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1 Introduction

The semi-classical Rabi model was originally defined by Isidor Isaac Rabi in 1936 [13]
to describe the effect of a rapidly varying weak magnetic field on an oriented atom
possessing nuclear spin. The fully quantized version, known now as the the quantum
Rabi model (QRM), was introduced by Jaynes and Cummings in 1963 [6]. The QRM
describes the simplest interaction between a two-level atom and a light field, making
it one of the basic models of quantum optics.

Let ‘H be a Hilbert space satisfying the hypothesis of the Stone-von Neumann the-
orem, with raising and lowering operators a' and a, respectively. Then, the QRM is
the model with Hamiltonian acting on H @ C? given by

Hgapi = wa'a + g(a+ a')o, + Ao,

where o0,, 0, are the Pauli matrices
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w > 0 is the classical frequency of light field (modeled by a quantum harmonic os-
cillator), 2A > 0 is the energy difference of the two-level system and g > 0 is the
interaction strength between the two systems.

It is not difficult to verify that Hgap; is self-adjoint and that its spectrum consist
only of the (discrete) set of eigenvalues (see e.g. Prop. 2.1-2.3 of [15]). In Figure 1, for
A = 1, we show the plot of the spectral curves of the QRM, obtained by considering
the eigenvalues as functions of the parameter g > 0. The apparent crossings on the
plots actually correspond to multiplicity two degeneracies in the spectrum of QRM.

An important feature of the QRM is the presence of a Z/2Z-symmetry. This sym-
metry amounts to the existence of the parity operator II = —o,(—1)'? satisfying
[IT, Hrani] = 0 and having eigenvalues p = 1 (c.f. [12]). The presence of this symme-
try allows one to write

Hpani = Hipn © H_p,









The non-degeneracy of regular solution was proved in [2], along with the non-
Juddian solutions for the case € ¢ %Z.

In Section 3 we given an overview of the proof of the existence of degeneracy of
Juddian solutions for the case € € %Z and in Section 4 we describe the conditions for
the existence of non-Juddian solutions.

3 Juddian solutions: constraint polynomials

The presence of a Juddian eigenvalue A = N 4+ ¢ — ¢ (N € N) in the spectrum of
Hg,,; for parameters A, g > 0 is equivalent (cf. [10, 16]) to the existence of solution
of the polynomial equation

P ((29)%, A%) = 0. (5)

The polynomial P&N’E)(m,y) is known as constraint polynomial and equation (5) is
the constraint relation for the Juddian eigenvalue A\ = N £ ¢ — g?. The constraint
polynomial P]E[N’E)(x, y) is the N-th member of a family of polynomials defined by a
recurrence relation.

Definition 3.1. Let N € Z>,. The polynomials Pk(N’E)(J:,y) of degree k are defined
recursively by

7 ) =1,
Pl(N’E)</I’.7?/) =T+ y— 1 - 285
PN y) = (kx +y — k(k + 22)) PN (2. y) — k(k — 1)(N — k + )P (2, 9).

For brevity, we set ¢\” = k(k + 2¢) and My = k(k — 1)(N — k +1).

A necessary condition for two exceptional eigenvalues Ay = N +¢& — g% and )\, =
M — e — g* with N, M € Z>o and N # M, to be equal is that
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that is, ¢ must be half-integer. In terms of constraint polynomials, this is equivalent
to the simultaneous satisfaction of the two constraint relations

N,/2 N+L,—0/2
P ((29)2, 0%) = 0 = PO ((29)% A2), (6)

where N € Z>¢ and ¢ > 0.
Following this argumentation, Masato Wakayama conjectured in [16] that the rela-
tion
N+£,—£/2 N,t/2
P () = A ) PV (), (7)

holds for N,¢ € Zs, and that the polynomials A% (z,y) have no positive roots for
z,y > 0.

The divisibility condition (7) and the positivity of the factor A% (x,y) are illus-
trated in Figure 3 where the curves described by the zeros of constraint polynomials






