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In this paper, we discuss tensor network descriptions of AdS=CFT from two different viewpoints. First,
we start with a Euclidean path-integral computation of ground state wave functions with a UV cutoff. We
consider its efficient optimization by making its UV cutoff position dependent and define a quantum state at
each length scale. We conjecture that this path integral corresponds to a time slice of anti–de Sitter (AdS)
spacetime. Next, we derive a flow of quantum states by rewriting the action of Killing vectors of AdS3 in
terms of the dual two-dimensional conformal field theory (CFT). Both approaches support a correspon-
dence between the hyperbolic time slice H2 in AdS3 and a version of continuous multiscale entanglement
renormalization ansatz. We also give a heuristic argument about why we can expect a sub-AdS scale bulk
locality for holographic CFTs.

DOI: 10.1103/PhysRevD.95.066004

I. INTRODUCTION

Even though the holographic principle [1], especially the
AdS=CFT correspondence [2], is expected to provide us
with an extremely powerful method to understand quantum
gravity, its basic mechanism has remained mysterious.
One interesting possibility of explaining the mechanism
of holography is its possible connections to tensor net-
works. Tensor networks are methods to express quantum
wave functions in terms of network diagrams and are in a
very similar spirit to holography because they geometrize
algebraically complicated quantum states.
In the pioneering work [3], it has been conjectured that the

AdS=CFT correspondence may be interpreted as the multi-
scale entanglement renormalization ansatz (MERA) network
[4,5], which is a particular example of tensor networks for
conformal field theories (CFTs). At an intuitive level, this fits
nicely with the AdS=CFT in that the MERA network is
aimed at an explicit real space renormalization group (RG)
flow in terms of RG evolution of quantum states. Moreover,
estimations of entanglement entropy of MERA networks
done in [4] look analogous to the holographic entanglement
entropy [6], realizing emergent spacetimes from quantum
entanglement (for recent reviews see [7,8]). Such a con-
nection to tensor networks can also be strongly suggested
by the recent reformulation of holographic entanglement
entropy in terms of bit threads [9].
The tensor network is defined in a discretized lattice

such as spin systems and to connect the actual AdS=CFT
we need to take a continuum limit. A candidate of a
continuum version of MERA is formulated in [10] and is
called continuous MERA (cMERA). It was conjectured in
[11,12] that the AdS=CFT can be regarded as a cMERA
network. Even though the special conformal invariance is

not realized in the MERA network, cMERA has an
advantage that this symmetry is clearly realized.
In the original argument [3], the MERA network was

considered to describe the canonical time slice of AdSdþ2,
i.e. hyperbolic space Hdþ1. However later, it has been
pointed out by several authors [13–16] that the MERA
network may correspond to a de Sitter spacetime dSdþ1

instead of hyperbolic space, especially from the viewpoint
of its causal structure of MERA. Note that a hyperbolic
space and de Sitter spacetime have the same isometry
SOð1; dþ 1Þ and it is not easy to distinguish them only by
symmetries. In the paper [14], the MERA tensor network
is argued to describe a space called kinematical space,
which is nonlocally related to the original AdS spacetime
with mathematically rich structures [17].
Nevertheless, we are still attempting to interpret an AdS

spacetime itself as a continuous limit of a certain tensor
network [a continuous tensor network (cTN)]. A quantum
state is time evolved by a given Hamiltonian and this is also
described by a network of unitary transformations. Thus we
can have a tensor network description of whole spacetime if
each time slice, which defines a quantum state, is described
by a tensor network. A powerful advantage of tensor
network description is that we can take a subregion inside
the network and define a quantum state by contracting
tensors. Motivated by this, in [18], it was conjectured that in
any spacetime described by Einstein gravity, each codi-
mension two convex surface corresponds to a quantum
state in the dual theory, called surface/state correspondence.
This largely extends the holographic principle as it can be
applied to gravitational spacetime without any boundaries.
The perfect tensor network [19] (see also a closely related
network using random tensors [20]), found from a relation
between quantum error correcting codes and holography,
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provides an explicit toy example for the surface/state
correspondence. Moreover, it is expected to provide a
tensor network which corresponds to the hyperbolic space
H2 rather than the de Sitter spacetime. Indeed, it has a
discretized version of the full conformal symmetry. Even
though this network respects the isometry of AdS3 and
holographic entanglement entropy, the quantum state itself
has a flat entanglement spectrum and thus deviates from
any vacuum of CFTs.
To understand connections between tensor networks and

AdS=CFT better, in this paper we study the AdS3=CFT2

duality from two different viewpoints: (i) Euclidean path-
integral description of wave function with a position
dependent cutoff, and (ii) SLð2; RÞ transformations of
AdS3 in surface/state correspondence. We see that both
approaches support the correspondence between a hyper-
bolic time slice in AdS3 and a cMERA-like network for a
CFT vacuum. The second approach also shows that we can
equally identify the network with a de Sitter slice. Next we
turn to the excited states. Especially we focus on the locally
excited state in the bulk AdS3 and cTN description of its
CFT dual. As we see below, we find a consistent picture
which reveals a structure similar to the perfect tensor
network [19] and the random tensor network [20].
Finally we give a heuristic argument about why we expect
a sub-AdS scale bulk locality for holographic CFTs. In this
paper we mainly consider two-dimensional CFTs for
simpler presentations. However, many results can be
generalized into the higher dimensional AdS=CFT.
This paper is organized as follows. In Sec. II, we give a

brief review of AdS3 geometry and its global symmetry. In
Sec. III, we study a Euclidean path-integral description of
vacuum wave function of two-dimensional CFT and
introduce a position dependent cutoff, which preserves
the conformal symmetries. We argue that this corresponds
to the time slice of AdS space. Following this approach
we calculate a wave function at each length scale. In
Sec. IV, we review the formulation of cMERA with
several updates. In Sec. V, we identify a continuous tensor
network which describes the global AdS3 spacetime via the
Killing symmetry of the AdS space. In Sec. VI, we give a
heuristic argument about why we expect a sub-AdS scale
bulk locality for holographic CFTs. In Sec. VII, we
examine locally excited states in the bulk in our continuous
tensor network description. In Sec. VIII, we summarize our
conclusions and discuss future problems. In Appendix A,
we present details of several choices of cutoff functions in
Euclidean path integrals. In Appendix B, we extend the
construction of cMERA to present a formulation of
continuous tensor networks which describe a holographic
spacetime and show consistency conditions.
When we were completing this paper, we noticed a very

interesting paper [21] where a connection between con-
tinuous tensor networks and wave functions in the
Euclidean path integral with a UV cutoff have been studied.

The path-integral formulation in our paper is different from
theirs in that we made the UV cutoff position dependent.
Appendix A in this paper includes a consistency between
our work and [21].

II. ADS3 GEOMETRY

In this section, we briefly review basic properties of the
AdS3 geometry, which are important in our later arguments.
The Lorentzian AdS3 space with a radius L is defined by
the hypersurface in R2;2,

X2
0 þ X2

3 ¼ X2
1 þ X2

2 þ L2: ð1Þ

The global AdS3 (with radius L) is defined by the
parametrization

X0 ¼ L cosh ρ cos t;

X3 ¼ L cosh ρ sin t;

X1 ¼ L sinh ρ sinϕ;

X2 ¼ L sinh ρ cosϕ: ð2Þ

This leads to the following metric:

ds2 ¼ L2ð−cosh2ρdt2 þ dρ2 þ sinh2ρdϕ2Þ: ð3Þ

The Euclidean global AdS3 (i.e. H3) is obtained by the
Wick rotation t → it.
Sometimes it is also useful to work with the Poincare

AdS metric

ds2 ¼ L2
dz2 − dτ2 þ dx2

z2
; ð4Þ

in our later arguments.

A. Global symmetry

The AdS3 space (3) has the SLð2; RÞL × SLð2; RÞR
symmetry, which is generated by ðL1; L0; L−1Þ and
ð ~L1; ~L0; ~L−1Þ. They correspond to the (global) Virasoro
symmetry of its dual two-dimensional CFT. These are
explicitly given by the following Killing vectors in AdS3
[22],

L0 ¼ i∂þ; ~L0 ¼ i∂−;

L�1 ¼ ie�ixþ
�
cosh 2ρ
sinh 2ρ

∂þ −
1

sinh 2ρ
∂− ∓ i

2
∂ρ

�
;

~L�1 ¼ ie�ix−
�
cosh 2ρ
sinh 2ρ

∂− −
1

sinh 2ρ
∂þ ∓ i

2
∂ρ

�
; ð5Þ

where x� ≡ t� ϕ and ∂� ≡ ∂
∂x�.
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Notice that a SLð2;RÞ subgroup of SLð2;RÞL×SLð2;RÞR
preserves the time slice t ¼ 0. It is generated by
ln ≡ Ln − ~L−nðn ¼ 0;−1; 1Þ, i.e.

l0 ¼ L0 − ~L0 ¼ i∂ϕ;

l−1 ¼ L−1 − ~L1 ¼ ie−iϕ
�
1þ coshð2ρÞ
sinhð2ρÞ ∂ϕ þ i∂ρ

�
;

l1 ¼ L1 − ~L−1 ¼ −ieiϕ
�
−
1þ coshð2ρÞ
sinhð2ρÞ ∂ϕ þ i∂ρ

�
: ð6Þ

Indeed they satisfy the SLð2; RÞ algebra and correspond to
Killing vectors of the hyperbolic space H2,

ds2 ¼ L2ðdρ2 þ sinh2ρdϕ2Þ: ð7Þ

We can identify the geometrical action with a linear combi-
nation of ln as follows:

i∂ρ ¼ −
i
2
ðeiϕl−1 − e−iϕl1Þ;

i∂ϕ ¼ l0: ð8Þ

The SLð2; RÞ transformation gðρ;ϕÞ which takes the
origin ρ ¼ 0 to a point ðρ;ϕÞ on H2 is given by

gðρ;ϕÞ ¼ e−iϕl0e
ρ
2
ðl1−l−1Þ: ð9Þ

B. Hyperbolic/de Sitter slices in AdS3

If we parametrize the hypersurface (1) as follows,

X0 ¼ L sinh τ sinh η;

X3 ¼ L cosh η;

X1 ¼ L cosh τ sinh η sinϕ;

X2 ¼ L cosh τ sinh η cosϕ; ð10Þ

then we find the metric

ds2 ¼ L2ðdη2 þ sinh2ηð−dτ2 þ cosh2τdϕ2ÞÞ: ð11Þ

This shows that a constant η slice is a two-dimensional de
Sitter spacetime, which is accommodated in the interval
−π < t < 0. If we take the η ¼ 0 limit, it becomes a light
cone. To go beyond this, we can introduce the following
coordinate,

X0 ¼ L cosh τ sin η;

X3 ¼ L cos η;

X1 ¼ L sinh τ sin η sinϕ;

X2 ¼ L sinh τ sin η cosϕ; ð12Þ

which leads to

ds2 ¼ L2ð−dη2 þ sin2 ηðdτ2 þ cosh2 τdϕ2ÞÞ: ð13Þ

This describes the hyperbolic slices of AdS3.
If we consider the Euclidean AdS3 (¼ H3) defined by

X2
0 ¼ X2

1 þ X2
2 þ X2

3 þ L2; ð14Þ

we can set

X0 ¼ L cosh τ cosh η;

X3 ¼ L sinh η;

X1 ¼ L sinh τ cosh η sinϕ;

X2 ¼ L sinh τ cosh η cosϕ; ð15Þ

to reach the metric

ds2 ¼ L2ðdη2 þ cosh2ηðdτ2 þ sinh2τdϕ2ÞÞ: ð16Þ

This describes a hyperbolic slice of Euclidean AdS3.

III. ADS=CFT FROM THE EUCLIDEAN
PATH INTEGRAL

In this section, we study the Euclidean path-integral
description of ground state wave functions of two-
dimensional CFTs. We introduce UV cutoff efficiently in
a conformal invariant way and show that we can deform the
path integral into that on a hyperbolic space H2. We argue
that this hyperbolic space corresponds to a time slice
of AdS3.

A. Euclidean path integral with UV cutoff

Consider a two-dimensional CFT on R2. We define the
coordinate of R2 to be ðz; xÞ, where z is the Euclidean time.
We simply express all fields in the CFT as ϕðz; xÞ. The
ground state wave function Ψ½ϕðxÞ�, which is not normal-
ized, is written as a Euclidean path integral,

Ψ½ϕðxÞ� ¼
Z Y

z0<z<∞
Dϕðz; xÞ · δðϕðz0; xÞ

¼ ϕðxÞÞ · e−SCFTðϕÞ: ð17Þ

To make an explicit analysis, let us consider a free scalar
field theory as a toy example,

SCFT ¼
Z

dxdzLCFT ¼
Z

dxdz½ð∂zϕÞ2 þ ð∂xϕÞ2�: ð18Þ

With the boundary condition ϕð0; xÞ ¼ ϕðxÞ we can solve
the equation of motion ð∂2

x þ ∂2
zÞϕ ¼ 0 as follows:
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ϕðz; xÞ ¼
Z

∞

−∞
dkϕðkÞeikx−jkjz; ð19Þ

where ϕðkÞ is the Fourier transformation of ϕðxÞ. Note that
here we assumed that there is no singular behavior in the
limit z → ∞.
The on-shell action is evaluated as

Son shell ¼ 4π

Z
∞

0

dz
Z

∞

−∞
dkjkj2e−2jkjzϕðkÞϕð−kÞ

¼ 2π

Z
∞

−∞
dkjkjϕðkÞϕð−kÞ: ð20Þ

Since the path integral of quantum fluctuation only gives an
overall constant factor (see e.g. [23]), the wave function is
evaluated as

Ψ½ϕðxÞ� ∝ e−Son shell ¼ e−2π
R

∞
−∞

dkjkjϕðkÞϕð−kÞ; ð21Þ

reproducing the well-known result.
In this analysis we observe an important fact that in the k

integral at fixed z in (20), only modes with jkj≲ 1=z
contribute. This fact allows us to approximate the path
integral by introducing a z dependent cutoff of the
momentum without changing the final result of the wave
function as depicted in Fig. 1. This is realized by putting a
cutoff function ΓðλjkjzÞ in the path integral. λ is a parameter
which controls our approximation. We simply define it
such that ΓðxÞ ¼ 1 if jxj < 1; otherwise ΓðxÞ ¼ 0, though
in our argument, the precise form of the cutoff function
ΓðxÞ does not play an important role. The resulting wave
function Ψ½ϕðxÞ� remains approximately the same even if
we introduce this z dependent cutoff as we confirm below.
Let us introduce a length scale (z0) dependent wave

function Ψz0 ½ϕðxÞ� by the Euclidean path integral for the
range z0 ≤ z < ∞ in the presence of the cutoff ΓðλjkjzÞ.
Since ϕðxÞ is defined by the value ϕðz0; xÞ, we need to
rescale the scalar field as ϕ → ejkjz0ϕ as is clear from (19).
Finally we obtain

Ψz0 ½ϕðxÞ� ∝ e
−2π
R 1

λz0
− 1
λz0

dkjkjð1−e2jkjz0−2=λÞϕðkÞϕð−kÞ
: ð22Þ

First of all, it is obvious that the function (22) at z0 ¼ 0
coincides with the correct vacuum wave function (21)
assuming λ ≪ 1. In principle, we can also multiply the
factor ð1 − e−2=λÞ−1 on the cutoff function so that we get the
correct wave function at z0 ¼ 0 even when λ is Oð1Þ.
Having this in mind we simply set λ ¼ 1 below.
Alternatively, we can improve this procedure by taking

into account contributions from high momentum modes in
a nonlocal way. Let us, for example, replace the cutoff
function as follows:

ΓðjkjzÞ → fðjkjzÞ≡ ΓðjkjzÞ þ 1

2
ð1 − ΓðjkjzÞÞ · ejkjz−1;

ð23Þ

where we chose this such that the higher momentum modes
jkjz0 ≫ 1 are suppressed in the path integral.
As we analyze in detail in Appendix A [as the example

(ii)], in this case, the high momentum contribution cancels
the extra term ∼e2jkjz0−2=λ in (22) when jkjz0 < 1. Finally
the wave function at length scale z0 reads

Ψz0 ½ϕðxÞ� ∝ e
−2π
R
jkj≤1=z0

dkjkjϕðkÞϕð−kÞ

× e
−2π
R
jkj>1=z0

dkjkjejkjz0−1ϕðkÞϕð−kÞ
: ð24Þ

Note that for the modes below the cutoff, this reproduces
the correct vacuum wave function (21). On the other hand,
it is clear that the higher momentum modes jkjz0 ≫ 1 are
exponentially suppressed. Thus this wave function (24)
possesses the desired property.
In summary, for a finite value of z0, wave function (22)

or (24) describes the ground state below the cutoff. On the
other hand, for much higher momentum modes, it becomes
trivial and thus it describes a state without any real space
entanglement (i.e. boundary state, as we explain in the next
section).1 This nicely describes the effective wave function
at the length scale z0 under a real space renormalization
group flow.2

If we imagine various ways to discretize our Euclidean
path integral, this z dependent UV cutoff provides us
with an efficient choice for this procedure. We call this

FIG. 1. A computation of ground state wave function from the
Euclidean path integral and its optimization, which is described
by a hyperbolic geometry.

1The wave function (22) corresponds to the boundary state
with Neumann boundary condition, while the wave function
(24) describes the Dirichlet one. For more details, refer to
Appendix A.

2As we argue in Sec. III B, in a two-dimensional holographic
CFTwith a large central charge c, the actual momentum cutoff at
the length scale z0 is estimated to be jkj ≲ c

z0
(instead of jkj ≲ 1

z0
).

Therefore the momentum region 1
z0
≲ jkj ≲ c

z0
is physically mean-

ingful and is described by a nonlocal field theory.
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an optimized Euclidean path integral below. If we consider
K sites in the UV theory (corresponding to z ¼ ϵ), we have
∼K · ðϵ=zÞ sites as z grows. Therefore we can associate the
following metric of H2,

ds2 ¼ dz2 þ dx2

z2
; ð25Þ

to the Euclidean path integral with the UV cutoff. This
metric is defined such that the area measured by the metric
gives the number of discretized sites. The metric (25) in the
x direction is obvious from the cutoff function ΓðjkjzÞ. The
metric in the z direction can be fixed by requiring that
the vacuum state is invariant under the SLð2; RÞ conformal
symmetry generated by l0; l�1. Note that this symmetry
action preserves the boundary z ¼ 0, where we define the
wave function. In other words, the discretized lattice which
corresponds to our Euclidean path integral is invariant
under this SLð2; RÞ transformation.
The cutoff function can also be made manifestly con-

formally invariant by replacing ΓðjkjzÞ with Γðz · kH2
Þ,

where kH2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2z

p
is the magnitude of the wave vector

of the field configuration at each point of ðz; xÞ. This cutoff
Γðz · kH2

Þ is interpreted as the discretization of ðz; xÞ space
such that each cell has the same infinitesimal area following
the hyperbolic metric (25). For example, we can take an
action for our optimized Euclidean path integral to be
schematically as follows:

Sopt ¼
Z

dxdzΓðz · kH2
ÞLCFT; ð26Þ

where the cutoff function Γðz · kH2
Þ is acted on all fields in

the CFT. In the next subsection, we argue that the hyper-
bolic space (25) corresponds to a time slice of Euclidean
AdS3 as a consequence of AdS=CFT.
Next we compactify the spacial coordinate x and express

it as ϕ with the periodicity ϕ ∼ ϕþ 2π. The ground state
wave function is described by the Euclidean path integral
on the upper half of the infinite cylinder 0 < z < ∞. We
can introduce a z dependent UV cutoff as before without
chaining the final wave function. This leads to a discretized
path integral on the Poincare disk with the metric

ds2 ¼ 4dζdζ̄
ð1 − jζj2Þ2 ; ð27Þ

where

ζ ¼ e−zþiϕ: ð28Þ

This metric is invariant under SLð2; RÞ transformation
ln ¼ Ln − ~L−nðn ¼ 0;�1Þ with

Ln ¼ −ζnþ1
∂
∂ζ ; ~Ln ¼ −ζ̄nþ1

∂
∂ζ̄ : ð29Þ

Again we observe that the metric (27) agrees (up to an
overall factor) with that of the time slice of Euclidean
global AdS3 [refer to (3)] with the identification sinh ρ ¼
2jζj

1−jζj2. Moreover, the SLð2; RÞ generators l0; l�1 coincide

with (6).

B. Interpretations in terms of AdS=CFT

As we already noted, the geometries of optimized
Euclidean path integrals reproduce the time slice of
Euclidean AdS spacetime as in (25) and (27). More
precisely their metrics differ by a factor L2, which is
∼c2 in the Planck scale unit, from the actual AdS metric.
A heuristic explanation is as follows (see also Sec. VI).
Holographic CFTs are characterized by the large central
charge c and a large spectrum gap [24]. Here we turn to a
simple tractable model which captures these properties: a
symmetric product CFT with a large central charge c on a
cylinder. In such a model, the long string sector, which
dominates the microstate degeneracy, can be effectively
described by a CFT with a Oð1Þ central charge on a
cylinder with the extended radius OðcÞ [25]. Thus this
gives a very fine-grained momentum quantization P ∼
n=cðn ∈ ZÞ instead of P ∼ n. In the real space, this means
that the lattice spacing is smaller by a factor ∼c. Therefore,
the actual numbers of lattice sites per unit area in the metric
(25) and (27) are ∼c2. This reproduce the correct AdS3
metric up to Oð1Þ constant.
In the Euclidean AdS3, we can actually find infinitely

many other hyperbolic slices parametrized by η in (16).
Since each of them has a different radius (given by
L cosh η), it is natural to interpret that they correspond
to different choices of the cutoff function,

Γ
�
z · kH2

cosh η

�
: ð30Þ

In the coordinate system (16), we can regard η as an
extra dimension and the AdS boundary as η ¼ �∞. In this
interpretation, following a standard understanding of
AdS=CFT (refer to [26,27] for studies of gravity dual of
CFTs on AdS spaces), the evolution of η can be regarded as
a RG flow such that the momentum scale is given by cosh η.
This consideration also justifies the action (26) at η ¼ 0.
Let us study the field theory more carefully by using the

improved UV cutoff fðjkjzÞ given by (23). Our argument in
the above shows that in a two-dimensional holographic
CFT with a large central charge c, the actual momentum
cutoff at the length scale z is estimated to be jkj≲ c

z, instead
of jkj≲ 1

z. Therefore for the momentum region 1
z ≲ jkj≲ c

z,
we expect a very nonlocal theory whose action for the free
scalar is given by S ¼ R dxdzϕ · fðjkH2

jzÞ · ϕ, or more
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generally by (26) with ΓðjkjzÞ replaced with fðjkjzÞ. On the
other hand, we can physically ignore the existence of
modes above this strict UV cutoff jkj≳ c

z.
This nonlocality occurs when we consider a small

structure such that z≳ Δx. For example, consider the
entanglement entropy SA at a fixed (Euclidean time) z
with respect to a subsystem A given by an interval with the
length Δx. If Δx ≪ z, then we expect the volume law due
to the nonlocality (see [28,29] for an explicit example in
such a nonlocal scalar field theory),

SA ∼ c
Δx
z
; ð31Þ

where we used the fact that the effective lattice spacing is
estimated as z=c. This agrees with the holographic com-
putation in the Poincare AdS3 as the minimal surface
almost coincides with the original interval A if Δx ≪ z.
This is an additional support for our argument. Refer also to
Fig. 2 for another explanation of (31) by using a MERA
tensor network.
Finally we emphasize again that the above argument

can be applied only to large c CFTs. For example, if we
consider a CFT with a central charge Oð1Þ, the strict UV
cutoff is given by jkj ≤ 1=z and thus we cannot reach the
volume law phase (31).

C. Einstein-Rosen bridge from the path integral

Another interesting example is the quantum state in the
thermofield double CFT given by

jΨTFDi ∝
X
n

e−
β
4
ðH1þH2Þjni1jni2: ð32Þ

In the Euclidean path-integral formalism, the wave function
for this state is described by a path integral on a cylinder
with a finite width, − β

4
< z < β

4
, in the Euclidean time

direction (we set the UV cutoff z0 to 0 for simplicity). We
express the spacial coordinate as x.
Again we consider a free scalar field theory as a toy

model for our explanation. We introduce the boundary
conditions for the two boundaries at z ¼ � β

4
for the field

ϕðz; xÞ,

ϕ

�
−
β

4
; x

�
¼ ϕ1ðxÞ; ϕ

�
β

4
; x

�
¼ ϕ2ðxÞ: ð33Þ

The classical solution to the equation of motion
ð∂2

x þ ∂2
zÞϕ ¼ 0 is given by

ϕðx; zÞ ¼
Z

∞

−∞
dk

�
ϕþðkÞeikx

coshðjkjzÞ
cosh ðjkjβ=4Þ

− ϕ−ðkÞeikx
sinhðjkjzÞ

sinh ðjkjβ=4Þ
�
; ð34Þ

where ϕ�ðkÞ is the Fourier transformation of
1
2
ðϕ1ðxÞ � ϕ2ðxÞÞ.
From this expression, we can estimate the effective

momentum cutoff as

jkj ≲max

�
1

jzþ β=4j ;
1

jz − β=4j
�
: ð35Þ

Therefore it is clear that near the two boundaries z ¼ � β
4
,

the metric of the discretized path integral behaves like
ds2 ∝ dz2þdx2

ðz�β=4Þ2. The space gets maximally squeezed at the

middle z ¼ 0. To find the precise metric, we require the
SLð2; RÞ conformal symmetry, which leads to the metric

ds2 ¼ dρ2 þ cosh2 ρdϕ2; ð36Þ

with the coordinate transformation

tan

�
πz
β

�
¼ tanh

�
ρ

2

�
: ð37Þ

The SL(2,R) symmetry is explicitly given by

FIG. 2. Folding the MERA network in a two-dimensional
symmetric product CFT Mm=Sm (we chose m ¼ 4.). The left
picture expresses a MERA network for a long string sector
vacuum which is equivalent to the single string sector vacuum
with the radius mR0 ¼ 4R0. The right picture describes its
equivalent network after the folding such that the radius is R0.
We show the coarse graining (isometries) as trivertices and the
disentanglers (unitary transformations) as horizontal lines. The
right network shows that the actual lattice spacing is ϵ=m. From
this network, we can easily see that the entanglement entropy SA
follows the volume law for a small interval A with the width
ðϵ=m ≪ÞΔx ≪ ϵ in the large c limit m → ∞. Note also that the
final MERA network is squeezed near the top region (roughly
more than log R0

ϵ steps from the bottom). This is very analogous to
the global AdS3 metric.
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l0 ¼ ∂ϕ;

l−1 ¼ eϕ
�
cosh 2ρ − 1

sinh 2ρ
∂ϕ − ∂ρ

�
;

l1 ¼ e−ϕ
�
cosh 2ρ − 1

sinh 2ρ
∂ϕ þ ∂ρ

�
: ð38Þ

The metric (36) coincides with the time slice of the BTZ
black hole i.e. the Einstein-Rosen bridge, which is known
to be dual to the thermofield double state (32) [30].

D. More general backgrounds

Now we turn to a Euclidean path-integral description of
more general states. First, let us introduce a mass gap. For
example, consider adding the mass termm2ϕ2 in (18). Then

the factor e−jkjz in (19) is replaced with e−
ffiffiffiffiffiffiffiffiffiffi
k2þm2

p
z. This

shows that we can ignore the path integral for the region
z ≫ 1=m. Thus for an optimized lattice computation, the
region z ≫ 1=m should be removed. This is qualitatively
consistent with time slices of holographic geometries dual
to confining gauge theories.
Next consider a static excited state in a CFT such as the

primary state. We can insert a primary field at z ¼ ∞ and
perform the path integral until we reach z ¼ 0. As in
previous sections, we can introduce the z dependent UV
cutoff without changing the final wave function, which
makes discretized computations efficient. Since in such an
example, the SLð2; RÞ conformal symmetry is broken and
thus quantitative analysis is not straightforward, we briefly
discuss only qualitative aspects here. In general, to describe
excited states we need more discretized lattices and the
associated metric is increased compared with that for the
vacuum. This is because to describe an insertion of operator
at z ¼ z1 with a high momentum scale such that k1z1 ≫ 1,
the original UV cutoff ΓðjkjzÞ is not enough and should
be fine grained. To describe deconfined states (Δ > c

24
),

we need large number ∼2π
ffiffiffiffiffiffiffiffiffiffiffi
cΔ=6

p
of lattice sites even at

z ¼ ∞. Therefore in this case z ¼ ∞ is interpreted as a
black hole horizon.
More generally, if we consider time dependent excited

states, it gets more difficult to find a definite connection
between the optimized Euclidean path integral and its
gravity dual, mainly because there is no criterion about
how to choose nice time slices. Nevertheless, a natural
generalization of our previous argument is that for each of
the time slices, we can associate a Euclidean path integral
with a position dependent UV cutoff.

E. Lorentzian AdS=CFT

So far we have discussed an interpretation of AdS=CFT
for the Euclidean AdS3. As a next step we move on to
the Lorentzian AdS3, which is the main focus in the rest of
this paper. In Lorentzian AdS=CFT, we expect that each
codimension two surface corresponds to a quantum state

with the unit norm as argued in [18], called surface/state
correspondence. Therefore, in AdS3, the evolution of a
closed curve on a time slice corresponds to that of quantum
states and we expect that this is described by a continuous
version of tensor network. Indeed, as shown in [31,32], a
procedure called tensor network renormalization tells us
that the Euclidean path integral can be (up to overall
normalization) well approximated by the MERA network
[4]. It is intriguing to note that this tensor network
renormalization looks very analogous to our procedure
of Euclidean path integral summarized in Fig. 1, though the
former is formulated in the language of tensor networks.
Since the (minimum) time slice in the Euclidean AdS3 is

the same as that in the Lorentzian one, we expect that the
time slice in Lorentzian AdS3 corresponds to a tensor
network for the CFT vacuum which can be approximated
by the MERA. We can apply the same argument for time
independent excited states in holographic CFTs (i.e.
primary states and their descendants).
Consider an analytical continuation from the Euclidean

AdS3 to Lorentzian one. If we perform the Wick rotation
ðτ; ηÞ → ðτ; iηþ iπ=2Þ, then the Euclidean AdS3 metric
(16) is mapped to the Lorentzian one with the hyperbolic
slices (13), while the shift ðτ; ηÞ → ðτ þ iπ=2; ηþ iπ=2Þ
maps (16) into the de Sitter slices (11). If we take an
analytical continuation of the UV cutoff function (30) on
the hyperbolic slice in Euclidean AdS3, we find for the
Lorentzian AdS3

hyperbolic slices∶ Γ
�
kH2

· z

sin η

�
;

de Sitter slices∶ Γ
�
kdS2 · z

sinh η

�
: ð39Þ

It has been pointed out that the MERA has a causal
structure [13–16], whichmay suggest an identification of the
MERA space with a de Sitter space. This occurs if
we fix all the tensors of the MERA and change a quantum
state in theUVas the propagation of the change is limited to a
regionwhose boundary looks like a light cone. However, it is
not clear how this is related to any causality in itself gravity
dual interpretation. Indeed, if we consider an excitation in
the bulk AdS, it is expected to correspond to a modification
of a tensor in the middle of a MERA network following a
similar idea in [19]. Under this modification of the tensor, the
UV quantum state, which is obtained by contracting all
tensors in the MERA, is modified at any point and there are
no causal cones. At the same time, our Euclidean path-
integral approach does not have any causal cone structure, as
the excitation in themiddle of the path integral can lead to the
backreactions at any points under our optimization pro-
cedure. In this sense, our Euclidean path-integral description
fits more nicely with the hyperbolic slices.
In order to have direct contact with explicit field theories,

we work with a continuum version of tensor network with
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UV cutoff, rather than explicit lattice models. Therefore we
study a continuous description of tensor network, espe-
cially focusing on the cMERA [10]. Indeed in the next
section we see that for the free scalar example, the length
scale dependent wave function (22) is essentially the same
as that in a cMERA description.

IV. CMERA

In this section we review the formulation of the cMERA
for CFTs [10] with several elaborations e.g. constructions
of the cMERA for a massless scalar field theory on a circle
and details of the spacelike scaling operation, aiming at an
interpretation of Lorentzian AdS=CFT.

A. Construction of the cMERA

The formulation of the cMERAwas originally introduced
in [10] for field theories on the noncompact spacetime Rdþ1.
We start from the IR state jΨIRi which is completely
disentangled so that its real space entanglement vanishes
below the UV cutoff scale. To fix our convention we write
the lattice constant as ϵ which is the inverse of the UV cutoff
Λ ¼ 1=ϵ. As in the MERA [4], we add the entanglement at
each length scale and perform the coarse graining until we
finish this procedure at the UV cutoff scale.
We specify the length scale by u such that this corre-

sponds to the coarse graining by the factor eu. This
parameter u takes the values from u ¼ −∞ (IR limit) to
u ¼ 0 (UV limit). A spacial region with the linear size y in
the UV theory (u ¼ 0) is regarded as that with the linear
size yeu at the scale u. Note that we keep the UV cutoff ϵ
unchanged. Therefore the number of lattice sites gets
decreased as edu when we go from UV to IR. Therefore
when the space manifold on which our field theory is
defined is compact, the lattice points get trivialized in the
IR limit. Therefore we can regard jΨIRi as a disentangled
state with no real space entanglement. For CFTs on
noncompact spacetimes such as Rdþ1, there is a subtlety
to define jΨIRi as the number of lattice sites is still infinite
even in the IR limit. Therefore in this case jΨIRi turns out to
be equal to the CFT vacuum j0i (for the modes below the
UV cutoff scale, i.e. k ≤ Λ ¼ 1=ϵ). As analyzed in [10] if
we introduce a massive deformation, this subtlety does not
happen and jΨIRi is given by the disentangled state.
The operation (so-called entangler) which adds entan-

glement is written as KðuÞ, which is an integral of an
operator which is local below the UV cutoff scale ϵ. The
coarse-graining operation is described by L, which is a
spacelike (nonrelativistic) scale transformation as we see
later in more detail. The state at scale u, denoted by jΨðuÞi
is expressed as follows:

jΨðuÞi ¼ P exp

�
−i
Z

u

−∞
d ~uðKð ~uÞ þ LÞ

�
jΨIRi: ð40Þ

As mentioned earlier, for CFTs on Rdþ1, the IR state jΨIRi
is equal to the vacuum j0i.
One immediately notices that the choice of KðuÞ has

huge ambiguities if we just fix the IR state and UV state.
There are infinitely many ways to interpolate the two states.
However, for a CFT vacuum state, we can choose a special
one owing to the conformal symmetry. This canonical
choice is such that Kð ~uÞ þ L coincides with the dilatation
operator or equally relativistic scale transformation denoted
by L0 for the modes below the UV cutoff scale. Explicitly,
we have L0 ¼ R dxdPd

i¼1 Ttxix
i, using the energy stress

tensor Tμν. Above the UV cutoff scale k > Λ ¼ 1=ϵ, we set
K ¼ 0, while L is still present. For the details of this refer to
the original paper [10] and further studies in [16]. In most
parts of our arguments we do not write the higher modes
explicitly. Thus in the cMERA construction we have that
jΨðuÞi is given by the CFT vacuum below the UV
cutoff scale.
It is sometimes useful to introduce the “interaction

picture” counterpart of the above cMERA formulation
based on the state jΦðuÞi [11], which is simply related
to jΨðuÞi via

jΨðuÞi ¼ e−iuLjΦðuÞi: ð41Þ
This state is expressed as follows:

jΦðuÞi ¼ P exp

�
−i
Z

u

−∞
d ~u K̂ð ~uÞ

�
jΦIRi; ð42Þ

where we defined K̂ðuÞ ¼ eiuLKðuÞe−iuL. In this descrip-
tion, the effective momentum cutoff is u dependent as Λeu,
while the size of the space manifold does not change. In this
description of the compactification radius does not depend
on u.

B. Free massless scalar field theory

Consider an example of free massless scalar field theory
on Rdþ1. We rewrite the original formulation of [10] in
terms of creation and annihilation operators as in [11]. The
Hamiltonian of this theory is defined by

H ¼ 1

2

Z
dkd½πðkÞπð−kÞ þ jkj2ϕðkÞϕð−kÞ�: ð43Þ

We can define the creation and annihilation operator of
the scalar field, ak and a†k, as follows,

ϕðkÞ ¼ ak þ a†−kffiffiffiffiffiffiffiffi
2jkjp ;

πðkÞ ¼
ffiffiffiffiffiffiffiffi
2jkj

p �
ak − a†−k

2i

�
; ð44Þ

so that they satisfy ½ak; a†k0 � ¼ δdðk − k0Þ.
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In the description by jΨðuÞi, the action of the operation
K þ L ¼ L0 for the modes below the UV cutoff scale (i.e.
k ≤ Λ ¼ 1=ϵ), which is equal to the relativistic scale
transformation, is defined by

L0 ¼ −
1

2

Z
dxd
�
πðxÞx∂xϕðxÞ þ x∂xϕðxÞπðxÞ

þ d − 1

2
ϕðxÞπðxÞ þ d − 1

2
πðxÞϕðxÞ

�
; ð45Þ

and leads to the action on the annihilation operator
(similarly on the creation operator)

e−iuL
0
akeiuL

0 ¼ e−
d
2
uake−u : ð46Þ

Note that in the two-dimensional case, which we are
interested in our paper, L0 coincides with the dilatation
charge

R
dxTtxx as expected.

The nonrelativistic and relativistic scale transformation
are defined as follows [10],

L ¼ −
1

2

Z
dxd
�
πðxÞx∂xϕðxÞ þ x∂xϕðxÞπðxÞ

þ d
2
ϕðxÞπðxÞ þ d

2
πðxÞϕðxÞ

�
; ð47Þ

and its action is given by

e−iuLakeiuL ¼ e−
d
2
uðcoshðu=2Þake−u þ sinhðu=2Þa†−ke−uÞ:

ð48Þ

In the description by jΦðuÞi, the IR state jΦIRi should be
a state with no real space entanglement. It can be con-
structed as the ground state of the highly massive
Hamiltonian HΛ ¼ 1

2

R
dx½πðxÞ2 þ Λ2ϕðxÞ2� because in

the IR limit the Hamiltonian becomes infinitely many
copies of harmonic oscillators corresponding to each
lattice point. This state is invariant under the transformation
by L and is constructed explicitly as follows. The ground
state condition is written as axjΦIRi ¼ 0, where ax ¼ffiffiffiffi
Λ

p
ϕðxÞ þ iffiffiffi

Λ
p πðxÞ is the annihilation operator in real

space. By taking Fourier transformation, we can express
it as

jΦIRi ¼
Y
k<Λ

jΩk
Λi; ð49Þ

where jΩk
Λi is defined by the condition

ðαkak þ βka
†
−kÞjΩk

Λi ¼ 0; ð50Þ

where

αk ¼
1

2

 ffiffiffiffiffi
Λ
jkj

s
þ

ffiffiffiffiffi
jkj
Λ

r !
;

βk ¼
1

2

 ffiffiffiffiffi
Λ
jkj

s
−

ffiffiffiffiffi
jkj
Λ

r !
: ð51Þ

Assuming that the state is “Gaussian,” the entangler K̂
(42) takes the following form,

K̂ðuÞ ¼ i
4

Z
dkdΓðke−u=ΛÞða†ka†−k − aka−kÞ; ð52Þ

ΓðxÞ is the cutoff function such that ΓðxÞ ¼ 1 when x ≤ 1

and ΓðxÞ ¼ 0 for x > 1. This operation K̂ induces the
correct Bogoliubov transformation which maps the IR
disentangled state jΦð−∞Þi ¼ jΦIRi into the CFT vacuum
jΦð0Þi ¼ j0i. More explicitly we find

jΦðuÞi ∝
" Y
k<Λeu

exp

�
tanh

u
2
a†ka

†
−k

�
j0ki
#
·

" Y
k>Λeu

jΩk
Λi
#
:

ð53Þ

On the other hand, jΨðuÞi is explicitly given by

jΨðuÞi ¼
"Y
k<Λ

j0ki
#
·

"Y
k>Λ

jΩk
Λi
#
: ð54Þ

Remember that even though the right-hand side looks u
independent, the definition of momentum k is u dependent
such that the actual unit length scale between lattice sites
grows like e−u. Therefore, the UV cutoff Λ corresponds to
the actual momentum scale Λeu. In addition, jΩk

Λi repre-
sents a trivial state with no real space entanglement.
Therefore we can identify that the quantum state defined
by the wave function Ψz (22) essentially coincides with the
cMERA state jΨðuÞi (54).3 Combined with the argument in
the previous section based on the Euclidean path integral,
this observation strongly suggests that the hyperbolic time
slice in the Lorentzian AdS spacetime corresponds to
the cMERA.

3To see this explicitly, after the shift of momentum
k → keu with the standard identification z0 ¼ ϵ · e−u,
the quantity inside the exponential in (22) becomesR Λ=λ
−Λ=λ dkjkjð1 − e−2=λþ2jkjϵÞφðkÞφð−kÞ. For jkjϵ ≪ 1 we have
the vacuum state, while for jkj > Λ we have the trivial wave
function corresponding to the Neumann boundary state [33,34].
As we discuss as the example (i) in Appendix A, we can improve
the high momentum behavior of the cutoff function and realize
the state jΩΛi for jkj ≫ Λ. The one other choice (ii) in Appen-
dix A, or equally (23) and (24), leads to the Dirichlet boundary
state jBDi for jkj ≫ Λ, which is similar to a version of the
cMERA considered in [35]: jΨðuÞi ¼ ½Qk<Λj0ki� · ½

Q
k>ΛjBDi�.
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C. Compactification and spacelike
scale transformation

For the purpose of this paper, it is very useful to
compactify the space coordinates. For simplicity, we focus
on two-dimensional CFTs on R × S1, where the space
coordinate is compactified on a circle S1. We take the radius
of the circle in the original UV theory to be R0. In the
jΨðuÞi picture, the radius depends on u as RðuÞ ¼ R0eu,
while in the jΦðuÞi picture, the radius is independent from
u as RðuÞ ¼ R0.
Now we turn to the spacelike scale transformation L. In

general QFTs, we argue that the L action is simply given by
a specific quantum quench where the metric in the space
direction changes,

H ¼ H0 þ
Z

dxd
Xd
i;j¼1

δgijTij

¼ H0 −
Z

dxd
Xd
i;j¼1

δgijTij; ð55Þ

where we take

δgij ¼ 2ηδij: ð56Þ

This shift ofHamiltonian changes the radiusR intoRð1þ ηÞ.
For example, consider a free scalar field CFT ϕðt; xÞ in

two dimensions. The action looks like

S ¼
Z

dtdx

�
1

2
ð∂tϕÞ2 −

1

2R2
ð∂xϕÞ2

�
; ð57Þ

and the Hamiltonian is found to be (π ¼ _ϕ)

H ¼
Z

dx

�
1

2
π2 þ 1

2R2
ð∂xϕÞ2

�
: ð58Þ

We compactify the space coordinate x such that x ∼ xþ 2π.
Then the radius is given by R. The mode expansion of the
scalar field is given by

ϕðx; tÞ ¼
ffiffiffiffi
R

p X
n∈Z

1ffiffiffiffiffiffijnjp ½e−inx−ijnjR tan þ e−inxþijnjR ta†−n�;

πðx; tÞ ¼ iffiffiffiffi
R

p
X
n∈Z

ffiffiffiffiffiffi
jnj

p
½−e−inx−ijnjR tan þ e−inxþijnjR ta†−n�;

ð59Þ

where the canonical commutation relation is given by

½an; a†m� ¼ δn;m: ð60Þ

Consider a quench process where we suddenly change
the radius R into R0 at t ¼ 0. If we define the creation and

annihilation operator in the new theory by bn and b†n, by
matching ϕ and π at t ¼ 0 we find

ffiffiffiffi
R

p
ðan þ a†−nÞ ¼

ffiffiffiffiffi
R0p
ðbn þ b†−nÞ;

1ffiffiffiffi
R

p ðan − a†−nÞ ¼ 1ffiffiffiffiffi
R0p ðbn − b†−nÞ: ð61Þ

Now, the transformation e−iuL changes the radius from R
to Reu. Thus if we set R0 ¼ Reu we find the transformation

an ¼ cosh
u
2
· bn þ sinh

u
2
· b†−n; ð62Þ

which agrees with (48).
This leads to the following transformation rule:

e−iuLaneiuL ¼ coshðu=2Þan þ sinhðu=2Þa†−n: ð63Þ

Indeed this reproduces the noncompact limit result (48) by
setting k ¼ n=R.
As we have explained before, below the u dependent UV

cutoff

n ≤ R0eu=ϵ; ð64Þ

we simply have jΨðuÞi ¼ j0i in the jΨðuÞi picture4 [or
equally see (54)]. This is obvious from the L0 action (below
the UV cutoff scale),

e−iuL
0
aneiuL

0 ¼ an: ð66Þ

In this free scalar model, we can confirm5

½L; ln� ¼ 0; and ½K; ln� ¼ ½K þ L; ln� ¼ 0; ð67Þ

where ln ≡ Ln − ~L−n. Ln and ~Ln are the Virasoro gener-
ators in the left and right-moving sector and they are
explicitly given by

Ln ¼
1

2

X
m∈Z

αmαn−m; ~Ln ¼
1

2

X
m∈Z

~αm ~αn−m; ð68Þ

4In the jΦðuÞi description, we find the constraint
ðcoshðu=2Þan − sinhðu=2Þa†−nÞjΦðuÞi ¼ 0. Thus we can identify
(here again we omit the higher momentum modes n > R0eu=ϵ)

jΦðuÞi ¼ exp

�
tanh

u
2

X
n<R0eu=ϵ

a†na
†
−n

�
j0i: ð65Þ

5Note that the latter two identities in (67) only hold below the
UV cutoff scale.
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where we defined αn and ~αn such that when n > 0, iαn ¼ffiffiffi
n

p
an and i ~αn ¼

ffiffiffi
n

p
a−n and that when n < 0, −iαn ¼ffiffiffiffiffiffi

−n
p

a†−n and −i ~α−n ¼
ffiffiffi
n

p
a†n.

We expect that these properties are true in the general
cMERA for two-dimensional CFTs. In the IR limit
(u → ∞), jΨðuÞi approaches an L invariant state:
LjΨð−∞Þi ¼ 0. Therefore we expect from (67) that it
satisfies the following identity:

lnjΨð−∞Þi ¼ 0: ð69Þ

Thus jΨð−∞Þi is given by a boundary state.6 Since we do
not expect any excitation of the primary state, it is natural to
identify it with an Ishibashi state [33] for the vacuum
sector [12,35].
Even if we ignore the connection to the cMERA, our

argument here shows the following intriguing fact: the
evolution from the CFT vacuum to the Ishibashi state jΦIRi
is realized as a quantum quench induced by the radius
change.

V. CONTINUOUS TENSOR NETWORKS
AND AdS3=CFT2

In the paper [18], it has been conjectured that there is a
holographic map between any codimension two convex
surface Σ in a gravitational spacetime and a quantum state
in a dual Hilbert space, called surface/state correspondence.
This generalizes the standard holographic principle as
the gravitational spacetime does not necessarily need the
presence of a boundary. If we apply this duality to the
AdS3=CFT2, we find that each convex closed curve Σ
corresponds to a quantum state jΨðΣÞi in the dual CFT
Hilbert space. By considering a foliation by closed curves,
we obtain a tensor network for each codimension one slice
in AdS3. We gave a general formulation of the continuous
tensor in Appendix B. Clearly, a particularly simple and
nice example of the codimension one slice is the time slice
t ¼ const which we study in detail below.
This surface/state correspondence was originally moti-

vated by assuming a possible description of gravitational
spacetimes by ideal tensor networks. Later in [12], this
tensor network was argued to be described by the cMERA
mainly from the viewpoint jΦðuÞi description. Here we
study this issue of AdS3=CFT2 in the jΨðuÞi picture.
Our argument in this section goes as follows. We start

with the surface/state correspondence for AdS3=CFT2.
Using the Killing symmetry and its holographic counterpart
in CFT2 we construct a continuous tensor network. Next
we show that this tensor network actually coincides with
that of the cMERA with the canonical choice of K (below
the cutoff scale).

A. Constructing a continuous tensor network
from AdS3=CFT2

Now we construct a continuous tensor network which
describes the global AdS3 spacetime (3) via the surface/
state correspondence. We focus on the closed curve defined
by a constant value of ρ on the time slice t ¼ 0. We write
the corresponding state parametrized by the value of ρ as
jΨðρÞi. The dual CFT in AdS3=CFT2 lives on the boundary
of AdS3 parametrized by the boundary coordinate ðt;ϕÞ
and the radius R of space coordinate ϕ is R ¼ 1. If we
express the UV cutoff of CFT as that of the AdS space
given by ρ ¼ ρ∞ð→ ∞Þ, the quantum state jΨðρÞi is
defined in the Hilbert space of dual CFT on R × S1 with
the radius of circle S1 given by

RðρÞ ¼ sinh ρ
sinh ρ∞

: ð70Þ

Note that this Hilbert space is always regularized by a
lattice spacing ϵ which does not depend on ρ. The UV state
jΨðρ∞Þi should coincide with the CFT vacuum j0iR¼1,
where we make the radius explicit as a subscript. The state
at general ρ can be written in the following form:

jΨðρÞi ¼ P exp

�
−i
Z

ρ

0

d~ρMð~ρÞ
�
jΨð0Þi: ð71Þ

We determine the ρ evolution operatorMðρÞ by employ-
ing the SLð2; RÞ symmetry we discussed just before. First
remember that

ln ¼ Ln − ~L−n

¼ −
Z

2π

0

dϕeinϕT−−ðϕÞ þ
Z

2π

0

dϕeinϕTþþðϕÞ; ð72Þ

where Tμν is the energy stress tensor of the two-
dimensional CFT.
In order to find MðρÞ we evaluate ∂ρ for the infinitesi-

mally short interval ϕ0 − δ=2 ≤ ϕ ≤ ϕ0 þ δ=2. This leads to

MðρÞ ¼
Z

2π

0

dϕ0Mðρ;ϕ0Þ;

Mðρ;ϕ0Þ ¼
1

δ

Z
δ=2

−δ=2
dϕ sinðϕÞð−T−−ðϕ0 þ ϕÞ

þ Tþþðϕ0 þ ϕÞÞ;

¼ 1

δ

Z
δ=2

−δ=2
dϕ sinðϕÞTtϕðϕ0 þ ϕÞ

≃ 1

δ

Z
δ=2

−δ=2
dϕϕTtϕðϕ0 þ ϕÞ≃Dðϕ0Þ; ð73Þ

where D is the dilatation operator. This agrees with the
cMERA for the Poincare AdS space near the AdS boundary
as L0 is the relativistic scale transformation as we noted

6In the definition of (50), it corresponds to the Neumann
boundary condition.
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before. If we perform integration of ϕ0 to find MðΣρÞ we
simply find

MðρÞ ¼ 0; ð74Þ

in the δ → 0 limit. This can also be found from the total
derivative structure

Mðρ;ϕ0Þ≃ δ2

12
∂ϕTtϕjϕ¼ϕ0

; ð75Þ

in the δ → 0 limit. This trivial evolution (74) agrees with
the free scalar construction on a cylinder (66). Since this
property is also true in the cMERA for any CFT, we find that
our cTN which is obtained from AdS3=CFT2 agrees with
that of the cMERAwith the canonical choice of entangler K
via the identification of radius

R0eu ¼
sinh ρ
sinh ρ∞

¼ RðρÞ: ð76Þ

Here we need to understand that this correspondence is
confirmed below the UV cutoff scale (k < Λ) as we do not
know how to probe quantum states from AdS3 above the
cutoff scale (k > Λ) at present. The quantum state jΨðρÞi of
the network for the CFT vacuum is simply given by

jΨðρÞi ¼ j0iRðρÞ; ð77Þ

where j0iR denotes the vacuum for the CFT on a cylinder
with radius R.
In the above argument, we consider a deformation of the

AdS boundary into a smaller circle with the rotational
symmetry. More generally, we can consider any deforma-
tion without any rotational symmetry by locally acting ∂ρ

and ∂ϕ in principle such as the action
R
2π
0 dϕ0½Aðϕ0Þ∂ρ þ

Bðϕ0Þ∂ϕ�. This leads to a state jΨðΣÞi for any closed curve
Σ, which realizes the idea of surface/state correspondence.

B. Other slices

So far we focused on the cTN on the hyperbolic planeH2

defined as the time slice t ¼ 0. On the other hand, the space
built from the MERA network is often associated with a de
Sitter space [13–16]. Therefore it is useful to consider what
kind of cTN we can obtain from de Sitter slices.
We can find a one parameter family of de Sitter slices

[see (11)] defined by

cosh ρ sin t ¼ cosh η0; ð78Þ

where η0 is a positive constant. This is a two-dimensional
de Sitter space (dS2) with the metric

ds2 ¼ L2sinh2η0ð−dτ2 þ cosh2τdϕ2Þ; ð79Þ

embedded in AdS3 and it approaches the t ¼ 0 slice at the
AdS boundary ρ → ∞. We can confirm that the actions of
l�1 and l0 preserve the dS2 (78) directly.

7 By generalizing
(8) for nonzero t we find

−
i
2
ðeiϕl−1 − e−iϕl1Þ ¼ iðcos t∂ρ − sin t tanh ρ∂tÞ ¼ i∂τ:

ð80Þ

Thus as in the previous subsection, we can identify the τ
evolution in (79) as the same operation (73). This shows
that the cTN on the dS2 can also be identified with the
cMERA network. In this way, as far as we consider the CFT
vacuum, the hyperbolic slice and de Sitter slice have the
same symmetric properties and seem to be identified with
the cMERA network. However, once we consider excited
states in a holographic CFT, they lead to different cTN
descriptions of an identical state as we see in Sec. VII.
We mention that in the de Sitter space, there is a nonzero

minimum radius sinh η0 > 0. This hole in the center may
lead to a problem if we regard the de Sitter space as a
cMERA network. One possibility is that this might be
related to the fact that the sub-AdS locality is not manifest
in the cMERA. Another possibility is that this actually
suggests that the interpretation of the cMERA in terms of a
de Sitter space is not correct. We leave more investigation
of this issue for future research. Note that in this paper our
main framework is based on the identification of the
cMERA as a hyperbolic slice in AdS space.

VI. AN ARGUMENT FOR SUB-ADS
SCALE LOCALITY

So far, in our analysis of continuous tensor networks, we
studied general two-dimensional CFTs and did not employ
any special condition for holographic CFTs. Therefore, this
is not enough to explain the sub-AdS scale locality [15,36].
Indeed, in our cMERA formulation, the momentum cutoff
appears as follows:

n ≤
R0eu

ϵ
¼ sinh ρ

ϵ sinh ρ∞
∼ sinh ρ; ð81Þ

where we employed the cutoff (64) and the standard
identification of the UV cutoff in AdS=CFT ϵ ∼ e−ρ∞ .
Therefore when ρ is Oð1Þ, we cannot distinguish the
different points in the AdS3 spacetime, thought the distance
between such points is orderOðcÞ (c is the central charge of
the two-dimensional CFT). This means a locality only at
the AdS radius L scale.
However, a standard knowledge of AdS=CFT tells us

that in holographic CFTs we can get a finer resolution of
spacetime up to the Planck scale. Holographic CFTs are

7We are very grateful to Juan Maldacena for pointing out this.
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characterized by the large central charge c and a large
spectrum gap [24]. Here we turn to a simple tractable model
which captures these properties: a symmetric product CFT
with a large central charge c on a cylinder with the radius
R0 ¼ 1, though this is not exactly a holographic CFT dual
to a standard classical gravity, strictly speaking. Such a
CFT can be expressed as Mm=Sm which is a symmetric
product of m identical CFTs, each of which is denoted
byM. We have c ¼ mcM, where cM is the central charge of
M. This theory is defined as an orbifold of Mm by the
symmetric group Sm. Its twisted sectors include a so-called
long string sector. If we write a primary field of the CFTM
as ϕðt; xÞ, the long string sector is defined by a boundary
condition like ϕaðt; xþ 2πÞ ¼ ϕaþ1ðt; xÞ, where a ¼
1; 2;…; m distinguishes m copies of the CFT M.
In this model, the long string sector, which dominates

the microstate degeneracy, can be effectively8 described
by a single CFT M on a cylinder with the extended radius
mR0 [25]. Thus this gives a very fine-grained momentum
quantization P ¼ n

m ðn ∈ ZÞ instead of P ¼ n. After Fourier
transformation, this leads to a network with a much finer
structure by the factor 1=m ¼ Oð1=cÞ. The resolution of
this network is estimated as Lϵ sinh ρ∞ · ð1=cÞ ∼ L=c,
which is indeed the Planck length scale. In other words,
the actual lattice constant is estimated as ϵ=m instead of
ϵ ¼ Λ−1. This fact can also be explained schematically by
folding a MERA network description for the long string
sector as in Fig. 2.
The above is our heuristic argument for a sub-AdS

locality in AdS3=CFT2. Note that in order to explain a
similar locality in a higher dimensional AdS=CFT, we
encounter a fractional power of central charge and this
suggests that the characterization of holographic CFTs in
higher dimensions is much more complicated.

VII. BULK LOCALLY EXCITED STATES
AND THE CMERA

Now we turn to a description of excited states in terms of
continuous tensor networks. Especially we focus on a class
of excited states which correspond to simple excitations in
the bulk AdS space, i.e. local excitations in the bulk. In the
global AdS3 we excite one point at a specific time. Using
the symmetry of AdS3 space, we can focus on an excitation
at ρ ¼ t ¼ 0, constructed by acting a bulk scalar field φα on
the bulk vacuum, i.e. φαj0iAdS. The label α expresses the
primary field in the two-dimensional CFT and the bulk
scalar field is also labeled by α as φα. We denote the
corresponding primary state in the CFT jαi and we take its
chiral and antichiral conformal dimension to be hα ¼ h̄α.
In [12] (see also [37] for a similar but different

formulation), the CFT dual of such a excitation was

identified with the “global Ishibashi state” with the π
2
time

translation denoted by

jΨαi ¼ e−~ϵHe−i
π
2
HjJαi; ð82Þ

where ~ϵ is the UV regularization which makes the excited
energy finite and jJαi is the Ishibashi state for the global
conformal symmetry and satisfies

l�1jJαi ¼ l0jJαi ¼ 0: ð83Þ

On the other hand, the state jΨαi satisfies (in the limit
~ϵ → 0)

ðL�1 þ ~L∓1ÞjΨαi ¼ 0;

ðL0 − ~L0ÞjΨαi ¼ 0: ð84Þ

More explicitly, jJαi is written as

jJαi ¼
ffiffiffiffiffi
N

p X∞
k¼0

e−~ϵkjk; αi; ð85Þ

where

jk; αi ¼ 1

Nk
ðL−1Þkð ~L−1Þkjαi;

Nk ≡ Γðkþ 1ÞΓð2hα þ kÞ
Γð2hαÞ

: ð86Þ

This CFT dual of the bulk locally excited state is precisely
identical to that obtained by acting the known CFT dual of
the bulk local field (HKLL map) [38] on the vacuum state
as shown in [12,39,40].

A. Continuous tensor network for bulk
locally excited states

We construct continuous tensor networks which repro-
duce such locally excited states in the global AdS3. In order
to realize the UV state jΨðuÞi other than the CFT vacuum
state, we obviously need to modify the tensor operator
MðρÞ in (71). For example, in the cMERA for a free scalar
field such a modification is solved for quantum quench
excitations in [11]. In terms of the discretized tensor
networks for lattice quantum systems, such modification
is realized by changing tensors as in [19,41]. Especially if
we excite a point in the bulk by a local field, we can obtain
the tensor network by replacing a tensor located at the point
where the local field is inserted as depicted in Fig. 3.
Below we construct a cTN for the locally excited state

following this prescription. If we insert the bulk local field
at ρ ¼ 0, we can still use the same network with Mðρ;ϕÞ
given by (73) for ρ > 0. Since we have MðρÞ ¼ 0 as we
showed before, we can simply identify the state jΨðρÞiwith

8This is clear from the boundary condition ϕaðt; xþ 2mπÞ ¼
ϕaðt; xÞ.
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jΨðρÞi ¼ jΨαiRðρÞ; ð87Þ

so that it reproduces (82) in the UV limit ρ ¼ ρ∞. Note that
when jαi is the CFT vacuum j0i, this is trivially reduced
to the network (77) for the vacuum which we discussed
before.
Since we focused on the hyperbolic slice H2 defined by

t ¼ 0 in the above, one may wonder how it looks if we
choose other slices such as de Sitter slices. In the gravity
dual, if we excite a point in the bulk, the excitation expands
within a light cone as depicted in Fig. 4. Therefore we
expect that the tensors which correspond to the inside light-
cone region will be modified from those for the vacuum
state. Since we do not have a systematic way to identify this
deformation currently, we cannot closely follow cTN for
general slices including de Sitter slices. In other words the
hyperbolic slice has an advantage as we can only modify a
single tensor (or equally the IR state) to describe the locally
excited state.
Now we explore the consequence of the network flow

(87) a bit more. Remember that the state jΨαi satisfies the
condition (84). We notice that this is the global part of
the standard property ðLn − ð−1Þn ~L−nÞjCi ¼ 0 of cross
cap states jCi as noted in [39]. Moreover, if we consider the
IR limit ρ → 0, the allowed momentum modes are limited
such that only n ¼ 1 modes are meaningful as the radius
RðρÞ shrinks. Therefore, we can identify the IR state
limρ→0jΨαiRðρÞ as the cross cap states in holographic

CFTs under a large c approximation. Notice that the cross
cap state is a highly entangled state, while the boundary
states are disentangled states [35]. Indeed, the latter is
obtained from a time translation by π=2 of the latter state
and the time evolution by π=2 leads to entanglement
propagations to anywhere as is familiar in quantum
quenches [42].
In the free field CFTs, we can impose complete con-

ditions for cross cap states by relating a point and its
antipodal point in terms of fundamental free fields [33,34],
which leads to a maximally entangled tensor if we view a
state as a tensor. If we paste two cross cap states more than
half of each, we get the identity operation as explained in
Fig. 5. This is the same property which the perfect tensor
[19] (see also [43]) satisfies.
In the case of holographic CFTs, we only know the cross

cap condition for the Virasoro generators and explicit
computations look much more difficult. However, if we
remember that the state is obtained from time evolution of a
boundary state, the entanglement scrambling phenomenon
found in [44] suggests that our cross cap states in holo-
graphic CFTs are no longer such simple entangled states as
in free field CFTs but are more scrambled states, similar to
the random tensors in [20].

VIII. CONCLUSION AND DISCUSSION

In this paper we studied connections between tensor
networks and AdS=CFT from two different viewpoints.
In the first part, we considered a Euclidean path-integral
description of ground state wave functions in two-
dimensional CFTs in the presence of the UV cutoff. We
optimized the path-integral computation by introducing a
position dependent UV cutoff without changing the final
wave function. We found that this is regarded as a path-
integral on a hyperbolic space and we argued that this space
corresponds to a time slice of AdS. This conjecture is
supported from the global symmetry of AdS3 and also from
the fact that such a field theory is expected to appear as a
dual CFT on a hyperbolic space. By shifting its boundary,
we defined a wave function as a function of effective length
scale. This scale dependent wave function turns out to be

FIG. 4. The tensor network evolutions which correspond to a
locally excited state in global AdS3.

FIG. 5. Gluing two cross cap states leads to an identity
operation.

FIG. 3. A modification of the tensor network dual to a bulk
local excitation.
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essentially the same as the evolution of quantum states in
the cMERA at least below the cutoff scale. This observation
leads to the interpretation of the hyperbolic time slice in
(Euclidean) AdS spaces as a tensor network. It is an
intriguing future problem to perform an explicit analysis
of our discretized path integral in specific lattice models.
In the latter part, we took a different approach.We started

with a Lorentzian AdS3 and studied a systematic con-
struction of continuous tensor network description dual to
AdS3=CFT2 assuming the surface/state correspondence
[18]. We obtained the resulting network for the canonical
time slice, which is a hyperbolic space H2, from gravita-
tional considerations and found that it essentially coincides
with the (compactification of) the original cMERA network
[10]. However, notice that our analysis from AdS3 geom-
etry only concerns the modes below the cutoff scale.
Interestingly, through an analysis of the locally excited

bulk state, we observed that our network is very analogous
to the perfect tensor network [19] and random tensor
network [20]. This is because the IR state is given by
π=2 time translation of the boundary state, where nontrivial
quantum entanglement is generated. We also gave a
heuristic argument of the sub-AdS scale bulk locality in
the cMERA, based on symmetric product CFTs. All these
suggest that the cMERA, which has full conformal invari-
ance manifestly, can be regarded as a continuous refine-
ment of tensor networks such as the perfect and random
tensor network and thus is expected to describe a canonical
time slice of AdS space at least below the cutoff scale.
The Wick rotation from the Euclidean AdS space to the

Lorentzian AdS space is obvious for the canonical time
slice t ¼ 0. The above arguments, i.e. the correspondence
between a Euclidean path integral on H2 with a UV cutoff
and the cMERA network, are based on this fact. However,
if we choose other hyperbolic slices [η ≠ 0 in (16)] in
Euclidean AdS space, they can be Wick rotated into
hyperbolic (13) or de Sitter (11) slices. This implies that
the cMERA network can also be interpreted as a de Sitter
slice. Indeed, our analysis based on the Killing vectors in
AdS space and its CFT dual supports this possibility. This
might make some connection to a seeming independent
idea based on kinematic spaces [14]. However at the same
time we noticed that the existence of the minimal radius,
which looks like an IR cutoff, in de Sitter geometry is
confusing from the viewpoint of the cMERA. This issue
certainly deserves future investigations.
In this paper we mainly consider two-dimensional CFTs

for simplicity. However, notice that most results can be
generalized into the higher dimensional AdS=CFT in a
straightforward way.
Finally it is a very interesting future problem to find an

explicit relation between the spacetime metric and the
property of the continuous tensor network. An important
challenge is to work out how we obtain the timelike
component of the metric.
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APPENDIX A: OTHER CHOICES OF
UV CUTOFF FUNCTION

Here we consider more general (position dependent)
UV cutoff functions in the Euclidean path integrals of a
free scalar and compute resulting scale dependent wave
functions, which generalizes our result in (22). Here we
set λ ¼ 1. Since we do not want to change the low
momentum (jkjz < 1) behavior we only modify the
higher energy part, keeping the scaling symmetry as
follows:

ΓðjkjzÞ → fðjkjzÞ≡ ΓðjkjzÞ þ ð1 − ΓðjkjzÞÞ · gðjkjzÞ:
ðA1Þ

The wave function at the length scale z0 is expressed as

Ψz0 ¼ exp

�
−4π

Z
∞

−∞
dkcðkÞϕðkÞϕð−kÞ

�
; ðA2Þ

where

cðkÞ ¼ jkj2
Z

∞

z0

dzfðjkjzÞ · e−2jkjðz−z0Þ: ðA3Þ

In the expression of creation/annihilation operators, this
wave function is equivalent to the quantum state
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jΨz0i ∝ exp

�
−
Z

∞

0

dk

�
8πcðkÞ − jkj
8πcðkÞ þ jkj

�
a†ka

†
−k

�
j0i: ðA4Þ

When gðjkjzÞ ¼ 0, we have c0ðkÞ ¼ jkj
2
ð1 − e2jkjz0−2Þ,

which precisely corresponds to (22). Below we consider
two other choices. First consider the case (i) gðjkjzÞ ¼ β1

jkjz,
where β1 is a constant. In this case we obtain

cðkÞ ¼ c0ðkÞ þ α · β1 · jkj · e2jkjz0 ðif jkjz0 < 1Þ;

¼ β1jkj
Z

∞

0

dy
yþ z0

e−2jkjy ðif jkjz0 > 1Þ; ðA5Þ

where α is a positive constant given by the integralR∞
1

dy
y e

−2y. When jkjz0 ≫ 1 we can approximate

cðkÞ≃ β1
2z0

: ðA6Þ

This behavior coincides with the IR state jΩΛi used in the
original cMERA [10] [see (54)], after the rescaling keu → k
or equally z0 → Λ. Thus in the connection to the cMERA,
this choice gives a refinement of (22).
On the other hand, if we consider the second choice

(ii) gðjkjzÞ ¼ β2ejkjz−1 (β2 is an arbitrary constant), we find

cðkÞ ¼ c0ðkÞ þ β2jkj · e2jkjz0−2 ðif jkjz0 < 1Þ;
¼ β2jkj · ejkjz0−1 ðif jkjz0 > 1Þ: ðA7Þ

In particular, we choose β2 ¼ 1=2. Since in this case we
get cðkÞ ¼ jkj

2
for jkjz0 < 1, this precisely reproduces the

correct vacuum wave function (21) in the limit z0 ¼ 0.
Since cðkÞ grows exponentially, for a high momentum
jkjz0 ≫ 1 it approaches a boundary state (Ishibashi state)
for the Dirichlet boundary condition. In the Euclidean
path integral, this choice of UV cutoff can suppress high
momentum modes as the scalar field action S becomes very
large. In this sense, it is similar to the Wilsonian renorm-
alization group flow. These observations are consistent with
the recent paper [21].

APPENDIX B: SPACETIME CONTINUOUS
TENSOR NETWORK

Here we summarize a formulation of the cTN, which
generalizes the cMERA formulation so that we can apply
it to non-AdS spacetimes. Surface/state correspondence
[18] argues that any gravitational spacetime can have
such a tensor network description. We start with a
dþ 2-dimensional gravitational spacetime Mdþ2 described
by Einstein gravity.
We choose a coordinate x ¼ ðt; ~xÞ ∈ Mdþ2 for simplic-

ity, though our argument below should be independent
from the choice of coordinate. At a point x, we associate an

entangling Hermitian operator MiðxÞ (i ¼ 1; 2;…; dþ 1),
which is local up to the UV cutoff scale dual to the Planck
length. The index i describes the spacial direction of the
entangling operation. The time evolution of MiðxÞ is
simply given by a Hamiltonian HðxÞ at each point which
satisfies

dMiðxÞ
dt

¼ i½HðxÞ;MiðxÞ�: ðB1Þ

Now we take a time slice (codimension one spacelike
surface) Ndþ1 and consider its one parameter foliation by
codimension two surfaces Σu i.e. Ndþ1 ¼ ∪uΣu. The sur-
face/state duality tells us that there is a corresponding state
for each surface,

Σu ↔ jΨðΣuÞi: ðB2Þ

Here we assume that the homology Σu is trivial so that it is
dual to a pure state.
We can write the u evolution as

jΨðΣu1Þi ¼ P · exp

�
−i
Z

u1

u2

duMðΣuÞ
�
jΨðΣu2Þi: ðB3Þ

Our basic claim is that KðΣuÞ is expressed in terms of the
local entangler MiðxÞ as follows,

MðΣuÞ ¼
Z
x∈Σu

dxdniuðxÞMiðxÞ; ðB4Þ

where niu is the displacement vector of Σu when we change
u at x.
From (B4) we obtain the important consistency con-

dition of our spacetime tensor network,

dHðxÞ
du

¼ i½niuðxÞMiðxÞ; HðxÞ�: ðB5Þ

Consider various choices of foliations of the time slice
Ndþ1. We take two of them, expressed as Σu and Σw
such that Ndþ1 ¼ ∪uΣu ¼ ∪wΣw. Let us assume that
Σu1 ¼ Σw1

≡ Σ1 and Σu2 ¼ Σw2
≡ Σ2.

Correspondingly we have two expressions

jΨðΣ1Þi ¼ P · exp

�
−i
Z

u1

u2

duMðΣuÞ
�
jΨðΣ2Þi;

¼ P · exp

�
−i
Z

w1

w2

dwMðΣwÞ
�
jΨðΣ2Þi: ðB6Þ

Since we expect the same thing is also true for excited states
which are obtained by replacing some of the tensor inside
Σ2ð∈ Σ1Þ locally, we require
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P · exp

�
−i
Z

u1

u2

duMðΣuÞ
�

¼ P · exp

�
−i
Z

w1

w2

dwMðΣwÞ
�
: ðB7Þ

From this, we can conclude that MðΣÞ is a flat connection
in the space of codimension two surfaces in Mdþ2.
Therefore we can write K as

MðΣuÞ ¼ i∂uGðuÞ · GðuÞ; ðB8Þ

for a certain unitary matrix valued function GðuÞ. Then the
state dual to the surface is written in the form

jΨðΣuÞi ¼ GðuÞjΨð0Þi; ðB9Þ

where jΨð0Þi is a certain reference state. GðuÞ for any
codimension two surfaces in Mdþ2 defines the continuous
tensor network.
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