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ABSTRACT. In this report, we shall investigate estimates of the upper bounds for the
ratio between interpolational paths by terms of a generalized Specht ratio. Among
others, if A and B are positive invertible operators on a Hilbert space H satisfying
MI > A,B > mlI > 0 for some scalars m and M and put A = %, then for r < s and
t€[0,1]

A Ms,t B S S(h,'f', S)A Myt B
where S(h,r, s) is a generalized Specht ratio.

1. INTRODUCTION

The theory of operator means for positive operators on a Hilbert space is established by
Kubo and Ando [7] in 1980: A binary operation A ¢ B in the cone of positive invertible
operators is called an operator mean if the following conditions are satisfied:

monotonicity: A< Cand B<Dimply Ac B<Co D,

upper continuity: A, | A and B, | B imply A, 0B, | A ¢ B,

transformer inequality: T*(A ¢ B)T < (T*AT) o (T*BT) for every operator T,

normalized condition: A 0 A = A.

A key for the theory is that there is a one-to-one correspondence between the operator
means o and the nonnegative operator monotone functions f(z) on (0, 00) with f(1) =1
by the formula

f(z)=102z  forallz>0,

or
Ao B=A3(10 A iBA 1)A? = AT f(A"iBA %)A% forall A,B>¢e>0.

We say that f is the representing function for . In this case, notice that f(t) is operator
monotone if and only if it is operator concave. An operator mean o is said to be symmetric
if Ao B = B o A for all positive invertible operators A and B.

Simple examples of operator means are the weighted arithmetic mean V, and the
weighted harmonic mean !; (0 < t < 1) defined by

AV.B=(1-t)A+tB and Al B=(1-t)A"+tB™)"

respectively. Another one is the geometric mean f which is just corresponding to the
operator monotonicity of the square root. As a matter of fact, the t-power mean (the
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weighted geometric mean ) ff;, for 0 <t < 1, are determined by the operator monotone
function z*; ‘

Aty B=Ai(A"1BA™3) A
and the geometric mean {f is defined as Aff B=A ﬁ% B = A%(A“%BA”%)%A%.

E.Kamei and one of the authors discussed an operator version of the interpolational
paths of Uhlmann’s type and showed that the interpolational path o, generated by an
operator mean o is convex and differentiable and the derivative do,/dt|;—o is a solidarity,
see [6].

Following [4], for a symmetric operator mean ¢, a parametrized operator mean o; is
called an interpolational path for o if it satisfies

(1) Aso B=A, Aoy B=AocB and Ao, B=B

(2) (Ao, BlJo(Aoy, B)=A opse Bforallp,ge [0,1] ,

(3) themap t € [0,1] — A ¢ B is norm continuous for each A and B.

Typical interpolational means are so-called power means;

1+ (A"2BA-3)
2

Am,B:A%( ) Az forre[-1,1]

and their interpolational paths are
Amg, B=A(1-1 +t(A‘%BA‘%)’")% Az fortel0,1].
For each r € [-1,1], Am,; B (¢t € [0,1]) is a path from A to B via A m, B. In particular,
Amyy B=AV,B=(1-t)A+1B,
Amos B=AY: B,
Am_1, B=A! B=(1-t)A"' +tB™ 1)L
In the previous paper [2], one of the authors discuss an extended path for any real

number r including its extreme cases r = +o00: For positive invertible operators A and B
on a Hilbert space H, an extended path A m,, B is defined as

Ame, B=A3 (1t +t(A—%BA—%)r)% A

for all real numbers r € R and ¢ € [0, 1]. The representing function F,; for m., is defined
as

Fiz)=1muyz=(1-t+ te’)r forall z > 0.

Notice that A m,; B for r € R is no longer a path of operator means for unless
—1 <r <1, but it is still interpolational and it holds the transformer equality.

In this report, we shall investigate estimates of the upper bounds for the ratio between
extended interpolational paths by terms of the spectra of positive operators. Among
others, if A and B are positive invertible operators on a Hilbert space H satisfying M1 >
A, B >mlI > 0 for some scalars m and M and put h = % then for each t € [0, 1]

m’

r<s implies A ms: B<S(h,r,s) Amys B

where S(h,r, s) is a generalized Specht ratio.
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2. A GENERALIZED SPECHT RATIO

It is known that F,; is operator monotone and operator concave for —1 < r < 1. But
it is not for |r| > 1. In particular, for r < —1, it is concave but not operator monotone
since its adjoint (F,.)* coincides with F_,; for —r > 1.

First of all, we list some properties of the representing function F;.; of an extended path
m.; forr € R and ¢ € [0, 1].

Lemma 2.1. Lett € (0,1) andr € R.
(i) F.4(z) is strictly increasing and strictly convez (resp. concave ) for r > 1 (resp.
r<1)
(ii) Fro(z) =1 and F,1(z) =z for allT € R.
(iii) F,4(z) 11V z =max{l,z} asr 1 oco.
(iv) Fri(z) } 1 Az = min{l,z} asr | —oo0.
Proof. (i) It is increasing since
4
dz
Moreover the latter part is shown by
a2

dr?

Foy(z) =tz (1—t+tz") " >0 forte(0,1)

(@) =t (L=t +ta”) 7 (r— 1)(1 —t + 2tz").

(ii) It suffices to show the case r 1 oo. For the entropy function h(z) = —zlogz, we
have
Olog F,.; (1—t+tz") —th(z")
or r2(1 —t+tz7)
The denominator is always positive and so is the numerator since Jensen’s inequality
shows

@) ="

h(1 —t+tz") > (1 — t)h(1) + th(z") = th(z").
Thus log F,+(z) is increasing and hence so is Fr4(z) for r € R. As for convergence, we
have Fooi(z) =1for 0 <z <1by

log(l —¢t+tz”)

rlirga ].Og Fr’t(m) - 'rl-l—golo r O’
and Fi+(z) = z for z > 1 since ’'Hospital theorem shows
log(1 —t+tz" tz" 1
lim log Fr;(z) = lim o8 +127) = lim 2 8% _ log z,
500 J r—¥00 r r—oo ] — ¢t 4 {7

which shows F,.;(z) converges to 1V z uniformly on any finite interval.
d

Let A and B be positive invertible operators on a Hilbert space H. Since A m,; B
is increasing and bounded for r by Lemma 2.1, the quasi supremum A V¥ B and quasi

infimum A A B are defined as

AV B=Ame,; B= lim Am,, B=AYV*(1VA"/?BAT3)AY?
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and
ANB=Am o, B= lim Am,, B=AV1NAT/2BAT/%)AY?

for t # 0,1, see [2].
Their fundamental properties as supremum and infimum in the set of all positive op-
erators on H under the usual order are discussed in [2].

Theorem 2.2. For each t € (0,1) an eztended interpolational path A m,, B is nonde-
creasing and norm continuous for r € R: For —oo <r < s< 00

AAB=Am_o;B<---<Am;B<Am,;B<---<Ame; B=A V B.
Proof. By (i) of Lemma 2.1, for r < s F,.;(z) < F,(z) implies
Am,,; B=A3F,,(A"3BA™1)A? < AiF,,(A"2BA™%)A? = Am,, B.
a
Thus, we shall investigate estimates of the upper bounds for the ratio between extended

interpolational paths by terms of the bounds of spectra for positive operators. To prove
it, we moreover need some properties of F, ;.

For z > 0, put
(1 —t+tat)/e
= <t<
IO ==t myr (O0sts)
and

0<t< i
S(.’E, 'l", .S') — max{f(t) O — t —_ 1} ‘lf T < S,
min{f(¢):0<t <1} ifr>s.

Then we have the following result by Specht [9], and Cargo and Shisha [1]:

Lemma 2.3.

s __pr\1/s r __ a8\ —1/T
((rm :c) (sm z) ifrs;éO,

s—rzr—1 r—sxzt—1

g \°
S(z,r,8) =4 (—————_;:) ifr=0,

7\ YT
(___) ifs=0.
\

.
elogz=-1

Proof. Let r < s and rs # 0. By the elementary differential calculation, we have
—Cilo () = r((z" — 1)t + 1)(z* — 1) — s((z® — 1)t + 1)(z" — 1)
dz eI\ = sr((@® — 1)t + D)((&" — Dt + 1) ’

and so the equation 2 log f(t) = 0 has the following unique solution ¢ = t,:

to = = ( r > )6(0,1).

s—r\z"'—1 z°—1
Furthermore it is easily seen that

f(t) >0 fort <ty and f'(¢) < 0 for ¢t > t,.
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Therefore a maximum of f(t) takes at ¢t = tp, and it follows that
max f(t) = f(to) = S(z,r,s).

0<t<1

Next, suppose the case of 7 = 0 < s. Then it follows that
1—1t+t*)Y/°
o) = !

xt
and hence we have the required result.

O

We shall investigate some properties of S(z,r,s) for fixed r < s as a function S(z) =
S(z,r,s) for z > 0.

Lemma 2.4. For given v < s, a function S(z) = S(z,r,s) is strictly decreasing for
0 < z < 1 and strictly increasing for x > 1. Furthermore the following equations hold

S(1)=1 and S(z)=S (—i—) for all z > 0.

Proof. Since

1 s __ ™ 1 8 _ mT
logS(x):~10g< rz m)——log( 5 T 9 ),
s s—rzxr—1 T s—rzs—1

it follows from L’Hospital theorem that
s—1

1 r szttt —rgr! 1 s sz l—rzt
lim 1 = lim -1 — =1
21 0B 5(z) sols 8 (s S ) ro8 (s —r  szsl )
1

T
=0

and so S(1) = 1. Also, we have S(z) = S(2) by direct computation.
Furthermore we have by a differential calculation
r(z® — 1) —s(z" — 1)
sr(zm — 1)(z® — 1)(z® — z7)

1
logl — -log1l
og -8

d r—1

I log S(z) = 2" k(x)
where

k(z) = (s —7)z° — sz*" + .

Suppose that 0 < r < s. Then we have k(z) > 0 since k(z) > 0 and k(1) = 0. Since &1
is strictly increasing for r € R, it follows that 0 < 7 < s implies s(z” — 1) < r(z° — 1).
Therefore we have 2 1logS(z) > 0. Similarly we have - logS(z) > 0 in the case of
r <0< sorr <s <0 and hence a function S(z) is strictly increasing for all z > 1. On
the other hand, we see that a function S(z) is strictly decreasing forall 0 <z <1. O

Remark 2.5. The constant S(h) defined by

Sy = —" (b £1) and S()=1
elog h#-1

is called the Specht ratio, which is the best upper bound of the arithmetic mean by the
geometric one for positive numbers: For z; € [m, M| with0<m < M (1=1,2,--- ,n),
Ty Tt T
n

< S(h)Yr1zo - Tn,
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where the constant h = % is called a generalized condition number in the sense of Turing.
By virtue of Lemma 2.4, we have forr < s and t € [0,1]

(1—t+tz°)l/
i g ) = Srs)

for % <z <h. Ifweputs=1 andr =0, then the constant S(h,0,1) coincides with the
Specht ratio S(h), i.e.,

lim S(h,r,1) = S(h).
Thus we call S(z,r,s) a generalized Specht ratio.
The following lemma is an external property of a generalized Specht ratio S(z,, s):

Lemma 2.6. Letr < s.
Ifz>1, then S(z,7,8) > & ass— 0o or T — —00.
If0<z <1, then S(z,r,8) > as s— 0.

Proof. Suppose that £ > 1. Then

s I15—1" -1/r 1 1— ™3 -1/r
= —1
(s—rws—l) (1—51—x—s>

as s = oo and by L’Hospital theorem

) r It —2" 1/s . 10g (sir m;r__xlf)
lim log ( ) = lim
8—»00 s—1r a7t —1 5300 S
:sli}rgloxs ~logz — —— — logz

Therefore we have S(z,7,s) — = as s — co. Similarly we have S(z,7,s) &  as s — o0
for 0 < z < 1, since z° — 0. O

On the other hand, Furuta [5] formulated the following constant as a generalized Kan-
torovich constant: For h > 0and pe R

1 hP—h(p—1 hp—l)”

K(h.p) = 3— p—1 \WP—h p

We have the following results as reverse inequalities of the Holder-McCarthy inequality:
Let A be a positive operator on H satisfying MI > A > mI > 0. Then

(APz,z) < K(h,p)(Az, z)P for all p > 1 and p < 0,
K(h,p)(Az,z)? < (APz,z) forall0<p<1

for every unit vector z € H.

We list properties of a generalized Kantorovich constant:
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Lemma 2.7. Leth >0 and p € R.

1) K(h,p) = K(3,)
(2) K(h,p) is increasing for h > 1 and decreasing for 0 < h < 1
(4) K(1,p) = K(h,1) = K(h,0) =1

We have the following relation between a generalized Specht ratio and a generalized
Kantorovich constant:

Lemma 2.8. Forz >0 andr,s€R
K ifre 0,
S(z,r8) =98 ifr=0,
S(zm)~Yr if s=0.

We remark that a generalized Specht ratio S(z,r,s) is the upper bound of the ratio
between the power means:

Theorem 2.9. Let A be a positive operator on H satisfying MI > A > mI > 0 for some
scalars M > m > 0. Then

(A*z,2)Y* < S(h,r,s)(ATz,z)"  forallr <s,
S(h’a r, s)(Arx> m)l/r S (Asz, -77)1/3 fOT allr > s

for every unit vector x € H.

Finally, we see the Furuta formulae [5] by means of a generalized Specht ratio:
Theorem 2.10. The following property on K(p) = K(h,p) and S(h) = S(h,0,1) hold.
S(h) =K' = =K'

Proof. Since S(h,r,1) = K(h", %) = K(h,7)™", we have

log S(h) = limlog S(h, 7, 1) = lim _leg_K;(ﬁQ
_ .. logK(h,7)—logK(h,0)  K'(0) _,
a }E)% r—0 - K(O) =-K (0)

and hence log S(h) = —K’(0). On the other hand,
S(h,p,p+ 1)P** —= S(h,0,1) =S(h) asp—0
and hence
log S(h,p,p+ 17" = log K (h?,%"—) = log K (h,p +1)>
_logK(h,p+1) —log K(h,1) . K'(h,1)
B p+1—1 K(h,1)
as p — 0. Therefore we have log S(h) = K'(h, 1).

p+1

= K'(h,1)
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3. EXTENDED INTERPOLATIONAL PATH

We shall investigate estimates of the upper bounds for the ratio between extended
interpolational paths m..; by terms of a generalized Specht ratio. The following theorem
is our main theorem.

Theorem 3.1. Let A and B be positive operators on H such that MI > A,B > mlI > 0
for some scalars M >m > 0. Puth= . Then forr <s andt € (0,1)

m

Ams, B<S(h,r,s) Am; B.

Proof. Let C be a positive invertible operator on H satisfying MI > C > mlI > 0. Then
it follow from Lemma 2.3 that

(1—t+tC*)Ys < mrél%xMS(x, r,s)(1 —t +tCT)Y"
for all r < s and t € [0,1]. Since the maximum of S(z,r,s) in z € [m, M] is given by
max{S(m,r,s),S(M,r,s)} by Lemma 2.4, we have
(1 —t+tC*)Y* < max{S(m,r,s),S(M,r,s)}(1 —t+tC)/"
Since 0 < mI < A, B < M1, we obtain +J < A~3BA~% < hl. Replacing C by A"3BA~2
in above inequality, we have for ¢ € [0, 1]
(1—t+t(A"3BA™%)*)Y* < S(h,r,s)(1 — t + t(A 3 BA™%)")/"
since S(3,r,s) = S(h,r,s) by Lemma 2.4. Multiplying both sides by AY? we have
Amg; B<S(h,r,s)Am.; B.

for r <s.
O

We investigate the order relation between the arithmetic mean, the geometric one and
the harmonic one:

Corollary 3.2. Let A and B be positive operators on H such that MI > A,B>mI >0
for some scalars M >m > 0. Put h=%. Then forr <0< s andt € (0,1)

m’

S(h*)"*Am,, B Aty B<S(h") " Am,, B.

In particular,
S(h)*AV.,B< Af; B<S(h)A B.

Corollary 3.3. Let A and B be positive operators on H such that MI > A,B > mI >0

for some scalars M >m > 0. Put h = % Then forr < s and t € (0,1)

1
AV B<Am,, B<Amy B<hA A B.

Lemma 3.4. Letx >0 and r,s € R. Then forr < s

(1) S(z,s,7) = S(z,7,s)""

(2) S(z,—s,—r) = S(z,r,s).

(3) S(z,r —s,7) = S(z,r,s)™ fors>0.
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We investigate the order relation between extended interpolational paths.

Corollary 3.5. Let A and B be positive operators on H such that MI > A,B>mI >0

for some scalars M >m > 0. Put h =2 Then forr < s and t € (0,1)

(i) S(h,s,r) Amsy B< Am,; B.
(i) Am_n, B< S(h,r,s) Am_s; B.
(i) A m,y B < S(h,r, s)‘Fi—s Am,_sy B fors>0.

Next, we consider a generalized relative operator entropy for an extended interpolational
path based on Uhlmann’s method.

Lemma 3.6. For a fited € R, F,; is a convex (resp. concave ) differentiable path fort
ifr>1(resp. 7 <1).

Proof.
0F,;, . 1"-1 It
e FE, | (@ —11-7)
T, Tr — -T r 1-2r
(at);(m): o (1—t+tz")y ™ .

a

Thereby we can define a generalized relative operator entropy including the relative
operator entropy: For all real numbers » € R

Am.B—A Af (A‘%BA‘%)T Ai— A
- r
for positive invertible operators A and B and the representing function is f.(z) = (z" —

1)/r.

In particular, if we put r = 0, then S,.(A|B) coincides with the relative operator entropy
S(A|B). We remark that a generalized relative operator entropy S.(A|B) is defined as
the right differential coefficient at ¢ = 0 of a function g(t) = A m,; B (r € R).

We list several properties of a generalized relative operator entropy.

S(A|B) = s — lim

Theorem 3.7. Let A, B,C, D be positive invertible operators on H and r € R. Then
(i) S-(A|B) is monotone increasing on r € R:
r <s implies S.(A|B) < S,(A|B).
(i) The left differential coefficient of g(t) = A m,; B att =1 is —S.(B|A), i.e.,
. Am,; B-B

(i) A < B implies S.(A|B) > 0 and —S,(BJA) > 0.

(iv) If MI > A,B > mI > 0 for some scalars M > m > 0, h = %’f— and r < s, then

OSSS(A|B)—ST(A|B)§max{h s_l—h —1 A _1—hﬁr_1}A.

)
T S

(v) If X is an invertible operator, then
X*S,(A[B)X = S,(X*AX|X*BX).
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(vi) If MI > A,B,C > mI > 0 for some scalars M >m >0, h = % and B < C then
forr>1

S,(A|B) < S.(A|C) + A

C(h ™t h,r)—1
T

where Iy Y
mM™ — Mm™ 1
———M—:_—”—" (K(m, M,'I')""l - 1) .

(vii) If MI > A,B,C,D > mI > 0 for some scalars M >m >0 and h = %, then
S.(A+ B|C + D) — B(A + B) < S.(A|C) + S.(B|D)
< S.(A+ B|C+ D)+ p(A+ B)

C(im,M,r) =

where

8= maX{fr(h,)l — {Lr_(lh_

1

Vo )+ () - £i(e) : 2 € W ).

Theorem 3.8. A generalized relative operator entropy has an interpolational property:
Sr(A|Am,..B) = tS,(A|B)

forr eR andt € [0,1].

4. MEAN-LIKE PROPERTY

Let A and B be positive invertible operators on H satisfying MI > A,B > mI > 0
for some scalars M > m > 0. Put h = % An extended interpolational path A m., B
(r € R) is no longer a path of operator mean for unless || < 1. In this section, we
investigate several mean-like properties of an extended path. First, an extended path is
subadditive in the following sense:

Theorem 4.1. Let MI > A/B,C,D > mI >0 and h = % Then forr > 1

1

X (A+B) mMet (C+D) SAm.,-,t C+B Myryt DS)\ (A+B) Myt (C+D)
where

A= AL A, Fy)

1 Fry(h) — Frpo(h7h)
Fr,t(m) h—h-1
Proof. Suppose that » > 1. Put
X =Ai(A+B) %Y =Bi(A+B)#

= max{

(—h)+ F,,,t(h)> .z € [, )}

and . . X
V=A"3CA"i,W =B iDB1,
then we have X*X + Y*Y = I. Since F,; is convex and Fy; > 0, it follows from [8] that
X*F (V)X +Y*F, (W)Y < \F(X*VX +Y*'WY).
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Then we have
Am, C+Bmy D
= (A+B)E (X"Fy(V)X + Y*F (W)Y) (A + B)}
< MA+ B)iF,,(X*VX + Y*WY) (A + B)?
=MA+B)iF, ((A+B) "3 (C+D)(A+B) %) (A+ B)}
= MA+ B) m,; (C+ D).
O

Moreover, an extended path has jointly concavity and informational monotonicity-like
properties:

Theorem 4.2. Let MI > A,B,C,D >mI >0 and h = . Then forr >1

% (AVoB) my, (CVaD) < (A myy C) Va (B myy D) < A (AVaB) myy (CVaD)
where A = A(h™1, h, F,.;) is defined in Theorem 4.1 and a € [0, 1].
Proof. Suppose that r > 1. Since m,.; is homogeneous, we have by Theorem 4.1
a(Am.; C)+(1—-a)(Bmy D)= (aAm., aC)+((1—-a) Bm,; (1 —a)D)
< MaA+ (1 —-a)B) my; (aC + (1 —a)D).
O

Theorem 4.3. Let A and B be positive invertible operators on H satisfying MI > A, B >
ml >0 and h = % Then forr > 1

®(A m,; B) <X ®(A) m,; ®(B)

for a normal normalized positive linear map ® from a von Neumann algebra containing A
and B to a suitable von Neumann algebra and A = A(h™, h, F.;) 1s defined in Theorem 4.1.

Proof. Put

U(X) = B(A) 7B(A2 X A2)D(4)73,
then V¥ is also a normalized positive linear map. Since F,; is convex for r > 1, it follows
from converses of Jensen’s inequality that

AF L (W(X)) > W(F4(X)).
Therefore we have
®(A m,, B) = 3(A)1U(F, (A 3BA™%))d(A)3
< AB(A)PF, (¥(A™7BATE))2(A)3
=\ ®(A) m,, ®(B).

Finally, an extended path has an operator monotonicity-like property.



57

Theorem 4.4. Let MI > A,B,C,D > mI > 0 such that A < C and B < D and
h= M/m. Then forr >1

Am, BN Cmy D
where A = A(h™L,h, F,;) and X = A(h™, h, F,.1_;) are defined in Theorem 4.1.

Proof.

[ [

Am,, B=A3F,,(A"2BA"1)A
< AA3F, (A1 DA™?)A
=AAm, D
=ADm,;+ A
<M Dm,,_ B
= AN Bmy1-+ D.

(ST
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