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Abstract

We consider Kantorovich type inequalities for bounded strictly pos-
itive operators on a Hilbelt space. Miéi¢-Pecarié-Seo recently obtained
Kantorovich type inequalities between A? and B? for the case p > 1,q >
1 under the assumption A > B. We extend it to more generalized Kan-
torovich type inequalities between (T'z, )? and (TP, z) for the case (a)
p>1l9>1 (b)p<0,g<0,(c)0<p<10<gq<1l Wefurther
prove that these results are applied to the case chaotic order.

1 Introduction

This report is based on the following papers:

e T .Furuta and M.Giga, A complementary result of Kantorovich type order
preserving inequalities by Miéié-Pecari¢-Seo, Linear Alg. and Its Appl.,
369(2003), 27-40.

e M.Giga, Kantorovich type inequalities for 1 > p > 0, J.Ineq. Pure and
Applied Math., (to appear).

In this report, capital letters T, A, B are bounded linear operators on a
Hilbert space. An operator T is said to be positive (denoted by T > 0) if
(Tz,z) > 0 for all z € H, and also an operator T is said to be strictly positive
(denoted by 7' > 0) if T is positive and invertible.

Theorem A. (Holder-McCarthy inequality)
Let A be a positive operator on a Hilbert space H. For any unit vector z,

(a) (A’z,z) > (Az,z)* foramy A >1,
(b) (A*z,z) > (Az,z)* forany A <0  if A is invertible,
(c) (A*z,z) < (Az,z)* for any X € [0, 1].

In Theorem A, (a),(b) and (c) are mutually equivalent.
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Theorem B. (Kantorovich inequality)

Let A be a positive operator on a Hilbert space H such that
MI > A>mlI > 0. For any unit vector = ,

2
(hz,2) < (472,0) < IV (4 gy

2
(Az,z)* < (A’z,z) < %@(Am,x)z.

The left hand side is Holder-McCarthy inequality. The right hand side is a
reverse inequality of Holder-McCarthy inequality. The constant is interesting.
It is a square of an arithemetic mean over a geometric mean.

Many mathematicians investigated Kantorovich inequality. Among others,
there is a long research series of Mond-Pecaric, some of them are [10] and [11].
In [9], Miéié-Pecarié-Seo showed the two variable version of [Theorem 2.1, 3]
where the variables are p > 1,¢ > 1. That is a Kantorovich type inequality
concerning ordered operators A and B

In this report we extend the Kantorovich type inequality of two variable
version to the inequality on (a) p > 1,¢ > 1, (b) p < 0,¢ < 0 and (c)
0 <p<1,0<q< 1 by simple proof [Theorem 2.1, Theorem 2.2].

Secondly we apply the Kantorovich type inequality to the inequality con-
cerning ordered operators A and B, whose variables are (a) p > 1 ,q > 1, (b)
p<0,0<0,(c)0<p<1,0<q<1|[Corollary 3.1].

Furthermore we apply these results to the Kantorovich type inequality of
chaotic order version|Theorem 4.1, Corollary 4.2].

2 Extended Kantorovich type inequalities

We state Theorem 2.1 and Theorem 2.2 that are our main results. Theorem
2.2 is more general. We obtain Theorem 2.2 by using that t* (p > 1,p < 0) is
a convex function and t* (0 < p < 1) is a concave function.

Theorem 2.1 Let T be a strictly positive operator on a Hilbert space H such
that MI > T > mI > 0. Then for any unit vector x,

(a) Ifp>1landg>1,(b) Ifp<0andqg<0,
K(m,M,p,q)(Tz,z)* > (T*z,z) > (Tz,z)".
(c)f0<p<landl<g<l,
K(m,M,p,q)(Tz,z)? < (TPz,z) < (Tz,x)P.
KM (m, M,p,q) if case 1 holds

K(m,M,p,q) = { mP™? if case 2 holds
MP—4 if case 8 holds,
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where Kantorovich constant K m(m, M,p,q) is

KO (m, M,p,q) = (mM?P — MmP) {(q —1)(M? — m?) }q.

(g~ 1)(M —m) | ¢(mM? — Mm»)
( ¢ MP —mP
| <SS <M (a), (b)
case 1. mP~1q ¢ Aj/_% —m,
- m
= m >M"q ()
S My
S @)
{ case 2. mP g MP Zmp
| S M- (<)
MP —mp
a) SHem, @0
case 8. MP~q MP? —mp
\ > = (c).

Theorem 2.2 Let T be a strictly positive operator on a Hilbert space H such
that MI > T > ml > 0. Also let f(t) be a real valued continuous function on
[m, M]. Then for any unit vector z,

(a) If ¢ > 1 and f is convez, (b)If g < 0 and f is convex,
K(m,M, f,q)(Tz,z)* > (f(T)z,z) > f((Tz,z)).
(c) If0 < g <1 and § is concave,
K(m,M, f,q)(Tz,2) < (f(T)z,2) < f(Tz,x)).

KM (m,M, f,q) if case 1 holds
f(_m)_ if case 2 holds

q
1)
Me
where Kantorovich constant KW (m, M, p, q) is

KO, 5,9 - IO MIm) (@10 - fr)Y"

K(m,M, f,q) =
if case 3 holds,

(¢—D)M —m) \ g(mf(M)— Mf(m))

4

case 1. f(]\l)>f(m),fgtjzf4)>f(7;n), f(;:l)qg f(AA{_I):J:rEm) < f(AJ;f)q
(a) § case 2. f(M)>f(m),f(M)>f(m),f(m)q>f(M)—f(m)

oy _glmy By =7
\ case 3. f(M)> f(m), M)>fT;n),f(M)q< 1 Al):fn(m)’




rcase . FO) < fm), F(M) - f(m)’ f(m)qS f(M)—f(m) < fg\-’;f)q

m M-m
(b) ¢ case 2. f(M) < f(m), f(}\"f) f(m)’f(m)q> f(M) = f(m)

m m M-m
mwgfmﬂ<mmeQ flmy s, 104 1)

rcasel f(M)> f(m), f(]\l;'d) fE;n)’f'(,;n) f(M) f(m) f(]\J;{)q
(c){ case 2. f(M)> f(m), f(M) _ f(m ) f(m) f(M) (m)

\casef? F(M)> f(m )f(M) fsn) f(}\il) f(AJ’\I} Tfn(m)

Proof of Theorem 2.2 We show the proof of Theorem 2.2 for (a) and (b).

We can prove (c) by the parallel argument.
Let h(t, k, K) be defined on (0,00) for ¢ (#0,1) and M >m > 0.

ht, b, K) = = (k+ ﬁ:fn(t—m)).

It has the following upper bound on [m, M] :
BD,(m,M,k,K,q) =

'
: , (2.1)
< % if case 2 holds
Ma if case 3 holds.

These are derived by an easy differential calculus, where h(t, k, K) is a function
for t.

As f(t) is a real valued continuous convex function on [m, M), we have

£0) < fmy + LD Ty

We apply the standard operational calculus of positive operator T to it. Since
M > (Tz,z) > m, we get that for every unit vector =

(F(T)e,2) < sy + LD =T (7 g) )

Multiplying (T'z,z)™9 on both sides,we have
(Tz,z)"*(f(T)z,2) < W((Tz, ), f(M), f(m)).
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Then we obtain

(f(M)z,2) < | max h((Tz,z),f(M),f(m))| (Tz,z)".

m<(Tz,x)<M

Thus Theorem 2.2 is proved.

The classification (2.1) in (a) is as follows. We consider the classification
in (b) and (c) similarly.

4

K —k K
case 1. K>k’ﬂ>%’ %qﬁﬁﬁ_mﬁﬁq
K _k k& K-k
(a) ¢ case 2. K>k,¥>%, %q>%_%
\caseé’. K>k’M>E’ Mq<M—m' /1]

The expression of Kantorovich constant K m(m, M,p,q) is derived from
the constant in case 1 in upper bound of A(t, k, K) (2.1). When case 2 or case
3 holds, the top of the graph of h(t, k, K') is outside of the interval [m, M].

3 Applications
By using Theorem 2.1 we obtain the following Corollary 3.1.

Corollary 3.1 Let A, B be strictly positive operators on a Hilbert space H
such that MiI > A>myI >0, Myl > B > myl >0 and also A > B.

(a') lfp > 17 q> 1’ K(m2)M2,p7 q)Aq Z Br

(b) 2'fp < 03 g< 0, K(mlaMhp, q)Bq Z AP

(¢)if0<p<l 0<qg<1l, K(my,M,p qB?< AP

KM (my, M;,p,q) if case 1 holds
K(m;, M;,p,q) =< mi™? if case 2 holds
Mre if case 3 holds,

where Kantorovich constant KM (my, M;, p, q) is

2 p P PyY ¢
W g oy miME — Mym?) [ (g — 1)(MF —m})
K (mz, Mz’p7 q) (q —_ 1)(Mz — mi) q(mle’ . Mimf) .

The classification case 1,2 and 3 is similar to it in Theorem 2.1.

Proof of Corollary 3.1 We prove (a). (b) and (c) are proved similarly.

(BPz,z) < K(ma, My,p,q)(Bz,z)?
K(m2: 'A/I2)p7 Q)(Al', x)q

<
S K(m2a M2:p, Q)(Aq$7 $)



The first inequality is the result of (a) in Theorem 2.1, the second inequality
is from the assumption and for the third one we derive it from (a) in Theorem

A. /1]

We have an alternative proof of (a) in Corollary 3.1 by Miéié-Pecari¢-Seo

[9].

Proposition 3.2 For every p,q,

1 1
K(l) (m1 M7 §—p7 %—Q) = (mM)q—PK(l) (m’ M’ §+p’ %+Q) ’

!

where KM (m, M, p, q) is

KW(m,M,p,q) =

(mMP — Mm?) ((q - 1)(MP — m”))q
(g—1)(M —m) \ g(mMP—Mmp) ]

1 1 1 1
In particular, whenp = q, KO (m, M, 5P 5 —q) and KW (m, M, 5P 51
11
are symmetric with respect to (p,q) = (-2—, 5).

4 Applications to chaotic order
We consider applications of Theorem 2.1 and Corollary 3.1 to chaotic order.

Theorem 4.1 Let T be a strictly positive operator on o Hilbert space H such
that MI > T > mI > 0 and h = — > 1. Then for any unit vector z,
m

Si(m, M,p, )A(T?) > (T?z,z) > A (T?) forp>0 and ¢ >0,

where Sp(m, M,p,q) and a determinant Ay (T) are

{ p—q B f q < p_1< hP
- i
elog AP (izp— llgh =1
S maM9p>q = 4 P4 ] _ <
n( ) m if Togh h_;ql
P—q fahP < =
M if o < logh’

A(T) = exp(((log T)z, z)).

Corollary 4.2 Let A, B be strictly positive operators on a Hilbert space H
such that MI > B > mI > 0. Then log A > log B is equivalent to

Sn(m, M,p,q)A? > B? forp>0 and q>0.

)
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Theorem 4.1 and Corollary 4.2 are the chaotic order version of Theo-
rem 2.1 and Corollary 3.1 respectively. The only if part of Corollary 4.2 is
similarly proved as [14]. When p = ¢, Sy(m, M, p,q) is called Specht ra-
tio. We have an alternative proof of Corollary 4.2 by Miéié-Pecarié-Seo [9)].
The following Proposition 4.3 gives the relation between Kantorovich constant
K®(m, M,p,q) and the two variable version Specht ratio.

Proposition 4.3

1
lim K™ (1+10gm,1+ OgM,np,nq> = m”“’——————hh i )
n—00 n n eloghﬂq—'l

where h = M > 1.
m

Proof of Theorem 4.1 We use the following formula.

lim (I+%1ogX) =X for X >0.

n—00

log M logT logm

Put M; = I+ , Ty = I+ ,and m; = I+ . Then M; >

n n n
Ty 2 my > 0 holds for sufficiently large natural number n by the hypothesis
MI>T>mI>O0.

((I + loi T) a:a:) Y (I + ___((1og?m,z)>"q (4.1)

— exp{((log Tz, z)q} = A (T?) as n — co.

np
((I + loiT> m,m) — (TPz,z) asn — oo. (4.2)

Since np > 1, ng > 1 for sufficiently large n, by Theorem 2.1 (a),

logT ™ e
K(my, My, np,nq) ((I+ Oi ):L‘,:L‘) > (<I+10iT) x,x)

> ((I+1°iT> z,m)np. (4.3)

Using (4.1),(4.2) and Proposition 4.3 on (4.3), the proof of Theorem 4.1 is
complete. ///
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