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Exact Identification of the Structure of a
Probabilistic Boolean Network from Samples
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Abstract—We study the number of samples required to uniquely determine the structure of a probabilistic Boolean network (PBN),

where PBNs are probabilistic extensions of Boolean networks. We show via theoretical analysis and computational analysis that the

structure of a PBN can be exactly identified with high probability from a relatively small number of samples for reasonably wide classes

of PBNs of bounded indegree. On the other hand, we also show that there exist classes of PBNs for which it is impossible to uniquely

determine the structure of a PBN from samples.

Index Terms—probabilistic Boolean networks, genetic networks, network inference, sample complexity

✦

1 INTRODUCTION

VARIOUS kinds of mathematical models have been uti-
lized for understanding dynamical behavior of bio-

logical systems. Among them, the Boolean network (BN) is
a simple but well-studied model, which was proposed by
Kauffman in 1969 as a model of gene regulatory networks
[1], [2]. In a BN, each node takes a Boolean value, 0 or 1,
at each time step, and the states of all nodes are updated
synchronously according to Boolean functions assigned to
nodes, where each node corresponds to a gene, and 1 and
0 mean that genes are active and inactive, respectively. In
spite of the simplicity of the model, BNs exhibit complex
behavior and thus extensive studies have been done in order
to understand their behavior. For example, many studies
have been done on the distribution of attractors [3], [4], [5]
and the robustness against perturbations [6], [7].

In order to study realistic BNs, we need to infer the
structures of BNs from real data such as gene expression
time series data. Therefore, extensive studies have been
done on inference of BNs from gene expression data [8], [9],
[10], [11]. It is known that a BN with n nodes is uniquely
determined with high probability from randomly selected
O(log n) state-transition samples (i.e., O(log n) random arcs
in the state transition diagram) if the maximum indegree
(i.e., the maximum number of input nodes) is bounded by a
constant [9], where log n stands for log2 n in this paper. This
is an interesting result because the possible number of BNs
with n nodes is 2n2

n

, and 2n samples are needed to uniquely
specify a BN if there is no constraint on the structure of a
BN (i.e., there is one-to-one correspondence between BNs
and state transition diagrams).

Although BNs are a deterministic model, biological
systems contain intrinsic stochasticity and observed data
include noise. Therefore, BNs have been extended for in-
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cluding noise [13], [14], [15]. Among them, the probabilistic
Boolean network (PBN) model has attracted much attention
because of its simplicity, flexibility, and relations to Markov
chains and Bayesian networks [16], [17]. In a PBN, multiple
Boolean functions can be assigned to each node and one
function is randomly selected at each time step according
to the prescribed probability distribution. Extensive studies
have been done on control and simulation of PBNs [18],
[19], [20], [21], [22]. Several studies have also been done on
inference of PBNs [16], [22], [23].

However, to our knowledge, there is no result on the
sample complexity analogous to one for BNs. Although
there exist some studies on related models (e.g., Bayesian
networks) [14], [24], [25], results in [24], [25] are not on
exact identification but on approximate identification, and
the model in [14] is far from PBNs. Therefore, in this paper,
we study the number of samples required to exactly identify
the structure (i.e., a set of Boolean functions assigned to each
node) of a PBN. We show that there are cases for which it is
impossible to uniquely determine a PBN from samples. This
result is reasonable because PBNs are stochastic systems.
Interestingly, we also show that the structure of a PBN can
be identified with high probability from O(log n) samples
for reasonably wide classes of PBNs of bounded indegree.

2 PROBABILISTIC BOOLEAN NETWORK

A BN is a directed network with n nodes x1, . . . , xn. Each
node takes either 0 or 1 at each time step, and the state
of xi at time step t is denoted by xi(t). The states of all
nodes are updated simultaneously according to Boolean
functions assigned to nodes. Let f (i) denote the Boolean
function assigned to node xi, IN(f (i)) denote a set of input

nodes for f (i), and f̂ (i) denote its extension to all nodes
x1, . . . , xn. Let x(t) denote the global state of a BN at time
t, (i.e., x(t) = (x1(t), . . . , xn(t)). Then, the dynamics of the

BN is given by x(t + 1) = (f̂ (1)(x(t)), . . . , f̂ (n)(x(t))). For
example, suppose IN(f (i)) = {xj , xk}. Then, xi(t + 1) is
determined by xi(t+1) = f (i)(xj(t), xk(t)), which can also

be written as xi(t+ 1) = f̂ (i)(x(t)).
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Fig. 1. Example of PBN.

A PBN is an extension of a BN. It is also a directed
network with n nodes. As mentioned before, in a PBN, mul-
tiple Boolean functions can be assigned per node and one
function is randomly selected at each time step according to

the prescribed probability distribution. Let {f
(i)
1 , . . . , f

(i)
mi

}

be a set of Boolean functions assigned to node xi, and c
(i)
j

denote the selection probability of f
(i)
j , where

∑mi

j=1 c
(i)
j = 1

must be satisfied. It is to be noted that IN(f
(i)
j ) 6= IN(f

(i)
k )

is allowed. Then, xi(t+ 1) is determined by

xi(t+ 1) = f̂
(i)
j (x(t)) with probability c

(i)
j ,

where selection of f
(i)
j is independent of selections in

previous time steps and selections for other nodes. Since
selections of Boolean functions are done for all nodes simul-
taneously and independently, dynamics of the whole PBN is
represented by the transition probabilities from global states
at time t to those at time t+ 1.

An example of PBN is given in Fig. 1. Suppose that

x(t) = (0, 0, 0). If (f
(1)
1 , f

(2)
1 , f

(3)
1 ) is selected with prob-

ability 0.8 × 0.7 = 0.56, x(t + 1) = (0, 0, 0) holds.

Similarly, if (f
(1)
1 , f

(2)
2 , f

(3)
1 ) is selected with probability

0.8 × 0.3 = 0.24, x(t + 1) = (0, 0, 0) holds. On the

other hand, if (f
(1)
2 , f

(2)
1 , f

(3)
1 ) is selected with probability

0.2 × 0.7 = 0.14 or (f
(1)
2 , f

(2)
2 , f

(3)
1 ) is selected with proba-

bility 0.2× 0.3 = 0.06, x(t+ 1) = (1, 0, 0) holds. Therefore,
we have the following transition probabilities:

Prob(x(t+ 1) = (0, 0, 0) | x(t) = (0, 0, 0)) = 0.8,

P rob(x(t+ 1) = (1, 0, 0) | x(t) = (0, 0, 0)) = 0.2,

where the probabilities of the other transitions from (0, 0, 0)
is 0.

3 TWO MODELS

In this paper, we focus on PBNs in which two different
Boolean functions are assigned to each node. Therefore, a
PBN always means such one unless otherwise stated.

For a 0-1 bit vector a, a+i and a−i denote the bit vector
obtained from a by setting i-th bit of a to be 1 and 0,
respectively, and a[i] denotes the value of i-th bit (i.e., 0-
1 value corresponding to xi). We say that xi is relevant in f
if there exists a 0-1 assignment a such that f̂(a+i) 6= f̂(a−i).
When we consider a function f on K variables, we assume
that all K-input variables are relevant in f , and K is called
the degree of f (K = |IN(f)|).

We focus on one output node because pairs of Boolean
functions can be identified independently for distinct output

nodes. In the following, the target output node is denoted as
y (i.e., y = xi for some i). A sample is defined by an assign-
ment of 0-1 values to x1, . . . , xn and y, and is represented
by a pair (a, b) of n-dimensional 0-1 input vector a and 0-1
(output) value b, where a corresponds to the global state at
time t and b corresponds to the state of node y at time t+1.

We say that a Boolean function f and a sample (a, b) are

consistent if f̂(a) = b. We also say that a pair of Boolean

functions (f1, f2) and a sample are consistent if f̂1(a) = b
or f̂2(a) = b holds. If a Boolean function or a pair of
Boolean functions is consistent with every element in a
set S of samples, it is also consistent with S. We say that
(f1, f2) and S are strongly consistent if (f1, f2) and S are
consistent and all possible consistent input/output pairs on
(IN(f1) ∪ IN(f2), {y}) appear in S. It is seen from the
definitions that if (f1, f2) is strongly consistent with S, it
is also consistent with S.

In the following, (f1, f2) is identified with (f2, f1), and
a set of pairs of Boolean functions is referred as a class of
PBNs. Furthermore, for simplicity, we assume that a in each
sample is selected uniformly at random, and choice of f1
and f2 is also done uniformly at random. However, all the
combinatorial results are independent from the probability
distribution.

When analyzing the sample complexity, we assume that
each sample is generated according to some underlying
pair (f1, f2) of Boolean functions. Precisely, we assume
that a sample is generated by a random 0-1 assignment to
n variables and the corresponding value of f1 or f2. A
set of samples is obtained by independent execution of this
generation process where duplicate samples are unified.

We consider two models: full information model (FIM) and
partial information model (PIM). In FIM, we say that a pair of
Boolean functions (f1, f2) is identified from a set of samples
S if (f1, f2) is the only one pair in the target class of Boolean
functions that is strongly consistent with S. On the other
hand, in PIM, we say that a pair of Boolean functions (f1, f2)
is identified from a set of samples S if (f1, f2) is the only one
pair in the target class of Boolean functions that is consistent
with S. In either model, we say that a class C of PBNs is
identifiable from samples if, for any pair (f1, f2) in C , there
exists a sample set S such that (f1, f2) is identified from S.

Proposition 1. If a class C of PBNs is identifiable from samples
under PIM, C is also identifiable from samples under FIM.

Proof. Let (f1, f2) be the correct pair. Since (f1, f2) can be
identified under PIM, there exists a set S of samples for
which only (f1, f2) is consistent with S under class C .

For any such S, there exists S′ ⊇ S such that (f1, f2) is
strongly consistent with S′. Then, all other pairs are incon-
sistent with S′ because they are inconsistent with S.

This proposition implies that if C is not identifiable
under FIM, it is not identifiable under PIM. It is straight-
forward to see that the following propositions hold.

Proposition 2. A class C of PBNs is identifiable from samples
under PIM if and only if for any two different pairs (f1, f2)
and (f3, f4) in C there exists a 0-1 assignment a such that

|{f̂1(a), f̂2(a)}| > |{f̂3(a), f̂4(a)}| or f̂1(a) = f̂2(a) 6=
f̂3(a) = f̂4(a) holds.
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Proposition 3. A class C of PBNs is identifiable from samples
under FIM if and only if for any two different pairs (f1, f2)
and (f3, f4) in C there exists a 0-1 assignment a such that

{f̂1(a), f̂2(a)} 6= {f̂3(a), f̂4(a)} holds.

Here, we show classes of PBNs that are not identifiable
from samples. Suppose that C is a set of pairs of one-
input Boolean functions. That is, an element of C has the
form of either (xi, xj), (xi, xj), (xi, xj). Then, this class
is not identifiable from samples under either model since
{xi, xi} = {xj , xj} = {0, 1} holds for any xi, xj . It should
be noted that if samples are generated according to (xi, xi),
the value of y is determined as if it were completely at ran-
dom and thus we cannot identify input node(s). This idea
can be generalized to the class of pairs of AND functions
(resp., OR functions) of degree 2.

Proposition 4. The class of pairs of AND functions (resp., OR
functions) of degree 2 is not identifiable from samples under PIM
or FIM.

Proof. Let n = 3. Consider two pairs of Boolean functions
(f1, f2) = (x1 ∧ x2, x1 ∧ x2) and (f3, f4) = (x1 ∧ x3, x1 ∧
x3). Then, {f̂1(a), f̂2(a)} = {f̂3(a), f̂4(a)} holds for all a ∈
{0, 1}3 as shown below, where “0, 1” means that we have
both outputs.

x1 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x3 0 1 0 1 0 1 0 1
f1 0 0 0 0 0 0 1 1
f2 0 0 0 0 1 1 0 0

Output 0 0 0 0 0, 1 0, 1 0, 1 0, 1
f3 0 0 0 0 0 1 0 1
f4 0 0 0 0 1 0 1 0

Next, we show another example to explain why we con-
sider two models. Let C = {(x1, x1∨x2), (x1∧x2, x1∨x2)}.
Consider the following two sample sets S1 and S2, where
“0, 1” means that we have both outputs.

x1 0 0 1 1
x2 0 1 0 1

Output in S1 0 0, 1 1 1
Output in S2 0 0, 1 0, 1 1

Then, the former pair is strongly consistent with S1, but is
not consistent with S2. The latter pair is strongly consistent
with S2 and is consistent with S1. Therefore, the class C is
identifiable from samples under FIM, but is not under PIM.
However, when S1 is given, only the former pair is strongly
consistent. After a sample (10, 0) is added (i.e., the set of
sample becomes S2), the former pair is no more strongly
consistent but the latter pair newly becomes strongly con-
sistent. Therefore, under FIM, we may not be able to know
whether the current set of samples is enough. On the other
hand, we can know under PIM whether the current set of
samples is enough. However, as shown later, a much wider
class of PBNs is identifiable under FIM. Therefore, it might
be better to use FIM if a relatively large number of samples
are available.

4 PARTIAL INFORMATION MODEL

For PIM, we focus on the case in which each of f1 and
f2 is an AND or OR function of fixed degree K . Based
on Proposition 4, we assume that both xi and xi do not
appear in f1 and f2 (i.e., if xi appears in f1, then xi cannot
appear in f2) for any variable xi. Such a pair is called an
admissible AND/OR pair. We will show that the class of
admissible AND/OR pairs of fixed degree K (K > 1) is
identifiable from samples under PIM. From Proposition 2, it
is enough to show that for any (f3, f4) 6= (f1, f2), there

exists a such that |{f̂1(a), f̂2(a)}| > |{f̂3(a), f̂4(a)}| or

f̂1(a) = f̂2(a) 6= f̂3(a) = f̂4(a) holds. In the following,
such an assignment is called a witness for 〈(f1, f2), (f3, f4)〉.
It is to be noted that a witness for 〈(f1, f2), (f3, f4)〉 is not
necessarily a witness for 〈(f3, f4), (f1, f2)〉.

We consider admissible AND/OR functions of degree
K in Theorem 1. In the proof, we consider several cases
depending on types (AND/OR) of fis. The basic idea is
common as follows. If there exists an assignment a such

that f̂3(a) = f̂4(a) = 1 and f̂1(a) = 0 ∨ f̂2(a) = 0 (or,

f̂3(a) = f̂4(a) = 0 and f̂1(a) = 1 ∨ f̂2(a) = 1) hold, a
is a witness for 〈(f1, f2), (f3, f4)〉. To be more precise, we
consider the case that all fis are AND functions, IN(f1) =
IN(f3), and IN(f2) = IN(f4). Since (f1, f2) 6= (f3, f4), we
can assume without loss of generality (w.l.o.g.) that there
exists a variable xi such that xi appears negatively in f1 but
positively in f3. Since (f3, f4) is an admissible pair, there

exists an assignment a such that f̂3(a) = f̂4(a) = 1. Then,

f̂1(a) = 0 holds for any such a.

Theorem 1. The class of PBNs of admissible AND/OR functions
of degree K is identifiable from samples under PIM.

Proof. We consider five cases depending on AND/OR types
of fi (i = 1, . . . , 4), which cover all cases by taking sym-
metric cases (i.e., exchange of AND and OR) into account.
For each case, we prove that there exists a witness for
〈(f1, f2), (f3, f4)〉.

Case 1: all fis (i = 1, . . . , 4) are AND, and (f3, f4) 6=
(f1, f2).

It is enough to consider the following two cases (see also
Fig. 2).

Case 1-A: IN(f1) = IN(f3) and IN(f2) = IN(f4).
Since (f1, f2) 6= (f3, f4), we can assume w.l.o.g. that there
exists a variable xi such that xi appears negatively in f1 but
positively in f3. Since (f3, f4) is an admissible pair, there

exists an assignment a such that f̂3(a) = f̂4(a) = 1. Then,

f̂1(a) = 0 holds for any such a, and thus a is a witness.

Case 2-A: IN(f1) 6= IN(f3) and IN(f1) 6= IN(f4).
We assume w.l.o.g. from the symmetry and the discussion
in Case 1-A that all variables appear positively in f1, f2, f3,
and f4. Let xi ∈ IN(f3)\IN(f1) and xj ∈ IN(f4)\IN(f1),
where xi = xj is allowed, and X1 \ X2 denotes the set
{x|x ∈ X1, x /∈ X2}. Consider an assignment a such that
0 is assigned to xi and xj , and 1 is assigned to the other

variables. Then, f̂3(a) = f̂4(a) = 0 and f̂1(a) = 1 hold.

Case 2: f1, f2, f3 are AND functions, and f4 is an OR
function.
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Fig. 2. Illustration of two subcases of Case 1 in the proof of Theorem 1.
In Case 1-A, f̂3(a) = f̂4(a) = 1 but f̂1(a) = 0 hold for an assignment
a = (1, 1, 1, 1). In Case 1-B, f3 = f4 = 0 but f1 = 1 for an

assignment f̂3(a) = f̂4(a) = 0 but f̂1(a) = 1 hold for an assignment
a = (0, 0, 1, 1, 1).

We assume w.l.o.g. that IN(f2) 6= IN(f3). We further
assume w.l.o.g. that all variables appear positively in f1, f2,
f3, and f4.

Let xi ∈ IN(f2) \ IN(f3). Consider an assignment a

such that 0 is assigned to xi and 1 is assigned to the other

variables. Then, f̂3(a) = f̂4(a) = 1 and f̂2(a) = 0 hold.

Case 3: f1, f3, f4 are AND functions, and f2 is an OR
function.

We assume w.l.o.g. that IN(f2) 6= IN(f3). We further
assume w.l.o.g. that all variables appear positively in f1, f2,
f3, and f4.

Let xi ∈ IN(f2) \ IN(f3). Consider an assignment a

such that 1 is assigned to xi and 0 is assigned to the other

variables. Then, f̂3(a) = f̂4(a) = 0 and f̂2(a) = 1 hold.
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Fig. 3. Illustration of Case 2 and Case 3 in the proof of Theorem 1. In
Case 2, f̂3(a) = f̂4(a) = 1 and f̂2(a) = 0 hold for an assignment

a = (1, 1, 1, 0, 1). In Case 3, f̂3(a) = f̂4(a) = 0 and f̂2(a) = 1 hold for
an assignment a = (0, 0, 0, 0, 1).

Case 4: f1, f2 are AND functions, and f3, f4 is an OR
function.

We assume w.l.o.g. that all variables appear positively.
Choose an arbitrary variable xi ∈ IN(f1). Consider an

assignment a such that 0 is assigned to xi and 1 is assigned

to the other variables. Then, f̂3(a) = f̂4(a) = 1 and f̂1(a) =
0 hold.

Case 5: f1, f3 are AND functions, and f2, f4 is an OR
function.

It is enough to consider the following cases.

Case 5-A: IN(f1) = IN(f3) and IN(f2) = IN(f4).
Since (f1, f2) 6= (f3, f4), we assume w.l.o.g. that there exists
xi such that xi appears negatively in f1 or f2 and all
variables in IN(f3) ∪ IN(f4) appear positively in f3 and
f4. If xi appears negatively in f1 (resp., in f2), consider
an assignment a such that 1 (resp., 0) is assigned to all

variables. Then, f̂3(a) = f̂4(a) = 1 and f̂1(a) = 0 (resp.,

f̂3(a) = f̂4(a) = 0 and f̂2(a) = 1) hold.

Case 5-B: IN(f1) 6= IN(f3) (resp., IN(f2) 6= IN(f4)).
We consider only the case of IN(f1) 6= IN(f3), where
the other case can be proved in an analogous manner. We
assume w.l.o.g. that all variables appear positively in each
fi.

Let xi ∈ IN(f1) \ IN(f3). Consider an assignment a

such that 0 is assigned to xi and 1 is assigned to the other

variables. Then, f̂3(a) = f̂4(a) = 1 and f̂1(a) = 0 hold.
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Fig. 4. Illustration of Case 4 and Case 5 in the proof of Theorem 1. In
Case 4, f̂3(a) = f̂4(a) = 1 and f̂1(a) = 0 hold for an assignment

a = (1, 0, 1, 1, 1). In Case 5-A, f̂3(a) = f̂4(a) = 1 and f̂1(a) = 0 hold

for an assignment a = (1, 1, 1, 1). In Case 5-B, f̂3(a) = f̂4(a) = 1 and

f̂1(a) = 0 hold for a = (1, 1, 1, 0, 1).

The theorem cannot be generalized to cases in which a
pair of Boolean functions of different degrees is assigned.
Consider the case of f1 = x1 ∧ x2 ∧ x3, f2 = x2 ∧ x3 ∧ x4,
f3 = x1 ∧ x2, and f4 = x2 ∧ x3 ∧ x4. Then, any assignment

a with f̂3(a) = f̂4(a) = 1 makes f̂1(a) = f̂2(a) = 1, and

any assignment a with f̂3(a) = f̂4(a) = 0 makes f̂1(a) =
f̂2(a) = 0. It is also impossible to generalize the theorem to
cases in which a different number of Boolean functions can
be assigned. Consider the case of (f1, f2) and (f3, f4, f5)
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with f1 = f3 = x1 ∧ x2, f2 = f4 = x2 ∧ x3, f5 = x3 ∧ x4.
Since f1 = f3 and f2 = f4, samples consistent with (f1, f2)
are always consistent with (f3, f4, f5).

5 FULL INFORMATION MODEL

For FIM, we consider the class CK of pairs of Boolean
functions (f1, f2) such that f1 = ℓs ∨ f ′

1 and f2 = ℓt ∧ f ′

2

where ℓr is either xr or xr , xs 6= xt, and f ′

i (i = 1, 2)
is any Boolean function such that {xs, xt} ∩ IN(f ′

i) = {}
and 2 ≤ |IN(f ′

i)| ≤ K − 1. This class is called the class
of complementary canalyzing pairs (of degree K). Recall that
a Boolean function f is called a canalyzing function if f
can be represented as either f = xi ∨ f ′ or f = xi ∧ f ′,
where it is suggested that most biologically meaningful
Boolean functions are canalyzing ones [26]. Then, we have
the following theorem.

Theorem 2. For any positive integer K ≥ 3, CK is not
identifiable from samples under PIM but is identifiable from
samples under FIM.

Proof. First, we consider PIM. Let f1 = x1 ∨ (x2 ∧ x3), f2 =
x4∧(x2∨x3), f3 = x1∨x2∨x3, and f4 = x4∧x2∧x3. Then,
it is straight-forward to verify that (f3, f4) is consistent with
any sample generated from (f1, f2). Therefore, C3 (or, CK

with K > 3) is not identifiable from samples under PIM.
Next, we consider FIM. Let f1 = xs∨f

′

1, f2 = xt∧f
′

2. The
proof can be easily modified for the cases that xs and/or
xt appear negatively. In the following fi = fj means that

f̂i(a) = f̂j(a) holds for all assignments a. It is to be noted
that fi and fj can have different representations.

Let f3 = ℓp ∨ f ′

3 and f4 = ℓq ∧ f ′

4, where ℓp (resp., ℓq)
is either xp or xp (resp., xq or xq). Then, it is enough to
show that if (f1, f2) 6= (f3, f4), there exists an assignment a

such that {f̂1(a), f̂2(a)} 6= {f̂3(a), f̂4(a)}. We consider the
following cases, where symmetric cases are omitted.

Case 1: xs = xp = ℓp.
Suppose that f2 6= f4. Since xs = xp, xs /∈ IN(f2) and

xs /∈ IN(f4) hold. Then, there exists an assignment a such

that a[s] = 1 and f̂2(a) 6= f̂4(a). We assume w.l.o.g. that

f̂2(a) = 0 and f̂4(a) = 1. Then, we have (f̂1(a), f̂2(a)) =
(1, 0) whereas (f̂3(a), f̂4(a)) = (1, 1).

Suppose that f2 = f4. Then, f1 6= f3 holds and thus

there exists an assignment a such that f̂1(a) 6= f̂3(a).
Since f̂2(a) = f̂4(a) holds, we have {f̂1(a), f̂2(a)} 6=
{f̂3(a), f̂4(a)}.

Case 2: xs = xp and ℓp = xp.
Consider an assignment a such that a[s] = 0, a[t] =

0, and f̂ ′

1(a) = 0. Then, we have (f̂1(a), f̂2(a)) = (0, 0)
whereas (f̂3(a), f̂4(a)) = (1, 0) or (f̂3(a), f̂4(a)) = (1, 1).

Case 3: xs = xq = ℓq .
Suppose that there exists an assignment a such that

a[s] = 0, a[t] = 0, a[p] = 1 and f̂ ′

1(a) = 0. Then, we

have (f̂1(a), f̂2(a)) = (0, 0) whereas (f̂3(a), f̂4(a)) = (1, 0).
Therefore, we can assume w.l.o.g. that f ′

1 = xp ∨ f ′′

1 and
f1 = xs ∨ xp ∨ f ′′

1 .
Next, suppose that there exists an assignment a such

that a[s] = 1, a[t] = 0, a[p] = 1 and f̂ ′

4(a) = 1. Then, we

have (f̂1(a), f̂2(a)) = (1, 0) whereas (f̂3(a), f̂4(a)) = (1, 1).
Therefore, we can assume w.l.o.g. that f ′

4 = xt ∧ f ′′

4 and
f4 = xs ∧ xt ∧ f ′′

4 .
Assuming f1 = xs ∨ xp ∨ f ′′

1 , suppose that there exists
an assignment a such that a[s] = 0, a[t] = 1, a[p] = 1 and

f̂ ′

2(a) = 1. Then, we have (f̂1(a), f̂2(a)) = (1, 1) whereas

(f̂3(a), f̂4(a)) = (1, 0). Therefore, we can assume w.l.o.g.
that f ′

2 = xp ∧ f ′′

2 and f2 = xt ∧ xp ∧ f ′′

2 .
Here, suppose that there exists an assignment a such that

a[s] = 1, a[t] = 1, a[p] = 1 and f̂ ′′

4 (a) = 1. Then, we have

(f̂1(a), f̂2(a)) = (1, 0) whereas (f̂3(a), f̂4(a)) = (1, 1).
If f̂ ′′

4 (a) = 0 holds for all a, we can consider an assign-

ment a such that a[s] = 1, a[t] = 1, and f̂ ′

2(a) = 1. Then, we

have (f̂1(a), f̂2(a)) = (1, 1) whereas (f̂3(a), f̂4(a)) = (0, 0)
or (f̂3(a), f̂4(a)) = (1, 0).

Case 4: xs = xq and ℓq = xq .
Consider an assignment a such that a[s] = 1, a[t] =

1, and f̂ ′

2(a) = 1. Then, we have (f̂1(a), f̂2(a)) = (1, 1)
whereas (f̂3(a), f̂4(a)) = (0, 0) or (f̂3(a), f̂4(a)) = (1, 0).

Case 5: xs 6= xp, xs 6= xq , xt 6= xp, xt 6= xq .
We consider the case of xs = ℓs, xt = ℓt, xp = ℓp, and

xq = ℓq , where the other cases can be proven in a similar
way.

If xp /∈ IN(f ′

1), we can consider an assignment a such

that a[s] = 0, a[t] = 0, a[p] = 1, and f̂ ′

1(a) = 0. Then, we

have (f̂1(a), f̂2(a)) = (0, 0) whereas (f̂3(a), f̂4(a)) = (1, 0)
or (f̂3(a), f̂4(a)) = (1, 1).

In the following, we assume w.l.o.g. that xp ∈ IN(f ′

1).
Suppose that there exists an assignment a such that a[s] = 0,

a[t] = 0, a[p] = 1, and f̂ ′

1(a) = 0. Then, we have

(f̂1(a), f̂2(a)) = (0, 0) whereas (f̂3(a), f̂4(a)) = (1, 0) or

(f̂3(a), f̂4(a)) = (1, 1). Therefore, we can assume that f1
has the form of f1 = xs ∨ xp ∨ f ′′

1 .
Suppose that xs /∈ IN(f ′

3). We can consider an as-
signment a such that a[s] = 1, a[p] = 0, a[q] = 0,

and f̂ ′

3(a) = 0. Then, we have (f̂1(a), f̂2(a)) = (1, 0)
or (f̂1(a), f̂2(a)) = (1, 1) whereas (f̂3(a), f̂4(a)) = (0, 0).
Therefore, we assume w.l.o.g. that xs ∈ IN(f ′

3) holds. Then,
f3 has the form of f3 = xs ∨ xp ∨ f ′′

3 as in the case of f1.
If f ′′

1 = f ′′

3 (i.e., f1 = f3), we can prove the the-
orem as in Case 1. Therefore, we assume w.l.o.g. that
f ′′

1 6= f ′′

3 . Then, there exists an assignment a such that

a[s] = a[p] = 0, f̂ ′′

1 (a) = 0, and f̂ ′′

3 (a) = 1. If a[t] = 0,

we have (f̂1(a), f̂2(a)) = (0, 0) whereas (f̂3(a), f̂4(a)) =
(1, 0) or (f̂3(a), f̂4(a)) = (1, 1). If there exists no such
assignment, f ′′

3 has the form of f ′′

3 = xt ∧ f ′′′

3 and thus
f3 = (xs∨xp)∨ (xt∧ f ′′′

3 ). Similarly, we can assume w.l.o.g.
that f1 = (xs ∨ xp)∨ (xq ∧ f ′′′

1 ), f2 = (xt ∧ xq)∧ (xp ∨ f ′′′

2 ),
and f4 = (xt ∧ xq) ∧ (xs ∨ f ′′′

4 ). Then, there exists an

assignment a such that either ˆf ′′′

1 (a) = 1, ˆf ′′′

2 (a) = 0,
ˆf ′′′

3 (a) = 1, or ˆf ′′′

4 (a) = 0 holds, otherwise f1 = f3 and

f2 = f4 would hold. We can assume w.l.o.g. that ˆf ′′′

1 (a) = 1
holds. Consider the assignment a

′ = a−s,−p,−t,+q . Then,

we have (f̂1(a
′), f̂2(a

′)) = (1, 0) whereas (f̂3(a
′), f̂4(a

′)) =
(0, 0).

We provide an example showing that Theorem 2 cannot
be generalized to the class of PBNs of nested canalyzing
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TABLE 1
Difficult case for nested canalyzing functions under FIM.

x1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
f1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1
f2 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1

Output 0 0 0,1 0,1 0 0,1 1 1 0 0 0,1 0,1 0,1 1 1 1
f3 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1
f4 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1

function pairs consisting of only positive literals. Let K =
3, n = 4, consider two pairs of Boolean functions (f1, f2) =
(x2 ∧ (x1 ∨ x3), x3 ∨ (x2 ∧ x4)) and (f3, f4) = (x3 ∨ (x1 ∧
x2), x2 ∧ (x4 ∨ x3)). Then, {f̂1(a), f̂2(a)} = {f̂3(a), f̂4(a)}
holds for all a ∈ {0, 1}4 as shown in Table 1, where “0, 1”
means that we have both outputs.

6 SAMPLE COMPLEXITY

In the above, we have shown that the classes of admissible
AND/OR pairs and complementary canalyzing pairs can be
identified under PIM and FIM, respectively Here, we ana-
lyze how many samples are required in order to uniquely
identify a PBN under the following assumptions:

• a sample is a pair (a,b) of 0-1 assignment to n
variables and 0-1 output values of n nodes,

• each 0-1 assignment is generated uniformly at ran-
dom,

• the output value of each node is determined accord-
ing to a pair of Boolean functions assigned to the
node in an underlying PBN of the target class, where
selection of a function from the pair is independently
done for each assignment with probability 1/2,

• each sample is generated independently.

Note that a and b in a sample (a,b) correspond to
global states of a PBN at time steps t and t+1, respectively,
although samples are independent from each other. Using
Theorem 1, Theorem 2, and a similar argument as in [9], we
have the following theorem.

Theorem 3. For the class of PBNs consisting of admissible
AND/OR pairs of degree K (resp., complementary canalyzing
pairs of degree K), if O(24K+1(4K+α) log n) samples are given
uniformly at random, the correct PBN can be uniquely identified
with probability at least 1− 1

nα under PIM (resp., FIM).

Proof. We prove for the case of PIM, where the case of FIM
can be proved in an analogous manner.

Suppose that (f1, f2) is the underlying function pair for
k-th node in a PBN. It is seen from the proof of Theorem 1
that if all possible assignments on I = IN(f1) ∪ IN(f2) ∪
IN(f3) ∪ IN(f4) and their possible output values by f1
and f2 are given, inconsistency of (f3, f4) (6= (f1, f2)) can
be detected. Since |I| ≤ 4K , it is also seen that if all
possible assignments on all possible combination of 4K
variables and their possible output values appear in samples
(Condition C1), we can uniquely identify (f1, f2).

The probability that a[i] = 1 for i = 1, . . . , 4K and

b[k] = f̂1(a) do not hold in a given sample (a,b) is at
most 1 − 1

24K+1 , and thus the same condition does not
hold in any m samples is at most (1 − 1

24K+1 )
m. Since the

number of combination of 4K variables is less than n4K ,
the probability that Condition C1 does not hold is bounded
above by 24K+1 · n4K ·

(

1− 1
24K+1

)m
. Since there exist n

nodes, the probability that Condition C1 does not hold for
one or more nodes is bounded above by

pK,n,m = 24K+1 · n4K+1 ·

(

1−
1

24K+1

)m

.

It is not difficult to see that pK,n,m ≤ p holds if

m > ln 2 · 24K+1((4K + 1)(1 + log n) + log
1

p
).

Letting p = 1
nα , the theorem holds.

7 COMPUTATIONAL EXPERIMENTS

In order to verify the result of Theorem 3, we performed
computational experiments. Since it is impossible under
FIM to know whether a given sample set is enough, we only
examined the case of PIM. In the experiments, we examined
the cases of K = 1 and K = 2, where both types of PBNs
consisting of AND functions (AND PBNs) and AND/OR
functions (AND/OR PBNs) were tested for K = 2. For
each n and K , we randomly generated 100 PBNs. Then,
for each PBN, we generated samples by assigning 0 or 1
to each node with probability 1/2 and updating the PBN
synchronously to obtain output values. Finally, we com-
puted the average number of samples required to uniquely
identify each PBN. For that purpose, we examined samples
one-by-one until the number of consistent PBNs became
1, where we maintained consistent Boolean function pairs
independently for each node. The programs for generation
and identification of PBNs were implemented using Python
language, whereas simulation of PBNs was performed using
‘BoolNet’ [27]. All experiments were performed on a PC
cluster with Intel(R) Xeon(R) CPU E5-2690 2.90GHz and
35.87 GB memory.

The results are shown in Fig. 5. For the case of K = 1
(Fig. 5(a)), n is varied from 5 to 100. It seems that the
number of samples is proportional to log n. Even for the
case of n = 100, approximately only 100 samples were
required to identify PBNs. Although the computation time
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Fig. 5. Results of computational experiments. (a), (b) and (c) show the number of samples required to identify PBNs of the target class under PIM
for the cases of K = 1, K = 2 (AND PBNs) and K = 2 (AND/OR PBNs), respectively. Regression lines are indicated within each panel, where
x-axis is log-scaled.

for identification increased rapidly as n grew, it took around
only 30 seconds per identification of a PBN.

Similarly, for the cases of K = 2 (AND PBNs) (Fig. 5(b))
and K = 2 (AND/OR PBNs) (Fig. 5(c)), the number of
required samples also looks to be proportional to log n.
However, it took long computation time: approximately 12
hours and 36 hours per identification of a PBN for the
largest cases of AND PBNs (n = 30) and AND/OR PBNs
(n = 25), respectively. For this reason, we could not perform
computational experiments for much larger n and K . It
is also to be noted that the numbers of required samples
for AND PBNs and AND/OR PBNs were not so different.
This is reasonable because the set of all possible Boolean
functions per node for an AND/OR PBN is at most three
times larger than that for an AND PBNs.

8 CONCLUSION

We have studied the number of samples in order to exactly
identify the structure of a PBN from samples, with focusing
on the case where two Boolean functions are assigned to
each node. We considered two models: partial information
model (PIM) and full information model (FIM). We showed
that it is possible to identify the structure of a PBN from a
small number (O(log n)) of samples under both models for
reasonably wide classes of PBNs whereas there exist classes
of PBNs whose structure cannot be identified from samples.
In addition, the positive result on PIM was verified via
computational experiments. These results are interesting be-
cause they show that the structure of a probabilistic system
can be exactly identified to some extent. It is to be noted that
these results are independent of inference algorithms. It was
also shown that there is a large gap of identifiable classes
between PIM and FIM. The merit of PIM is that we can
know when the structure is uniquely identified. However,
FIM allows us to identify the structure for a much wider
class of PBNs. Therefore, if an enough number of samples
are available, it is better to use FIM.

Although we obtained fundamental results on the sam-
ple complexity for identification of a PBN, there are many
things to be explored. One important thing is to study
the cases in which more than two Boolean functions are
assigned per node. Another important thing is to make use
of the probabilities assigned to Boolean functions. In order
to show negative results, we assumed that the probability

assigned to each function is 1/2. However, if different
probabilities are assigned, we may identify the structure
of a PBN for wider classes of PBNs. In addition to the
sample complexity issue, it is also important to develop
efficient identification algorithms because we employed a
naive enumeration-based algorithm in computational exper-
iments and thus could not handle large-scale PBNs even
for K = 2. Further studies might lead to much deeper
understanding of complex biological networks.
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