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1. INTRODUCTION

This is a joint work with Naoto Tanaka (Fukuoka University) and Atsusi Tani (Keio Univer-
sity). We consider following system of equations which was proposed by Eguchi-Oki-Matsumura

([7D):

( Ou 2 -
5t—=A(——Au+2u+u'u ), (fL‘,t) EQT‘_—QX (O,T),
o _ 2 _ .2 22
(L1) A== BAv + av(a® — u® — b*v®), (z,1t) € Qr,
Ou OAu ov _
E‘IL_—W_O’ 57';-——0, (IB,t)EFQ:‘:I‘X(O,T),
\ U(.'L',O) = ’U,()(m), ’U({E,O) = ’Ug(.’L‘), z €1,

where © is a bounded domain in R3 with smooth boundary 8Q =T and T > 0. Here u(z, ) is
the local concentration of the solute atoms, v(z,t) is the local degree of order, respectively. a,

B, a, b are positive constants and — is exterior normal derivative to I'.

It is well known that phase sepa.raf,btion is described by so-called Cahn-Hilliard equation which
is fourth order parabolic type [5], while the order-disorder transition is described by Allen-Cahn
equation [1]. The system (1.1} is a model of simultaneous order-disorder and phase separation
in binary alleys. T. Eguchi, K. Oki and S. Matsumura derived the system (1.1) assuming that
the order-disorder transformation is second order and that phase separation can not take place
in the disorder state, but can in the ordered state.

In our previous work [11], it was proved that there exist a unique local and global solution
to problem (1.1). Many authors studied the dynamics of equations describing phase transition
(for example, [2], [3], [4], [10], [12]). In this talk we show the existence of a maximal attractor
and of an inertial set to problem (1.1). The main theorems are as follows:

Theorem 1. Let Hy={(u,v)€ (H()) x L*(); Klﬂ(u,l) =1}. For any § > 0, the semigroup
S5(t) associated with problem (1.1) posesses in Hs =) \5<s Hu a mazimal attractor As that is
connected. -

Theorem 2. Let B; be the absobing set in (H(Q)) x L*() and X5=Us>4,S(t)Bs. Then there
exists an inertial set M5 for (S(t)t>0,Xs) which has fractal dimension.

2. PRELIMINARIES

We shall summarize the results of [11]. First of all the existence theorem is as follows:



139

Theorem 3. For any (up,vg) € (H*())? satisfying the compatibility conditions %’fl‘l = 8’; =0

problem (1.1) has a unique local solution (u,v) defined on Qp« for some T' € (0,T) such that
ue H4 (Qp)NC(0,T'; HA(Q)),

' ve L0, T H3(Q) n HY(0, T ; L*(Q)) N C(0, T ; H*()).

Here H4! (Qr) = H! (0, T; L*(Q)) N L? (0, T; H*()) .

Theorem 4. Under the same assumptions of Theorem 3, problem (1.1) admits a unique global
solution (u,v) on Qr for any T > 0.

(2.1)

Problem (1.1) is a gradient flow and it has the Lyapunov functional

1 a2 , B 1454
(2.2) J(u,v) =/(—[Vu|2 IV 1> - v + —v +u? + Zuv?)dz,
02 1 )

which satisfies
d
(2.3 FIw o)+ [ (VK@ + p?)ds
dt 0
where K (u,v) = —Au + 2u + uv?. From (2.3), we have
Lemma 5. If (u,v) satisfies problem (1.1), then
1 b?
IVl + il + 2190l 4+ 2 ol + uol?
¢ 4
+/ da/ |VK (u,v)(s)]* + —1-|vt(.9)|2) dz < J(ug,vo) + a—|Q|.
0 [9) o4 2b?

Moreover we can obtain the boundedness of the norm ||v(t){|ze.

(2.4)

Lemma 6. The estimate

(25) sup [o(0um < C'max { oll=, sup (o)l
>0 1>0

is valid for the solution (u,v) to problem (1.1).

3. THE MAXIMAL ATTRACTOR

Let H=(H'(Q))' x L*(2). We define semigroup S(t) associated to problem (1.1) by (u(t), v(t))=
S(t)(ug,vg). Theorems 3 and 4 yield that (u,v)=8(-)(ug,v0) € C(0,00; H), and that the map-
ping (uo,vo)-+ (u,v) is a continuous operator from H to H. For u € (H'(Q))' let Nu be the
solution of boundary value problem

-AYy=u—-1a, €,

/ «/)(x

s = [ IVoPds + 01z
To apply theorem I1.1.1 in [13], it is necessary to show

and put

Theorem 7. For anyd > 0, there exist absorbing sets in Hg and in (H2(Q))>NH; for semigroup
S(t) associated to problem (1.1).
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Proof of Theorem 7. We first consider the existence of an absorbing set in H;. Multiplying
the equation for u by v and the equation for v by v and integrating by parts respectively, we
get

g | 2u? o | 20a? 2 2
(HUH 1+ b2l|’U|| )+ IVl +-‘—b§‘“VU|| + {ull

DO =
Q..lg_

242 9 3—2 4 a? =2
+0+ 50 [wtvas+ el < @+ S)atial,

And we use the inequalities
)\2
H I12; < || Il2 |0,

A 212 -
S il < uvniw@Wm;,

where )g is the least positlve elgenvalue of the —A with homogeneous Neumann boundary

condition to obtain

242
Sl + 2ol + 2202 + 2 i) + 9wl + b2||wn2 luf?

+(1+ @)[ w?vldr + —ﬂzﬂv{|44 2+ — o )‘2 + ( ) #?|Q) E -
. 2 /g 2 L= W 2
And we have
d 242 2a?
(32) Sl + 2 l01) + dalull2, + 25 ol?) < O,

Appljring Gronwall’s lemma to (3.2) we deduce for all

2u? 242 _ C _
Il + 2l < (ool + 2ol ) e+ F 1 - )

We have obtained an absorbing set in #;.
Next we show the existence of an absorbing set in (H2(£2))% N H;. Multiplying the equation
for u by A%y and integrating by parts yield

1
(3.3) 2 au|? + IIA2uII2 +2|[VAu|? < SlA ).

2 dt
Multiplying the equation for v by sz and integrating by parts, we have

- dt[[A ol + B|VAU|? = —a / Vio(a? — u? — b?)] - VAvdz
(3.4)

< ;,;IIVA«)IP + ﬁ(a‘*uwu2 + IV )| + 964 [ Vo).
Using Lemmas 5 and 6, the right hand side of (3.3) leads to
A2 = [[v2Au+ 2uvAv + 40Vu - Vo + 2u|Vo]?|?
Cllvleo N1 Aul? + lfuliZeo [0l| 2 [ AVIP + [f0[Fe Vel T0lZ4 + fulfee V011 74)

<
< C(laul® + lulfe 1Av]? + IVl 2 VolZs + llullfe [ Voll2)

(3.5)
and
IV ()2 = || Vo + 2u0Vul?
(3.-6) < CUIVolPllullie + o)z lullfe | Vul?)
< Cllullfe + llullFe).
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Using the inequalities (see, [13] p.161 and p.52)

41 S ClIVollE V213,

[Voulles < C VY]l 3
l
ullze < C'IIUIIHlllullHQ,
we find, for example,
1 1
[ull2e |90]l2e < ClullE, lullZ:) (Vo) 1| V20 )4

< Cllay]lllav|® + ¢’
< C(jlau]* +jlav|) + C'.

After some similar calculation, we obtain that

(3.7) -d—(llAuII2 + Bl A1) < Ca(llAul? + Bl Av]|*) (| Aul? + BllAv]?) + Cs.

Multiplying the equations for u by u and the equatlons for v by Av and integrating by parts
respectively, we have

(3.8) %(Hull2 +199)%) + | Au)® + BllAv|? < Cy.

Here we have used Lemmas 5 and 6. By integrating (3.8), we find that the conditions of the
uniform Gronwall lemma ([13] p.91) hold. Therefore we have

(39) ”Au(t)”z + ﬂ“A’U(t)“zS (CS +Cy + Ca)eCz(C5+C4)

for t > 1. From (3.9) we conclude the existence of an absorbing set in (H2(02))? N H,. ]

4. THE INERTIAL SET

Let Bj be the absorbing set in (H2(2))2 N H; from Theorem 7 and put X; = Us>4,5(t)Bs.
We note that Xj is bounded in (C(2))2.

Lemma 8. The semigroup S(t) : X5 — Xj is Lipschitz continuous, i.e.,
(4.1) ll(ur — g, v1 — v2) |1} < ll(wor — uo2, vo1 — voa) | e**,

where (u;, v;) i3 the solutions of (1.1) with the initial conditions (ugs, vei), i = 1,2, and ||(u,v)|[} =
luliZy + [lo]>.

Proof of Lemma 8. The difference of solution (u; — ug,v; — v9) satisfies

(42)
’L’ula_t__—l A( A(ul — ’U,2) + 2(U1 - U2) +U1'U1 - ’ug'l)z),
< A ) _ BA(vn — vs) + afor — v2) (@ —u? — ¥Po) - avp{(ud — u) + B2 — )},

6(“1 - U2) 6A(u1 - ’u,2) 6(’!)1 - vz) _
on on " T 0 @HEln

| u1(z,0) — ug(z,0) = ugy () ~ wo2(z), v1(z,0) — 'vg(.:z:,O) = vo1(z) — ve2(z), z €Q,

Let 9; be the solution of (3.1) with replacing u — @ by u; — @,4 = 1,2. Multiplying the first
equation of (4.2) by ¥ = 1, ~ 92 and multiplying the second equation of (4.2) by v; — v2 and
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integrating by parts respectivly, we get
1d
2dt

+/ v?(uy — up)’dz + a/ (11 — v2)2(u? + b*?)dz < djvy — va?,
Q 0

ws) Ny = ug,v1 — w) I + 1V (w1 = w)l® + lluz — wall® + IV (w1 = o)
4.3

where d = aa®+2ab? M2+ M?%(a+4)(1+4a) and M is a constant such that |}(ui, v:)llcxo,c0)) <
M Applying Gronwall lemma leads to (4.1).
Moreover we find from (4.3)

Corollary 9.
t 1 .

(4.4) / lluy — ugll3eP?ds < S+ P2 ) || (ur0 — u30,v10 — v20) %1
0

where D s a constent.
Proof of Corollary 9. From (4.3), we have

(4.5) 2 | ur — uz, o1 — vl + 1w~ wallZp < dllor — vl

2 dt
Multiplying (4.5) by eP* and integrating, we have

1 1 't
/ llur — a1 eP?ds < 5 ll(u10 — w20, v10 vao)|l¥ + (3D +4d) /0 [l (w1 — uz, vy — va)||3reP*ds.

By using (4.1),
t i
/, llur — w2 eP%ds SEH(“m — ug0, V10 — v20) ||
0

¢
(4.7) + (;D + d) |} (u10 — ug0,v10 — vzo)"%r/ e(D+2d)s g
0

1
<=(1+ e(D+2d)t)||(u10 - U20,V10 ~ U20)||§{-

M

Q
Next we shall show the squeezing property of S(t). We denote by A;,(0 =X < A2 < --- <

Ai < --+) the eigenvalue of the operator ~A with homogeneous Neumann boundary conditions
and w; the -coressponding eigenfunctions such that ||w;|l;2 = 1,7 = 1,2,---. It is well-known
that {w;}$2, are a complete orthogonal basis in L?(2). Let H, = span{wy,--- ,wn} and the
operator py, : (H*(Q)) — H, be orthogonal projection and g, = I — py,, where I is identity on
(H*(£2))". Then it holds that

1
(4.8) lell?, < -——--||</?|I2 < 2.

for any ¢ € ¢n((H'(R))"). Furthermore we define the corresponding product prOJectlon Py (u,v),
Qn(u,v) on H such that Pp(u,v) = (Prtt, pnv), Qn = I — Pr.

Theorem 10. Semigroup S(t) for problem (1.1) possesses the squeezing property, i.e., for any
t* > 0 there exists number ng = ng(t*) such that for any ¥y = (uy,v1), ¥2 = (ug,v2) € X;
satisfying that if :

(4.9) pro (S(E*)¥1 — SE*)C2) |l < [1(Z — Po)(S(E)¥1 — S(t*)¥2)l|m,
then

(4.10) 1(7)%: - S()%ala < 1% - Tall.
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Proof of Theorem 10. We set (U,V) = Qn(u; — u2,v1 — v2). Operating the equation (4.2)
by @y, it hold that

U
S5 = A(=AU +2U + ga(wiv} - uzd)),
ot BAV + ad®V — aga(n (u] + b*07) — vy(uf + b*03)).

Multiplying the first equation of (4.11) by NU € g, (H?(Q)) and the second equation of (4.11)
by V and integrating, we have -

(4.12)

51OVl + VU + 20017 + BIVVI? < U + aa® + DIVI + 7 [ (uas? ~ wped)de
Q

o :
+y /[m (u? + b%v?) — va(u2 + b*v2)%dz.
Q
Using the inequalities

(4.13) {(Aiﬂ + At )UN2, S UIVUI2 + UIR,
B[V < BIVVI?,

it yields that

d .
(4.14) 71 V)iE + (Drdntr = DNU,VIIE < Clllwr — walf + |lvr — w2?),
where Dy = 2min{1, 8}, D; = 2a(a® + 1). Applying Gronwall’s lemma leads to

L
1T V) <, V)(0)3e* + ee~Pt / [ — a2 eP?ds
(4.15) . 0
+ Coe™ P! / (s — wal®1 + lor — val2)eP?ds,
0

where D = DiAny1 — Dy. Here we use the inequality |ju; — u2||? < Clluy — uz|l—1llu; — ual|g.
From Lemma 8 and Corollary 9, it holds that

_ £, _ e2dt
(416) 10 VIO < Nouso = uzo, 10 = sy {2 + 5P+ ¢4+ O b

Now assume that

(4.17) lpno (u1 — u2,v1 — v2)(#*)llg < [|@no (u1 — u2,v1 — v2)(¢*) |l
for t* > 0, then by using (4.16)
(4.18)

(w1~ w2, 01 = v2) (E)H < 2)|Qng (w1 — ug, w1 — v2) ()%
2 ~Dst* | €/ —Dst* 2dt* il
< (w10 — u20,v10 — v20) |7 € +-2-(e +e )+05m ,
where D3 = DyApy41 — Dg. Taking € > 0 so small that

. . 1
—Dgat 2dt _—
(4.19) (e +e*) < 128
and choosing a number ng sufficiently large so as to satisfy
* C 62‘#- 1
-Dst* | €7 V< _—_
(4.20) 2(e + D; +2d) < 158’



144

then we conclude

1\ 2
(4.21) (g — ug,v1 — v2) ()% < (g) Il (w10 — ug0, v10 — v20) |4

Therefore the proof of Theorem 2 is completed if we apply Theorem 2.1 in [6].
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