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Abstract 11 

 An exact Monte Carlo method for evaluating the sensitivity coefficients of the effective 12 

delayed neutron fraction (    ) with respect to nuclear data is developed using the differential 13 

operator sampling (DOS) method. This development includes combining the two characteristic 14 

features of the DOS method: the exact evaluation of      and the sensitivity analyses of the k- 15 

and -eigenvalues. Numerical tests are performed to calculate the sensitivity coefficients of      16 

with the newly developed Monte Carlo method. The new Monte Carlo method’s sensitivities 17 

mostly are in accordance with the reference solutions that were obtained by a deterministic 18 

discrete ordinates method based on the perturbation theory. In particular, the sensitivities of      19 

to the yield and spectrum of delayed neutrons, which are dominant contributors to the uncertainty 20 

of     , can be predicted precisely by the new method. 21 

  22 

Keywords: effective delayed neutron fraction; Monte Carlo; sensitivity analysis; differential 23 

operator 24 

 25 

1. Introduction 26 

 The effective delayed neutron fraction      is an important parameter in describing the 27 

kinetic behavior of a nuclear reactor. Measured values in a reactor physics experiment (e.g., 28 

control rod worth) are usually obtained in units of dollars. Then, the measured values in units of 29 

dollars are converted by multiplying them by      for comparison with the calculation results. 30 
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Thus, an accurate estimation of      is crucially important to ensure the quality of both 1 

experiments and calculations. High-accuracy calculation methods of      using the continuous 2 

energy Monte Carlo method have been developed over the past decade. A calculation capability 3 

for obtaining      is now installed in many production Monte Carlo codes such as MCNP 6 4 

(Goorley et al., 2013), MVP 2 (Nagaya and Mori, 2011), Serpent 2 (Leppänen et al., 2014) 5 

TRIPOLI-4 (Truchet et al., 2015), McCARD (Choi and Shim, 2016; Yoo and Shim, 2018), 6 

OpenMC (Peng et al., 2019), MORET 5 (Cochet et al., 2015), and RMC (Qiu et al., 2017). Most 7 

of these codes adopt the adjoint-weighted technique by using the iteration fission probability (IFP) 8 

(Kiedrowski et al., 2011; Nauchi and Kameyama, 2012; Leppänen et al., 2014). A unique 9 

technique that uses the differential operator sampling (DOS) method is adopted in MVP 2 and 10 

McCARD. 11 

IFP is also used for sensitivity analyses of the neutron multiplication factor keff and reaction 12 

rate ratios (e.g., the ratio of fission to capture) in production Monte Carlo codes, such as MCNP 6 13 

(Kiedrowski et al., 2011; Kiedrowski and Brown, 2013), TRIPOLI-4 (Terranova et al., 2018), 14 

MORET 5 (Jinaphanh et al., 2016), McCARD (Shim and Kim, 2011), and RMC (Qiu et al., 2015; 15 

Qiu et al., 2016a; Qiu et al., 2016b). A method that is installed in SCALE code is based on the 16 

Contributon theory (Perfetti, 2012; Perfetti and Rearden, 2016). The sensitivity coefficients are 17 

useful for quantifying the impact of nuclear data uncertainties in reactor physics applications. The 18 

DOS method was applied to obtain the sensitivity coefficients of keff (Yamamoto, 2018) and of 19 

prompt neutron decay constants  (Yamamoto and Sakamoto, 2019a; Yamamoto and Sakamoto, 20 

2019b). 21 

 In addition to obtaining an accurate      by using the continuous energy Monte Carlo 22 

method, quantifying the uncertainty of      that is induced by nuclear data uncertainties is also 23 

important. Some sensitivity and uncertainty analyses of      were performed in a deterministic 24 

manner (Hammer, 1979; D’Angelo et al., 1987; D’Angelo, 1990; Zukeran et al., 1999; Kodeli, 25 

2013; Kodeli, 2018). For example, the deterministic approach performed by Kodeli (2013, 2018) 26 

estimates the sensitivity coefficients of an approximate      that was derived by Bretscher’s 27 
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“prompt k-ratio method” (Bretscher, 1997). 1 

A Monte Carlo approach that was recently attempted by (Iwamoto et al., 2018a; Iwamoto et 2 

al., 2018b; Romojaro et al., 2019) is similar to Kodeli’s deterministic approach. The sensitivity 3 

coefficients estimated for      are defined by Chiba’s “modified k-ratio method” (Chiba, 2009) 4 

as well as Bretscher’s “prompt k-ratio method”. In (Romojaro et al., 2019), only Bretscher’s 5 

method was adopted. One problem of the Monte Carlo approach lies in obtaining the sensitivity 6 

coefficients of the approximately estimated     . In addition, another problem arises when the 7 

deterministic approaches are applied to the Monte Carlo method. The sensitivity coefficient of 8 

     in (Iwamoto et al., 2018a; Iwamoto et al., 2018b) is defined by the small difference between 9 

the two sensitivity coefficients of k-eigenvalues. Both the sensitivity coefficients are obtained by a 10 

Monte Carlo sensitivity analysis tool such as KSEN option of MCNP6 (Goorley et al., 2016), and 11 

thus they necessarily entail statistical uncertainties. The problem with this approach is that the 12 

statistical uncertainties of the sensitivity coefficients of      become larger as      is obtained 13 

with less approximation. 14 

Additional previous studies on the sensitivity analysis method of      were performed by 15 

(Aufiero et al., 2015) and (Burke and Kiedrowski, 2018). The method in (Aufiero et al., 2015) 16 

adopted the collision history-based approach to calculate the sensitivities to nuclear data. The 17 

study by Burke and Kiedrowski (2018) calculated the sensitivities to system dimensions. 18 

This paper attempts to establish a Monte Carlo algorithm that exactly defines a sensitivity 19 

coefficient of      to nuclear data parameters by introducing the DOS method. This paper adopts 20 

the exact calculation method of      through the differential operator sampling method (Nagaya 21 

and Mori, 2011). The DOS method (Rief, 1984; Raskach, 2009; Yoo and Shim, 2018) estimates 22 

the first or higher-order differential coefficient of a quantity that is scored during the course of the 23 

random walk in a Monte Carlo calculation. Thus, the DOS method is an optimal approach for 24 

calculating the sensitivity coefficients, i.e., the first derivatives. In the following sections, the DOS 25 

method that exactly calculates      is revisited (Nagaya and Mori, 2011). Then, a Monte Carlo 26 

algorithm for an exact sensitivity coefficient of      is presented. The performance of the new 27 
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method is tested through simple numerical tests where the sensitivities to various kinds of nuclear 1 

data are obtained, and the applicability of the method is evaluated. 2 

 3 

2. Review of the exact Monte Carlo method for      4 

 Before proceeding to the newly developed sensitivity analysis method, the exact Monte Carlo 5 

method that obtains the      with the DOS method (Nagaya and Mori, 2011) is briefly reviewed. 6 

For simplicity, the delayed neutron family with only one nuclide is assumed to induce the fission 7 

reactions. 8 

 According to (Chiba, 2009), the exact      is given by the following: 9 

        
   

 

    

         

 
 

 

    
      

  
 
   

                                         

where      is an eigenvalue of the following neutron transport equation for a perturbed system: 10 

            
 

    
                                                                          

In this perturbed system, the parameter a is the fractional change of the number of delayed 11 

neutrons. The operators in Eq. (2) are written as follows: 12 

                                            

     
  

                               , 
(3) 

and: 13 

            
     

  
                                  
  

  

               
     

  
                                   
  

 

(4) 

where     the macroscopic total cross-section,     the macroscopic scattering cross-section, 14 

    the macroscopic fission cross-section,     the prompt neutron spectrum,     the 15 

delayed neutron spectrum,     the prompt neutron yield,     the delayed neutron yield,    16 

the neutron flux, and    the neutron direction. Differentiating Eq. (4) with respect to a and 17 

setting     yields the following: 18 
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Eq. (5) stands for the neutrons emitted by the delayed fission. The DOS method for the      1 

calculation is performed during the ordinary k-eigenvalue calculation. The Monte Carlo algorithm 2 

of the DOS method for the ith history in the mth cycle is as follows: 3 

(Step 1): When starting a fission source particle for the ith history, determine whether the fission 4 

neutron is a prompt or delayed neutron. A pseudo random number between 0 and 1 is generated. 5 

If is less than the delayed neutron fraction , the neutron is a delayed neutron. Otherwise, the 6 

neutron is a prompt neutron. The energy of the fission neutron is determined according to       7 

or      . 8 

(Step 2): A weighting coefficient is assigned to the fission neutron as follows: 9 

        , if the neutron is a delayed neutron,              (6) 10 

        , if the neutron is a prompt neutron.              (7) 11 

(Step 3): A random walk process is performed in the same manner as ordinary k-eigenvalue 12 

calculations. 13 

(Step 4): At each collision site, the following quantity is scored and is accumulated until the end of 14 

the ith history: 15 

         
               

    
                                                              

 

 

where    is the particle weight at the jth collision and the summation is carried out over all 16 

collisions during the ith history. 17 

(Step 5): At the end of each cycle, the first derivative of      with respect to a is obtained as 18 

follows: 19 

        

  
 
   

 
 

 
        

 

   

                                                            

where M is the number of histories in each cycle. Eq. (9) corresponds to an adjoint weighted 20 

estimate of the delayed neutron fraction although the perturbed source effect caused by the change 21 

of a is not included in it. The subscript NP indicates that Eq. (9) does not include the effect of the 22 

fission source distribution that is perturbed by the change of a. 23 
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The perturbed source effect due to the change of a can also be calculated by following the 1 

procedure presented in (Nagaya and Mori, 2005; Yamamoto, 2018). The perturbed source effect is 2 

calculated as follows. 3 

 Suppose that the lth fission neutron in the mth cycle is generated at a collision point in the ith 4 

particle history. Then, the following quantity is scored at the collision point as follows: 5 

      
 

                                                                              

      
 

                                                                 

where        is the weighting coefficient defined in Eq. (6) or Eq. (7). The subscript n indicates 6 

the number of iterations for the perturbed source effect because the perturbed source effect must 7 

be calculated by an iteration procedure.          , which is defined in Eq. (12) below, represents 8 

the perturbed source effect in the weighting coefficient, and it is inherited from the previous 9 

        cycle. N is the maximum iteration number, and this number is chosen so that the 10 

perturbed source effect fully converges. In each cycle,       
 

 is stored for       and 11 

        where L is the total number of fission neutrons generated in each cycle. 12 

At the end of the mth cycle,       
 

 in Eq. (10) or Eq. (11) is normalized as follows: 13 

                    
 

 
 

 
       

 

 

   

                                 

This normalization process keeps the sample size constant in each cycle.               obtained 14 

from Eq. (12) is used in Eq. (11) for the next cycle calculation. The perturbed source effect of the 15 

first derivative of      of the ith history in the mth cycle is obtained by the following: 16 

         
               

    
 

                                                      

where the summation for j is carried out at each collision until the end of the ith history. At the 17 

end of each cycle, the perturbed source effect of the first derivative of      is obtained as 18 

follows: 19 

        

  
 
   

 
 

 
        

 

   

                                                             

The      in which the perturbed source effect is included is obtained for the mth cycle: 20 
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where: 1 

          
 

    
        

  
 
   

                                                          

          
 

    
        

  
 
   

                                                          

     in Eq. (16) or Eq. (17) is the k-eigenvalue for a = 0. 2 

 3 

3. Sensitivity analysis methods of eff 4 

 Based on the DOS method for calculating      shown in Sec. 2, a new method for 5 

determining the sensitivity coefficient of      with respect to nuclear data is presented in this 6 

section. The algorithm for the sensitivity analysis is different depending on the type of nuclear 7 

data. The Monte Carlo algorithms are presented for the nuclear reaction cross-sections such as 8 

capture, fission, and scattering (Sec. 3.1), the prompt and delayed neutron yields (Sec. 3.2), and 9 

the prompt and delayed neutron spectra (Sec. 3.3). 10 

 11 

3.1 Capture, fission, scattering cross-sections 12 

 The algorithm for the sensitivity of the reaction cross-section is very similar to the DOS 13 

method for the sensitivity coefficients of the k-eigenvalue. The method for the k-eigenvalue is 14 

published in (Yamamoto, 2018). The new algorithm in this paper can be derived by following the 15 

method in (Yamamoto, 2018). 16 

 The first derivative of      with respect to a nuclear data x is given by differentiating Eq. (1) 17 

as follows: 18 

     

  
 

 

  
 

 

    
      

  
 
   

  
 

    

   
 

  
 

  
 

     

     

  
                                 

where: 19 

  
   

     

  
 
   

                                                                

Using   
          , Eq. (18) is rewritten as follows: 20 

     

  
 

 

    

   
 

  
 

    

    

     

  
                                                        

The derivative of      with respect to x,         , in Eq. (18) is identical to the sensitivity of 21 
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keff, and the method in (Yamamoto, 2018) is available for calculating         . 1 

The derivative of   
  with respect to x,    

    , for the ith history in the mth cycle is 2 

calculated as follows. Steps 1, 2, and 3 are omitted because these are the same as those in Sec. 2. 3 

We start with step 4. 4 

(Step 4): At the jth collision site, the following quantity is scored as follows: 5 

          
               

    
                                                            

where    is the particle weight at the jth collision;        is given by Eq. (6) or Eq. (7).        6 

is a differential coefficient of the transport and collision kernels with respect to perturbed nuclear 7 

data x, which is given by (Yamamoto, 2019b) as follows: 8 

       
 

            

 

  
              

 

    

 

  
    

   

   

    

 

  
    

 

                      

       is specifically written for     ,   , and    as follows: 9 

       

 
 
 
 
 

 
 
 
     

 

                              

    
 

    

   

   

    

 

                     

    
 

    
    

 

                           

  

where    is a macroscopic capture cross-section;    is the flight distance of the kth flight within 10 

the region where a perturbed cross-section exists; the summation for k is carried out for all flights 11 

until the jth collision; l in Eqs. (23) and (24) stands for the lth collision. 12 

 The perturbed source effect due to the change of the cross-section must be calculated as 13 

described in Sec. 2. The perturbed source effect can be obtained by following the same procedure 14 

as in Sec. 2, except that        in Eqs. (10) and (11) is substituted by             . At the jth 15 

collision site, the following quantity is scored for the perturbed source effect: 16 

          
               

    
                                                                 

where           is obtained in the same manner as in Eq. (12). At the end of the history, the 17 

sensitivity coefficient with respect to a cross-section x for the ith particle history is calculated as 18 
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follows: 1 

                 

 

           

 

                                                        

The cycle average of    
     is given by the following: 2 

   
 

  
 

 

 
       

 

   

                                                                      

where M is the number of the histories in each cycle. All quantities in Eq. (18) or Eq. (20) that are 3 

needed for          are obtained as previously demonstrated. 4 

 5 

3.2    and    6 

 The algorithm for calculating the sensitivity coefficient with respect to the prompt and 7 

delayed neutron yields is shown in this section. The sensitivity coefficient that we need to 8 

calculate is as follows: 9 

     

   
 

 

    

   
 

   
 

    

    

     

   
                                                        

where x =p or d. First, the method for calculating            is discussed. The covariance of 10 

nuclear data that is used for sensitivity and uncertainty analyses is provided in multigroup form. 11 

Thus, the formulation in this paper is presented in multigroup form. 12 

 The delayed neutron fraction is rigorously defined as follows: 13 

   
    

         
                                                                            

where g denotes the energy group of a neutron that induced the fission reaction. The fission 14 

neutron spectrum for the gth energy group is given by the following: 15 

                                                                                 

Thus, the perturbation of      or      causes the change of the fission neutron spectrum through 16 

the change of   . The change of the fission neutron spectrum is taken into account as follows. 17 

When starting a fission source particle for the ith history in the mth cycle, the weighting 18 

coefficient is assigned to the particle as follows: 19 

       
 

    

     

     
 

 

    

    

         
                                                 

and: 20 
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Because the energy group g in Eqs. (32) and (33) denotes the energy group of a neutron that 1 

induced the fission reaction as mentioned previously instead of the energy group of the fission 2 

source particle, the energy group that induced the fission reaction has to be stored for each fission 3 

neutron. This information is usually unnecessary in the conventional Monte Carlo calculations. 4 

However, the sensitivity calculations to      or      exceptionally require the energy group of 5 

the parent neutron to be inherited to the next cycle. 6 

Expression            for the ith particle history in the mth cycle is calculated by following 7 

the steps below. 8 

(Step 1): This step is the same as Step 1 in Sec. 2. 9 

(Step 2): According to the energy group of the neutron that produced the starting particle, a 10 

weighting coefficient        is assigned to the particle using Eq. (32) or Eq. (33). 11 

(Step 3): A random walk process is performed in the same manner as ordinary k-eigenvalue 12 

calculations. 13 

(Step 4): At the jth collision site, the following quantity is scored: 14 

          
               

    
                                                                 

where: 15 

       
 

                

 

     
                

 

         
               

Notably, the energy group g in Eq. (35) is not of the colliding particle but is instead of the neutron 16 

that produced the starting particle. The remaining procedures are the same as those in Sec. 3.1, 17 

including the calculation for the perturbed source effect. 18 

 Next, we calculate    
       in Eq. (29) . The procedures for calculating   

  are presented 19 

in Sec. 2. In step 1 in Sec. 2, whether the starting fission particle is a delayed or prompt neutron is 20 

determined according to   . The perturbation of      or      changes    as seen in Eq. (30). 21 

Thus, the weighting coefficient assigned to the staring particle is given by the following: 22 

       
 

  

   

     
 

 

  

    

         
                                                 

and: 23 
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Next,    
       for the ith particle history is calculated by the following steps. Steps 1 and 2 are 1 

the same as those in Sec. 2. We start with step 3. 2 

(Step 3): According to the energy group of the neutron that produced the starting particle, a 3 

weighting coefficient        is assigned to the particle using Eq. (36) or Eq. (37). 4 

(Step 4): A random walk process is performed in the same manner as ordinary k-eigenvalue 5 

calculations. 6 

(Step 5) At the jth collision site, the following quantity is scored: 7 

          
               

    
                                                              

where        is defined by Eq. (22) as follows: 8 

       
 

                

 

     
                

 

         
                

and      is defined by Eq. (6) or Eq. (7). The remaining procedures are the same as in the 9 

previous sections. 10 

 11 

3.3    and    12 

 The algorithm for calculating the sensitivity coefficient of the prompt or delayed neutron 13 

spectrum is shown in this section. Note that the sensitivity coefficient with respect to the fission 14 

spectrum that is derived in this paper is an unconstrained one (Nagaya et al., 2009). The sensitivity 15 

coefficient with respect to the prompt or delayed neutron spectrum is as follows: 16 

     

   
 

 

    

   
 

   
 

    

    

     

   
                                                        

where x = p or d. However,    
     = 0 for x= p because   

  is calculated for delayed neutrons 17 

only and the prompt neutron spectrum does not influence   
  at all. Thus, Eq. (40) is rewritten for 18 

x = p as follows: 19 

     

   
  

    

    

     

   
                                                                 

If x = d,    
      is identical to          . This is because both derivatives represent the 20 

k-eigenvalue sensitivities with respect to the delayed neutron spectrum when a delayed neutron is 21 
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emitted from the fission source site. Thus, Eq. (40) is rewritten as follows: 1 

     

   
 

 

    

     

   
                                                         

           in Eq. (41) or Eq. (42) is calculated by the following steps. 2 

(Step 1): This step is the same as step 1 in Sec. 2. 3 

(Step 2): A weighting coefficient is assigned to a fission neutron that is emitted from a fission 4 

source site as follows: 5 

       
 

    

     

     
 

 

    
                                                  

       
 

    

     

     
 

 

    
                                                 

(Step 3): A random walk process is performed in the same manner as ordinary k-eigenvalue 6 

calculations. 7 

(Step 4): At the jth collision site, the following quantity is scored and this score is accumulated 8 

until the end of the history: 9 

          
               

    
                                                              

The remaining procedures are the same as in the previous sections. 10 

   11 

4. Numerical tests for sensitivity coefficients of eff 12 

4.1 Uranium fuel thermal system 13 

 The Monte Carlo algorithm for calculating the sensitivity coefficients of      that is 14 

described in Sec. 3 is tested in this section. The first test problem deals with a thermal system that 15 

is composed of a homogenized light-water moderated UO2 fuel rod array surrounded by a 16 

light-water reflector layer. The geometry of the test problem is shown in Fig. 1. The geometry is a 17 

two-dimensional rectangular shape. Table 1 shows the three-energy group constants for the two 18 

materials. The group constants are prepared with a standard reactor analysis code (SRAC) 19 

(Okumura et al., 2007). Throughout this paper, the scatterings are assumed to be isotropic. The 20 

sensitivity coefficients are calculated with respect to the macroscopic cross-sections (capture, 21 

fission, scattering cross sections),   ,   ,   , and   . The Monte Carlo calculations are 22 
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performed with an in-house research-purpose program developed by the authors, which is only 1 

available for the purpose of performing this study. 2 

[Fig. 1][Table 1] 3 

 The reference calculations for the sensitivity coefficients are performed with the discrete 4 

ordinates transport code DANTSYS (Alcouffe et al., 1995) using the same group constants in 5 

Table 1. The three-energy group forward and adjoint fluxes of the k-eigenvalue mode are 6 

calculated with the angular quadrature order 8. Using the fluxes,      is calculated according to 7 

the conventional definition of      using a postprocessing program developed by the authors as 8 

follows: 9 

     
 

 
                                                                                                 

      
                 

   
                                                                              

      
                  

  
                 

  
 

 
                           

where      denotes the volume integration for the whole region;   
  is the adjoint flux of the gth 10 

group;    is the forward flux of the gth group. In Table 2, keff and      calculated by the Monte 11 

Carlo method are compared with the deterministic method. The results of both methods precisely 12 

agree with each other. The Monte Carlo calculation uses 10,000 cycles, 80,000 particles per cycle, 13 

and 20 inactive cycles. The number of iterations for the perturbed source effect throughout this 14 

paper is 10, including the calculations for the sensitivity coefficients. This number of iterations is 15 

large enough to obtain the converged solutions for the perturbed source effect. 16 

[Table 2] 17 

No exact method for obtaining the sensitivity coefficients of      has been developed thus 18 

far, except for    and   . Thus, the reference solutions of the sensitivity coefficients of      19 

with respect to nuclear data are approximately obtained according to the method by (Iwamoto et 20 

al., 2018a): 21 

    

     
    

    

 

    
     

      
   

 

 
                                                    

where     
  is the sensitivity coefficient of keff with respect to x when the delayed fissions are 22 
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increased by a as shown in Eq. (4).     
  and     

  are calculated using the forward and adjoint 1 

fluxes based on the conventional perturbation theory. A postprocessing program for DANTSYS 2 

developed by the authors is used for the sensitivity calculations (Yamamoto, 2018). The exact 3 

sensitivity coefficient is obtained by the limit of Eq. (49) when a approaches 0. After calculating  4 

    

    
 at a = 0.5 and 1.0, the reference solutions are obtained by linearly extrapolating     

    
 to a 5 

= 0.0. 6 

 The sensitivity coefficients with respect to      and      can be exactly obtained by 7 

differentiating Eq. (46), because the changes in these parameters do not change any other nuclear 8 

data. The sensitivity coefficients with respect to      and      are, respectively, given by the 9 

following: 10 

     

     
    

    

     

     
 

    

    

         

  
                                                 

     

     
    

    

     

     
  

    

    

     

  
                                                        

where: 11 

     
  

     
    

             

  
                                           

     
  

     
    

             

  
                                           

The sensitivity coefficients calculated by the deterministic method and the new Monte Carlo 12 

method are compared in Table 3 (capture), Table 4 (fission), Table 5 (scattering), Table 6 (delayed 13 

neutron yield), Table 7 (prompt neutron yield), Table 8 (delayed neutron spectrum), and Table 9 14 

(prompt neutron spectrum). The results of the Monte Carlo calculations include the perturbed 15 

source effect. The sensitivity coefficient with respect to the scattering cross-section in the third 16 

group is inconsequential and is omitted in Table 4. 17 

[Table 3][Table 4][Table 5][Table 6][Table 7][Table 8][Table 9] 18 

 The sensitivity coefficients to the cross-sections (capture, fission, and scattering) calculated 19 

by the new Monte Carlo method mostly agree with the reference results within the two standard 20 
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deviations, but some of them differ from the reference results by up to 5%. The large differences 1 

especially occur in the 2nd group where the large statistical uncertainties are involved. The large 2 

statistical uncertainties are caused by the small difference between the two terms on the right-hand 3 

side of Eq. (20), which are subtracted from each other. For example,   

    
 for the 2nd group 4 

capture cross-section is −7.74×10
−3

 ± 1.4×10
−4

, which is obtained by subtracting −0.13235 ± 5 

0.00011 from −0.14009 ± 0.00009. Considering that the statistical uncertainties are involved in the 6 

Monte Carlo method and that the reference results are not necessarily exact, the proposed Monte 7 

Carlo method yields reasonable results. 8 

 The sensitivity coefficients to the nuclear data (  ,   ,   , and   ) calculated with the 9 

proposed Monte Carlo method agree with the reference results within a difference of 1%. For the 10 

fission spectra, the results of the Monte Carlo method almost exactly agree with the reference 11 

results. 12 

 13 

4.2 Plutonium fuel fast system 14 

 The next test problem deals with a two-dimensional light-water reflected plutonium metal 15 

system. The configuration is shown in Fig. 2. Table 10 shows the three-energy group constants for 16 

the two materials. In Table 11, keff and      calculated with the Monte Carlo method are 17 

compared with the deterministic method. The agreement of keff between both methods is not as 18 

strong as in the previous test problem, which is probably because the ray effect in the 19 

deterministic discrete ordinates method is more important in this fast metal system. 20 

[Table 10][Table 11] 21 

The sensitivity coefficients calculated with the deterministic method and the new Monte 22 

Carlo method are compared in Table 12 (capture), Table 13 (fission), Table 14 (scattering), Table 23 

15 (delayed neutron yield), Table 16 (prompt neutron yield), Table 17 (delayed neutron spectrum), 24 

and Table 18 (prompt neutron spectrum). While the results of the two methods mostly agree 25 

within 1% of each other, some show a significant disagreement of ~6% beyond the three standard 26 

deviations. No specific reason can be stated presently for why this disagreement occasionally 27 

occurs for some cross-sections. The noticeable disagreement in the results of the scattering 28 
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cross-sections are commonly observed in both the test problems. However, the derivative of      1 

with respect to a scattering cross-section is generally small because it is calculated by taking the 2 

difference of two similar terms as seen in Eq. (24). The same result occurs for the scattering 3 

cross-sections in the collision history-based approach (Aufiero et al., 2015). Although some 4 

disagreement with the reference results is found in the proposed Monte Carlo method, the method 5 

generally produces accurate sensitivity estimates. 6 

According to (Iwamoto et al., 2018a), the most dominant effect on the uncertainty of      is 7 

caused by the delayed neutron fraction   . Although the effect of the delayed neutron spectrum 8 

   was unfortunately not evaluated in (Iwamoto et al., 2018a) due to a lack of covariance data, 9 

the effect is expected to be substantial. The newly developed method produces precise results for 10 

   and   , which are major contributors to the uncertainties of     , as shown in Tables 6, 8, 15, 11 

and 17. Thus, the proposed method can be a potential tool for use in sensitivity analyses for 12 

nuclear data parameters that are important in terms of the accuracy of     . 13 

 14 

5. Conclusions 15 

A previously developed Monte Carlo method for the sensitivity analysis of      experienced 16 

difficulties in obtaining less approximate sensitivity coefficients while reducing statistical 17 

uncertainties. This paper proposes a new Monte Carlo method that can calculate the exact 18 

sensitivity coefficients of     . For this purpose, the differential operator sampling (DOS) 19 

technique is adopted. The DOS method is one of the Monte Carlo techniques that can yield an 20 

exact     . Additionally, the DOS method can be applied in calculating the sensitivity 21 

coefficients of the k- and -eigenvalues with respect to nuclear data parameters. In this paper, both 22 

capabilities of the DOS method are combined to calculate the exact sensitivity coefficients of 23 

    . The newly developed Monte Carlo method is tested through comparing the results of the 24 

new method with results from a deterministic method based on the perturbation theory using a 25 

discrete ordinates transport code. The sensitivity coefficients calculated with the new Monte Carlo 26 

method are in accordance in most cases with the coefficients calculated by the deterministic 27 
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method. The new method’s sensitivity coefficients show a noticeable disagreement beyond the 1 

statistical uncertainties, especially for small sensitivities such as the scattering cross-sections. 2 

However, the sensitivities to the delayed neutron spectrum    and the delayed neutron yield   , 3 

which have direct and dominant effects on     , are precisely predicted with the new method. 4 

Future developments will include the implementation of the new proposed method into a 5 

production continuous energy Monte Carlo code and an uncertainty quantification of      using 6 

the code and the covariance data of a cross-section library. 7 

 8 
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Fig. 2 Geometry of the test problem for sensitivity analyses (Pu metal problem). 3 



 

 

Fig. 1 Geometry of the test problem for sensitivity analyses (UO2 rod array problem) 
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Fig. 2 Geometry of the test problem for sensitivity analyses (Pu metal problem). 
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Table 1 Three-group constants for UO2 fuel rod array and light water. 

 
 

UO2 fuel rod 

array 
 Light water 

Total cross 

section (cm
-1

) 

    0.29829 0.33207 

    0.83334 1.1265 

    1.6389 2.7812 

Fission cross 

section (cm
-1

) 

    0.0030586   

    0.0021579   

    0.056928   

Absorption 

cross section 

(cm
-1

) 

    0.003385 0.00030500 

    0.011895 0.00036990 

    0.086180 0.0182500 

Group transfer 

cross section 

(cm
-1

) 

  
    0.073843 0.10464 

  
    0.0 0.0 

  
    0.043803 0.097961 

Prompt fission 

yield 
    2.383095   

delayed fission 

yield 
    0.016905   

Prompt neutron 

spectrum 

     0.881487   

     0.118513   

     0   

Delayed neutron 

spectrum 

     0.414609   

     0.585391   

     0   

Energy boundaries (10 MeV: 235 keV: 1.27 eV) 

 

 

 

 

Table 2 keff and eff for UO2 fuel rod array. 

 keff eff (pcm) 

Deterministic method 1.04906 747.58 

Monte Carlo method  1.04903  

(0.000013)
*
 

746.93  

(0.62) 

*The value in the parenthesis is the absolute one standard deviation. 

 

 

 

Table



Table 3   
    

to the capture cross-section    for UO2 fuel rod array. 

 1st Gr. 2nd Gr. 3rd Gr. 

Deterministic method  1.544×10
−3

 −8.194×10
−3

 −9.886×10
−3

 

Monte Carlo method 1.546×10
−3

 

(3×10
−6

)
*
 

−7.74×10
−3

 

(1.4×10
−4

) 

−1.001×10
−2

 

(4.2×10
−4

) 

MC/Deterministic 1.001 0.9446 1.013 

*The value in the parenthesis is the absolute one standard deviation. 

 

 

Table 4   
    

to the fission cross-section    for UO2 fuel rod array. 

 1st Gr. 2nd Gr. 3rd Gr. 

Deterministic method  −1.959×10
−2

 2.005×10
−3

 1.141×10
−2

 

Monte Carlo method −1.973×10
−2

 

(8×10
−5

)
 *
 

1.726×10
−3

 

(7.5×10
−5

) 

1.161×10
−2

 

(6.0×10
−4

) 

MC/Deterministic 1.007 0.9446 1.017 

*The value in the parenthesis is the absolute one standard deviation. 

 

 

Table 5   
    

to the scattering cross-section    for UO2 fuel rod array. 

 1st Gr. 2nd Gr. 

Deterministic method  −7.570×10
−2

 1.679×10
−2

 

Monte Carlo method −7.884×10
−2

 

(6.0×10
−4

)
 *
 

1.61×10
−2

 

(1.9×10
−3

) 

MC/Deterministic 1.041 0.9589 

*The value in the parenthesis is the absolute one standard deviation. 

 

 

Table 6   
    

to the delayed neutron yield    for UO2 fuel rod array. 

 1st Gr. 2nd Gr. 3rd Gr. 

Deterministic method  6.087×10
−2

 5.984×10
−2

 8.718×10
−1

 

Monte Carlo method 6.089×10
−2

 

(1.7×10
−4

)
 *
 

5.984×10
−2

 

(2.3×10
−4

) 

8.716×10
−1

 

(9×10
−4

) 

MC/Deterministic 1.000 1.000 1.000 

*The value in the parenthesis is the absolute one standard deviation. 

 



Table 7   
    

to the prompt neutron yield    for UO2 fuel rod array. 

 1st Gr. 2nd Gr. 3rd Gr. 

Deterministic method  −9.512×10
−2

 −5.613×10
−2

 −8.397×10
−1

 

Monte Carlo method −9.503×10
−2

 

(1.9×10
−4

)
 *
 

−5.660×10
−2

 

(2.1×10
−4

) 

−8.413×10
−1

 

(8×10
−4

) 

MC/Deterministic 0.999 1.008 1.002 

*The value in the parenthesis is the absolute one standard deviation. 

 

 

Table 8   
    

to the delayed neutron spectrum    for UO2 fuel rod array. 

 1st Gr. 2nd Gr. 

Deterministic method  3.815×10
−1

 6.111×10
−1

 

Monte Carlo method 3.817×10
−1

 

(5×10
−4

)
 *
 

6.113×10
−1

 

(6×10
−4

) 

MC/Deterministic 1.001 1.000 

*The value in the parenthesis is the absolute one standard deviation. 

 

 

Table 9   
    

to the prompt neutron spectrum    for UO2 fuel rod array. 

 1st Gr. 2nd Gr. 

Deterministic method  −8.611×10
−1

 −1.314×10
−1

 

Monte Carlo method −8.611×10
−1

 

(7×10
−4

)
 *
 

−1.313×10
−1

 

(1×10
−4

) 

MC/Deterministic 1.000 0.999 

*The value in the parenthesis is the absolute one standard deviation. 

 

  



Table 10 Three-group constants for the plutonium metal and the light water  

  Plutonium metal Light water 

Total cross section 

(cm
-1

) 

    0.28573 0.301663 

    0.35423 0.686824 

    0.62448 1.48258 

Fission cross 

section (cm
-1

) 

    0.072424   

    0.052973   

    0.13267   

Absorption cross 

section (cm
-1

) 

    0.073056 0.002842 

    0.064640 0.00001 

    0.022681 0.00225 

Group transfer 

cross section (cm
-1

) 

  
    0.029374 0.18638 

  
    0 0 

  
    0.00030767 0.11244 

Prompt fission 

yield 
     3.19338   

Delayed fission 

yield 
   0.00662   

Prompt neutron 

spectrum 

     0.77409   

     0.22451   

     0   

Delayed neutron 

spectrum 

     0.165982   

     0.834018   

     0   

Energy boundaries (10 MeV: 821 keV: 19.3 keV) 

 

 

 

Table 11 keff and eff for Pu metal. 

 keff eff (pcm) 

Deterministic method 1.00146 218.37 

Monte Carlo method  1.00059  

(0.000017)
 *

 

218.33  

(0.31) 

*The value in the parenthesis is the absolute one standard deviation. 

 

 

 

 

 



Table 12   
    

to the capture cross-section    for Pu metal. 

 1st Gr. 2nd Gr. 3rd Gr. 

Deterministic method  1.052×10
−3

 −2.073×10
−2

 −4.350×10
−2

 

Monte Carlo method 1.053×10
−3

 

(3×10
−6

)
 *
 

−2.066×10
−2

 

(8×10
−5

) 

−4.312×10
−2

 

(3.9×10
−4

) 

MC/Deterministic 1.001 0.997 0.991 

*The value in the parenthesis is the absolute one standard deviation. 

 

 

Table 13   
    

to the fission cross-section    for Pu metal. 

 1st Gr. 2nd Gr. 3rd Gr. 

Deterministic method  −3.009×10
−1

 1.979×10
−1

 7.296×10
−2

 

Monte Carlo method −3.009×10
−1

 

(7×10
−4

)
 *
 

1.976×10
−2

 

(8.4×10
−4

) 

6.987×10
−2

 

(5.4×10
−4

) 

MC/Deterministic 1.000 0.998 0.958 

*The value in the parenthesis is the absolute one standard deviation. 

 

 

Table 14   
    

to the scattering cross-section    for Pu metal. 

 1st Gr. 2nd Gr. 

Deterministic method  −3.117×10
−2

 2.078×10
−2

 

Monte Carlo method −2.985×10
−2

 

(1.9×10
−4

)
 *
 

2.230×10
−2

 

(5.7×10
−4

) 

MC/Deterministic 0.958 1.073 

*The value in the parenthesis is the absolute one standard deviation. 

 

 

Table 15   
    

to the delayed neutron yield    for Pu metal. 

 1st Gr. 2nd Gr. 3rd Gr. 

Deterministic method  5.255×10
−1

 2.399×10
−1

 2.340×10
−1

 

Monte Carlo method 5.277×10
−1

 

(1.1×10
−3

)
 *
 

2.385×10
−1

 

(8×10
−4

) 

2.333×10
−1

 

(8×10
−4

) 

MC/Deterministic 1.004 0.994 0.997 

*The value in the parenthesis is the absolute one standard deviation. 

 



Table 16   
    

to the prompt neutron yield    for Pu metal. 

 1st Gr. 2nd Gr. 3rd Gr. 

Deterministic method  −9.544×10
−1

 5.261×10
−2

 −9.709×10
−2

 

Monte Carlo method −9.488×10
−1

 

(1.3×10
−3

)
 *
 

5.330×10
−2

 

(1.0×10
−4

) 

−1.035×10
−1

 

(9×10
−4

) 

MC/Deterministic 0.994 1.013 1.066 

*The value in the parenthesis is the absolute one standard deviation. 

 

 

Table 17   
    

to the delayed neutron spectrum    for Pu metal. 

 1st Gr. 2nd Gr. 

Deterministic method  1.537×10
−1

 8.442×10
−1

 

Monte Carlo method 1.541×10
−1

 

(8×10
−4

)
 *
 

8.438×10
−1

 

(3.3×10
−3

) 

MC/Deterministic 1.003 0.999 

*The value in the parenthesis is the absolute one standard deviation. 

 

 

Table 18   
    

to the prompt neutron spectrum    for Pu metal. 

 1st Gr. 2nd Gr. 

Deterministic method  −7.578×10
−1

 −2.400×10
−1

 

Monte Carlo method −7.578×10
−1

 

(1.1×10
−3

)
 *
 

−2.401×10
−1

 

(3×10
−4

) 

MC/Deterministic 1.000 1.000 

*The value in the parenthesis is the absolute one standard deviation. 

 




