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Abstract 

Bus bunching is a well-known phenomenon on many bus routes where an initial delay to one 

service can disturb the whole schedule due to resulting differences in dwell times of subsequent 

buses at stops. This paper deals with the passenger behavior when there is more than one bus 

serving the stop, focusing on their choices and possible switching actions from the queue of 

the bus they are waiting to board. A parameter   is introduced to denote the percentage of 

passengers boarding the front bus of two buses boarding at the same time. Cases when 

overtaking is allowed or not are distinguished as this will also influence the passenger behavior. 

A set of discrete state equations is then implemented to obtain the departure times of the buses 

following the occurrence of an exogenous delay to one of the buses. Evaluation indices are 

introduced to measure the performance of the bus service along a corridor under different   

levels. We find that it is advantageous to keep the percentage of passengers boarding the front 

bus low. Beside, overtaking is a favourable counter-measure against comparatively high front-

bus preference.  
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1. Introduction 

Good public transport services are an essential part of a sustainable urban transport system, and 

improving public transport service quality is a major challenge for the operators and 

government agencies. Compared with railway and metro services, bus systems are obviously 

more vulnerable to reliability problems since they are exposed to urban road networks, sharing 

the limited road resources with other surface transport modes and suffering from traffic 

congestion, bad weather condition and unexpected events such as accidents. The resulting lack 

of service reliability is a major problem for bus passengers and service operators. A key feature 

of an unreliable service are the irregular arrivals of buses at stops. Irregular arrivals are 

undesirable for passengers because they lead to increased waiting times at initial stops as well 

as possibly missed connections at transfer stops so that passengers might lose their confidence 

in the public transport system. Studies have shown that passengers dislike their time waiting at 

bus stops more than they do their on-board travel time. For example Hollander and Liu (2008) 

found that the value of service reliability to bus passengers is four times higher than that of 

mean travel time. Therefore on-time/punctuality performance and headway evenness are 

important measures of service quality (e.g. Chen et al, 2009).  

A consequence of irregular arrivals and a typical case of uneven headways is bus bunching 

which can be defined as the effect of two successive services of a single line arriving at stops 

with shorter headways than the designed one. Bus bunching may be caused by the first service 

being delayed due to unforeseen traffic congestion en-route or unplanned high demand at 

previous stops. The subsequent service then has fewer passengers to pick up at that stop and 

departs earlier than scheduled. At downstream stops the effect is emphasised as the (small) 

delay to the first vehicle and the (slight) early arrival of the second vehicle result in increasingly 

longer dwell times for the first bus and increasingly shorter dwell times for the second bus. 

Among the first studies describing the bus bunching effect is the seminal work by Newell and 

Potts (1964). They studied an idealised corridor with evenly spaced bus stops, identical travel 

times between stops, and constant passenger loads at bus stops. Given a small delay to the first 

bus of a service at a stop, Newell and Potts provide an analytical formulation of the deviation 

of bus arrival time to schedule for all buses and at all subsequent stops. They show that adjacent 

buses alternate between being behind and ahead of schedule, leading to bus bunching. The 

scale of the bunching effect and the stability of the bus system is affected not only by the size 

of the original delay to the first bus, but also by the ratio between passenger arriving rate and 

boarding rate referred to as the k ratio. They show that if 1/2 < 𝑘 < 1, instability occurs. In 
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practice, however, one would expect the passenger arrival rate to be smaller than the loading 

rate, i.e.  0 < 𝑘 < 1/2. In this case, Newell and Potts show that the downstream stops can 

recover from the original perturbation and return to schedule. Furthermore, bus bunching is 

more noted in high frequency services, where the headway between buses is small and the 

delay to headway ratio is larger than the threshold so that bus bunching amplifies (rather than 

being damped and remaining localised) further down the route. 

Following on from Newell and Potts’ work, there has been a significant body of literature 

designing operational strategies to avoid the bunching effect. In particular holding strategies of 

early buses as well as strategies to keep minimum distances between subsequent services have 

been analysed and shown to be successfully applied in literature. The holding strategies are 

implemented through building slacks in the schedule at key timing points and holding buses at 

these points to keep them to schedule (e.g. Osuna and Newell (1972); Newell (1974); Hickman 

(2001); Eberlein (2001); Cats et al (2012)). Due to the complexity of the problem, most of these 

early studies involve solving just one controlled timing point. Using a simulation approach, 

Hickman (2001) derived a set of static holding solutions, which do not respond to dynamic 

changes in the actual bus performances on the day. Eberlein et al (2001) proposed a model for 

dynamic bus holding which take real-time information on bus headways into consideration and 

strives to minimise passenger waiting time. 

Daganzo (2009) explored a more systematic approach to the dynamic holding problem with 

real-time bus performance. Daganzo’s method is able to consider holding at multiple timing 

points, therefore providing opportunity for return to schedule for long bus routes. In addition, 

the model takes into account random effects in bus travel time, bus dwell time and passenger 

demand, making it resemble better real-life situations. Daganzo and Pilachowski (2011) 

proposed an adaptive bus control scheme based on a two-way bus-to-bus cooperation, where a 

bus adjusts its speed to both its front and rear headways. They show that the scheme yields 

significant improvements in bus headways and bus travel time. Moving away from the 

traditional idea of schedule-adherence and achieving a target headway, Pilachowski (2009) 

proposed to use GPS data to counteract directly the cause of the bunching by allowing the buses 

to cooperate with each other and to determine their speed based on relative position, while 

Bartholdi and Eisenstein (2012) proposed a self-coordinating method to equalise bus headway.  

Despite these recent developments, most of the existing studies present an oversimplified 

model of the bus bunching phenomenon, notably with a single line of service, with fixed service 
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frequency, uniformly distributed (in time and space) passenger flows, and no bus overtaking. 

They neglect important aspects of real-life bus systems, such as passenger behaviour, en-route 

service perturbation, transport operator policies such as holding and overtaking, and complex 

network features such as common lines. Newell and Potts (1964), for instance, assume fixed 

frequency, constant dwell times, equal-distance stops and equal-travel time between stops, and 

that buses cannot overtake. In real-life situations, busy urban corridors are often served by 

multiple lines of bus services, with different frequencies and different sequence of stops. 

Besides, when buses are bunched at the stop, some passengers are likely to stick to the front 

bus, while some others prefer to get to the back bus, especially if there is a chance that it 

overtakes the front one. Consideration of this queuing behaviour will hence impact the dwell 

time of buses and the order of bus departures. 

Exploring the effect of route sections served by multiple buses, Hernández et al (2015) 

proposed real-time control strategies for a corridor with multiple bus services where the 

common section is short. Schmöcker et al (2016) formulate the bunching problem for common 

line sections including overtaking between lines, and found that common lines can contribute 

to dampen bus bunching when overtaking is allowed for. Their model is simplified though by 

ignoring capacity constraints and the alighting process which makes it not yet practice ready. 

In addition to bus line operation, it is also essential to pay attention to the bus stop operation 

when analyzing the bunching problem, because stops are usually the main bottleneck as 

discussed by Fernández (2010). Fernández defined the stop mechanism clearly and distinguish 

one-platform and divided-platform stops, where each platform contains one or several berths 

to load passengers. A simulation approach involving a passenger module, bus arrival and 

departure modules is then developed to assess the performance of the bus stop by passenger 

waiting time, bus delays and bus queue length. Similarly, Gu et al (2011) investigated the 

relationship between number of berths to load the passengers at one stop and bus headway or 

bus dwelling time. An approach to optimize the number of berths according to boarding 

demand is proposed in their work. It should be noted though that in their work as well as in 

Fernández (2010) overtaking is not allowed, even under the multiple-berth cases. As we will 

discuss in this paper, overtaking policy has the potential though to be an effective way to reduce 

bunching. 

Given these gaps in the literature, in this paper, we focus on the passenger behaviour when 

there is more than one bus stopping at the stop at the same time. We investigate especially their 
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choices and possible switching actions from the queue of the bus they are waiting to board to 

that of the coming one. A parameter    is introduced to denote the percentage of passengers 

remaining in queue for the front bus. We presume the same percentage applies further to 

passengers arriving at the stop during the dwell time,   thus could be regarded as the general 

“front-bus preference”. Different scenarios of arrival and departure sequences are discussed 

respectively. Furthermore, we consider resulting differences in bunching depending on whether 

overtaking of buses at bus stops is allowed or not. In contrast to Fernández (2010) and Gu et al 

(2011) we hence model the propagation of delays along a corridor. 

Section 2 of the paper sets out the basic model notation. Section 3 describes the bus 

propagation model, without and with bus overtaking. The critical point of the propagation 

model is obtaining the dwell time at stops. This is described in Section 4 where we develop a 

formulation to obtain the number of passengers who board the front bus when buses are 

bunched. Four evaluation indices of the system performance under different front-bus 

preference scenarios are then proposed in Section 5, and the performance of the model is 

illustrated through case studies in Section 6. Finally, Section 7 concludes the study and 

discusses the implications on network design. 

 

2. Notation and Basic Assumptions 

The following notation will be used throughout the paper. 

 

Let 

m bus number according to arrival time at the bus stop with m=0,1,2,..,M 

n bus stop number with n=0,1,2,..N 

h headway of the line 

The above set of variables defines the basic service characteristics. Next we introduce bus and 

stop specific variables: 

𝑎𝑚,𝑛 time at which bus m arrives at stop n  

𝑑𝑚,𝑛 time at which bus m leaves stop n  

𝑣𝑚,𝑛 travel time of bus m between stops n-1 and n; taken as fixed value in this study 

𝜌𝑚,𝑛  initial “exogenous” delay to bus m before or at the nth stop  

∆𝑚,𝑛 passenger arrival period over which demand for bus m at stop n accumulates 
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∆̅𝑚,𝑛 scheduled passenger arrival period over which demand for bus m at stop n accumulates 

𝑤𝑚,𝑛  dwell time of bus m at stop n 

𝑏𝑚  passenger loading rate of bus m 

𝑞𝑛  passenger arriving rate at stop n for passengers 

𝑘𝑚,𝑛 ratio between passenger arriving and loading rate for bus m at stop n 

Finally, we introduce two variables that are time and stop specific but not bus specific: 

𝜉𝑛(𝑡)   last departure of any bus from stop n given time t  

𝑥𝑛(𝑡)   queue of passengers at stop n at time t who want to board  

 

Both 𝑎𝑚,𝑛  and 𝑑𝑚,𝑛  are measured as absolute values of time passed since the first bus 

leaves the terminal/ enters the corridor of interest. We note that m does not necessarily have to 

be in the dispatching order from depot if we allow for overtaking. If the leading bus has to 

board a large amount of passengers the subsequent bus the subsequent bus might overtake it if 

permitted and hence the arrival order at the subsequent stop reverses. We assume that bus travel 

time between stops is constant so that 𝑣𝑚,𝑛 simplifies to 𝑣. This is though not a restrictive 

assumption as we assume that buses can be subject to random, “exogenous” delays at stops 

denoted by 𝜌𝑚,𝑛. For illustration purposes in the case studies we assume that one delay occurs 

at a bus stop in the beginning of the modelled section. This event triggers the subsequent 

bunching effect. Boarding door is presumed to be open during exogenous delay in which newly 

coming passengers can keep boarding. If the entrance door is assumed closed, passengers 

accumulated in the delay should be distributed to next bus. Instead of delays at stops one could 

also introduce delays on links. The difference between assuming random link travel times and 

delays at stops is that in the latter passengers arriving at the stop during the delay period can 

board the bus whereas in the former obviously they cannot. Replacing stop delays 𝜌𝑚,𝑛 by one 

(or multiple) link delays presents no methodological difficulty in the approach presented 

hereafter.  

The boarding time per passenger is primarily depending on doors and ticketing system. Sun 

et al (2014) report that the loading time per passenger further depends on the interaction 

between boarding and alighting passengers. In the following we omit this issue and instead 

make the simplifying assumption that all buses are identical, i.e. have the same boarding rate 

per passenger, so that we can assume a fixed 𝑏𝑚 and omit the subscript m. Further, whereas 
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Fonzone et al (2015) assume that arrival patterns are time dependent here we assume a constant 

𝑞𝑛. With these assumptions also k becomes time and bus independent and can be defined as 

 

𝑘𝑛 =
𝑞𝑛

𝑏
 (1) 

 

Clearly, to avoid queues at bus stops building up over the analysis period, we require 

 

0 ≤  𝑘𝑛  < 1 (2) 

 

The passenger arrival period, ∆𝑚,𝑛, for a regular service will be equal to the service headway. 

In case of a bunched service, various definitions are possible, depending on bus stop layout, 

operational policy as well as passenger behaviour. For example, if control staff is at the bus 

stop the operator might restrict the boarding of newly arriving passengers while the bus is 

already loading passengers. In an uncontrolled system passengers arriving while two buses are 

at the same time at the stop will have a choice between these.  

In this paper, passengers who arrive during the dwell time can still board the bus, which means 

the arrival period of passengers is not equal to headway which is the interval of two adjacent 

arrivals, but is defined as the interval of two adjacent departures. ∆𝑚,𝑛  can be generally 

obtained as 

 

∆𝑚,𝑛= 𝑚𝑖𝑛{𝑑𝑚,𝑛−𝑑𝑚′,𝑛|𝑑𝑚′,𝑛 ≤ 𝑑𝑚,𝑛}, ∀𝑚, 𝑛      (3) 

 

which simplifies to (4) if overtaking is not allowed or does not occur 

 

∆𝑚,𝑛= 𝑑𝑚,𝑛−𝑑𝑚−1,𝑛         (4) 

 

We further note that equation (5) to obtain dwell times does not hold if several buses are serving 

the stop. We elaborate on this in the Section 4. 

 

𝑤𝑚,𝑛 = ∆𝑚,𝑛𝑘𝑛          (5) 
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3. Bus Propagation Model 

Bus services are propagated by four primary continuous events which are referred to as arrival 

at a stop, dwelling at the stop, departure from the stop and travel to next stop. The arrival and 

departure are two time points while correspondingly dwell and travel are events over a period 

of time during which delays might occur. In line with previous notation we utilise 𝑎𝑚−1,𝑛, 

𝑎𝑚+1,𝑛  and 𝑑𝑚−1,𝑛  to describe arrivals and departures of previous and subsequent buses 

relative to bus m. The departure time can be obtained with (6), and the arrival of the same bus 

at the subsequent stop with (7). As noted the travel time between stops is not the focus of this 

paper and simply presumed to be constant. This leaves us with obtaining the duration of the 

fourth event, the dwell time, which is developed in Section 4.  

Below is a basic bus propagation algorithm to solve the problem. The algorithm is recursive 

in that it obtains the time point and time duration of the four events for each stop and each bus 

in order of arrivals at the stops. As it is presumed that downstream stops have no influence on 

dwell time at upstream stops we can solve the algorithm in increasing order of stops from the 

terminal. Once all departure times from a stop are known events at the downstream stop can be 

calculated.  

In line with our discussion in previous section we note that perturbations to the system arise 

through random delays during the dwell time process which then might trigger a series of 

bunching events as our case study will show. 

 

 

Bus Propagation Algorithm 

Initialisation  

 Set 𝑎𝑚,1 ∀𝑚  

 Set ∆1,𝑛  ∀𝑛 

For each stop n in increasing order  

Sort buses according to arrival times at stop 

For each bus m in order of increasing arrival times obtain 

 Obtain 𝑤𝑚,𝑛 as in Section 4 

 𝑑𝑚,𝑛 = 𝑎𝑚,𝑛 + 𝑤𝑚,𝑛 + 𝜌𝑚,𝑛 (6) 
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 𝑎𝑚,𝑛+1 = 𝑑𝑚,𝑛 + 𝑣𝑚,𝑛 (7) 

 

4. Passenger Choice and Resulting Dwell Times for Bunched Buses 

 

4.1 Possible Event Sequences at the Bus Stop 

In case there is no service disturbance and only one bus at a time serves a bus stop obtaining 

the dwell time is straightforward by integrating passenger arrivals over the time period for 

which passengers accumulate for a specific bus. This is described in “Case A” and Equation 

(8) further below.   

 Let us now consider the case that two buses are boarding passengers at the same time. As 

described in the introduction  denotes the front-bus preference of passengers waiting to board 

and newly arriving during the dwell time of the buses. Therefore, with  = 1 all passengers 

keep boarding the front bus, whereas with  = 0 all passengers at the bus stop swap to board 

the bus that arrived later.  

 Considering departure of the previous bus and arrival of the bus subsequent to m, each column 

of Table 1 shows a possible event sequence. In the top row the number stands for the number 

of buses at the bus stop and the letter behind the number for the position of the bus of interest 

at the bus stops. In other words, “2f” stands for the bus being the front bus of two at the stop, 

“2b” for the bus being at the back of two buses at the bus stop and “3m” for the bus being the 

middle one of three at the bus stop. Similarly, “3b” denotes the last bus in three buses. The 

arrow stands for the state transition of the bus due to arrivals or departures of other buses. 

Table 1 is accompanied by an illustration of all the event sequences as in Figure 1. The box in 

dotted line is to demarcate the berth area. 𝑎𝑚 stands for the time point at which bus m enters 

into the berth. 𝑑𝑚 denotes the time point when bus m is leaving the stop.  

The lower part of Table 1 then provides an overview on the solutions that need to be obtained 

separately depending on  and depending on whether we allow for overtaking between buses 

or not. Case 1 denotes the above-mentioned non-bunched case in that bus m arrives after the 

previous bus has left and departs before the next bus has arrived. The case clearly can occur 

for all  and independent of whether overtaking is considered or not. It can be solved with the 

equations shown under Section A. 

The second case, 1→2f, denotes the case that while the bus is still boarding the subsequent 
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bus arrives. In this case, and all subsequent cases, hence the solution depends on . Firstly if 

 = 1 then all passengers board the bus of interest, so that the waiting time of the bus is 

identical to the case without considering bus m+1. The case also makes bunching worse 

compared to smaller  values, as bus m+1 does not help to relieve bus m though it has already 

caught up with this bus. For cases 1 >  > 0 the relief by bus m needs to be taken into account 

as shown in Section B. With decreasing  the dwell time of bus m will continuously decrease 

so that in the extreme case of  = 0 bus m leaves immediately when bus m+1 is arriving. This 

corresponds to the case of the bus driver in the front bus trying to reduce the bunching effect 

by pushing all passengers to the back bus. 

In case overtaking is allowed and if  > 0.5 bus m+1 will overtake bus m as this means more 

than half the passengers will remain boarding bus m. In case of  = 0.5 the buses become 

“twin buses” as they depart at the same time, whereas in the case of  < 0.5 bus m will depart 

before bus m+1.  

We note that obtaining the exact dwell time in case of 1 >  > 0.5 is not possible with our 

analytical solution approach. Bus m+1 will overtake bus m so that from 𝑑𝑚+1 until 𝑑𝑚 bus 

m becomes the only bus at the stop again. Hence obtaining 𝑑𝑚+1 is required in order to obtain 

𝑑𝑚. For this case we linearly approximate the dwell time from the limiting cases  = 1 and 

 = 0.5 which we can solve directly. The dwell time for bus m must be smaller than for  = 1 

but larger than for  = 0.5. 

The following five columns all presume that bus m arrives while bus m-1 has not yet departed. 

Firstly consider a system without overtaking. For  ≥ 0.5 this hence means that bus m leaves 

together with bus m-1 so that the behaviour of bus m+1 does not have to be considered and one 

always obtains 𝑤𝑚 = 𝑑𝑚−1 − 𝑎𝑚 − 𝜌𝑚 which is equivalent to 𝑑𝑚 = 𝑑𝑚−1. In case of  <

0.5 instead bus m will have to pick up more than half the passengers queuing at the stop and 

hence these passengers need to be considered in determining the dwell time of bus m (Cases C 

and D in the table). We assume that only two buses can board passengers at the same time, i.e. 

a third (and fourth etc.) bus that might be at the stop at the same time cannot pick up passengers 

until one of the front two buses has departed. Under this assumption case 2b→3m→2f 

simplifies to the 2b→2f case. That is, until departure of bus m-1, bus m is the latter of two 

buses. At departure of bus m-1 then bus m becomes the front bus of two boarding buses. This 

case is denoted as F and solved below. Note further that for  = 0 again the solutions simplify. 

Whenever the bus transits into the 2f state, it can leave immediately, if it is in the 2b state, bus 
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m-1 can leave immediately and hence it becomes identical to the 1 bus waiting time if bus m 

can leave before bus m+1 is arriving.  

We suggest the assumption that at most 2 buses can simultaneously load passengers is realistic 

in most cases. It further eases the complexity of the multiple bus bunching problem. In case 3 

or more buses are bunched at the stop, the third (and fourth, fifth..) bus following it are 

prevented to enter the berth to pick-up passengers until space becomes available. This means 

cases of four or more bunched buses are also covered within our formulation where the bus has 

to wait until it becomes bus 3b thus entering the right most scenario in Table 1. Note further, 

that in fact any bunching of 3 or more buses to be a 2-bus bunching. Taking the 3b case, bus m 

is bunched after two leading buses and overtaking is permitted, it is supposed to depart instantly 

after finishing unloading passengers, and 𝑤𝑚 is considered 0 here. If overtaking is prohibited, 

it always leaves together with the two previous buses for  ≥ 0.5 and it is converted into 

2b→1 case for  < 0.5. Finally, note that for  < 0.5 no overtaking occurs at the bus stop as 

the previous bus will always be able to leave before the subsequent bus as it will have to pick-

up less passengers of the remaining queuing travellers at the stop.  

The remainder of this chapter obtains the formulation for the analytical solution to the cases 

discussed above.
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Table 1 Possible event sequences from the viewpoint of bus m and corresponding calculation of dwell time 

 

Possible Event Sequences 

Case 1 1→2f 2b→1 2b→1→2f 2b 2b→3m→2f 2b→3m 3b(→1) 

event 

sequence 

(increasing 

time) 

𝑑𝑚−1 𝑎𝑚 

𝑎𝑚 𝑑𝑚−1 𝑑𝑚 𝑎𝑚+1 𝑑𝑚−2 

𝑑𝑚−1 

𝑑𝑚 
𝑑𝑚 𝑎𝑚+1 𝑑𝑚 𝑎𝑚+1 𝑎𝑚+1 

𝑑𝑚−1 

𝑑𝑚−1 𝑑𝑚 

𝑎𝑚+1 𝑑𝑚 𝑎𝑚+1 𝑑𝑚 𝑑𝑚 𝑑𝑚−1 

Solution to Specific Cases 

No Overtaking 

 = 1 A A (m+1 waits 

behind m) 
𝑤𝑚

= 𝑑𝑚−1

− 𝑎𝑚 
(m-1 and m 

bunched) 

Does not 

occur: 

𝑑𝑚 = 𝑎𝑚+1

= 𝑑𝑚−1 

Does not 

occur: case 

presumes 

overtaking 

𝑤𝑚

= 𝑑𝑚−1 − 𝑎𝑚 
(m-1 and m 

bunched)* 

Does not 

occur: case 

presumes 

overtaking 

𝑤𝑚

= 𝑑𝑚−2 − 𝑎𝑚

= 𝑑𝑚−1 − 𝑎𝑚 1 >  > 0.5 B (m and 

m+1 

bunched) 

 

 = 0.5 

0.5 >  > 0 B C D F* C 

 = 0 𝑤𝑚

= 𝑎𝑚+1

− 𝑎𝑚 

𝑤𝑚

= 𝑎𝑚+1

− 𝑎𝑚 

𝑤𝑚 = 𝑑𝑚−1 −
𝑎𝑚* 

Overtaking 

 = 1 A A (m+1 

leaves 

immediately) 

Does not 

occur:  
𝑑𝑚 < 𝑑𝑚−1 

Does not 

occur: 𝑤𝑚 =
0 and  

𝑑𝑚 < 𝑑𝑚−1 

𝑤𝑚 = 0 
(and 

overtaking) 

Does not 

occur: 𝑤𝑚 =
0 and  

𝑑𝑚 < 𝑑𝑚−1 

𝑤𝑚 = 0 (and 

overtaking; 

only if  

𝑎𝑚 = 𝑎𝑚+1) 

𝑤𝑚 = 0 
(quick 

unloading and 

overtaking) 

1 >  > 0.5 X (m+1 

overtakes m) 

E E* 

 ≤ 0.5 Overtaking does not occur, identical to no overtaking case 
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Case Event Illustration 

1 

𝑎𝑚 

 

𝑑𝑚 

 

1→2f 

𝑎𝑚 

 

𝑑𝑚 

 

2b→1 

𝑎𝑚 

 

𝑑𝑚 

 

2b→1→2f 

𝑎𝑚 

 

𝑎𝑚+1 

 

𝑑𝑚 

 

2b 

𝑎𝑚 

 

𝑑𝑚 
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2b→3m→2f 

𝑎𝑚 

 

𝑎𝑚+1 

 

𝑑𝑚 

 

2b→3m 

𝑎𝑚 

 

𝑑𝑚 

 

3b 

𝑎𝑚 

 

𝑑𝑚 

 

Figure 1 Event sequences from the viewpoint of bus m 

 

4.2 Waiting formulation for specific cases 

 

A: 1bus, no bunching case 

𝑤𝑚,𝑛 =
1

𝑏
∫ 𝑞𝑛𝑑𝑡

𝑑𝑚,𝑛

𝑑𝑚−1,𝑛
 =

1

𝑏
∫ 𝑞𝑛𝑑𝑡

𝑎𝑚,𝑛+𝑤𝑚,𝑛

𝑑𝑚−1,𝑛
 = 𝑘𝑙𝑛(𝑎𝑚,𝑛 + 𝑤𝑚,𝑛 + 𝜌𝑚,𝑛 − 𝑑𝑚−1,𝑛)  (8) 

 

𝑤𝑚,𝑛 =
𝑘𝑙𝑛(𝑎𝑚,𝑛+𝜌𝑚,𝑛−𝑑𝑚−1,𝑛) 

(1− 𝑘𝑙𝑛)
        (9) 

 

B: 1→2f and assuming no overtaking (either because  < 0.5 or because overtaking not 

allowed) 

We obtain the queue x at stop n at time 𝑎𝑚+1,𝑛 as 

𝑥𝑛(𝑎𝑚+1,𝑛) =  𝑞 (𝑎𝑚+1,𝑛 − 𝜉𝑛(𝑎𝑚+1,𝑛)) − 𝑏(𝑎𝑚+1,𝑛 − 𝑎𝑚,𝑛)    (10) 
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Waiting time of bus m can be obtained as 

𝑤𝑚,𝑛 = (𝑎𝑚+1,𝑛 − 𝑎𝑚,𝑛) +


𝑏
(𝑥𝑛(𝑎𝑚+1,𝑛) + ∫ 𝑞𝑛𝑑𝑡

𝑑𝑚,𝑛

𝑎𝑚+1,𝑛
)     (11) 

 

Which is equivalent to 

𝑤𝑚,𝑛 = (𝑎𝑚+1,𝑛 − 𝑎𝑚,𝑛) +
𝛾𝑥𝑛(𝑎𝑚+1,𝑛)

𝑏(1−𝛾𝑘)
+

𝛾𝑘

1−𝛾𝑘
𝜌𝑚,𝑛      (12) 

 

The passengers left behind by bus m is obtained as 

𝑥𝑛(𝑑𝑚,𝑛) = 𝑥𝑛(𝑎𝑚+1,𝑛) + ∫ (𝑞𝑛 − 2𝑏)𝑑𝑡
𝑑𝑚,𝑛

𝑎𝑚+1,𝑛
      (13) 

 

C: 2b→1 and no overtaking because  < 0.5 

We firstly obtain the queue of passengers at the stop when bus m is arriving as 

𝑥𝑛(𝑎𝑚,𝑛) =  𝑞 (𝑎𝑚,𝑛 − 𝜉𝑛(𝑎𝑚,𝑛)) − 𝑏(𝑎𝑚,𝑛 − 𝑎𝑚−1,𝑛) + 𝑥𝑛 (𝜉𝑛(𝑎𝑚,𝑛))   (14) 

The passengers left behind by the bus previously departed are emphasized as 𝑥𝑛(𝑑𝑚−1,𝑛) and 

distributed to bus m 

 

The waiting time can be formulated as follows 

𝑤𝑚,𝑛 =
1−

𝑏
(𝑥𝑛(𝑎𝑚,𝑛) + ∫ 𝑞𝑙𝑛𝑑𝑡

𝑑𝑚−1,𝑛

𝑎𝑚,𝑛
) +

1

𝑏
∫ 𝑞𝑙𝑛𝑑𝑡

𝑑𝑚,𝑛

𝑑𝑚−1,𝑛
     (15) 

 

And hence 

𝑤𝑚,𝑛 =
(1−)𝑥𝑛+𝑏𝑘(𝑎𝑚,𝑛−𝑑𝑚−1,𝑛)+𝑏𝑘𝜌𝑚,𝑛

𝑏(1−𝑘)
       (16) 

 

D: 2b→1→2f and no overtaking because  < 0.5 

In this case we need to obtain the queue of passengers at the arrival of bus m (when bus m 

enters the 2b state) as well as at time 𝑎𝑚+1,𝑛 when bus m enters the 2f state. In fact, as shown 

below the 𝑥𝑛(𝑎𝑚+1,𝑛) obviously depends on 𝑥𝑛(𝑎𝑚,𝑛). 

𝑥𝑛(𝑎𝑚,𝑛) =  𝑞𝑛 (𝑎𝑚,𝑛 − 𝜉𝑛(𝑎𝑚,𝑛)) − 𝑏(𝑎𝑚,𝑛 − 𝑎𝑚−1,𝑛) + 𝑥𝑛 (𝜉𝑛(𝑎𝑚,𝑛))   (17) 

 

𝑥𝑛(𝑎𝑚+1,𝑛) = 𝑥𝑛(𝑎𝑚,𝑛) − 2𝑏(𝑑𝑚−1,𝑛 − 𝑎𝑚,𝑛) − 𝑏(𝑎𝑚+1,𝑛 − 𝑑𝑚−1,𝑛) + 𝑞𝑛(𝑎𝑚+1,𝑛 − 𝑎𝑚,𝑛) (18) 
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As this case implies that the bus is still at the stop at the arrival time of bus m+1 the waiting 

time can be obtained as 

𝑤𝑚,𝑛 = (𝑎𝑚+1,𝑛 − 𝑎𝑚,𝑛) +


𝑏
(𝑥𝑛(𝑎𝑚+1,𝑛) + ∫ 𝑞𝑛𝑑𝑡

𝑑𝑚,𝑛

𝑎𝑚+1,𝑛
)     (19) 

 

Which can be solved to 

𝑤𝑚,𝑛 = (𝑎𝑚+1,𝑛 − 𝑎𝑚,𝑛) +
𝑥𝑛(𝑎𝑚+1,𝑛)

𝑏(1−𝛾𝑘)
+

𝛾𝑘

1−𝛾𝑘
𝜌𝑚,𝑛      (20) 

 

The passengers left behind by bus m is obtained as 

𝑥𝑛(𝑑𝑚,𝑛) = 𝑥𝑛(𝑎𝑚+1,𝑛) + ∫ (𝑞𝑛 − 2𝑏)𝑑𝑡
𝑑𝑚,𝑛

𝑎𝑚+1,𝑛
      (21) 

 

E: 2b (only for  > 0.5, includes overtaking) 

We obtain again the queue at the stop when bus m is entering stage 2b as 

𝑥𝑛(𝑎𝑚,𝑛) =  𝑞 (𝑎𝑚,𝑛 − 𝜉𝑛(𝑎𝑚,𝑛)) − 𝑏(𝑎𝑚,𝑛 − 𝑎𝑚−1,𝑛)     (22) 

 

This lead to 

𝑤𝑚,𝑛 =
1−

𝑏
(𝑥𝑛(𝑎𝑚,𝑛) + ∫ 𝑞𝑛𝑑𝑡

𝑑𝑚,𝑛

𝑎𝑚,𝑛
)       (23) 

 

And hence  

𝑤𝑚,𝑛 =
(1−)(𝑥𝑛(𝑎𝑚,𝑛)+𝑏𝑘𝜌𝑚,𝑛)

𝑏(1−𝑘+𝛾𝑘)
        (24) 

 

The passengers left behind when bus m departures is obtained as 

𝑥𝑛(𝑑𝑚,𝑛) = 𝑥𝑛(𝑎𝑚,𝑛) − 2𝑏𝑤𝑚,𝑛 + ∫ 𝑞𝑛𝑑𝑡
𝑑𝑚,𝑛

𝑎𝑚,𝑛
      (25) 

 

F: 2b→(3m) →2f, no overtaking (because  < 0.5) 

Finally, with our assumption that only two buses are boarding passengers simultaneously, we 

obtain that in this case the bus transfer immediately from the 2b state into the 2f state. The 

transition occurs at time 𝑑𝑚−1,𝑛 and we obtain the queue at this point in time by 

𝑥𝑛(𝑎𝑚,𝑛) =  𝑞 (𝑎𝑚,𝑛 − 𝜉𝑛(𝑎𝑚,𝑛)) − 𝑏(𝑎𝑚,𝑛 − 𝑎𝑚−1,𝑛) + 𝑥𝑛 (𝜉𝑛(𝑎𝑚,𝑛))   (26) 

 

𝑥𝑛(𝑑𝑚−1,𝑛) = 𝑥𝑛(𝑎𝑚,𝑛) − 2𝑏(𝑑𝑚−1,𝑛 − 𝑎𝑚,𝑛) 
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= 𝑞 (𝑎𝑚,𝑛 − 𝜉𝑛(𝑎𝑚𝑛)) + 𝑏(𝑎𝑚,𝑛 + 𝑎𝑚−1,𝑛 − 2𝑑𝑚−1,𝑛)     (27) 

 

Then the waiting time can be obtained by 

𝑤𝑚,𝑛 = (𝑑𝑚−1,𝑛 − 𝑎𝑚,𝑛) +


𝑏
(𝑥𝑛(𝑑𝑚−1,𝑛) + ∫ 𝑞𝑛𝑑𝑡

𝑑𝑚,𝑛

𝑑𝑚−1,𝑛
)     (28) 

 

And hence 

𝑤𝑚,𝑛 = (𝑑𝑚−1,𝑛 − 𝑎𝑚,𝑛) +
𝑥𝑛(𝑑𝑚−1,𝑛)

𝑏(1−𝛾𝑘)
+

𝛾𝑘

1−𝛾𝑘
𝜌𝑚,𝑛      (29) 

 

The passengers left behind by bus m is obtained as 

𝑥𝑛(𝑑𝑚,𝑛) = 𝑥𝑛(𝑑𝑚−1,𝑛) + ∫ (𝑞𝑛 − 2𝑏)𝑑𝑡
𝑑𝑚,𝑛

𝑑𝑚−1,𝑛
      (30) 

 

X: 1->2f,  > 0.5, with overtaking 

The only case that we can not solve accurately is the case denoted by X in above table. As 

noted the reason is that the departure time for bus m+1 needs to be known or solved 

simultaneously when we solve for the departure time of bus m. One could do so by a time step 

simulation approach similar to work described in Fonzone et al (18). However, as the two 

limiting cases for 𝛾 = 1 (case A) and 𝛾 = 0.5 (case B) can be solved accurately and since we 

know that the waiting time is continuously decreasing for bus m in state 2f for decreasing 𝛾 

we can approximate: 

𝑤𝑚,𝑛 = 2((𝛾 − 0.5)𝐴 + (1 − 𝛾)𝐵)                                          (31) 

 

5. Evaluation Measures 

We assume high frequency service in which passengers arrive uniformly at the stop. In such 

situations headway evenness is a more effective index than punctuality as passengers will not 

mind which specific run of a service they board. Therefore our main service regularity index is 

the service interval duration ∆𝑚,𝑛 as in (4) and its standard deviation, which depend on the 

exogeneous and delay and our input parameter of interest 𝛾. We note the difference to service 

headway deviation which is based in most literature on service arrivals. Instead, ∆𝑚,𝑛 has a 

direct effect on the waiting time of passengers at the stop as it includes the dwell time. 

 The mean and maximum of ∆𝑚,𝑛 of all the bus services can be obtained respectively as  
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𝑤̅ =
∑ ∑ ∆𝑚,𝑛𝑚𝑛

𝑀×𝑁
          (32) 

 

𝑤̂ = 𝑚𝑎𝑥
𝑛

𝑚𝑎𝑥
𝑚

∆𝑚,𝑛            (33) 

 

Further, the total standard deviation of ∆𝑚,𝑛  and the stop-specific maximum standard 

deviation of ∆𝑚,𝑛, can be obtained respectively as 

𝜎 = √∑ ∑ (∆𝑚,𝑛 −∆̅𝑚,𝑛 )
2

𝑚𝑛

𝑀×𝑁
         (34) 

 

𝜎̂ = 𝑚𝑎𝑥
𝑛

√∑ (∆𝑚,𝑛 −∆̅𝑚,𝑛 )
2

𝑚

𝑀
        (35) 

 

Standard deviation is a system index and of significance to operators, whereas arguably the 

maximum waiting times are more important to passengers as the frustration due to long delays 

is not a linear function.  

 

6. Case Study 

6.1 Specifications 

This case study is a numerical test based on the analytical model proposed above. We consider 

a single line with 10 stops. The bus line runs with a frequency of h = 6min and we assume that 

the travel time between two adjacent stops takes a constant value of 3min. We further assume 

that an initial random delay occurs for the 2nd bus or both the 2nd and 3rd bus at the 2nd stop. 

This means that the first bus is unaffected and hence runs with the expected headways and 

encounters the same (expected) dwell times at the stop. The impact of initial delay on bus 

trajectories is also investigated by varying its size from a slight delay to a delay longer than 

headway. In Section 6.2 and 6.3, only the 2nd bus encounters an initial delay whose size is 

2min at the 2nd stop, and in Section 6.4, consequences of different initial delays are discussed. 

To evaluate the effect of different passenger behavior, we model bus bunching with 𝛾 = 0, 

0.1, 0.2, …, 1. We also distinguish different overtaking policies, since we expect to observe 

differences for 𝛾 > 0.5. Besides, we vary the k-ratio since larger arriving-to-loading ratios lead 

to longer dwell times so that large k-ratios can also help to illustrate the effects of interest. We 
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note that in real cases k-ratios are often lower, e.g. Liu and Sinha (2004) in a case study of the 

City of York, UK, report a ratio of approximately 0.1, with 1 passenger per minute arriving and 

the boarding process requiring 6sec per passenger. Electronic payment will further reduce the 

time it takes for passengers to board. At large stations though and during peak times obviously 

the arrival rate might be significantly higher. 

 

6.2 Illustration of resulting bus trajectories 

Figures 2(a) to (c) shows the bus trajectories for 3 extreme cases considering a moderate k-

ratio of k = 0.25. Red and green are used only to better distinguish subsequent buses. The case 

that all the passengers choose to board the back bus is illustrated in Figure 2(a). The case that 

all passenger will stick to the front bus and the back bus hence can overtake is shown in Figure 

2(b). Figure 2(c) instead illustrates the inefficient case that the back bus is not allowed to 

overtake the front one although no one is boarding the back one. 

Comparing Figures 2(b) and 2(c), one can especially observe that the bus system will provide 

a service with shorter maximal departure intervals and smaller variation of departure intervals 

if overtaking is possible: 𝑤̂ and 𝜎 are reduced by 45% and 35% respectively. We therefore 

observe that allowing for overtaking is of necessity if passengers show no propensity to take 

the back bus and/or the layout of the stop means passenger are unlikely to swap queues and 

take the back bus. 

Furthermore, with 𝛾 = 1 we can observe in Figure 2(b) that once the buses are bunched, a 

pair of buses keep overtaking each other if overtaking is possible. If overtaking is not allowed, 

as in Figure 2(c), a more severe phenomenon is that the second bus is “lost” for the system 

once the second bus has caught up with the former one; namely, the latter bus fails to pick up 

passengers when passengers always board the first bus and overtaking is not allowed, therefore 

the second bus ends up leaving and reaching the stops immediately after the former one. 

Accordingly less disorder and better efficiency is illustrated in the case of 𝛾 = 0 (Figure 2(a)). 

The front bus always leave instantly when the back bus arrives so that the front bus can pull 

away and reduce the bunching effect. We remind that in this study we assume deterministic 

passenger arrivals and the k level illustrated in Figure 1 implies that the subsequent bus catches 

up with the front bus at the next stop again. In case of stochastic arrivals, we suggest that high 

back bus preference will be of even more benefit as the front bus might be able to create a 
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distance between itself and the subsequent bus at least for some stops. 

We notice further that the indices indicating service performances in Figures 2(a) and 2(b) are 

almost the same. Therefore, we suggest that when overtaking is not a feasible option for the 

service (possibly because of narrow roads) the system does not lose much efficiency as long as 

the passengers can be persuaded to use the back bus of two boarding at the same time.  
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(a) 𝛾 = 0 (overtaking will not occur) 

 
(b) 𝛾 = 1 with overtaking allowed 

 
(c) 𝛾 = 1 without overtaking (overtaking not allowed) 

Figure 2 Bus trajectories for different extreme  cases for k=0.25 
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6.3 Tests under various degrees of front-bus preference and k levels 

In this section, the impact of the spectrum of different degrees of front-bus preference are tested. 

For this we utilise the total standard deviation of ∆𝑚,𝑛 for all services as illustrated in Figure 

2 to illustrate the system regularity. Figure 3 is to show the max ∆𝑚,𝑛 of the system for the 

same range of parameter settings. In both figures we distinguish the case when overtaking is 

allowed (Figs. 3(a) and 4(a)) and when it is not allowed (Figs. 3(b) and 4(b)). Figure 5 then 

presents an explicit comparison between overtaking and no-overtaking cases. All the tests are 

carried out under four different arriving-to-loading levels k = 0.25, 0.3, 0.35 and 0.4.  

 

6.3.1 Overtaking is allowed 

As is shown in Figures 3(a) and 4(a), the standard deviation of ∆𝑚,𝑛 reaches its minimum at 

𝛾 = 0 in most cases, while the maximum is obtained for 𝛾 = 0.5 in all cases. A similar 

tendency could be observed for max ∆𝑚,𝑛. Accordingly, equally-split queueing strategy (𝛾 = 

0.5) is unfavourable from a system perspective, as it will disturb the service regularity most. 

This is understandable as 𝛾 = 0.5 means that buses, once they are bunched, will always depart 

from stops at the same time as discussed before. In line with our observations from Figure 2, 

zero front-bus preference (𝛾 = 0) maintains the service evenness well. We notice that under all 

k-levels 𝛾 = 1 can perform almost as well as 𝛾 = 0 if overtaking is allowed. 

 

6.3.2 Overtaking is not allowed 

As is shown in Figures 3(b) and 4(b), except for some points of max ∆𝑚,𝑛, the indices reach 

their minimum when all the passengers board the back bus, which confirms our previous 

observations. Besides, as is illustrated in Figure 3(b), unevenness of services are nonlinearly 

aggravated with the increase of 𝛾 especially for high k levels. For the max ∆𝑚,𝑛 , we can 

observe some fluctuations in Figure 4(b) illustrating the complexity of the system. 

 

6.3.3 Comparison between overtaking and no-overtaking case 

The comparison between overtaking and no-overtaking is illustrated in Figure 5. We utilise the 

ratios between the indices of the no-overtaking case and the overtaking case to analyse the 

discrepancies between these two cases. Except for k = 0.4, bus services perform the same before 

𝛾 exceeds 0.5, because overtaking rarely occurs in line with Table 1. The only case when 

overtaking can occur also with 𝛾 < 0.5 is when three buses are bunched and if k is high. 

Compared with the overtaking case, we observe a significant increase in the standard deviation 
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of ∆𝑚,𝑛  for the no-overtaking case, which illustrates the importance of allowing for 

overtaking to maintain service regularity. When 𝛾 > 0.5, the higher the front-bus preference is, 

the more improvement could be obtained by allowing for overtaking. Further, the higher k, the 

higher the contribution of overtaking to improve the service which is shown in both Figures 

5(a) and 5(b). 
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(a) with overtaking  (b) without overtaking 

Figure 3 Standard deviation of ∆𝑚,𝑛 for different 𝛾 and k 

 

  
(a) with overtaking  (b) without overtaking 

Figure 4 Max ∆𝑚,𝑛 for different 𝛾 and k 

 

  
(a) Standard deviation of ∆𝑚,𝑛  (b) Max ∆𝑚,𝑛 

Figure 5 Comparison between no-overtaking and overtaking cases for different 𝛾 and k 
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6.4 Test with different initial delay patterns 

In this section, the effect of initial delay on the service regularity is investigated. For this test, 

standard deviation of ∆𝑚,𝑛 is considered as the primary indicator, in particular the changes in 

service regularity along with the increase in initial delay. The k ratio is held at 0.25 to indicate 

a realistic boarding demand and overtaking is permitted. For the front-bus preference, 3 critical 

points:  = 0,  = 0.5 and  = 1 are selected in this test. 

As is illustrated in Figure 6, initial delay is generated for the 2nd bus at the 2nd stop and its 

size is varied from 0.2min to 8min. Service regularity performs increasingly unfavorably until 

the initial delay exceeds 2min. Given an initial delay between 2 and 6 min, service regularity 

appears to be independent of the size of initial delay, although there are some fluctuations, 

which indicates that the overtaking strategy can contribute to the control of service regularity. 

When the initial delay is too large and exceeds the headway a lot, the regularity tends to be out 

of control. 

To illustrate the effect of multiple delays further tests are made where another exogenous 

delay is given to the 3rd bus also at the 2nd stop. The size of delay of the 2nd bus is fixed at 

2min and that of the 3rd bus is varied from 0min to 8min. As is shown in Figure 7, the indicator 

drops suddenly when the delay of 3rd bus is between 1min and 2min, strongly indicating that 

the following bus should be held by a period that is close to the delay of the leading bus at the 

stop. Similarly, a drop in service regularity reduction can be observed when the delay of 3rd 

bus is between 7min and 8min, though the reduction is reduced due to the overall larger delay. 

Our tests with multiple delays further support the conclusion derived in Section 6.3. Adding 

  as additional dimension to the graph, Figure 8 shows that 𝛾 = 0.5  remains the worst 

solution. Besides, the service regularity is increasingly weakened when 𝛾 varies from 0 to 0.5 

and continuously improves when it increases from 0.5 to 1. 
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Figure 6 Service regularity with an initial delay of 2nd bus at 2nd stop 

 

 
Figure 7 Service regularity with initial delays of 2nd and 3rd bus at 2nd stop 

 

 
Figure 8 Service regularity under different initial delay patterns and various degrees of front-

bus preference 
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7. Conclusions and Further Work 

This paper contributes to modelling and explaining the effect of passenger behavior at stops on 

bus bunching. A passenger behavior parameter to denote the preference to board the front bus 

has been introduced. We then discuss the different arrival and departure patterns that can occur 

at a bus stop and solve the resulting problems to obtain the bus dwell times. The dwell time 

formulations are then implemented into a recursive set of state equations to model the bunching 

effects along a line. 

We evaluate the resulting service regularity given an initial disturbance to one or two buses at 

one of the first stops along a corridor. For this we obtain the standard deviation and maximum 

headways between two bus departures. Through our case study we derive some general 

conclusions: 

We demonstrate that the operator’s overtaking policy is of significance if passengers show no 

propensity to take the back bus of two buses boarding at the same time. That is, overtaking can 

be considered a counter-measure to bunching if front-bus preference is high or the arriving-to-

loading burden is heavy. When the front-bus preference exceeds 0.5, the higher the front-bus 

preference is, the more improvement could be obtained by allowing for overtaking. 

More generally, the case that passengers prefer to board the back bus tends to provide a better 

service. Such a back-bus preference can be encouraged or enforced by the bus drivers and 

operators. If the driver of the front bus stops boarding passengers as soon as another bus arrives, 

𝛾 =0 will be enforced. From a fairness perspective though this might be frustrating for 

passengers that have been at the front of the queue and might now end up further in the back 

of the queue of passengers boarding the second bus. Therefore, as an operational policy it might 

be important to explain to the passengers through notifications at congested stops that taking 

the latter bus is for the “good of the system”. In other words the problem described in this paper 

can also be interpreted as a conflict between user equilibrium and system optimal solution. The 

user equilibrium solution (of the myopic traveller not being able to consider effects further 

downstream) corresponds to 𝛾 = 0.5 as travellers will in that case form equal queues for both 

buses so that all travellers leave the bus stop at the same time and no traveller can improve his 

departure time by swapping queue. As our graphs show 𝛾 = 0.5 is though clearly not the 

optimal solution for the system which tends to be 𝛾 = 0. 

 This work is meant to model and illustrate the effect of 𝛾 but clearly a number of issues have 



                                     

28 

 

not been considered that we believe should be addressed in further work. We note that the front-

bus preference degree of the passengers might differ depending on the position of passengers 

in the queue and whether they arrive before bus arrival or while the bus is boarding passengers. 

Considering such behavior would require replacing our constant 𝛾 with one that is a function 

of arrival time and queue length.  

More important for practical applications is though that bus choice in bunched situations will 

depend on remaining available spaces in the buses. Capacity issues as well as alighting issues 

are neglected in this paper. In further work, we are considering adding these factors into our 

model which would result in the 𝛾  parameter becoming a function of the available bus 

capacity as well as further revisions to describe the total dwell time considering boarding as 

well as alighting. Other further work directions are consideration of passenger behaviour and 

overtaking as part of existing service control strategies that have been described in our literature 

review. 
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