<table>
<thead>
<tr>
<th>Title</th>
<th>Relations between two operator inequalities via operator means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ito, Masatoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2004), 1359: 64-72</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25235</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Relations between two operator inequalities via operator means

東京理科大学 伊藤公智 (Masatoshi Ito)
(Department of Mathematical Information Science, Tokyo University of Science)

Abstract

Let A and B be (not necessarily invertible) positive operators. Recently, the author and Yamazaki discussed relations between

$$(B^{rac{r}{2}}A^{rac{1}{2}}B^{rac{r}{2}})^{rac{r}{p+r}} \geq B^r \quad \text{and} \quad A^p \geq (A^{rac{r}{2}}B^rA^{rac{r}{2}})^{rac{p}{p+r}}$$

for $p \geq 0$ and $r \geq 0$, and also Yamazaki and Yanagida discussed relations between

$$\frac{\frac{p}{p+r}I + \frac{r}{p+r}B^{rac{r}{2}}A^pB^{rac{r}{2}}}{A^p} \geq B^r \quad \text{and} \quad A^p \geq \frac{A^{rac{r}{2}}B^rA^{rac{r}{2}}}{\frac{r}{p+r}A^{rac{p}{2}}B^rA^{rac{p}{2}} + \frac{p}{p+r}I}$$

for $p \geq 0$ and $r \geq 0$.

In this report, as a generalization of their results via the representing functions of operator means, we shall show relations between two operator inequalities

$$f(B^{rac{1}{2}}AB^{rac{1}{2}}) \geq B \quad \text{and} \quad A \geq g(A^{rac{1}{2}}BA^{rac{1}{2}}),$$

where f and g are non-negative continuous functions on $[0, \infty)$ satisfying $f(t)g(t) = t$.

1 Introduction

In what follows, a capital letter means a bounded linear operator on a complex Hilbert space \mathcal{H}. An operator T is said to be positive (in symbol: $T \geq 0$) if $(Tx, x) \geq 0$ for all $x \in \mathcal{H}$. We denote the set of positive operators by $B(\mathcal{H})_+$.

Kubo-Ando [8] investigated an axiomatic approach for operator means (see also [5]). A binary operation $\sigma : B(\mathcal{H})_+ \times B(\mathcal{H})_+ \to B(\mathcal{H})_+$ is called an operator connection if it satisfies the following conditions (i), (ii) and (iii) for $A, B, C, D \in B(\mathcal{H})_+$:

(i) $A \leq C$ and $B \leq D$ imply $A\sigma B \leq C\sigma D$,

(ii) $C(A\sigma B)C \leq (CAC)\sigma(CBC)$,

(iii) $A_n, B_n \in B(\mathcal{H})_+, A_n \downarrow A$ and $B_n \downarrow B$ imply $A_n\sigma B_n \downarrow A\sigma B$,

where $A_n \downarrow A$ means that $A_1 \geq A_2 \geq \cdots$ and A_n converges strongly to A.

An operator connection σ is called an *operator mean* if

(iv) $I\sigma I = I$.

There exists a one-to-one correspondence between an operator connection σ and an operator monotone function $f \geq 0$ on $[0, \infty)$. The operator connection σ can be defined via the corresponding function f, which is called the *representing function* of σ, by

$$A\sigma B = A^{\frac{1}{2}} f \left(A^{\frac{1}{2}} BA^{\frac{1}{2}} \right) A^{\frac{1}{2}}$$

if A is invertible, and σ is an operator mean if and only if $f(1) = 1$.

The following are typical examples of operator means. For positive invertible operators A and B, and for $\alpha \in [0,1]$,

(i) Arithmetic mean: $A\nabla_\alpha B = (1-\alpha)A + \alpha B$,

(ii) Geometric mean (\alpha-power mean): $A^\#_\alpha B = A^{\frac{1}{2}} \left(A^{\frac{1}{2}} BA^{\frac{1}{2}} \right)^\alpha A^{\frac{1}{2}}$,

(iii) Harmonic mean: $A!_\alpha B = \{(1-\alpha)A^{-1} + \alpha B^{-1}\}^{-1}$.

The representing functions of ∇_α, $^\#_\alpha$ and $!_\alpha$ are $(1-\alpha)+\alpha t$, t^α and $(1-\alpha)+\alpha t^{-1}$, respectively. On these operator means, the following relations are known. We remark that (1.1) was shown in [4], and (1.1) and (1.2) can be proved without using properties of operator means. Let A and B be positive invertible operators. For each $p \geq 0$ and $r \geq 0$,

$$B^{-r} \nabla^{\frac{r}{p+r}} A^p \geq I \iff I \geq A^{-p} \nabla^{\frac{r}{p+r}} B^r \quad (1.1)$$

and

$$B^{-r} \nabla^{\frac{r}{p+r}} A^p \geq I \iff I \geq A^{-p} \nabla^{\frac{r}{p+r}} B^r \quad (1.2)$$

(1.1) is closely related to Furuta inequality [3], and a mean theoretic approach to Furuta inequality was discussed in [1], [7] and others. We remark the following relations on inequalities in (1.1) and (1.2): Let A and B be positive invertible operators. For each $p \geq 0$ and $r \geq 0$,

$$A \geq B \implies \log A \geq \log B \implies \begin{cases} B^{-r} \nabla^{\frac{r}{p+r}} A^p \geq I, \\ I \geq A^{-p} \nabla^{\frac{r}{p+r}} B^r \end{cases} \implies \begin{cases} B^{-r} \nabla^{\frac{r}{p+r}} A^p \geq I, \\ I \geq A^{-p} \nabla^{\frac{r}{p+r}} B^r \end{cases}.$$

The first relation holds since $\log t$ is operator monotone, the second was shown in [2], [4], and the third holds since $(1-\alpha) + \alpha t \geq t^\alpha \geq \frac{t}{(1-\alpha)+t+\alpha}$ for $t \geq 0$ and $\alpha \in [0,1]$. We remark that it was shown in [2], [4] that

$$\log A \geq \log B \iff B^{-r} \nabla^{\frac{r}{p+r}} A^p \geq I \quad \text{for all } p \geq 0 \text{ and } r \geq 0,$$

$$\iff I \geq A^{-p} \nabla^{\frac{r}{p+r}} B^r \quad \text{for all } p \geq 0 \text{ and } r \geq 0.$$
In this report, firstly we attempt a mean theoretic approach to (1.1) and (1.2). In other words, we shall state a result corresponding to (1.1) and (1.2) on a general operator mean for invertible operators. Secondly we shall show relations between

\[f(B^{\frac{1}{2}}AB^{\frac{1}{2}}) \geq B \quad \text{and} \quad A \geq g(A^{\frac{1}{2}}BA^{\frac{1}{2}}) \]

for (not necessarily invertible) positive operators \(A \) and \(B \), where \(f \) and \(g \) are non-negative continuous functions on \([0, \infty)\) satisfying \(f(t)g(t) = t \). This result is a further generalization of the former argument via the representing functions of operator means. Moreover this result includes the ones by the author and Yamazaki [6] and by Yamazaki and Yanagida [11].

2 A result on a general operator mean

In this section, we shall state a result corresponding to (1.1) and (1.2) on a general operator mean for invertible operators. At first we state definitions and properties of some operator means via an operator mean \(\sigma \).

Definition ([8]). Let \(\sigma \) be the operator mean with a representing function \(f \).

(i) \(\sigma' \) is said to be the transpose of \(\sigma \) if \(\sigma' \) is the operator mean with a representing function \(tf(t^{-1}) \).

(ii) \(\sigma^* \) is said to be the adjoint of \(\sigma \) if \(\sigma^* \) is the operator mean with a representing function \(\{f(t^{-1})\}^{-1} \).

(iii) \(\sigma^\perp \) is said to be the dual of \(\sigma \) if \(\sigma^\perp \) is the operator mean with a representing function \(\frac{t}{f(t)} \).

We remark that these representing functions can be defined on \([0, \infty)\) by setting the value on 0 by the limit to +0 since \(f \) is operator monotone.

Proposition 2.A ([8]). Let \(\sigma \) be an operator mean and \(A, B \in \mathcal{B}(\mathcal{H})_+ \).

(i) \(A\sigma' B = B\sigma A \).

(ii) \(A\sigma^* B = (A^{-1}\sigma B^{-1})^{-1} \) if \(A \) and \(B \) are invertible.

(iii) \((\sigma')' = (\sigma^*)^* = (\sigma^\perp)^\perp = \sigma \).

(iv) \(\sigma^\perp = (\sigma')^* = (\sigma^*)' = (\sigma^\perp)^* = (\sigma^\perp)^* \) and \(\sigma^* = (\sigma^\perp)' = (\sigma')^\perp \).

By using Proposition 2.A, we shall show a generalization of (1.1) and (1.2).
Proposition 2.1. Let A and B be positive invertible operators. For every operator mean σ,\[B^{-1}\sigma A \geq I \iff I \geq A^{-1}\sigma B. \quad (2.1) \]

Proof. By (i) of Proposition 2.1,\[B^{-1}\sigma A = A\sigma'B^{-1} \geq I. \quad (2.2) \]

By (ii) and (iv) of Proposition 2.1, (2.2) is equivalent to\[I \geq (A\sigma'B^{-1})^{-1} = A^{-1}(\sigma')^*B = A^{-1}\sigma B. \]

Hence the proof is complete. \[\square\]

Since $(\#_\alpha)^{\perp} = \beta_{1-\alpha}$ and $(\nabla_\alpha)^{\perp} = \!\!_1-\alpha$, Proposition 2.1 leads (1.1) (resp. (1.2)) by replacing A and B with A^p and B^r and by putting $\sigma = \#_{\frac{r}{p+r}}$ (resp. $\sigma = \nabla_{\frac{r}{p+r}}$). We remark that (2.1) can be rewritten by\[f(B^{\frac{1}{2}}AB^{\frac{1}{2}}) \geq B \iff A \geq \frac{A^{\frac{1}{2}}BA^{\frac{1}{2}}}{f(A^{\frac{1}{2}}BA^{\frac{1}{2}})} \quad (2.3) \]

with the representing function f of σ.

3 Main results

In this section, we shall show a further generalization of Proposition 2.1 via the representing functions of operator means.

When we rewrite (1.1) and (1.2) for positive invertible operators A and B by\[(B^{\frac{1}{2}}A^pB^{\frac{1}{2}})^{\frac{r}{p+r}} \geq B^r \iff A^p \geq (A^{\frac{r}{p+r}}B^rA^{\frac{1}{2}})^{\frac{p}{p+r}} \quad (3.1) \]

and\[\frac{p}{p+r}I + \frac{r}{p+r}B^{\frac{1}{2}}A^pB^{\frac{1}{2}} \geq B^r \iff A^p \geq \frac{A^{\frac{r}{p+r}}B^rA^{\frac{1}{2}}}{\frac{p}{p+r}A^{\frac{1}{2}}B^rA^{\frac{1}{2}} + \frac{p}{p+r}I} \quad (3.2) \]

with the representing functions, we can consider non-invertible operators on this argument. On relations between two inequalities in (3.1) and (3.2) for (not necessarily invertible) positive operators A and B, the following results were obtained in [6] and [11].
Theorem 3.A ([6]). Let A and B be positive operators. Then for each $p \geq 0$ and $r \geq 0$, the following assertions hold:

(i) If $(B^{\frac{p}{2}} A^p B^{\frac{r}{2}})^{\frac{p}{p+r}} \geq B^r$, then $A^p \geq (A^\frac{p}{2} B^{\frac{r}{2}} A^\frac{p}{2})^{\frac{p}{p+r}}$.

(ii) If $A^p \geq (A^\frac{p}{2} B^{\frac{r}{2}} A^\frac{p}{2})^{\frac{p}{p+r}}$ and $N(A) \subseteq N(B)$, then $(B^\frac{p}{2} A^p B^\frac{r}{2})^{\frac{p}{p+r}} \geq B^r$.

Theorem 3.B ([11]). Let A and B be positive operators. Then for each $p > 0$ and $r \geq 0$, the following assertions hold:

(i) If $\frac{p}{p+r} I + \frac{r}{p+r} B^{\frac{r}{2}} A^p B^{\frac{r}{2}} \geq B^r$, then $A^p \geq \frac{A^\frac{p}{2} B^{\frac{r}{2}} A^\frac{p}{2}}{\frac{p}{p+r} B^{\frac{r}{2}} A^p B^{\frac{r}{2}} + \frac{p}{p+r} I}$.

(ii) If $A^p \geq \frac{A^\frac{p}{2} B^{\frac{r}{2}} A^\frac{p}{2}}{\frac{p}{p+r} B^{\frac{r}{2}} A^p B^{\frac{r}{2}} + \frac{p}{p+r} I}$ and $N(A) \subseteq N(B)$, then $\frac{p}{p+r} I + \frac{r}{p+r} B^{\frac{r}{2}} A^p B^{\frac{r}{2}} \geq B^r$.

Here we shall obtain a generalization of Proposition 2.1 via the form of (2.3). This result is also an extension of Theorems 3.A and 3.B.

Theorem 3.1. Let A and B be positive operators, and let f and g be non-negative continuous functions on $[0, \infty)$ satisfying

$$f(t)g(t) = t. \quad (3.3)$$

(i) If $g(0) = 0$ or $N(A^{\frac{1}{2}} B A^{\frac{1}{2}}) = \{0\}$, then $f(B^{\frac{1}{2}} A B^{\frac{1}{2}}) \geq B$ ensures $A \geq g(A^{\frac{1}{2}} B A^{\frac{1}{2}})$.

(ii) If $N(A) \subseteq N(B)$, then $A \geq g(A^{\frac{1}{2}} B A^{\frac{1}{2}})$ ensures $f(B^{\frac{1}{2}} A B^{\frac{1}{2}}) \geq B$.

In Theorem 3.1, f and g are not necessarily operator monotone functions. We also remark that if $f(0) > 0$, then automatically $g(0) = 0$ by (3.3).

If A and B are positive invertible operators and σ is the operator mean with a representing function f, Theorem 3.1 ensures Proposition 2.1 since (2.1) is equivalent to (2.3). Theorem 3.1 also leads Theorem 3.A (resp. Theorem 3.B) by replacing A and B with A^p and B^r and by putting $f(t) = t^{\frac{r}{p+r}}$ and $g(t) = t^{\frac{r}{p+r}}$ (resp. $f(t) = \frac{p}{p+r} + \frac{r}{p+r} t$ and $g(t) = \frac{p}{p+r} + \frac{r}{p+r} t$). We remark that $g(0) = 0$ in these cases.

We need some lemmas in order to prove Theorem 3.1.

Lemma 3.C. Let T be a positive operator. Then

$$\lim_{\epsilon \to 0^+} T^{\frac{1}{2}}(T + \epsilon I)^{-1}T^{\frac{1}{2}} = \lim_{\epsilon \to 0^+} (T + \epsilon I)^{-1}T = P_M,$$

where P_M is a projection onto a closed subspace M.

Lemma 3.2. Let f be a non-negative continuous function on $[0, \infty)$ such that $f(0) = 0$ and $f(t) > 0$ for $t > 0$. Then $N(f(T)) = N(T)$ for every positive operator T.

Proof. Let $T = \int_0^{||T||} \! tdE_t$ be the spectral decomposition of a positive operator T. Then

\[
(f(T)x, y) = \int_0^{||T||} \! f(t)d(E_t x, y) \quad \text{for } x, y \in \mathcal{H}.
\]

(3.4)

We remark that $E_{-0} = 0$.

Assume that $x \in N(T)$. Then $E_0 x = (E_0 - E_{-0}) x = P_{N(T)} x = x$, and $(f(T)x, y) = f(0)(x, y) = 0$ for any $y \in \mathcal{H}$ by (3.4). Therefore $f(T)x = 0$, so that $x \in N(f(T))$.

Conversely, assume that $x \in N(f(T))$. Then for $\epsilon > 0$,

\[
0 = (f(T)x, x) = \int_0^{\epsilon} \! f(t)d(E_t x, x) + \int_{\epsilon}^{||T||} \! f(t)d(E_t x, x)
\]

by (3.4). Since $f(t) > 0$ for $t > 0$, $E_\epsilon x = x$ for $\epsilon > 0$. By tending $\epsilon \to +0$, we have $P_{N(T)} x = E_0 x = x$, so that $x \in N(T)$.

Lemma 3.3. Let $T = U|T|$ be the polar decomposition of an operator T, and let f be a continuous function on $[0, \infty)$. Then

\[
Uf(|T|)U^* = f(|T^*|) - f(0)(I - UU^*).
\]

Proof. First we shall show the case $f(0) = 0$ by the same way to [10, Lemma]. Since $U|T|^nU^* = |T^*|^n$ for each positive integer n, $Uf(|T|)U^* = p(|T^*|)$ holds for any polynomials p such that $p(0) = 0$. By taking a sequence $\{p_n\}$ of polynomials with $p_n(0) = 0$ which converges uniformly to f on $[0, ||T||]$, we obtain $Uf(|T|)U^* = f(|T^*|)$ for general f with $f(0) = 0$.

Next, let $g(t) = f(t) - f(0)$. Then $g(0) = 0$, so that

\[
Uf(|T|)U^* = U\{g(|T|) + f(0)I\}U^* = Ug(|T|)U^* + f(0)UU^*
\]

\[
= g(|T^*|) + f(0)I - f(0)(I - UU^*) = f(|T^*|) - f(0)(I - UU^*).
\]

Hence the proof is complete.

Proof of Theorem 3.1. Let $\epsilon > 0$.

Proof of (i). Since $f(B^{\frac{1}{2}}AB^{\frac{1}{2}}) \geq B$, we obtain

\[
(B + \epsilon I)^{-1} \geq \{f(A^{\frac{1}{2}}B^{\frac{1}{2}})^2\} + \epsilon I\}^{-1}.
\]
Let $A^{\frac{1}{2}}B^{\frac{1}{2}} = U|A^{\frac{1}{2}}B^{\frac{1}{2}}|$ be the polar decomposition of $A^{\frac{1}{2}}B^{\frac{1}{2}}$. Then we have

$$A^{\frac{1}{2}}B^{\frac{1}{2}}(A + \epsilon I)^{-1}B^{\frac{1}{2}}A^{\frac{1}{2}} \geq U\{f(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^{2}) + \epsilon I\}^{-1}f(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^{2})$$

by (3.3).

In (3.5), by tending $\epsilon \rightarrow +0$ and Lemma 3.C, we obtain

$$A^{\frac{1}{2}}P_{N(B)^{[\perp]}}A^{\frac{1}{2}} \geq UP_{N(f(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^{2}))^{[\perp]}}g(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^{2})U^{*}$$

by the following: If $f(0) > 0$, then $f(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^{2})$ is invertible and $P_{N(f(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^{2}))^{[\perp]}} = I$. If $f(0) = 0$, then $U_{N(f(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^{2}))^{[\perp]}} = U_{N(A^{\frac{1}{2}})} = U$ by Lemma 3.2.

Therefore, noting that $UU^{*} = P_{N(B)^{[\perp]}} = P_{N(A^{\frac{1}{2}}BA^{\frac{1}{2}})^{[\perp]}} = U$ if $N(A^{\frac{1}{2}}BA^{\frac{1}{2}}) = \{0\}$, we have

$$A \geq A^{\frac{1}{2}}P_{N(B)^{[\perp]}}A^{\frac{1}{2}}$$

$$\geq U_{g(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^{2})}U^{*}$$

by (3.6)

$$= g(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^{2}) - g(0)(I - UU^{*})$$

by Lemma 3.3

$$= g(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^{2})$$

since $g(0) = 0$ or $N(A^{\frac{1}{2}}BA^{\frac{1}{2}}) = \{0\}$

$$= g(A^{\frac{1}{2}}BA^{\frac{1}{2}}).$$

Proof of (ii). Since $A \geq g(A^{\frac{1}{2}}BA^{\frac{1}{2}})$, we obtain

$$(A + \epsilon I)^{-1} \leq \{g(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^{2}) + \epsilon I\}^{-1}.$$

Let $B^{\frac{1}{2}}A^{\frac{1}{2}} = V|B^{\frac{1}{2}}A^{\frac{1}{2}}|$ be the polar decomposition of $B^{\frac{1}{2}}A^{\frac{1}{2}}$. Then we have

$$B^{\frac{1}{2}}A^{\frac{1}{2}}(A + \epsilon I)^{-1}A^{\frac{1}{2}}B^{\frac{1}{2}}$$

$$\leq B^{\frac{1}{2}}A^{\frac{1}{2}}\{g(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^{2}) + \epsilon I\}^{-1}A^{\frac{1}{2}}B^{\frac{1}{2}}$$

$$= V|B^{\frac{1}{2}}A^{\frac{1}{2}}|\{g(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^{2}) + \epsilon I\}^{-1}|B^{\frac{1}{2}}A^{\frac{1}{2}}|V^{*}$$

by (3.3).

In (3.7), by tending $\epsilon \rightarrow +0$ and Lemma 3.C, we obtain

$$B^{\frac{1}{2}}P_{N(A)^{[\perp]}}B^{\frac{1}{2}} \leq VP_{N(g(B^{\frac{1}{2}}A^{\frac{1}{2}}|^{2}))^{[\perp]}}f(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^{2})V^{*}$$

by (3.8)
by the following: If \(g(0) > 0 \), then \(g(|B^\frac{1}{2}A^\frac{1}{2}|^2) \) is invertible and \(P_{N(g(|B^\frac{1}{2}A^\frac{1}{2}|^2))} = I \). If
\(g(0) = 0 \), then \(VP_{N(g(|B^\frac{1}{2}A^\frac{1}{2}|^2)^\perp} = VP_{N(B^\frac{1}{2}A^\frac{1}{2})^\perp} = V \) by Lemma 3.2.

Therefore, noting that \(N(A) \subseteq N(B) \) is equivalent to \(P_{N(A)^\perp} \geq P_{N(B)^\perp} \), we have

\[
B = B^\frac{1}{2}P_{N(B)^\perp}B^\frac{1}{2} \\
\leq B^\frac{1}{2}P_{N(A)^\perp}B^\frac{1}{2} \\
\leq Vf(|B^\frac{1}{2}A^\frac{1}{2}|^2)V^* \\
= f(|A^\frac{1}{2}B^\frac{1}{2}|^2) - f(0)(I - VV^*) \text{ by Lemma 3.3} \\
\leq f(|A^\frac{1}{2}B^\frac{1}{2}|^2) \\
= f(B^\frac{1}{2}AB^\frac{1}{2}).
\]

Hence the proof is complete. \(\square \)

Corollary 3.4. Let \(A \) and \(B \) be positive operators, and let \(f \) and \(g \) be positive continuous functions on \([0, \infty)\) satisfying \(f(t)g(t) = t \). If \(N(A^\frac{1}{2}BA^\frac{1}{2}) = \{0\} \), then \(f(B^\frac{1}{2}AB^\frac{1}{2}) \geq B \) is equivalent to \(A \geq g(A^\frac{1}{2}BA^\frac{1}{2}) \).

Proof. Since \(N(A^\frac{1}{2}BA^\frac{1}{2}) = \{0\} \) ensures \(\{0\} = N(A) \subseteq N(B), f(B^\frac{1}{2}AB^\frac{1}{2}) \geq B \) is equivalent to \(A \geq g(A^\frac{1}{2}BA^\frac{1}{2}) \) by Theorem 3.1. \(\square \)

Of course \(N(A^\frac{1}{2}BA^\frac{1}{2}) = \{0\} \) if \(A \) and \(B \) are invertible.

References

[3] T.Furuta, *A \geq B \geq 0 assures \((B^rA^pB^r)^{1/q} \geq B^qA^{(p+2r)/q} \) for \(r \geq 0, p \geq 0, q \geq 1 \) with \((1 + 2r)q \geq p + 2r \)*, Proc. Amer. Math. Soc., 101 (1987), 85–88.

[6] M.Ito and T.Yamazaki, *Relations between two inequalities \((B^\frac{1}{2}A^\frac{1}{2})^{\frac{r}{r+s}} \geq B^r\) and \(A^p \geq (A^\frac{1}{2}B^\frac{1}{2})^{\frac{r}{r+s}} \) and their applications*, Integral Equations Operator Theory, 44 (2002), 442–450.

