On spectra of q-deformed operators

Schōichi Ōta

Faculty of Design, Department of Art and Information Design
Kyushu University

1.

The formal algebraic relation $xx^* = qx^*x$ $(q > 0, q \neq 1)$ appears in several different situations related to the theory of quantum groups. This leads us to the study of an operator obeying this relation in a Hilbert space. Let q be a positive real number with $q \neq 1$. Let T be a closed densely defined operator in \mathcal{H}. If T satisfies

$$TT^* = qT^*T,$$

then T is called a deformed normal operator with deformation parameter q. Let T be a closed densely defined operator in \mathcal{H} with polar decomposition $T = U|T|$. If T satisfies the relation

$$U|T| = \sqrt{q}|T|U,$$

then T is called a deformed quasinormal operator with deformation parameter q. For a deformed normal (resp. deformed quasinormal) operator T with deformation parameter q, we will simply say T is q-normal. (resp. q-quasinormal)

If T is q-normal then T is q-quasinormal. A closed densely defined operator T is q-normal if and only if

$$\mathcal{D}(T) = \mathcal{D}(T^*) \quad \text{and} \quad \|T^*\eta\| = \sqrt{q}\|T\eta\| \quad (\eta \in \mathcal{D}(T)).$$

A densely defined operator T is called a q-hyponormal operator (or a deformed hyponormal operator with deformation parameter q) if it satisfies

$$\mathcal{D}(T) \subseteq \mathcal{D}(T^*) \quad \text{and} \quad \|T^*\eta\| \leq \sqrt{q}\|T\eta\|$$

for all $\eta \in \mathcal{D}(T)$. If T is q-quasinormal, then T is q-deformed hyponormal.

Let T be a q-deformed hyponormal operator in \mathcal{H}. Then there exists uniquely a contraction K_T such that

$$T^* \supseteq \sqrt{q}K_TW \quad \text{and} \quad \ker T^* \supseteq \ker T.$$
K_T is called the attached contraction to T. If, in addition, T is closed and $T = U|T|$ is the polar decomposition, then T is q-quasinormal if and only if $K_T = (U^*)^2$.

2. Unbounded weighted shifts

Let S_b be a closed densely defined operator in a separable Hilbert space \mathcal{H}. If there are an orthonormal basis $\{e_n\}$ $(n \in \mathbb{Z})$ and a sequence $\{w_n\}(w_n \neq 0, n \in \mathbb{Z})$ of complex numbers such that

$$D(S_b) = \left\{ \sum_{-\infty}^{\infty} \alpha_n e_n \in \mathcal{H} : \sum_{-\infty}^{\infty} |\alpha_n|^2 |w_n|^2 < \infty \right\}$$

and

$$S_b e_n = w_n e_{n+1}$$

for all $n \in \mathbb{Z}$, then S_b is called a bilateral (injective) weighted shift with weight sequence $\{w_n\}$ (with respect to $\{e_n\}$). A unilateral weighted shift S_u is defined analogously.

Proposition. The following statements hold:

1. A unilateral weighted shift S_u in \mathcal{H} with weights $\{w_n\}$ is q-quasinormal if and only if

$$|w_n| = \left(\frac{1}{\sqrt{q}} \right)^n |w_0|$$

for all $n \geq 0$. In particular, a unilateral weighted shift cannot be q-normal.

2. A bilateral weighted shift S_b in \mathcal{H} with weights $\{w_n\}$ is q-normal if and only if the above equation is valid for all $n \in \mathbb{Z}$

3. A weighted shift S_u (resp. S_b) is q-hyponormal if and only if

$$|w_{n+1}| \geq \frac{1}{\sqrt{q}} |w_n|$$

for all $n \geq 0$ (resp. $n \in \mathbb{Z}$).

The spectrum of a q-normal weighted shift S_b:

<table>
<thead>
<tr>
<th>S_b $(0 < q < 1)$</th>
<th>σ_p</th>
<th>σ_c</th>
<th>σ_r</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_b $(0 < q < 1)$</td>
<td>\emptyset</td>
<td>${0}$</td>
<td>$\mathbb{C} \setminus {0}$</td>
<td>\mathbb{C}</td>
</tr>
<tr>
<td>S_b $(q > 1)$</td>
<td>$\mathbb{C} \setminus {0}$</td>
<td>${0}$</td>
<td>\emptyset</td>
<td>\mathbb{C}</td>
</tr>
</tbody>
</table>
The spectrum of a q-quasinormal weighted shift S_u:

<table>
<thead>
<tr>
<th></th>
<th>σ_p</th>
<th>σ_c</th>
<th>σ_r</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_u (0 < q < 1)$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\mathbb{C}</td>
<td>\mathbb{C}</td>
</tr>
<tr>
<td>$S_u (q > 1)$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>${0}$</td>
<td>${0}$</td>
</tr>
</tbody>
</table>

3. Spectra of a q-hyponormal operator

Theorem. Let T_1 and T_2 be q-hyponormal operators in a Hilbert space \mathcal{H}. Then $T_1 \oplus T_2$ is also q-hyponormal in $\mathcal{H} \oplus \mathcal{H}$ and

$$K_{T_1 \oplus T_2} = K_{T_1} \oplus K_{T_2}.$$

Moreover, $T_1 \oplus T_2$ is q-normal (resp. q-quasinormal) if and only if both T_1 and T_2 are q-normal (resp. q-quasinormal).

In case that $0 < q < 1$, a non-trivial q-hyponormal operator is always unbounded and the planar Lebesgue measure of its spectrum is positive.

Let $q > 1$. Then, there are various kinds of q-deformed operators, bounded or unbounded:

- A q-quasinormal unilateral weighted shift is always bounded.
- There exist q-quasinormal operators which are unbounded; they are q-normal ones.
- Using Theorem, one can construct an unbounded q-quasinormal operator which is not q-normal. (For this take T_1 to be any q-normal operator (which must be unbounded) and T_2 to be a bounded q-quasinormal unilateral weighted shift.)
- There exists a q-hyponormal operator which has empty spectrum, which is given in the following section; this is in contrast to the fact that every closed densely defined hyponormal operator ($q = 1$) has to have non-empty spectrum.
4. A q-deformed operator with empty spectrum

Let T be a closed densely defined operator in a Hilbert space \mathcal{H}. Recall that the resolvent set $\rho(T)$ of T is defined as the set of all $\lambda \in \mathbb{C}$ for which $\ker(\lambda - T) = \{0\}$, $\mathcal{R}(\lambda - T) = \mathcal{H}$ and the inverse $(\lambda - T)^{-1}$ is bounded on \mathcal{H}. Especially,

$$0 \in \rho(T)$$

if and only if there is a bounded operator S on \mathcal{H} such that

$$ST \subseteq 1 \text{ and } TS = 1.$$

Lemma. Let T be a closed densely defined operator in \mathcal{H}. Suppose that

$$\rho(T) \ni 0.$$ If $\sigma(T^{-1}) = \{0\}$, then

$$\sigma(T) = \phi.$$ Let $q > 1$. Let \mathcal{H} be a separable Hilbert space with orthonormal basis $\{e_n\}_{n \in \mathbb{Z}}$. Take numbers r and ℓ such that

$$\ell > 1 > r \geq \frac{1}{\sqrt{q}}.$$ Put

$$w_n = \begin{cases} r^n & \text{if } n \geq 0, \\ \ell^n & \text{if } n \leq -1. \end{cases}$$

Let us consider the weighted shift S_0 with the weight sequence $\{w_n\}$. Then, clearly S_0 is bounded with $\mathcal{D}(S_0) = \mathcal{H}$. Since the sequence $\{w_n\}$ tends to zero as $|n| \to \infty$, S_0 is compact and so $\sigma(S_0)$ is countable. On the other hand,

$$\sigma(S_0) = c \sigma(S_0)$$

for all $c \in \mathbb{C}$ with $|c| = 1$. It follows that $\sigma(S_0) = \{0\}$. Since $\ker(S_0) = \ker(S_0^+) = \{0\}$, S_0 is injective and has dense range. This means that the inverse S_0^{-1} is closed and densely defined. Hence, it follows from Lemma that S_0^{-1} has empty spectrum. On the other hand, we have

$$\frac{w_{n+1}}{w_n} = r \geq \frac{1}{\sqrt{q}} \quad \text{for} \quad n \geq 0,$$
and
\[\frac{w_{n+1}}{w_n} = \ell > 1 > \frac{1}{\sqrt{q}} \quad \text{for} \quad n \leq -1. \]

These inequalities imply that \(S_0 \) is \(q \)-hyponormal. Therefore, \(S_0^{-1} \) is also \(q \)-hyponormal. Thus we have:

Theorem. Let \(q > 1 \). Then, there exists a \(q \)-hyponormal operator with empty spectrum.

5. Order relations for \(q \)-deformed operators

Let us recall some inequalities by Kato and Rellich ([1] and [5]):

\[S \ll T \text{ means } D(T) \subseteq D(S), \text{ and } ||S\eta|| \leq ||T\eta|| \quad \text{for } \eta \in D(T) \]

and

\[S \preceq T \text{ means } D(T^{\frac{1}{2}}) \subseteq D(S^{\frac{1}{2}}) \text{ and } ||S^{\frac{1}{2}}\eta|| \leq ||T^{\frac{1}{2}}\eta|| \quad \text{for } \eta \in D(T^{\frac{1}{2}}) \]

provided \(S \) and \(T \) are selfadjoint and nonegative.

Definition. Let \(S \) and \(T \) be symmetric (densely defined) operators in \(\mathcal{H} \). If

\[D(T) \subseteq D(S) \quad \text{and} \quad \langle S\eta, \eta \rangle \leq \langle T\eta, \eta \rangle \]

for all \(\eta \in D(T) \), then we write

\[S \preceq T. \]

Theorem. Let \(T \) be a closed densely defined operator in \(\mathcal{H} \). We consider the following statements:

(1) \(T \) is \(q \)-hyponormal.

(2) \(T \) satisfies the condition \(|T^*| \ll \sqrt{q} |T| \).

(3) \(T \) satisfies the condition \(|T^*| \leq \sqrt{q} |T| \).

(4) \(T \) satisfies the condition \(|T^*| \leq \sqrt{q} |T| \).
Then, \((1) \iff (2) \implies (3) \implies (4)\).

Especially, if \(T\) is a weighted shift, unilateral or bilateral, then all these statements are equivalent.

Theorem. If a closed densely defined operator \(T\) in \(\mathcal{H}\) satisfies condition

\[TT^* \leq q T^* T, \]

then \(T\) is \(q\)-hyponormal.

\[\textbf{参考文献} \]

