac{6k^{2}K(k)^{2}}{\pi^{2}}\mathrm{c}\mathrm{n}^{2}(\frac{K(k)}{\pi}x, k)$

$+ \frac{6K(k)}{\pi^{2}}\{E(k)-(1-k^{2})K(k)\}$ .

Theorem 2 The function $A(k)$ is strictly monotone decreasing in $k\in(0,1)$ . It
also satisfies $\lim_{karrow 0}A(k)=1$ and $\lim_{karrow 1}4(k)$ $=-\infty$ .

The second problem is related with structure of stationary solutions in 5 of
the Ginzburg-Landau equation.

Find a function $u(x)$ such that

(P) $\{$

$u_{xx}- \frac{C^{2}}{u^{3}}+$ A$(1-u^{2})u=0$ in $[-\pi, \pi]$ ,

$C:=2m \pi\{\int_{-\pi}^{\pi}\frac{1}{u^{2}}dx\}^{-1}$ ,

$u(-\pi)=u(\pi)$ , $u_{x}(-\pi)=u_{x}(\pi)$ ,

$u>0$ in $[-\pi, \pi]$ ,

where $m$ is a given integer and A is a bifurcation parameter.
The structure of solutions is similar to that of Oseen’s spiral flow, though the

analysis is more difficult. Kosugi-Morita-Yotsutani [5] have clarified the global
bifurcation structure of this problem.

We briefly explain about the original equation. Consider the following Ginzburg-
Landau equation:

$1_{xx}+\lambda(1-|\mathrm{t}\mathrm{X}|^{2})\mathrm{t}\mathrm{q}$ $=0,$ $x\in(-\pi, \pi)$ ,

$\psi(-\pi)=\psi(\pi)$ , $\psi_{x}(-\pi)=\psi_{x}(\pi)$ .



3

We here assume that $|\psi|>0$ and $\psi$ is written as the form

$\psi$ $=$ u(x) $\exp(i\theta(x))$ ,

where $u$ and $\theta$ are both real-valued smooth functions. Clearly the equation is
equivalent the following system:

$u_{xx}-(\theta_{x})^{2}u+\lambda(1-u^{2})u=0,$ $x\in$ $(・\mathrm{y}\mathrm{r}, \pi)$ ,

$(u^{2}\theta_{x})_{x}=0,$ $x\in(-\pi, \pi)$ ,

$u(-\pi)=u(\pi)$ , $u_{x}(-\pi)=u_{x}(\pi)$ ,

$\theta(\pi)$ $-$ $\theta(- \mathrm{r})$ $=2m\pi,$ $\theta_{x}(-\pi)=\theta_{x}(\pi)$ ,

where $m$ is an integer. Thus, $\theta_{x}=C/u^{2}$ for a constant $C$ and hence we obtain
(P).

The third problem is related to find the minimum energy curve for given the
length $L$ and area $M$ , which K.Watanabe [13] started to investigate.

For given $L>0$ and $M>0$ with $L^{2}-4\pi M>0,$ find a function $\mathrm{k}(\mathrm{s}|$ such
that

(E) $\{$

$\{\kappa_{ss}+$ $\mathrm{n}\kappa^{3}+\mu\kappa\}_{\epsilon}=0$ in $[0, L]$ ,

$\mu:=\frac{1}{L^{2}-4\pi M}\{M\int_{0}^{L}\kappa(s)^{3}ds-\frac{L}{2}\int_{0}^{L}\kappa(s)^{2}ds\}$ ,

$\kappa(0)=\kappa(L)$ , $\kappa_{s}(0)=\kappa_{s}(L)$ ,

$\int_{0}^{L}\kappa(s)ds$ $=2\pi.$

Mura\^i MatsumotO-Yotsutani [9] have completely clarified the global bifurca-
tion strucure of this problem, though we need terribly complicated calculations
and arguments. This result is written by Minoru Murai in this lecture note.

The final problem is a limiting equation for the Shigesada Kawasaki-Teramoto
model with cross-diffusion [12]. This problem is the hardest.

Find $(v(x), \tau)$ such that $\tau>0,$ and

(S) $\{$

$\int_{0}^{1}\frac{\tau}{v}(a_{1}-b_{1}\frac{\tau}{v}-c_{1}v)dx=0,$

$d_{2}v_{xx}+v((| \ _{2}-b_{2}\frac{\tau}{v}-c_{2}v)=0$ in $(0, 1)$ ,

$v_{x}(0)=0$ , $v_{x}(1)=0,$

$v>0$ on $[0, 1]$

where $a_{1}$ , $a_{2}$ , $b_{1}$ , $b_{2}$ , $c_{1}$ , $c_{2}$ , $d_{2}$ are given positive constants.



We briefly explain the original equation. In 1979, Kawasaki-Shigesada-Teramoto
proposed a cross-diffusion system

$\{$

$u_{t}=\{(d_{1}+\rho_{12}v)u\}_{xx}+u$ ( $a_{1}-b_{1}u-$ civ) $(0<x<1, t>0)$ ,

$v_{t}=\{(d_{2}+\rho_{21}u)v\}_{xx}+$ $\mathrm{v}$ $(a_{2}-b_{2}u-c_{2}v)(0<x< 1, t>0)$ ,

$v_{x}(0,t)=0(t>0)$ , $v_{x}(1,t)=0(t>0)$ ,

$\mathrm{v}(\mathrm{x}, 0)=u_{0}(x)\geq 0(0<x<1)$ , $v(x, \mathrm{O})=$ u0(x) $\geq 0(0<x<1)$ ,

where $a_{1}$ , $a_{2}$ , $b_{1}$ , $b_{2}$ , $c_{1}$ , $c_{2}$ , $d_{1}$ , $d_{2}$ are positive constants, $p_{12}$ and $\rho_{21}$ are nonnegative
constants, and $u_{0}(x)$ and $v_{0}(x)$ are nonnegative initial data. This is a mathe-
matical model to explain the segregation phenomena. Mathematical study of
cross- iffusion equations was begun by M. Mimura in 1980 (see, e.g., [8]). There
are various results concerning the existence of solutions to time-dependent prob-
lem (see, e.g., [1], [2] and references therein), and stationary problems. Sharp
existence and non-existence results of stationary solutions are not known.

The limiting equation (S) was discovered by Lou-Ni [6] as a limiting equa
tion when cross-diffusion effect $\rho_{12}arrow\infty$ . Actually, we see from the numeriacl
computations that solutions of (S) approximate stable stationary solutions of the
original time-dependent problem. Thus, it is important to know the structure of
solutions of (S).

Lou-Ni-Yotsutani [7] have almost clarified the existence and the shape of
solutions as follows. Let us put

$A:= \frac{a_{1}}{a_{2}}$ , $B:= \frac{b_{1}}{b_{2}}$ , $C:= \frac{c_{1}}{c_{2}}$

We concentrate on the case $B<C$ (strong competition case).

Theorem 3 (Existence) Suppose that $B<C$ . If

$\max\{0, \frac{B+C-2A}{C-B}\}\frac{a_{2}}{\pi^{2}}<d_{2}<\frac{a_{2}}{\pi^{2}}$

then there exists a solution $(v(x), \tau)$ of (S).

Theorem 4 (Nonexistence) Suppose that $B<C.$

(i) If $d_{2}$ : $\frac{a_{2}}{\pi^{2}}$ , then there exists no $sol$ ution of (S).

(ii) If $A< \frac{B+C}{2}$ , then there eists a $d_{2}^{*}=d_{2}^{*}(A, B, C, a_{2})>0$ such that
there exiists no solution of (S) for $d_{2}\in(0, d_{2}^{*}]$ .

(ii) If $A<B,$ there $e$$\dot{m}ts$ no solution of (S).



5

The following theorems give the shape of solutions.

Theorem 5 (Shape of solutions as $d_{2}arrow a_{2}/\pi^{2}$ ) Let $(v(x, d_{2}),$ $\tau(d_{2}))$ be solu-
tions of (S). If $A\geq B,$ then

$v(x;d_{2})arrow 0,$

$, \cdot\frac{v(x,d_{2})-v(0\cdot d_{2})}{v(1\cdot d_{2})-v(0\cdot d_{2})},’arrow\sin^{2}(\frac{\pi}{2}x)$ ,

$\frac{\tau(d_{2})}{v(x\cdot d_{2})},arrow\frac{a_{2}}{b_{2}}$ . $\frac{A/B+\sqrt{(A/B)^{2}-A/B}}{1+2\{A/B-1+\sqrt{(A/B)^{2}-A/B}\}\sin^{2}(\frac{\pi}{2}x)}f$

unifomly on $[0, 1]$ as $d_{2}arrow a_{2}/\pi^{2}$ .

Theorem 6 (Shape of solutions as $d_{2}arrow$p 0 for $A< \frac{B+3C}{4}$ ) Let $(v(x, d_{2})$ , $r(d_{2}))$

be solutions of (S). If $A< \frac{B+3C}{4}$ and $B\neq C_{f}$ then

$v(x;d_{2})$
.

$b_{2}$ $1+2 \{A/B-1+\sqrt{(A/B)^{2}-A/B}\}\sin^{2}(\frac{\pi}{2}x)$
’

unifomly on $[0, 1]$ as $d_{2}arrow a_{2}/\pi^{2}$ .

Theorem 6(Shape of solutions as $d_{2}arrow 0$ for $A< \frac{B+3C}{4}$ ) Let $(v(x, d_{2}),$ $\tau(d_{2}))$

be solutions of (S). If $A< \frac{B+3C}{\Delta}$ and $B\neq C_{f}$ then

$v(0;d_{2}) arrow 2\cdot\frac{a_{2}}{c_{2}}$ . $\frac{\frac{B+3C}{4}-A}{C-B}f$ $v(x; d_{2})$
$arrow\frac{a_{2}}{c_{2}}$ . $\frac{A-B}{C-B}$ for $x>0_{f}$

$\frac{\tau(d_{2})}{v(0,d_{2})}..arrow\frac{a_{2}}{2c_{2}}\cdot\frac{C-A}{C-B}\cdot\frac{A-B}{\frac{B+3C}{4}-A}$, $\frac{\tau(d_{2})}{v(x,d_{2})}.arrow\frac{a_{2}}{b_{2}}$ . $\frac{C-A}{C-B}$ for $x>0,$

as $d_{2}arrow 0.$

Theorem 7 (Shape of solutions as $d_{2}arrow \mathrm{O}$ for $A \geq\frac{B+3C}{4}$ ) Let $(v(x, d_{2})$ , $\tau(d_{2}))$

be solutions of (S). If $B<C$ and $A \geq\frac{B+3C}{4}$ , then

$v(0;d_{2})arrow 0,$ $\mathrm{v}(\mathrm{x};/_{2})$ $arrow\frac{3a_{2}}{4c_{2}}$ for $x>0,$

$\frac{\tau(d_{2})}{v(0,d_{2})}.arrow\infty$ , $\frac{\tau(d_{2})}{v(x,d_{2})}.arrow\frac{a_{2}}{4c_{2}}$ for $x>0,$

as $d_{2}arrow 0.$

Now, We will discuss about the uniqueness and non-uniquess. The following
result is a part of joint projects with W.-M. Ni.

Theorem 8. Suppose that $B<$ C. If $d_{2}$ is sufficiently smdl, the solution
$(v(x), \tau)$ is unique for any given $A$ .

$\frac{\tau(d_{2})}{v(0,d_{2})}.arrow\infty$, $\frac{\tau(d_{2})}{v(x,d_{2})}.arrow\frac{a_{2}}{4c_{2}}$ for $x>0,$

as $d_{2}arrow 0.$

Now, We will discuss about the uniqueness and non-uniquess. The following
result is apart of joint projects with W.-M. Ni.

Theorem 8. Suppose that $B<$ C. If $d_{2}$ is sufficiently smdl, the solution
$(v(x), \tau)$ is unique for any given $A$ .



Idea of a proof of Theorem 8. All solutions $(v(x), \tau)$ of

$\{$

$d_{2}v_{xx}+v(a_{2}-b_{2} \frac{\tau}{v}-c_{2}v)=0$ in $(0, 1)$ ,

$v_{x}(0)=0,$ $v_{x}(1)=0,$

. $v>0$ on $[0, 1]$

are represented by one paramer $\mathrm{k}$ . We denote it by $(v(x;k, d_{2})$ , $\tau(k, d_{2}))$ . Rewrite

$\int_{0}^{1}\frac{1}{v}(a_{1}-b_{1}\frac{\tau}{v}-c_{1}v)dx=0$

are represented by one paramer $\mathrm{k}$ . We denote it by $(v(x;k, d_{2})$ , $\tau(k, d_{2}))$ . Rewrite

$\int_{0}^{1}\frac{1}{v}(a_{1}-b_{1}\frac{\tau}{v}-c_{1}v)dx=0$

as

$\frac{b_{1}\tau\int_{0}^{1}\frac{1}{v^{2}}dx+c_{1}}{\int_{0}^{1}\frac{1}{v}dx}=a_{1}$ .

We put the left hand side by $\check{a}_{1}(k, d_{2})$ . For given $a_{1}$ and sufficiently small $d_{2}$ , we
show that there exists the unique solution $k$ of $\mathrm{a}\mathrm{i}(\mathrm{k}, d_{2})=a_{1}$ by using Theorems
6 and 7.

Theorem 9. Suppose that $C>$ 7B/3. There exists an open set $D$ such that (S)
has at least two solutions $(v(x), \tau)$ for $d_{2}\in D.$

Idea of a proof of Theorem 9. We investigate the fuction $\mathrm{a}\mathrm{i}(\mathrm{k}, d_{2})$ . We see
that Taylor expansion with respect to $k$ at $k=0$ of $\check{a}_{1}$ (Jc, $d_{2}$ ) becomes

$\mathrm{a}\mathrm{i}(\mathrm{k}, d_{2})=$ c\sigma nstant+ $\{(13\frac{C}{B}+35)\mathrm{z}\mathrm{r}^{4}/_{2}^{2}-$ $14$ $( \frac{C}{B}-1)$ $\mathrm{r}^{2}d_{2}+\frac{C}{B}-1\}k^{4}.+\cdots$

The coefficient of $k^{4}\wedge$ becomes negative for some $d_{2}$ , if $C/B$ $>7/3.$ This implies
the non-uniqueness of the solutions.

It seems that the following conjecture holds in view of the above theorems
and the numerical computation.

Conjecture 1: Suppose that $B<C.$ For any $d_{2}$ with

$\max\{0, \frac{B+C-2A}{C-B}\}\frac{a_{2}}{\pi^{2}}<d2$ $< \frac{a_{2}}{\pi^{2}}$ ,

there exists the unique solution $(v(x),\tau)$ of (S).

Conjecture 2: Suppose that $B$ $<C\leq$ 7B/3. (S) has a solution ( $\mathrm{v}(\mathrm{x})$ , if and
only if $d_{2}$ satisfies

$\max\{0, \frac{B+C-2A}{C-B}\}\frac{a_{2}}{\pi^{2}}<d_{2}<\frac{a_{2}}{\pi^{2}}$ .



Moreover, the solution is unique.

Conjecture 3: Suppose that $C>$ 75/3. There exists the only one connected
non-empty open set $D$ such that (S) has exactly two solutions $(v(x), \tau)$ if and
only if $d_{2}\in D.$
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