What is numerical simulation? And why should I care?

KYOTO UNIV GRAD SCHOOL OF ENERGY SCIENCE

ENERGY CONVERSION SCIENCE DEPT.

Master's student

Yusuke Ikemi

Self Introduction

- Name : Yusuke Ikemi
- Lab : Combustion and power engineering Lab
- Research : Heat transfer of impinging diesel spray (Large eddy simulation : LES)
- Hometown : Shiga Pref
- Hobby : Bakery hopping

Today's topic

Terminology

Why not just testing?

Numerical simulations around us

Today's topic

Terminology

Why not just testing?

Numerical simulations around us

Definition of []

Numerical Analysis

the study of algorithms that use numerical approximation for the problems of mathematical analysis

Simulation

an approximate <u>imitation</u> of the operation of a process or system; that represents its operation over time

(often said as a training method)

Numerical simulation

Calculation that is run on a computer following a program that implements <u>a</u> <u>mathematical model</u> for a <u>physical system</u>, whose models are too complex to provide analytical solutions.

Today's topic

Terminology

Why not just testing?

Numerical simulations around us

Why not just testing?

----In some case, you cannot test!!

For example... Testing

Nuclear explosion

Dangerous, harmful

Weather forecasting, earthquake

Too huge, you cannot make it happen

Solar system

Too slow to observe

Chemical reactions

Too fast and tiny to observe

With simulation...

Possible and safe

Calc whole earth

Fast forwarding

Close up and slow replay

Why not just testing? ----testing possible, but....

Case1: you wanna build a new car!

	Testing	Numerical Simulation
Costs	Material, Crafting, Expensive Apparatus,,,	Machine resource Software
Time	Build and analyze, again and again	Machine time (you can sleep)
Dangerousness	Flammables, Chemicals, Heavy stuff	No harm (You can sleep)
Reproducibility	Setting Environment costs a lot	Always you can control
Observability	Observation affects system Limited information	Full information of system

Numerical Simulation helps a lot!

Why not just testing?

Today's topic

Terminology

Why not just testing?

Numerical simulations around us

https://en.wikipedia.org/wiki/Computer_simulation

Computer simulations are used in a wide variety of practical contexts, such as:

•analysis of <u>air pollutant</u> dispersion using <u>atmospheric dispersion modeling</u>

•design of complex systems such as <u>aircraft</u> and also <u>logistics</u> systems.

•design of noise barriers to effect roadway noise mitigation

•modeling of <u>application performance^[14]</u>

•flight simulators to train pilots

•weather forecasting

•simulation of other computers is <u>emulation</u>.

•forecasting of prices on financial markets (for example <u>Adaptive Modeler</u>)

•behavior of structures (such as buildings and industrial parts) under stress and other conditions

•design of industrial processes, such as chemical processing plants

•strategic management and organizational studies

•<u>reservoir simulation</u> for the petroleum engineering to model the subsurface reservoir

process engineering simulation tools.

•robot simulators for the design of robots and robot control algorithms

<u>urban simulation models</u> that simulate dynamic patterns of urban development and responses to urban land use and transportation policies. See a more detailed article on <u>Urban Environment Simulation</u>.
<u>traffic engineering</u> to plan or redesign parts of the street network from single junctions over cities to a national highway network to transportation system planning, design and operations. See a more detailed article on <u>Simulation in Transportation</u>.

•modeling car crashes to test safety mechanisms in new vehicle models.

•crop-soil systems in agriculture, via dedicated software frameworks (e.g. <u>BioMA</u>, OMS3, APSIM)

Numerical simulations around us (Examples)

- •Deep understanding of known (Natural Disaster)
- •Optimization of scenalio (Decision, engineering processes)

Almost anything...

•Prediction of unknown (Weather, nano scale)

Today's topic

- Terminology
- Why not just testing?
- Numerical simulations around us

 Dig down CFD(Computational Fluid Dynamics)
 How it works inside a computer. As an example.

Computational Fluid Dynamics (CFD) the simulation of fluids engineering systems using modeling and numerical methods

 ▶ Governing equation : Navier-Stokes
 →a partial differential equation that describes the flow of viscous fluid substances.

The nonlinearity makes most problems difficult to solve analytically

Pressure Gradient Navier-Stokes $\rho \frac{\partial \overrightarrow{v}}{\partial t} + \rho (\overrightarrow{v}.\nabla) \overrightarrow{v} = -\nabla P + \overrightarrow{\gamma} \rho + \mu \nabla^2 \overrightarrow{v}$ **Convective Acceleration** Viscous term Local Acceleration Body force term

Example

- Basic Equations
- Divide calculation domain into tiny cells.

About a half million cells

Transient + Burning Flow

It took 6days to calc 4ms combustion With Xeon 20 cores workstation

Transient + Burning Flow

Dig down CFD(Computatic

Example

- Basic Equations
- Divide calculation domain int cells.

CFD Flow

- Give initial condition.
- Solve conservation equation of all the cells.
- Check if its converged, if not, do it again
- If its converged (or if we get small enough error), go to next time step.
- Use last time variables as an initial condition.

$$N = \left[O\left(rac{L}{l}
ight)
ight]^3 = O(Re^{9/4})$$

Summary

- All [numerical simulation] has its [mathematical model].
- Numerical simulation is regarded as important as testing. you must know how it works.
- There's always a certain range of error in calculation. But experiment has also....
- Because of improvement of calc power, nowadays complex NS is possible with low time cost. It makes development faster!!

Thank you Any Question??