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Abstract

The double impulse has extensively been used to evaluate the critical response of an
elastoplastic structure against a pulse-type input, including near-fault earthquake ground
motions. In this paper, we propose a robustness assessment method for elastoplastic
single-degree-of-freedom structures subjected to the double impulse input. Uncertainties
in the initial velocity of the input, as well as the natural frequency and the strength of
the structure, are considered. As fundamental properties of the structural robustness,
we show monotonicity of the robustness measure with respect to the natural frequency.
In contrast, we show that robustness is not necessarily improved even if the structural
strength is increased. Moreover, the robustness preference between two structures with
different values of structural strength can possibly reverse when the performance require-
ment is changed.

Keywords: Impulse; elastoplastic response; info-gap model; near-fault ground motion;
robustness; uncertainty.

1. Introduction

It is often that a near-fault earthquake ground motion is modeled as a one-cycle si-
nusoidal wave [1–3]. Kalkan and Kunnath [1] showed that structural response against
a certain type of near-fault ground motion is well simulated by using the one-cycle si-
nusoidal wave. To evaluate the critical response of a single-degree-of-freedom (SDOF)
elastoplastic structure subjected to the near-fault ground motion, Kojima and Takewaki
[4] proposed to use the double impulse input as a substitute of the corresponding one-
cycle sinusoidal wave. As observed in [5], an actually recorded pulse-type ground motion
can be well approximated by one-cycle sinusoidal input and the corresponding double
impulse. Figure 1 verifies this assertion for two representative recorded pulse-type ground
motions [5]; see Kojima and Takewaki [6] for further verification. It is also known that
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the double impulse can be used to derive the dynamic stability criterion for elastoplastic
structures [6] and to simulate the rocking vibration overturning of a rigid block [7] under
near-fault ground motions. The approach in [4] has been extended to the triple im-
pulse [8], considered as a substitute of the forward-directivity near-fault ground motion,
and the multiple impulse [9], considered as a substitute of the long-duration earthquake
ground motion. Not only for ground motions, but also for generic impulse-like inputs, it
is often that a half- or one-cycle sinusoidal wave is used as a fairly good approximation
[10, 11]. In this paper, we consider the elastoplastic response of a structure subjected to
the double impulse input. Besides providing us with good approximation for structural
response under the near-fault ground motion, using the double impulse has advantages.
Particularly, we can derive a closed-form solution of the critical elastoplastic response
of an SDOF structure [4]. The closed-form solution enables us to investigate insights of
the critical elastoplastic response in dynamics [6, 7]. In this paper, we make use of this
closed-form solution to assess structural robustness. Due to the presence of the closed-
form solution, the analysis presented in this paper does not resort to any approximation,
such as the sensitivity analysis and the Taylor expansion, of the structural response.

The critical response of an SDOF elastoplastic structure subjected to double impulse
depends on the initial velocity of the input (i.e., the input level), the yield deformation
of the structure, and the undamped natural frequency of the structure [4]. In this paper,
we assume that these three parameters are known only imprecisely (or uncertain), and
propose a method for quantitatively evaluating the structural robustness against the
uncertainty. As a quantitative measure of robustness, we adopt the robustness function,
defined within the framework of the info-gap theory [12]. The robustness function has
been used extensively to evaluate the robustness of engineering structures in diverse
situations [13–20].

The following papers that deal with uncertainties in dynamic response of inelas-
tic structures have relevance to our present work. Au [21] formulated an optimization
problem to find the critical excitation, parameterized in the time domain, for an SDOF
elastoplastic structure and solved the problem numerically. In the framework of reliability
analysis, Au [22, 23] and Au et al. [24] proposed estimation methods for the first passage
probability of an elastoplastic structure subjected to white noise excitation. Moustafa
et al. [25] considered the critical earthquake loads modeled by combination of waves
with certain frequency band and time interval. Similarly, Abbas [26] proposed a critical
earthquake load model for inelastic structures by using a Fourier series modulated by
an envelope function. Kanno and Takewaki [27] proposed an optimization-based method
for predicting a confidential bound for the dynamic steady-state responses of a damped
structure subjected to uncertain driving loads.

The paper is organized as follows. Section 2 provides an overview of the necessary
background. Section 3 presents some fundamental properties of the elastoplastic response
of a structure subjected to the critical double impulse input. In sections 4, 5, and 6, we
study a quantitative measure of robustness of structures when the initial velocity of
the ground motion, the natural frequency of the structure, or the structural strength
is assumed to be uncertain. In section 7, we show some fundamental properties of the
structural robustness. Some conclusions are drawn in section 8.

A few words regarding notation. For a, b ∈ R with a < b, we denote by [a, b] and
(a, b) the closed and open intervals between a and b, respectively, i.e., [a, b] = {x ∈ R |
a ≤ x ≤ b} and (a, b) = {x ∈ R | a < x < b}.
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Figure 1: Modeling of part of pulse-type recorded ground motion into the corresponding one-cycle
sinusoidal input [5]. (a) Rinaldi station fault normal component during the Northridge earthquake in
1994; and (b) Kobe University NS component (almost fault-normal) during the Hyogoken-Nanbu (Kobe)
earthquake in 1995.

2. Preliminary results

In this section, we briefly review the existing results on the critical elastoplastic
response against the double impulse input and a quantitative measure of robustness
defined within the framework of the info-gap theory.

2.1. Maximum elastoplastic deformation against double impulse input

Following [4], we assume that the input acceleration is modeled as the double impulse.
Let v denote the initial velocity of the input. We use t0 to denote the time interval
between the two impulses. The input acceleration is characterized by v and t0.

Consider an undamped elastic-perfectly plastic SDOF system. Let dy and ω denote
the yield deformation and the (undamped) natural circular frequency, respectively. De-
fine Vy by

Vy = ωdy, (1)

where Vy indicates the velocity of the impulse such that the structure just attains the
yield deformation after the first impulse.

We choose t0 so that the deformation of the structure attains the maximum value
under a constant velocity v [4]. Then the pair of t0 and v defines the critical double
impulse input for the elastoplastic SDOF structure. The corresponding deformation,
called the critical response, provides us with a (tight) upper bound for the structural

response [25, 28–30]. Let u
(1)
max denote the maximum (absolute value of) deformation

after the first impulse (and before the second impulse). We use u
(2)
max to denote the

maximum (absolute value of) deformation after the second impulse. Figure 2 explains

the problem setting and the definitions of u
(1)
max and u

(2)
max. An SDOF elastic-perfectly

plastic structure is subjected to the double impulse input, as shown at the top of Figure 2.
After the first impulse, the structure undergoes free vibration, until the second impulse

is given. Point “2” in the schematic diagram of Figure 2 corresponds to u
(1)
max, which can

be computed explicitly by making use of the energy balance law. The time interval, t0,
is then chosen so that the deformation after the second impulse is maximized. Point “4”
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Figure 2: A schematic representation of the critical double impulse and the maximum structural defor-
mation.

in the schematic diagram of Figure 2 corresponds to u
(2)
max, which can also be computed

explicitly from the energy balance law. The total maximum deformation of the structure

is therefore the larger one among u
(1)
max and u

(2)
max.

It is shown in [4] that u
(1)
max is written in terms of v, dy and Vy as

u(1)
max =


dy
Vy

v if 0 < v ≤ Vy,

1

2

dy
V 2
y

v2 +
1

2
dy if v ≥ Vy,

(2)

4



and u
(2)
max is written as

u(2)
max =



2
dy
Vy

v if 0 < v <
1

2
Vy,

2
dy
V 2
y

v2 +
1

2
dy if

1

2
Vy ≤ v < Vy,

dy
Vy

v +
3

2
dy if v ≥ Vy.

(3)

It is worth noting that the condition v ≥ Vy in (2) and (3) implies that the structure
undergoes plastic deformation before the second impulse input. Therefore, the maximum
value of the deformation, denoted µ, is given by

µ := max{u(1)
max, u

(2)
max}

=



2
dy
Vy

v if 0 < v <
1

2
Vy,

2
dy
V 2
y

v2 +
1

2
dy if

1

2
Vy ≤ v < Vy,

dy
Vy

v +
3

2
dy if Vy ≤ v < (

√
3 + 1)Vy,

1

2

dy
V 2
y

v2 +
1

2
dy if v ≥ (

√
3 + 1)Vy.

(4)

2.2. Info-gap uncertainty and robustness

In the info-gap theory [12], the robustness function serves as a quantitative measure
of a system, uncertainty of which is described by an info-gap model. Following [12], this
section summarizes the notion of robustness function.

Let p denote a system parameter that possesses uncertainty. In sections 4–7, p con-
cretely means v, ω, or dy. The uncertainty of p is represented by an info-gap uncertainty
model as p ∈ U(α, p̃), where p̃ is the nominal value of p and α ≥ 0 is a parameter repre-
senting the magnitude of the uncertainty. Any info-gap model should have the following
two properties:

• Nesting: α < α′ implies U(α, p̃) ⊆ U(α′, p̃);

• Contraction: U(0, p̃) = {p̃}.

Suppose that performance (e.g., the maximum deformation) of the system depends
on p and is denoted by g(p). The performance requirement is that g(p) does not exceed
the maximal allowable value, gc, i.e.,

g(p) ≤ gc. (5)

The robustness function, denoted α̂, is defined as the maximum value of α with which
the performance requirement, (5), is always satisfied, i.e.,

α̂(p̃, gc) = max
{
α
∣∣∣ max{g(p) | p ∈ U(α; p̃)} ≤ gc

}
. (6)
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We define α̂(p̃, gc) = 0 if g(p̃) < gc. By definition, any element of U(α̂(p̃, gc), p̃) satisfies
the performance requirement, (5). Therefore, if follows from the nesting property of the
info-gap model that the greater value of the robustness function means larger robustness.

Robustness assessment methods for engineering structures based on the info-gap the-
ory can be found in, e.g., [13–20].

3. Monotonicity of maximum deformation

In this section, we investigate a few fundamental properties of the maximum defor-
mation caused by double impulse.

Recall that the maximum deformation is given by (4), where v, ω, dy > 0. By
substituting (1) into (4), we can eliminate Vy as

µ(v, ω, dy) =



2
v

ω
if 0 <

v

ω
<

1

2
dy,

2
1

dy

( v

ω

)2

+
1

2
dy if

1

2
dy ≤ v

ω
< dy,

v

ω
+

3

2
dy if dy ≤ v

ω
< (

√
3 + 1)dy,

1

2dy

( v

ω

)2

+
1

2
dy if

v

ω
≥ (

√
3 + 1)dy.

(7)

It is clear from (7) that µ is a piecewise-quadratic function of v/ω.1 The following
observation is useful for the discussions presented later.

Proposition 1. The function µ has the following properties:

(i) For any dy > 0, 0 < v/ω < v′/ω′ implies µ(v, ω, dy) < µ(v′, ω′, dy).

(ii) For any ω > 0 and dy > 0, µ(v, ω, dy) is strictly monotonically increasing with
respect to v.

(iii) For any v > 0 and dy > 0, µ(v, ω, dy) is strictly monotonically decreasing with
respect to ω.

Proof. Assertion (i) follows from the fact that the coefficients of v/ω and (v/ω)2 are all
positive. Assertions (ii) and (iii) are immediate consequences of (i).

Proposition 1 (ii) and (iii) play fundamental roles in studying the robustness functions
in sections 4 and 5, respectively.

1It should be clear that piecewise-linear functions are included as a special class of piecewise-quadratic
functions.
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0 1
2ωdy ωdy (

√
3 + 1)ωdy

v

dy

5
2dy

(
√
3 + 5

2 )dy

µv

Figure 3: The graph of µv .

4. Uncertainty in initial velocity

In this section, we assume that ω and dy are fixed (or known precisely) and only v is
uncertain. In this view, we consider µ in (7) as a function of v and write it as µv(v;ω, dy).
Dependence of µ on v is clearly seen by rewriting (7) as

µv(v;ω, dy) =



2
1

ω
v if v ∈ (0, 1

2ωdy),

2
1

ω2dy
v2 +

1

2
dy if v ∈ [ 12ωdy, ωdy),

1

ω
v +

3

2
dy if v ∈ [ωdy, (

√
3 + 1)ωdy),

1

2

1

ω2dy
v2 +

1

2
dy if v ∈ [(

√
3 + 1)ωdy,+∞).

(8)

For notational simplicity, we often write µv(v) instead of µv(v;ω, dy). Figure 3 shows
the graph of µv.

The uncertainty in v is described by using an info-gap model introduced in section 2.2.
Let ṽ denote the nominal value (or the best estimate) of v. Assume that v can take any
value in the set

V(α) = {v ∈ R | |v − ṽ| ≤ α, v > 0}, (9)

where α ≥ 0 is the parameter representing the level (or the magnitude) of uncertainty.
As for the performance requirement, gc in section 2.2, we consider the maximal al-

lowable displacement, denoted uc. The robustness function depends on the performance
requirement, uc, the nominal value of the input velocity, ṽ, and the structural design, ω
and dy. Hence, we use α̂v(u

c; ṽ, ω, dy) to denote the robustness function. For notational
simplicity, we also write α̂v(u

c). Following section 2.2, the robustness function is defined
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by

α̂v(u
c; ṽ, ω, dy) = max

{
α
∣∣∣ max{µv(v) | v ∈ V(α)} ≤ uc

}
. (10)

As shown in Proposition 1 (ii), µv is a strictly monotonically increasing function.
Therefore, we obtain

max{µv(v) | v ∈ V(α)} = µv(ṽ + α). (11)

Substitution of (11) into (10) yields

α̂v(u
c) = max{α | µv(ṽ + α) ≤ uc}. (12)

Since the maximum in (12) is attained when the inequality constraint becomes active,
the relation

µv(ṽ + α̂v(u
c)) = uc (13)

holds. Consequently, the value of robustness function, α̂v(u
c), can be determined from

(13). More precisely, from (13) we obtain2

α̂v(u
c) = max{µ−1

v (uc)− ṽ, 0}, (14)

where µ−1
v is the inverse function of µv.

The graph showing the variation of α̂v as a function of uc is called a robustness curve
[12]. Roughly speaking, the graph of µ−1

v in (14) is obtained by exchanging the horizontal
axis and the vertical axis of the graph of µv in Figure 3, and then the robustness curve
is obtained by applying parallel translation to the graph of µ−1

v in the vertical direction.

Example 2. As for two different structural designs, consider case (A) and case (B) in
Table 1. We suppose a low or middle-rise building. Both cases satisfy ṽ ∈ ( 12ωdy, ωdy).
Figure 4 shows the robustness curves. It is observed that the two robustness curves are
crossing twice. This has important design implications. In the nominal situation, case

Table 1: Definitions of cases (A)–(G).

Case Circ. freq. (rad/s) Yield def. (m) Init. vel. (m/s)

(A) ω = 10.0 dy = 0.030 ṽ = 0.225
(B) ω = 10.0 dy = 0.040 ṽ = 0.225
(C) ω̃ = 8.0 dy = 0.030 v = 0.200
(D) ω̃ = 8.0 dy = 0.040 v = 0.200

(E) ω = 10.0 d̃y = 0.009 v = 0.200

(F) ω = 10.0 d̃y = 0.015 v = 0.200

(G) ω = 10.0 d̃y = 0.022 v = 0.200

2If α̂v(uc) satisfying (13) is negative, then µv(ṽ) > uc, i.e., the performance requirement is not
satisfied even at the nominal value, ṽ. In this case, it is defined that α̂v(uc) = 0 [12].
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u
c (m)

0 0.05 0.1 0.15 0.2 0.25 0.3

α̂
v
(m

/
s)

0

0.2

0.4

0.6

0.8

1

Figure 4: Robustness curves of two structures when uncertainty in the initial velocity is considered.
“——” Case (A); and “- - -” case (B).

(B) is preferable to case (A). When the performance requirement, uc, is small, case (B)
is still preferable since it has larger robustness. When uc is increased, there exists an
interval such that case (A) has larger robustness than case (B). For a higher range of
uc, the robustness preferences are again reversed, i.e., case (B) is preferred over case
(A). Thus the robustness-preference between these two designs changes as the maximal
allowable deformation changes. ■

5. Uncertainty in natural frequency

In this section, we assume that v and dy are fixed and only ω is uncertain. In this
view, we consider µ as a function of ω and write it as µω(ω; v, dy). It is worth noting that,
since ω is proportional to the square root of stiffness of the structure, the uncertainty
of ω under fixed dy corresponds to the uncertainty of the stiffness and strength of the
structure. To see the dependence of µ on ω clearly, it is convenient to rewrite (7) as

µω(ω; v, dy) =



1

2

v2

dy

1

ω2
+

1

2
dy if ω ∈

(
0,

√
3− 1

2

v

dy

]
,

v
1

ω
+

3

2
dy if ω ∈

(√3− 1

2

v

dy
,
v

dy

]
,

2
v2

dy

1

ω2
+

1

2
dy if ω ∈

( v

dy
, 2

v

dy

]
,

2v
1

ω
if ω ∈

(
2
V

dy
,+∞

)
.

(15)

For notational simplicity, we often write µω(ω) instead of µω(ω; v, dy). Figure 5 shows
the graph of µω.
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0
ω

µω

√
3−1
2

v
dy

v
dy

2 v
dy

dy

5
2dy

( 52 +
√
3)dy

Figure 5: The graph of µω .

Let ω̃ denote the nominal value of ω. Define the uncertainty set of ω by

Ω(α) = {ω ∈ R | |ω − ω̃| ≤ α, ω > 0}. (16)

As in section 3, the performance requirement is the maximal allowable deformation, uc.
Then the robustness function is defined by

α̂ω(u
c; v, ω̃, dy) = max

{
α
∣∣∣ max{µω(ω) | ω ∈ Ω(α)} ≤ uc

}
. (17)

For notational simplicity, we often write α̂ω(u
c) instead of α̂ω(u

c; v, ω̃, dy).
As shown in Proposition 1 (iii), µω is a strictly monotonically decreasing function.

Therefore, we obtain

max{µω(ω) | ω ∈ Ω(α)} =

{
µω(ω̃ − α) if α < ω̃,

+∞ otherwise,
(18)

where the fact that Ω = (0, ω̃ + α] for α ≥ ω̃ has been used. Substitution of (18) into
(17) results in

α̂ω(u
c) = max{α | µω(ω̃ − α) ≤ uc}. (19)

The maximum in (19) is attained when the inequality constraint becomes active. This
yields

µω(ω̃ − α̂ω(u
c)) = uc. (20)

The value of robustness function, α̂ω(u
c), can be determined from condition (20). More

precisely, the robustness function is explicitly written as

α̂ω(u
c) = max{ω̃ − µ−1

ω (uc), 0}, (21)

where µ−1
ω is the inverse function of µω.
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s)

0

1

2

3
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5

6

Figure 6: Robustness curves of two structures when uncertainty in the natural frequency is considered.
“——” Case (C); and “- - -” case (D).

Example 3. Consider cases (C) and (D) in Table 1. Both cases satisfy ω̃ ∈ (v/dy, 2v/dy).
Figure 6 shows variation of α̂ω with respect to uc. It is observed that the two curves are
crossing twice. Namely, the robustness-preference between these two designs changes as
the maximal allowable deformation changes. ■

Remark 4. Suppose that both the initial velocity of the input, v, and the natural circular
frequency of the structure, ω, are uncertain. Moreover, suppose that the magnitude of
the uncertainty is known. Then it is easy to check if, in the worst-case scenario, the
structure satisfies the performance requirement or not. More concretely, suppose that dy
is fixed and the uncertainty model of v and ω is given as

v ∈ V(α), ω ∈ Ω(β), (22)

where α > 0 and β > 0 are constants. Then, from Proposition 1 (i) we see that

max{µ(v, ω, dy) | v ∈ V(ω), ω ∈ Ω(β)} =

{
µ(ṽ + α, ω̃ − β, dy) if ω̃ > β,

+∞ otherwise
(23)

holds. Thus, the maximum deformation can be obtained explicitly, even if both v and ω
are assumed to be uncertain. ■

6. Uncertainty in yield deformation

In this section, we assume that v and ω are fixed (or known precisely) and only dy is
uncertain. Hence, we consider µ as a function of dy and write it as µω(dy; v, ω). Since dy
is proportional to the yield strength of the structure under fixed ω (or the fixed stiffness),
the uncertainty of dy under fixed ω corresponds to the uncertainty of yield strength. To

11



0
dy

µdy

√
3−1
2

v
ω

v
ω 2 v

ω

3
√
3+1
4

v
ω

2 v
ω

5
2
v
ω

Figure 7: The graph of µdy .

see the dependence of µ on dy clearly, it is convenient to rewrite (7) as

µdy(dy; v, ω) =



1

2
dy +

1

2

v2

ω2

1

dy
if dy ∈

(
0,

√
3− 1

2

v

ω

]
,

3

2
dy +

v

ω
if dy ∈

(√3− 1

2

v

ω
,
v

ω

]
,

1

2
dy + 2

v2

ω2

1

dy
if dy ∈

( v

ω
, 2

v

ω

]
,

2
v

ω
if dy ∈

(
2
v

ω
,+∞

)
.

(24)

For notational simplicity, we often write µdy(dy) instead of µdy(dy; v, ω). Figure 7 shows
the graph of µdy

.
Prior to study of the robustness function, we investigate some properties of µdy . For

notational simplicity, define d̄1, d̄2, and d̄3 by

d̄1 =

√
3− 1

2

v

ω
, d̄2 =

v

ω
, d̄3 = 2

v

ω
. (25)

It is an easy matter to see that µdy has the following properties:

• µdy(dy) attains the (global) minimum at dy = d̄1.

• µdy(dy) attains the (local) maximum at dy = d̄2.

From a mechanical point of view, d̄1 is characterized by the following conditions [4]:

• dy ∈ (0, d̄1) implies µdy(dy) = u
(1)
max > u

(2)
max.

• dy ∈ (d̄1,+∞) implies µdy(dy) = u
(2)
max > u

(1)
max.
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Namely, u
(1)
max = u

(2)
max holds at the minimum point, d̄1, of µdy . We also see that d̄2 and

d̄3 are characterized by the following mechanical properties:

• dy ∈ (0, d̄2) implies that the structure undergoes plastic deformation before the
second impulse.

• dy ∈ (d̄2, d̄3) implies that the structure undergoes plastic deformation only after
the second impulse.

• dy ∈ (d̄3,+∞) implies that the structure undergoes no plastic deformation.

Namely, u
(1)
max = dy holds at the local maximum point, d̄2, of µdy , while u

(2)
max = dy

holds at d̄3. Within the interval [d̄3,+∞), the value of µdy does not change irrespective
of the value of dy, because only elastic deformation takes place. If plastic deformation

takes place before the second impulse and u
(2)
max > u

(1)
max is satisfied, then µdy is strictly

increasing with respect to dy. In other cases, µdy is decreasing or constant. For these
two reasons, µdy has a local maximum point.

We are now in position to investigate the robustness function. Let d̃y denote the
nominal value of dy. Define the uncertainty set of dy by

D(α) = {dy ∈ R | |dy − d̃y| ≤ α, dy > 0}. (26)

The robustness function is defined by

α̂dy(u
c) = max

{
α
∣∣∣ max{µdy(dy) | dy ∈ D(α)} ≤ uc

}
, (27)

where uc is the maximal allowable deformation.
For given α ≥ 0, define µ∗(α) by

µ∗(α) = max{µdy(dy) | dy ∈ D(α)}. (28)

By definition, the value of robustness function, α̂dy(u
c), can be determined from the

following condition:

µ∗(α̂dy(u
c)) = uc. (29)

For notational simplicity, define ū2 by

ū2 = µdy(d̄2) =
5

2

v

ω
. (30)

By using the properties of µdy studied above, we can compute µ∗(α) as follows.

• Case 1: d̃y ∈ [d̄2,+∞).

– Case 1-a: α ∈ [0, d̃y−d̄2). It follows from (26) that D(α) ⊆ [v/ω,+∞). Hence,
µdy is monotonically decreasing on D(α), from which we obtain

µ∗(α) = µdy(d̃y − α). (31)
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– Case 1-b: α ∈ [d̃y − d̄2, d̃y). It follows from (26) that d̄2 ∈ D(α). On the

other hand, on (0, d̄1)∩D(α) the function µdy attains the maximum at d̃y−α.
Therefore, we obtain

µ∗(α) = max{ū2, µdy(d̃y − α)}. (32)

– Case 1-c: α ∈ [d̃y,+∞). In this case, (26) reads D(α) = (0, d̃y + α]. Since
µdy(dy) → +∞ as dy → +0, we obtain

µ∗(α) = +∞. (33)

• Case 2: d̃y ∈ (0, d̄2).

– Case 2-a: α ∈ [0,−d̃y + d̄2) and α ∈ [0, d̃y). It follows from (26) that D(α) ⊆
(0, d̄2). Since µdy is convex on (0, d̄2), the maximum of µdy on D(α) is attained
at an extreme point of D(α). Namely, we obtain

µ∗(α) = max{µdy(d̃y − α), µdy(d̃y + α)}. (34)

– Case 2-b: α ∈ [−d̃y + d̄2, d̃y). This case arises only if d̃y > d̄2/2. It follows
from (26) that d̄2 ∈ D(α). On the other hand, on (0, d̄1) ∩ D(α) the function
µdy attains the maximum at d̃y − α. Therefore, we obtain

µ∗(α) = max{ū2, µdy(d̃y − α)}. (35)

– Case 2-c: α ∈ [d̃y,+∞). In a manner similar to case 1-c, we obtain

µ∗(α) = +∞. (36)

In this way, the value of µ∗(α) for a given α ≥ 0 can be obtained. Therefore, when uc > 0
is given, we can find α∗ satisfying µ∗(α∗) = uc with, e.g., the bisection method. Then,
from (29), we conclude that α̂dy(u

c) = α∗.

Example 5. Consider cases (E), (F), and (G) in Table 1. The robustness curves of these
three structures are collected in Figure 8. Cases (E) and (F) satisfy d̃y ∈ (d̄1, d̄2), while

case (G) satisfies d̃y ∈ (d̄2, d̄3). The robustness curve in Figure 8(a) has a nonsmooth

point. When uc is large, the robustness function is determined by the constraint u
(1)
max ≤

uc. At the nonsmooth point, we have that u
(1)
max = u

(2)
max. When uc is smaller than the

value at the nonsmooth point, the robustness function is determined by the constraint

u
(2)
max ≤ uc. In Figure 8(b), when uc is large, the robustness function is determined by

the constraint u
(1)
max ≤ uc. When uc is decreased, the robustness function is determined

by the local maximum of µdy in Figure 7. At this point, α̂dy decreases discontinuously.

For a smaller value of uc, the robustness function is determined by the constraint u
(2)
max ≤

uc. Thus, as an important design implication, one can see that when the performance

requirement is demanded to be improved, the critical deformation changes from u
(1)
max to

u
(2)
max, and at the transition point the robustness suddenly decreases. A similar situation

can be observed in Figure 8(c). Namely, u
(1)
max > u

(2)
max holds for a large value of uc, while
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Figure 8: Robustness curves of three structures when uncertainty in the yield deformation is considered.
(a) Case (E); (b) case (F); and (c) case (G).
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u
(2)
max > u

(1)
max holds for a small value of uc. Therefore, the constraint u

(2)
max ≤ uc is crucial

when uc is large, while u
(1)
max ≤ uc is crucial when uc is small. The point at which α̂dy is

discontinuous is the transition point of the crucial constraint. As a result, the robustness
decreases discontinuously at the transition point. It is worth noting that, for a small

value of uc such that u
(2)
max > u

(1)
max holds, case (F) undergoes plastic deformation before

the second impulse, while case (G) undergoes plastic deformation only after the second
impulse. ■

7. Some properties of robustness measures

In this section, we study some important properties of the robustness function con-
sidered in sections 4 and 5.

The first three propositions show monotonicity properties of the robustness functions.

Proposition 6. Suppose that the assumptions in section 4 hold, i.e., ω and dy are fixed
and v is uncertain. Then, the robustness function, defined by (10), satisfies

ω′ > ω > 0 ⇒ α̂v(u
c; ṽ, ω′, dy) > α̂v(u

c; ṽ, ω, dy) (37)

for any ṽ > 0 and dy > 0.

Proof. For any ṽ > 0 and dy > 0, Proposition 1 (iii) shows that

ω′ > ω > 0 ⇒ µ(v, ω′, dy) < µ(v, ω, dy). (38)

This implies

max{α | µ(ṽ + α, ω′, dy) ≤ uc} > max{α | µ(ṽ + α, ω, dy) ≤ uc}. (39)

The assertion of the proposition follows from (12) and (39).

Proposition 6 implies that, when v is uncertain, the robustness of a structure is always
improved if we increase ω.

Proposition 7. Suppose that the assumptions in section 5 hold, i.e., v and dy are fixed
and ω is uncertain. Then, the robustness function, defined by (17), satisfies

ω̃′ > ω̃ > 0 ⇒ α̂ω(u
c; v, ω̃′, dy) > α̂ω(u

c; v, ω̃, dy) (40)

for any v > 0 and dy > 0.

Proof. In a manner similar to Proposition 6, this proposition follows from Proposi-
tion 1 (iii) and (19).

Proposition 7 implies that, when ω is uncertain, the robustness of a structure is always
improved if we increase ω̃.

Proposition 8. Suppose that the assumptions in section 5 hold, i.e., v and dy are fixed
and ω is uncertain. Then, the robustness function, defined by (17), satisfies

v′ > v > 0 ⇒ α̂ω(u
c; v′, ω̃, dy) < α̂ω(u

c; v, ω̃, dy) (41)

for any ω̃ > 0 and dy > 0.
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Proof. For any ω > 0 and dy > 0, Proposition 1 (ii) shows that

v′ > v > 0 ⇒ µ(v′, ω, dy) > µ(v, ω, dy). (42)

This implies

max{α | µ(v′, ω̃ − α, dy) ≤ uc} < max{α | µ(v, ω̃ − α, dy) ≤ uc}. (43)

The assertion of the proposition follows from (19) and (43).

Proposition 8 implies that, when ω is uncertain, the robustness of a structure always
decreases if we consider larger input v.

In the following, we study the relationship of robustness curves of two different struc-
tures. Attention is focused on crossing of robustness curves, illustrated in Example 2 and
Example 3. We begin by establishing the relationship of graphs of µv, defined by (8), of
two different structures.

Lemma 9. Assume that dy and d′y satisfy 0 < dy < d′y < (
√
3+1)dy. Let v (> 0) and s be

the horizontal and vertical axes, respectively, and consider the graphs of s = µv(v;ω, dy)
and s = µv(v;ω, d

′
y). Then the two graphs are crossing just twice. Moreover, the values

of v at the intersection points, denoted v̄1 and v̄2 (v̄1 < v̄2), are

v̄1 =
1

4
ω
(
d′y +

√
12dyd′y − 3(d′y)

2
)
, (44)

v̄2 = ω
(
dy +

√
3dyd′y

)
. (45)

Proof. Define ϕ by

ϕ(v) = µv(v;ω, dy)− µv(v;ω, d
′
y), (46)

which is explicitly written as

ϕ(v) =



0 if v ∈ (0, 1
2ωdy),

2 1
ω2dy

v2 + 1
2dy − 2 1

ω v if v ∈ [ 12ωdy,
1
2ωd

′
y),

2 1
ω2dy

v2 + 1
2dy − 2 1

ω2d′
y
v2 − 1

2d
′
y if v ∈ [ 12ωd

′
y, ωdy),

1
ωv +

3
2dy − 2 1

ω2d′
y
v2 − 1

2d
′
y if v ∈ [ωdy, ωd

′
y),

1
ωv +

3
2dy −

1
ωv −

3
2d

′
y if v ∈ [ωd′y, (

√
3 + 1)ωdy),

1
2

1
ω2dy

v2 + 1
2dy −

1
ωv −

3
2d

′
y if v ∈ [(

√
3 + 1)ωdy, (

√
3 + 1)ωd′y),

1
2

1
ω2dy

v2 + 1
2dy −

1
2

1
ω2d′

y
v2 − 1

2d
′
y if v ∈ [(

√
3 + 1)ωd′y,+∞).

(47)

By computing
dϕ

dv
(v), we easily see that

ϕ(v) =



(constant) if v ∈ (0, 1
2ωdy),

(strict. incrg.) if v ∈ ( 12ωdy, ωdy),

(strict. dcrg.) if v ∈ (ωdy, ωd
′
y),

(constant) if v ∈ (ωd′y, (
√
3 + 1)ωdy),

(strict. incrg.) if v ∈ ((
√
3 + 1)ωdy,+∞),

(48)
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where “strict. incrg.” and “strict. dcrg.” mean “strictly monotonically increasing” and
“strictly monotonically decreasing,” respectively.

It follows from ϕ(0) = 0 and (48) that we obtain

ϕ(ωdy) > 0. (49)

From (47), we obtain

ϕ(ωd′y) =
3

2
(d− d′y) < 0. (50)

It follows from (49) and (50) that there exists a unique v ∈ (ωdy, ωd
′
y) satisfying ϕ(v) = 0.

This means that the two graphs of interest have a unique intersection point in this
interval. By solving

1

ω
v +

3

2
dy = 2

1

ω2d′y
v2 +

1

2
d′y (51)

with respect to v, we can find that this intersection point is located at v = v̄1.
Next, it follows from (48) and (50) that we obtain

ϕ((
√
3 + 1)ωdy) < 0. (52)

From (47), we obtain

ϕ((
√
3 + 1)ωd′y) =

1

2dy
[(4 + 2

√
3)d′y − dy](d

′
y − dy) > 0. (53)

It follows from (52) and (53) that there exists a unique v ∈ ((
√
3 + 1)ωdy, (

√
3 + 1)ωd′y)

satisfying ϕ(v) = 0. Namely, the two graphs have a unique intersection point in this
interval. By solving

1

2

1

ω2dy
v2 +

1

2
dy =

1

ω
v +

3

2
d′y (54)

with respect to v, we can find that this intersection point is located at v = v̄2.

We can now show (double) crossing of the two robustness curves presented in Exam-
ple 2.

Proposition 10. Suppose that the assumptions in section 4 hold, i.e., ω and dy are fixed
and v is uncertain. Assume that dy and d′y satisfy 0 < dy < d′y < (

√
3 + 1)dy. Then,

for any ṽ > 0 and ω > 0, the number of crossing points of the two robustness curves,
s = α̂v(u

c; ṽ, ω, dy) and s = α̂v(u
c; ṽ, ω, d′y), is given as follows:

• If ṽ ∈ (0, v̄1), then the two curves are crossing twice.

• If ṽ ∈ [v̄1, v̄2), then the two curves are crossing once.

• If ṽ ∈ [v̄2,+∞), then the two curves are not crossing.

Proof. The assertion follows from Lemma 9 and (14).
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In the case of Example 2, put ω = 10.0, dy = 0.03, and d′y = 0.04 to obtain v̄1 = 0.345.
Thus, v = 0.225 ∈ (0, v̄1) holds, and thence Figure 4 that shows two intersection points
of the robustness curves agrees with Proposition 10.

It follows from Proposition 10 that, if v is uncertain and 0 < ṽ < v̄2, we obtain

d′y > dy > 0 ̸⇒ α̂v(u
c; ṽ, ω, d′y) > α̂v(u

c; ṽ, ω, dy). (55)

Namely, robustness is not necessarily increased by increasing dy. The assumption made
in Proposition 10 is not a strict one, and hence crossing of robustness curves often occurs.

With reference to v̄1 and v̄2 in (44) and (45), define ω̄1 and ω̄2 by

ω̄1 =
4v

d′y +
√
12dyd′y − 3(d′y)

2
, (56)

ω̄2 =
v

dy +
√
3dyd′y

, (57)

where ω̄1 > ω̄2. Crossing of the robustness curves in Example 3 can be explained as
follows.

Proposition 11. Suppose that the assumptions in section 5 hold, i.e., v and dy are fixed
and ω is uncertain. Assume that dy and d′y satisfy 0 < dy < d′y < (

√
3 + 1)dy. Then,

for any v > 0 and ω̃ > 0, the number of crossing points of the two robustness curves,
s = α̂ω(u

c; v, ω̃, dy) and s = α̂ω(u
c; v, ω̃, d′y), is given as follows:

• If ω̃ ∈ (ω̄1,+∞), then the two curves are crossing twice.

• If ω̃ ∈ (ω̄2, ω̄1], then the two curves are crossing once.

• If ω̃ ∈ (0, ω̄2], then the two curves are not crossing.

Proof. It follows from Lemma 9, (56), and (57) that ω = ω̄1 and ω = ω̄2 are two
intersection points of the graphs s = µω(ω; v, dy) and s = µω(ω; v, d

′
y). Therefore, the

assertion of this proposition follows from (21).

In the case of Example 3, we have v = 0.2, dy = 0.03, and d′y = 0.04, which yield
ω̄1 = 5.798 and ω̃ = 8.0 ∈ (ω̄1,+∞). Therefore, Figure 6 showing two intersection points
of the robustness curves agrees with Proposition 11.

A design implication of Proposition 11 is that, when ω is uncertain and ω̃ < ω̄2, we
have that

d′y > dy > 0 ̸⇒ α̂ω(u
c; v, ω̃, d′y) > α̂ω(u

c; v, ω̃, dy). (58)

Namely, increase of dy does not necessarily yield improvement of robustness.

8. Conclusions

In this paper, we have presented a robustness assessment method for elastoplastic
single-degree-of-freedom structures subjected to double impulse input. Based on the info-
gap theory [12], a quantitative measure of robustness, called the robustness function, has
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been defined. The closed-form expression of the critical elastoplastic response [4] plays
a key role in evaluation of the robustness measure of a structure.

Fundamental properties of the structural robustness have been derived by using the
closed-form expression of the critical response. When the initial velocity of the input,
v, is uncertain, robustness of a structure is always improved if its natural frequency is
increased. Also, when the natural circular frequency of a structure, ω, is uncertain,
robustness is always improved if the nominal value of ω is increased. In contrast, when
v or ω is uncertain, robustness is not necessarily improved even if the yield deformation
of the structure, dy, is increased. Moreover, the robustness preference between two
structural designs with different values of dy can possibly reverse, when the designer’s
performance requirement changes. We have derived a sufficient condition for occurrence
of this reversal. When dy is uncertain, robustness of a structure can possibly decreases
drastically, actually in a discontinuous manner, when the performance requirement, uc,
is demanded to be improved. This is because the deformation before the second impulse
is critical for a large value of uc, while the deformation after the second impulse becomes
critical for a small value of uc.

Extensions of the presented approach to the structural response against the triple
impulse [8] and the multiple impulse [9] remain to be studied. Propagation of uncertainty
to non-critical structural response could be explored. Also, we could explore an extension
to the situation that an estimated probability density function for a parameter is available
but is erroneous to some unknown extent. Given the magnitude of uncertainty, a problem
for finding the set of structural designs satisfying the constraints under uncertainty could
be considered.
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