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We present how the surface-state correspondence, conjectured by Miyaji and Takayanagi, works in the
setup of AdS3=CFT2 by generalizing the formulation of a continuous multiscale entanglement
renormalization group ansatz. The boundary states in conformal field theories play a crucial role in
our formulation and the bulk diffeomorphism is naturally taken into account. We give an identification of
bulk local operators which reproduces correct scalar field solutions on AdS3 and bulk scalar propagators.
We also calculate the information metric for a locally excited state and show that it reproduces the time slice
of AdS3.
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Even though the idea of AdS=CFT correspondence [1]
has led to tremendous progress in string theory, we still do
not fully know its basic mechanism. It is obvious that the
AdS=CFT correspondence is regarded as a special example
of the holographic principle [2]; however, our current
understandings of the holographic principle are far from
complete.
The recently proposed duality called surface-state cor-

respondence [3] gives a more detailed structure of the
holographic principle. This duality can, in principle, be
applied to any spacetimes described by Einstein gravity and
even to those without timelike boundaries. This surface-
state correspondence (or simply called SS duality) argues a
correspondence between a codimension two convex sur-
face Σ and a quantum state described by a density matrix
ρðΣÞ, which is defined in the Hilbert space of quantum
theory dual to the Einstein gravity. When this surface is
closed and topologically trivial, the state is given by a pure
state ρðΣÞ ¼ jΣihΣj. In particular, if we consider Einstein
gravity in an AdS space and take Σ to be a time slice of the
AdS boundary, then jΦðΣÞi is simply given by the ground
state j0i of the dual conformal field theory (CFT); refer
to Fig. 1.
The SS duality was proposed based on the recently found

connection between the AdS=CFT and the tensor networks.
Such a relation has been first proposed in Ref. [4] for a
multiscale entanglement renormalization ansatz (MERA)
[5] and later developed in Ref. [6] for a continuous
multiscale entanglement renormalization group ansatz
(cMERA) [7]. See also, e.g., Refs. [8–11] for various
refinements and limitations of the connection between
AdS=CFT and tensor networks. In general, a tensor net-
work describes a wave function of a quantum state as a
network diagram which fills a discretized space. The state
jΦðΣÞi dual to a convex closed surface Σ is constructed by
contracting the indices of tensors which are included in the

region surrounded by Σ. For example, in the network found
in Ref. [9] we can explicitly construct the state jΦðΣÞi
consistently by the above procedure. If the tensor network
describes correctly a CFT ground state, then we expect the
space described by the network is identical to a hyperbolic
space. We would like to argue that the most direct way to
realize tensor networks for CFTs is to employ the cMERA
as we do not need to worry about lattice artifacts. It is also
important that the Hilbert space structure is not changed
under any smooth deformation of Σ in the SS duality as we
can always insert a dummy trivial state to keep the total
dimension of Hilbert space the same.
The most elementary object in SS duality is the quantum

state dual to a zero size closed surface, i.e., just a point.
Such a state dual to a point in a gravitational spacetime is
identified with the boundary state jBi [3]. This is because
there is no real space entanglement for the state dual to such
a pointlike surface, according to the idea of holographic
entanglement entropy [12], and because the state with a
vanishing real space entanglement entropy is given by the
boundary state [13].
The latter fact can be naturally understood by turning off

a relevant (e.g., mass) operator in a CFT suddenly at the
(Euclidean) time τ ¼ 0 as in the analysis of quantum
quenches [14]. In terms of quantum states we find that

FIG. 1. A sketch of surface-state correspondence in AdS=CFT.
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the ground state j0i appears only for τ > 0 and thus it is
equivalent to putting a sharp boundary at τ ¼ 0 and
restricting the spacetime to the region τ > 0. In 2D
CFTs, such a physical boundary state is called a Cardy
states jCαi [15], where α labels the primary fields Ψα. An
Ishibashi state jIαi [16] is a boundary state which includes
only one sector of primary field Ψα and its descendants. A
Cardy state is given by a specific linear combination of
Ishibashi states.
Let us start with a cMERA description of the CFT

ground state j0i. We will employ the rescaled formalism in
Ref. [6], which is obtained from the original construction
[7] by getting rid of the rescaling procedure and which has
an advantage that the Hilbert space does not change even if
we consider a CFT on a compact manifold. The cMERA
formulation is defined by a flow from the UV state given by
the CFT vacuum j0i to the IR state, which has no real space
entanglement.
As we have explained, we can identify such a state with

one of the boundary states [13], denoted by jB0i. In CFTdþ1

for d ≥ 3, there is a conformal mass term in the gauge
theory on R × Sd dual to a global AdSdþ2. Moreover, the
fundamental fields correspond to the internal directions
such as S5 in AdS5 × S5 related to the R-symmetric
directions. Therefore, it is natural to identify jB0i with
the boundary state for the Dirichlet boundary condition,
which preserves the R symmety. However, in a 2D CFT
on a cylinder, there is no conformal mass and thus it is
subtle whether jB0i is a Cardy state or Ishibashi state.
Nevertheless, to preserve the R symmetry and other internal
symmetries suggests that the IR state should be the
Ishibashi state jI0i for the identity sector. This is because
in typical AdS3=CFT2 examples, the fundamental fields
correspond to the other internal direction such as T4 in
AdS3 × S3 × T4 and we cannot impose any Dirichlet
boundary condition for these fields without breaking R
symmetries and other global symmetries.
In this way, the cMERA is formulated as follows:

j0i ¼ P exp

�
−i

Z
0

−∞
duK̂ðuÞ

�
jI0i; ð1Þ

where K̂ðuÞ is the disentangling operator at scale u and P
denotes the path ordering. The operation K̂ðuÞ eliminates
quantum entanglement longer than the length scale ϵe−u,
where ϵ is the UV cutoff or the lattice constant. The UVand
IR limit corresponds to u ¼ 0 and u ¼ −∞, respectively. In
other words, the disentangling operator takes the form
K̂ðuÞ ¼ R

dkdΓðke−uϵÞOk, where Ok is a disentangling
operator with momentum k and ΓðxÞ ¼ 1 − θðxÞ is a cutoff
function [θðxÞ is the Heaviside step function].
Once K̂ðuÞ is given, the state j0ðuÞi at scale u is defined:

j0ðuÞi ¼ P exp

�
−i

Z
u

−∞
duK̂ðuÞ

�
jI0i: ð2Þ

Thus, the cMERA is a unitary transformation (or a
generalization of the Bogoliubov transformation) from
the vacuum to the Ishibashi state. As u increases, some
quantum entanglement is added by the K̂ðuÞ operation.
In AdS=CFT, we expect that the cMERA network

describes the time slice of AdS space, i.e., hyperbolic
space. Consider a 2D holographic CFT on a cylinder,
whose coordinate is given by ðt;ϕÞ with the periodicity
ϕ ∼ ϕþ 2π. The dual AdS3 is given by the global
coordinate

ds2 ¼ R2ð−cosh2ρdt2 þ dρ2 þ sinh2ρdϕ2Þ: ð3Þ

In SS duality, we can consider the surface ΣðuÞ dual to
j0ðuÞi. This surface coincides with a time slice of the AdS
boundary for u ¼ 0 and shrink as u decreases. Eventually,
at u → −∞, it degenerates to a point at the origin of
the AdS space. Therefore, we have j0ð0Þi ¼ j0i and
j0ð−∞Þi ¼ jI0i as in Fig. 1. In the AdS3 coordinate (3),
the IR limit u ¼ −∞ corresponds to the center ρ ¼ 0, while
the UV limit u ¼ 0 corresponds to the AdS boundary
ρ → ∞.
The isometry of AdS3 is given by SLð2;RÞL×SLð2;RÞR,

which are generated by ðL1; L0; L−1Þ and ð ~L1; ~L0; ~L−1Þ
dual to the (global) Virasoro symmetry of 2d CFT. These
are explicitly given by the following action in AdS3 [17]:

L0 ¼ i∂þ; ~L0 ¼ i∂−;

L�1 ¼ ie�ixþ
�
cosh 2ρ
sinh 2ρ

∂þ −
1

sinh 2ρ
∂− ∓ i

2
∂ρ

�
;

~L�1 ¼ ie�ix−
�
cosh 2ρ
sinh 2ρ

∂− −
1

sinh 2ρ
∂þ ∓ i

2
∂ρ

�
: ð4Þ

In particular, we are interested in a SLð2; RÞ subgroup of
SLð2; RÞL × SLð2; RÞR which does not change the time
slice t ¼ 0. It is generated by ðl1; l0; l−1Þ defined by

l0 ¼ L0 − ~L0 ¼ i∂ϕ;

l−1 ¼ ~L1 − L−1 ¼ ie−iϕ
�
−
1þ coshð2ρÞ
sinhð2ρÞ ∂ϕ − i∂ρ

�
;

l1 ¼ ~L−1 − L1 ¼ −ieiϕ
�
1þ coshð2ρÞ
sinhð2ρÞ ∂ϕ − i∂ρ

�
; ð5Þ

which satisfy the SLð2; RÞ algebra as usual, dual to Killing
symmetry of the hyperbolic space H2.
The SLð2; RÞ transformation gðρ;ϕÞ which takes the

origin ρ ¼ 0 to a point ðρ;ϕÞ on H2 is given by

gðρ;ϕÞ ¼ eiϕl0eðρ=2Þðl1−l−1Þ: ð6Þ

It is obvious that the CFT vacuum j0i is invariant under
this SLð2; RÞ transformation. Moreover, boundary states
have the same invariance,
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gðρ;ϕÞjIαi ¼ jIαi; ð7Þ

which comes from the basic property ðLn − ~L−nÞjIαi ¼ 0
of the boundary states. Thus the quantum states dual to
points on the H2 are all given by the same state jI0i. This
agrees with the argument of SS duality where all states
whose dual surfaces are related by isometry are the same
[3]. This is also consistent with the tensor network picture
because this quantum state corresponds to the pointlike
state in the network with no entanglement.
By acting gðρ;ϕÞ transformation, we can rewrite Eq. (1)

as

j0i ¼ P exp

�
−i

Z
0

−∞
duK̂ðρ;ϕÞðuÞ

�
jI0i; ð8Þ

where we defined K̂ðρ;ϕÞðuÞ ¼ gðρ;ϕÞ · K̂ðuÞ · gðρ;ϕÞ−1.
This transformation relates two different cMERA networks
related by the conformal transformation by changing the
choices of u slices ΣðuÞ. We introduce

Uðρ;ϕÞ ¼ P exp

�
−i

Z
0

−∞
duK̂ðρ;ϕÞðuÞ

�
: ð9Þ

We would also like to mention one more important
observation. Since boundary states preserve ln ¼ ~L−n − Ln

even for jnj ≥ 2, we can generalize K̂ðρ;ϕÞðuÞ into

K̂hðuÞ ¼ ĥðuÞK̂ðuÞĥðuÞ−1 þ i∂uĥðuÞ · ĥðuÞ; ð10Þ

where ĥðuÞ ¼ exp ½PnhnðuÞln�. This transformation (10) is
interpreted as the deformation of the intermediate surface
Σu dual to the state

jΦðΣuÞi ¼ P exp

�
−i

Z
u

−∞
duK̂gðuÞ

�
jI0i; ð11Þ

which allows us to choose any possible foliation
fΣug−∞<u<0 of the time slice H2. Note that as long as
we assume hnð0Þ ¼ 0, we always end with up the vacuum
state jΦðΣ0Þi ¼ j0i at u ¼ 0. This confirms the proposed
surface-state correspondence and we find that the diffeo-
morphism gauge symmetry that preserves the time slice is
included in our generalized cMERA formulation.
Now we would like to turn to excitations by bulk fields.

We insert a bulk quantized field ψ̂αðρ;ϕÞ dual to a CFT
primary field Ψα, on the time slice H2 at ðρ;ϕÞ. We argue
that the locally excited state ψ̂αðρ;ϕÞj0ibulk is dual to the
following CFT excited state jΨαðρ;ϕÞi:

ψ̂αðρ;ϕÞj0ibulk ∈ Hbulk

↔ jΨαðρ;ϕÞi ¼ Uðρ;ϕÞjIαi ∈ HCFT: ð12Þ

Since the metric should not change for the locally excited
state except for the localized region, the state should have
almost vanishing real space entanglement. Therefore, the
IR state of the cMERA for the excited state is also given by
a boundary state. Thus we can argue that the IR state is
given by the Ishibashi state jIαi as in Eq. (12).
By taking this into the time evolution, we identify

ψ̂αðρ;ϕ; tÞ ↔ eiðL0þ ~L0ÞtUðρ;ϕÞMαU−1
ðρ;ϕÞe

−iðL0þ ~L0Þt;

where Mα is an unitary operation which maps jI0i to jIαi.
Refer to, e.g., Ref. [18] for an earlier standard literature of
bulk field construction from CFToperators. We are taking a
different route for the same purpose, as we are restricting on
a specific time slice.
Next we want to identify the states jΨαðρ;ϕÞi. For

convenience, let us define jΨαi≡ jΨαð0; 0Þi, such that
jΨαðρ;ϕÞi ¼ gðρ;ϕÞjΨαi. Remember that jΨαi is a CFT
excited state dual to a local excitation in the bulk AdS at the
origin ρ ¼ 0 at t ¼ 0. Thus its bulk geometry is excited
only at the origin.
The SLð2; RÞ subgroup of the original SLð2; RÞL×

SLð2; RÞR, which preserves the point ρ ¼ t ¼ 0, is not
the same as the one generated by l0; l�, but it is generated
by L0 − ~L0; L1 þ ~L−1, and L−1 þ ~L1, as can be confirmed
from Eq. (4). Therefore, jΨαi should satisfy

ðL0 − ~L0ÞjΨαi ¼ ðL�1 þ ~L∓1ÞjΨαi ¼ 0: ð13Þ

The simplest solution to this condition (13) is given by

jΨαi ∝ eiðπ=2ÞðL0þ ~L0ÞjJαi; ð14Þ

where jJαi is the “Ishibashi state” for the SLð2; RÞL ×
SLð2; RÞR subalgebra of the Virasoro algebra. It is explic-
itly defined by jJαi ¼

P∞
k¼0 jkiLjkiR, where jkiL (or jkiR)

denotes the normalized (unit norm) descendant state
proportional to ðL−1Þkjαi (or ð ~L−1Þkjαi). We can confirm
that this choice (14) is the correct state dual to the bulk local
operator as we explain below. Note that if we, in particular,
choose the primary state jαi to be the vacuum j0i, we find
jΨαðρ;ϕÞi ¼ j0i as expected.
Indeed, by using the property (13), we can reproduce the

correct scalar field solution on the AdS3. The bulk scalar
field expectation value for the state jβi can be computed
from the CFT inner product as follows

hψ̂αðρ;ϕ; tÞijβi ¼ hΨαðρ;ϕÞje−itðL0þ ~L0Þjβi: ð15Þ

By using the identity (Δα is the dimension of jαi):

hΨαje−ðρ=2Þðl1−l−1Þjαi ¼ hΨαjeρðL1−L−1Þjαi ¼ 1

ðcosh ρÞ2Δα
;
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we can confirm that the scalar field expectation value for
the primary state agrees with the known scalar field
solution in AdS3 [17,19] as follows:

hψ̂αðρ;ϕ; tÞijαi ∝ e−2iΔαt
1

ðcosh ρÞ2Δα
: ð16Þ

It is also possible to extend the matching of Eq. (15) to
SLð2; RÞ descendants states. They are obtained by acting
L�1 and ~L�1 on the primary state and the scalar field
expectation values are obtained by acting the differential
operators (4) on Eq. (16). These allow us to confirm the
(perturbative) equation of motion for scalar fields,

½L2 þ ~L2 þm2R2=2�ψ̂αðt; ρ;ϕÞ ¼ 0; ð17Þ

where L2 ¼ ðL−1L1 þ L1L−1Þ=2 − L2
0 is the differential

operator corresponding to the Casimir of SLð2; RÞ and we
have Δα ¼ 1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2R2 þ 1

p
. Moreover, we can prove that

our inner product hΨαðρ; t;ϕÞjΨαðρ0; t;ϕ0Þi in the 2D CFT
perfectly matches with the known expression [19,20] of
bulk to bulk propagator of scalar fields.
In this way, we learned that the effect of the disentan-

gling unitary transformationUðρ;ϕÞ is to remove the (higher)
Virasoro generators Ln and ~Ln with jnj ≥ 2 and perform a
time translation by π=2.
Now, we can estimate how much the locality of bulk

local operators persists when the separation ðρ0 − ρ;ϕ0 − ϕÞ
gets larger by looking at the inner product
hIαjU−1

ðρ;ϕÞUðρ0;ϕ0ÞjIαi ¼ hΨαðρ;ϕÞjΨαðρ0;ϕ0Þi, where we

used the symmetry (7). If this inner product is much
smaller than 1, then we expect that bulk fields behave
locally for that length scale as they look independent.
To see the behavior of the inner product, it is useful to

employ the Fisher information metric Gab defined by

1 − jhΨαðρ;ϕÞjΨαðρþ dρ;ϕþ dϕÞij
¼ Gρρdρ2 þ 2GρϕdρdϕþGϕϕdϕ2 þOðdϕ3Þ: ð18Þ

This measures the distance between the two states
jΨαðρ;ϕÞi and jΨαðρþ dρ;ϕþ dϕÞi.
However, for our purpose, we do not want to have a

literally delta functionally localized excitation, but want to
smear over a length of the order of the Planck length.
Indeed the state (14) is singular in that it has an infinite
norm and thus we need a UV regularization. We expect that
the energy of local excitation should not exceed the Planck
energy. In AdS=CFT, the energy E is related to the
conformal dimension Δ via E ¼ Δ=R. If we substitute
E ≪ 1=lp ∼ 1=GN , then we have the bound Δ ≪ c.
Therefore, we would like to argue the identification,

jΨαi ∝ e−δðL0þ ~L0Þeiðπ=2ÞðL0þ ~L0ÞjJαi; ð19Þ

where δ provided the UV cutoff and, therefore, we should
take δ ∼ ð1=cÞ. Notice that even in the presence of this
cutoff, we can maintain the basic properties of dual scalar
field in AdS such as Eqs. (16) and (17), since we have
δ → 0 in the large c limit.
We evaluate the inner product up to quadratic terms

1 − jhΨαðρ;ϕÞjΨαðρþ dρ;ϕþ dϕÞij

¼ 1

8
ðdρ2 þ sinh2ρdϕ2ÞhΨαjðl−1l1 þ l1l−1ÞjΨαi:

Here we employed Eq. (7) and the identity

e−ðρ=2Þðl1−l−1Þl0eðρ=2Þðl1−l−1Þ ¼ cosh ρl0 − sinh ρ
l1 þ l−1

2
:

After some algebra, we obtain the estimation
hΨαjl−1l1jΨαi≃ 4hΨαjL−1L1jΨαi≃ ð1=2δ2Þ. Thus, the
information metric for jΨαðρ;ϕÞi is given by that of a
hyperbolic space H2:

ds2inf ¼
1

8δ2
ðdρ2 þ sinh2ρdϕ2Þ: ð20Þ

It is natural to expect that this corresponds to the time slice
of the global AdS3, to which our 2D CFT is dual. Indeed,
the radius of this H2 coincides [up to an Oð1Þ numerical
factor] with that in the AdS3 metric with the Planck unit as
we chose δ ∼ 1=c.
Actually, it is not difficult to imagine how to get the full

AdS3 metric including time components. As we argued, the
two point function hΦðρ; t;ϕÞjΦðρ0; t;ϕ0Þi coincides with
the bulk to bulk propagator. Even more generally, when two
points X and Y are close to each other, any two point
function of a dþ 1 dimensional free scalar field gets
proportional to DðX; YÞ−ðd−1Þ, where DðX; YÞ is the geo-
desic distance between X and Y. If we regularize this with a
cutoff δ, then we naturally have the normalized expression

hΦðXÞjΦðYÞi≃ δd−1

½DðX; YÞ2 þ δ2�d−1=2 : ð21Þ

This leads to the Fisher information metric ds2inf ∝
ð1=δ2ÞgijdXidXj, where gij is precisely the metric of the
bulk spacetime. Since it is natural to choose δ to be the
Planck scale, the information metric ds2inf coincides with
the bulk metric in the Planck unit.
In this Letter, we gave an explicit construction of the

conjectured surface-state correspondence in the setup of
AdS3=CFT2 by generalizing the formulation of cMERA.
Our formalism naturally takes into account the bulk diffeo-
morphism as a gauge symmetry of cMERA formalism. We
found an identification of bulk local operators that repro-
duces solutions of scalar field equations of motion on AdS3
and the bulk to bulk propagator. We also computed the
information metric for a locally excited state and showed
that it is given by that of a 2D hyperbolic manifold, which is
argued to describe the time slice of AdS3.
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Even though it is an important future problem to find an
analytical expression of disentangler K̂ðuÞ for holographic
CFTs, we can at least show how it looks schematically. It is
natural to expect that in the UV region u≃ 0, K̂ðuÞ gets
qualitatively similar to that for free CFTs, where K̂ðuÞ is a
bilinear of creation and annihilation operators of funda-
mental fields, which add OðcÞ entanglement, as in
Refs. [6,7]. On the other hand, we expect that in the IR
region juj ≪ 1, the disentangler K̂ðuÞ should be a linear
combination of products of particular singlet operators
(Virasoro operator s) as K̂ðuÞ ∼P

ncnðuÞΓðne−uϵÞL−n ~L−n,
which add only Oð1Þ entanglement in the IR, motivated by
the confinement-deconfinement transition in holographic
CFTs. It is curious to note that this IR behavior owing to the
large c limit may suggest cMERA can have a sub-AdS
scale locality, as opposed to (discrete) MERA.
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Note added—After we finished this work, we noticed the
interesting paper [21], which gave an identification of bulk
local operator using boundary states in a different way.
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