<table>
<thead>
<tr>
<th>Title</th>
<th>Blow-up profile for a nonlinear heat equation with the Neumann boundary condition (Evolution Equations and Asymptotic Analysis of Solutions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ishige, Kazuhiro; Mizoguchi, Noriko; Yagisita, Hiroki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2004), 1358: 110-116</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25223</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Blow-up profile for a nonlinear heat equation with the Neumann boundary condition

K. Ishige, N. Mizoguchi and H. Yagisita

October 18, 2003

This paper is concerned with the nonlinear diffusion equation

\[
\begin{cases}
 u_t = \Delta u + u^p & \text{in } \Omega \times (0,T), \\
 \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega \times (0,T), \\
 u(x,0) = u_0(x) & x \in \bar{\Omega},
\end{cases}
\]

where \(\Omega \) is a bounded smooth domain in \(\mathbb{R}^N \), \(\nu \) is the unit outward normal vector on \(\partial \Omega \), \(p > 1 \) is a constant and \(u_0 \in L^\infty(\Omega) \) is a nonnegative function with \(||u_0||_\infty \neq 0 \). For the solution \(u(x,t) \) of the nonlinear diffusion equation, the blow-up time \(T \) is defined by

\[T = \sup\{ \tau > 0 \mid u(x,t) \text{ is bounded in } \bar{\Omega} \times (0,\tau) \}. \]

Then, \(0 < T < +\infty \) and \(\lim_{t \to T} ||u(x,t)||_{C(\bar{\Omega})} = +\infty \) hold. The blow-up set of the solution \(u(x,t) \) is defined as the set

\[\{ x \in \bar{\Omega} \mid \text{there is a sequence } (x_n, t_n) \text{ in } \bar{\Omega} \times (0,T) \text{ such that } \]

\[(x_n, t_n) \to (x, T) \text{ and } u(x_n, t_n) \to +\infty \text{ as } n \to \infty \}. \]

This set is a nonempty closed set in \(\bar{\Omega} \). From standard parabolic estimates, we can obtain the blow-up profile, which is a continuous function defined by

\[u_*(x) = \lim_{t \to T} u(x,t) \]

outside the blow-up set.

*柳下浩紀（東京理科大学理工学部数学科・嘱託助手）
The blow-up problem has been studied by many authors since the pioneering work due to Fujita [13]. There are a number of results for the nature of the blow-up set. For the Cauchy problem with \((N-2)p < N + 2\), Velázquez [34] showed that the \((N-1)\)-dimensional Hausdorff measure of the blow-up set is bounded in compact sets of \(\mathbb{R}^N\) whenever the solution is not the constant blow-up one \((p-1)^{-\frac{1}{p-1}}(T-t)^{-\frac{1}{p-1}}\). For the Cauchy problem or the Cauchy-Dirichlet problem in a convex domain with \((N-2)p < N + 2\), Merle and Zaag [25] showed that for any finite set \(D \subset \Omega\), there exists \(u_0\) such that the blow-up set is \(D\) (See also [1] and [3]). For the Cauchy problem with \(N = 1\), Herrero and Velázquez [17] showed that for any point \(\bar{x}\) in the blow-up set of a solution \(\bar{u}\) and \(\varepsilon > 0\), there exists \(u_0\) with \(\|u_0 - \bar{u}_0\|_C \leq \varepsilon\) such that the blow-up set of \(u\) consists of a single point \(x\) with \(|x - \bar{x}| \leq \varepsilon\).

For the Cauchy-Dirichlet problem in an ellipsoid centred at the origin with \((N-2)p < N\), Filippas and Merle [10] showed that if the blow-up time is large, then the blow-up set consists of a single point near the origin. Also, for the Cauchy or Cauchy-Dirichlet problem with \((N-2)p < N + 2\), the second author [27] showed the following. For any nonnegative function \(\phi \in C(\overline{\Omega})\) and \(\delta > 0\), if \(\varepsilon > 0\) is small, then any point \(x\) in the blow-up set satisfies \(\phi(x) \geq \max_y \phi(y) - \delta\) for \(u_0 = \varepsilon^{-1}\phi\). For the Cauchy-Neumann problem, the first author [18] showed the following. Suppose that \(\Omega = (0, \pi) \times \Omega_0\) is a cylindrical domain with a bounded smooth domain \(\Omega_0\) in \(\mathbb{R}^{N-1}\) and that a nonnegative function \(\phi \in L^\infty(\Omega)\) satisfies \(\int_\Omega \phi(x_1, x_2, \cdots, x_N) \cos x_1 dx > 0\). If \(\varepsilon > 0\) is small, then the blow-up set is contained in the base plane \(\{0\} \times \tilde{\Omega}_0\) for \(u_0 = \varepsilon\phi\). Recently, for the Cauchy-Neumann problem with \((N-2)p < N + 2\), the first and second authors [20] obtained the following. Let \(P\) be the orthogonal projection in \(L^2(\Omega)\) onto the eigenspace corresponding to the second eigenvalue of the Laplace operator with the Neumann condition. For any nonnegative function \(\phi \in L^\infty(\Omega)\) and neighborhood \(W\) of \(\{x \in \tilde{\Omega} \mid (P\phi)(x) = \max_{y \in \Omega}(P\phi)(y)\} \cup \partial \Omega\), if \(\varepsilon > 0\) is small, then the blow-up set is contained in \(W\) for \(u_0 = \varepsilon\phi\). See, e.g., the references in this paper for related results or other studies on blow-up formation in \(u_t = \Delta u + u^p\).
In this paper, we study the blow-up profile.

For large initial data $u_0^\epsilon = \epsilon^{-1}\phi$, we have the following.

Theorem 1 ([35]) Let $\phi \in C^2(\bar{\Omega})$ be a positive function satisfying $\frac{\partial \phi}{\partial \nu} = 0$ on $\partial \Omega$, and let $\delta > 0$ be a constant. Then, there exists $\epsilon_0 > 0$ such that for any $\epsilon \in (0, \epsilon_0]$, the blow-up set of the solution u^ϵ with the initial data $u_0^\epsilon = \epsilon^{-1}\phi$ is contained in the set $S := \{x \in \bar{\Omega} | \phi(x) \geq \max_{y \in \Omega} \phi(y) - \delta\}$ and the blow-up profile u_*^ϵ satisfies the inequality

$$\left\| \epsilon u_*^\epsilon(x) - \left(\phi(x)^{-(p-1)} - (\max_{y \in \Omega} \phi(y))^{-(p-1)} \right)^{-\frac{1}{p-1}} \right\|_{C(\bar{\Omega} \setminus S)} \leq \delta.$$

Theorems 2 and 3 are instability results for constant blow-up solutions.

Theorem 2 ([36]) Let $f \in C(\bar{\Omega})$ be a positive function, and let δ and T_0 be positive constants. Then, there exist C and $\epsilon_0 > 0$ satisfying the following: For any $\epsilon \in (0, \epsilon_0]$, there exists $u_0^\epsilon \in C^2(\bar{\Omega})$ satisfying $\frac{\partial u_0^\epsilon}{\partial \nu} = 0$ on $\partial \Omega$ and

$$\left\| u_0^\epsilon(x) - (p-1)^{-\frac{1}{p-1}} T_0^{-\frac{1}{p-1}} \right\|_{C^2(\bar{\Omega})} \leq C \epsilon^{p-1}$$

such that the blow-up time of the solution u^ϵ with initial data $u^\epsilon(x,0) = u_0^\epsilon(x)$ is larger than T_0 and the inequality

$$\left\| \epsilon u^\epsilon(x,T_0) - f(x) \right\|_{C(\bar{\Omega})} \leq \delta$$

holds.

Theorem 3 ([36]) Let $f \in C^2(\bar{\Omega})$ be a positive function satisfying $\frac{\partial f}{\partial \nu} = 0$ on $\partial \Omega$, and let δ and c be positive constants. Then, there exist C and $\epsilon_0 > 0$ satisfying the following: For any $\epsilon \in (0, \epsilon_0]$, there exists $u_0^\epsilon \in C^2(\bar{\Omega})$ with $\frac{\partial u_0^\epsilon}{\partial \nu} = 0$ on $\partial \Omega$ and $\| u_0^\epsilon - c \|_{C^2(\bar{\Omega})} \leq C \epsilon^{p-1}$ such that the blow-up set of the solution u^ϵ with the initial data u_0^ϵ is contained in the set $S := \{x \in \bar{\Omega} | f(x) \geq \max_{y \in \Omega} f(y) - \delta\}$ and the blow-up profile u_*^ϵ satisfies the inequality

$$\left\| \epsilon u_*^\epsilon(x) - \left(f(x)^{-(p-1)} - (\max_{y \in \Omega} f(y))^{-(p-1)} \right)^{-\frac{1}{p-1}} \right\|_{C(\bar{\Omega} \setminus S)} \leq \delta.$$
Let \(\lambda_i \) be the \(i \)-th eigenvalue of \(-\Delta \varphi = \lambda \varphi \) with the Neumann boundary condition \(\frac{\partial \varphi}{\partial \nu} = 0 \), where \(0 = \lambda_1 < \lambda_2 < \lambda_3 < \cdots \). We denote the orthogonal projection in \(L^2(\Omega) \) onto the eigenspace \(X_i \) corresponding to the \(i \)-th eigenvalue by \(P_i \). Here, we remark that \(P_1 \phi = \frac{1}{|\Omega|} \int_{\Omega} \phi \, dx \) is a constant.

For small initial data \(u_0^\varepsilon = \varepsilon \phi \), the first and second authors already showed Propositions 4 and 5 below.

Proposition 4 ([20]) Let \(\phi \in L^\infty(\Omega) \) be a nonnegative function with \(\|\phi\|_\infty \neq 0 \). Then, there exist a constant \(\varepsilon_0 > 0 \) and a family \(\{(t^\varepsilon, \delta^\varepsilon)\}_{\varepsilon \in (0, \varepsilon_0]} \subset \mathbb{R}^2 \) such that the solution \(u^\varepsilon \) with the initial data \(u_0^\varepsilon = \varepsilon \phi \) and its blow-up time \(T^\varepsilon \) satisfy
\[
\lim_{\varepsilon \to +0} t^\varepsilon = 1, \quad \lim_{\varepsilon \to +0} \varepsilon^{p-1} T' = (p-1)^{-1}(P_1 \phi)^{-(p-1)}, \quad \lim_{\varepsilon \to +0} \varepsilon^{p-1} e^{\lambda_2 T^\varepsilon} \delta^\varepsilon = (p-1)^{-1}(P_1 \phi)^{-p}
\]
and
\[
\lim_{\varepsilon \to +0} \left\| \frac{t^\varepsilon}{\delta^\varepsilon} \left(1 - (p-1)\frac{1}{p-1} t^\varepsilon \frac{1}{p-1} u^\varepsilon(x, T^\varepsilon - 1) \right) \right\|_{L^\infty(\Omega)} = 0.
\]

Proposition 5 ([19]) Let \(\phi \in L^\infty(\Omega) \) be a nonnegative function with \(\|\phi\|_\infty \neq 0 \). Then, there exist \(C \) and \(\varepsilon_0 > 0 \) such that for any \(\varepsilon \in (0, \varepsilon_0] \), the solution \(u^\varepsilon \) with the initial data \(u_0^\varepsilon = \varepsilon \phi \) and its blow-up time \(T^\varepsilon \) satisfy
\[
u^\varepsilon(x, t) \leq C(T^\varepsilon - t)^{-\frac{1}{p-1}} \text{ for all } (x, t) \in \overline{\Omega} \times [T^\varepsilon - 1, T^\varepsilon).
\]

We obtain the following as a corollary of the propositions above.

Theorem 6 ([21]) Let \(\phi \in L^\infty(\Omega) \) be a nonnegative function with \(\|\phi\|_\infty \neq 0 \), and let \(\delta > 0 \) be a constant. Then, there exist \(\varepsilon_0 > 0 \) such that for any \(\varepsilon \in (0, \varepsilon_0] \), the blow-up set of the solution \(u^\varepsilon \) with the initial data \(u_0^\varepsilon = \varepsilon \phi \) is contained in the set \(S := \{ x \in \overline{\Omega} | (P_2 \phi)(x) \geq \max_{y \in \overline{\Omega}} (P_2 \phi)(y) - \delta \} \). Further, the blow-up time \(T^\varepsilon \) and the blow-up profile \(u_*^\varepsilon \) satisfy the inequality
\[
\left| \varepsilon^{p-1} T^\varepsilon - (p-1)^{-1}(P_1 \phi)^{-(p-1)} \right| + \left\| e^{-\frac{\lambda_2 T^\varepsilon}{p-1}} u_*^\varepsilon(x) - \left((\max_{y \in \Omega} (P_2 \phi)(y)) - (P_2 \phi)(x) \right)^{-\frac{1}{p-1}} \right\|_{C(\overline{\Omega} \setminus S)} \leq \delta.
\]
REFERENCES

[27] N. Mizoguchi, Location of blowup points of solutions for a semilinear parabolic equation, preprint.

Hiroki YAGISITA
Department of Mathematics, Faculty of Science and Technology,
Tokyo University of Science, Noda 278-8510, Japan.