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We study a quantum information metric (or fidelity susceptibility) in conformal field theories with
respect to a small perturbation by a primary operator. We argue that its gravity dual is approximately given
by a volume of maximal time slice in an anti–de Sitter spacetime when the perturbation is exactly marginal.
We confirm our claim in several examples.
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The microscopic understanding of black hole entropy in
string theory by Strominger and Vafa [1] implies that
quantum information plays a crucial role in understanding
gravitational aspects of string theory. Indeed, quantum
information theoretic considerations have provided various
useful viewpoints in studies of AdS=CFT [2] or more
generally holography [3]. Especially, the idea of quantum
entanglement has turned out to be crucially involved in
geometries of holographic spacetimes, as is typical in the
nontrivial topology of eternal black holes [4]. To quantify
quantum entanglement we can study the holographic
entanglement entropy [5], which is given by the area of
codimension two extremal surfaces. In AdS=CFT, this area
is equal to the entanglement entropy in conformal field
theories (CFTs).
It is natural to wonder if there might be some other

information theoretic quantities that are useful to develop
studies of holography. As pointed out by Susskind in [6]
(see also [7]), it is also intriguing to find a quantity in CFTs
which is dual to a volume of a codimension one time slice
in anti–de Sitter (AdS). The time slice can connect two
boundaries dual to the thermofield doubled CFTs, through
the Einstein-Rosen bridge (see Fig. 1). In [6], it is
conjectured that this quantity is related to a measure of
complexity.
The main purpose of this Letter is to point out a quantum

information theoretic quantity that is related to the volume
of a time slice. This quantity is called quantum information
metric or Bures metric (see e.g.[8]), which we will simply
call the information metric. Here we mainly consider the
information metric for pure states, though it can be defined
for mixed states. Consider one parameter family of quan-
tum states jΨðλÞi and perturb λ infinitesimally as
λ → λþ δλ. Then Gλλ is simply defined from the inner
product between them as follows:

jhΨðλÞjΨðλþ δλÞij ¼ 1 −GλλðδλÞ2 þO(ðδλÞ3): ð1Þ

This metric measures the distance between two
infinitesimally different quantum states. Since the

left-hand side of (1) is called the fidelity, Gλλ is also called
the fidelity susceptibility. This quantity gets divergent at
quantum critical points and thus can be used as an order
parameter of quantum phase transitions (see e.g. the
review [9]).
We will argue that Gλλ when a dþ 1 dimensional CFT is

deformed by an exactly marginal perturbation, parame-
trized by λ, is holographically estimated by

Gλλ ¼ nd
VolðΣmaxÞ

Rdþ1
; ð2Þ

where nd is an Oð1Þ constant and R is the AdS radius. The
dþ 1 dimensional spacelike surface Σmax is the time
slice with the maximal volume in the AdS that ends on
the time slice at the AdS boundary(boundaries). See also
[10] for other holographic interpretations of information
metric.
Now we introduce the information metric for

quantum states in CFTs on Rdþ1, whose Euclidean time
and space coordinates are denoted by τ and x. We consider
the inner product hΩ1jΩ2i between two states jΩ1i and
jΩ2i. jΩiiði ¼ 1; 2Þ are ground states for the two
Hamiltonians Hiði ¼ 1; 2Þ. We define their Euclidean
Lagrangians by Liði ¼ 1; 2Þ and their partition functions
by Ziði ¼ 1; 2Þ. The inner product is described by the path
integral:

FIG. 1. A time slice in the Penrose diagram of eternal AdS
black hole which connects the two boundaries dual to the
thermofield doubled CFTs.
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hΩ2jΩ1i ¼ ðZ1Z2Þ−1=2
Z

Dϕ exp

�
−
Z

ddx

�Z
0

−∞
dτL1

þ
Z

∞

0

dτL2

��
: ð3Þ

Assume the difference L2 − L1 is infinitesimally small and
is written by using the primary operator Oðτ; xÞ as

L2 − L1 ≡ δL ¼ δλOðτ; xÞ: ð4Þ

Next, we rewrite (3) by using the expectation value h· · ·i
in the vacuum state jΩ1i:

h ~Ω2ðϵÞjΩ1i ¼
hexp½− R

∞
ϵ dτ

R
ddxδL�i

ðhexp½−ðR −ϵ
−∞ þ R∞

ϵ Þdτ R ddxδL�iÞ1=2 ; ð5Þ

where δL≡ L2 − L1. Here we introduced the UV regu-
larization ϵ by replacing the ground state jΩ2i with

j ~Ω2ðϵÞi≡ e−ϵH1 jΩ2i
ðhΩ2je−2ϵH1 jΩ2iÞ1=2

: ð6Þ

By performing perturbative expansions of (5) up to
quadratic terms, we obtain

1 − h ~Ω2ðϵÞjΩ1i

¼ 1

2

Z
∞

ϵ
dτ

Z
−ϵ

−∞
dτ0

Z
ddx

Z
ddx0hδLðτ; xÞδLðτ0; x0Þi;

where we assumed the time reversal symmetry rela-
tion hδLð−τ; xÞδLð−τ0; x0Þi ¼ hδLðτ; xÞδLðτ0; x0Þi.
In this way, the information metric with respect to the λ

perturbation (4) is computed as

Gλλ ¼
1

2

Z
∞

ϵ
dτ

Z
−ϵ

−∞
dτ0

Z
ddx

Z
ddx0hOðτ; xÞOðτ0; x0Þi:

ð7Þ

Note that up to now, our argument can be applied to any
local operator O in any quantum field theory. However, for
simplicity, we would like to focus on the case where the
spin of the primary field O is zero and its total conformal
dimension is Δ in this Letter.
The (normalized) two-point function of the primary field

takes the universal form

hOðτ; xÞOðτ0; x0Þi ¼ 1

½ðτ − τ0Þ2 þ ðx − x0Þ2�Δ : ð8Þ

By plugging (8) into (7), when dþ 2 − 2Δ < 0 we obtain

Gλλ ¼ NdVdϵ
dþ2−2Δ; ð9Þ

where we define Nd ¼ ½2d−2Δπd=2ΓðΔ − d=2 − 1Þ=ð2Δ −
d − 1ÞΓðΔÞ� and Vd is the infinite volume of Rd. In
particular, for a marginal perturbation we have dþ 2−
2Δ ¼ −d. On the other hand, when dþ 2 − 2Δ ≥ 0, there
exists an infrared (IR) divergence and we need an IR
cutoff L for both the τ and x integral. This leads to Gλλ ∝
VdLdþ2−2Δ (agreeing with [9]), where for dþ 2 − 2Δ ¼ 0
we regard L0 as logðL=ϵÞ.
Now we would like to turn to holographic calculations.

For this we focus on the case where the perturbation (4) is
exactly marginal Δ ¼ dþ 1. This greatly simplifies the
computation in the gravity dual. This is because gravity
backgrounds dual to both of jΩiiði ¼ 1; 2Þ are the pure
AdSdþ2 with the same radius R. Such a gravity dual which
interpolates two AdS spaces is called a Janus solution [11].
The massless bulk scalar field dual to the exactly marginal
operator O is denoted by ϕ.
Let us first study the AdS3 Janus solution introduced in

[12]. This setup is defined by the action

S ¼ −
1

16πGN

Z
dx3

ffiffiffi
g

p �
R − gab∂aϕ∂bϕþ 2

R2

�
: ð10Þ

The Janus solution is given by the metric

ds2 ¼ R2ðdy2 þ fðyÞds2AdS2Þ;

fðyÞ ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ2

q
coshð2yÞ

�
; ð11Þ

and the dilaton

ϕðyÞ ¼ γ

Z
y

−∞

dy
fðyÞ þ ϕ1; ð12Þ

where γ½≤ ð1= ffiffiffi
2

p Þ� is the parameter of Janus deformation.
The metric of AdS2 slice is given by
ds2AdS2 ¼ ðdz2 þ dx2Þ=z2. ϕ1 ¼ ϕð−∞Þ is dual to the
coupling constant of the exactly marginal deformation
for the ground state jΩ1i. On the other hand, the value
ϕ2 ¼ ϕð∞Þ for the other ground state jΩ2i is obtained
by performing the integral in (12) as ϕ2 − ϕ1 ¼ffiffiffi
2

p
arctan ½ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ2

p
Þ= ffiffiffi

2
p

γ�≃ γ when γ ≪ 1.
By matching the asymptotic behavior of the metric (11)

at the infinity jyj ¼ y∞ð→ ∞Þ with that of an undeformed
metric (γ ¼ 0)

ds2pure ¼ R2

�
dŷ2 þ 1

2
(1þ coshð2ŷÞ)ds2AdS2

�
; ð13Þ

we find the following condition:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γ2

q
e2y∞ ¼ e2ŷ∞ : ð14Þ

The on-shell action of (10) is evaluated by

SðγÞ¼ R
4πGN

VAdS2

Z
y∞

−y∞
dy

�
1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2γ2

q
coshð2yÞ

��

¼ R
4πGN

VAdS2

�
y∞þ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2γ2

q
sinhð2y∞Þ

�
; ð15Þ

where VAdS2 ¼
R
dx

R
∞
ϵ ðdz=z2Þ ¼ V1=ϵ is the volume of

AdS2 with a unit radius.
By using the condition (14) at the infinity

SðγÞ − Sð0Þ ¼ R
4πGN

VAdS2ðy∞ − ŷ∞Þ

¼ RV1

16πGNϵ
log

�
1

1 − 2γ2

�
> 0: ð16Þ

For small γ2, we finally find

jhΩ2jΩ1ij ¼ e−SðγÞ−Sð0Þ ≃ 1 −
RV1

8πGNϵ
γ2: ð17Þ

Therefore the information metric is estimated as follows:

Gγγ ¼
cV1

12πϵ
; ð18Þ

where we employed the holographic expression of the
central charge c ¼ 3R=2GN . Since the normalization of the
scalar field (10) leads to the two-point function of O which
is proportional to the central charge c (i.e. δλ ∝

ffiffiffi
c

p
δϕ ¼ffiffiffi

c
p

γ), we indeed obtain the advertised formula (2), where Σ
is given by the AdS2 slice ρ ¼ 0 in AdS3.
In order to study higher dimensional examples in a

universal way, we would like to consider a simple holo-
graphic model, which turns out to give an excellent
approximation to various explicit examples. This holo-
graphic model is obtained by approximating the exactly
marginal deformation at the time slice τ ¼ 0 in CFTdþ1 by
a dþ 1 dimensional defect brane Σwith a tension T, which
extends from the time slice on the AdS boundary to the
bulk. This is similar to the holographic constructions in
[13–15]. Note that the nature of this approximation is very
similar to the hard wall model of AdS=QCD [16].
Therefore it should be regarded as a phenomenological
bottom-up approach rather than a systematic and control-
lable approximation scheme.
In the gravity setup this prescription is simply realized by

adding the defect brane action

Sbrane ¼ T
Z
Σ

ffiffiffi
g

p ð19Þ

to the Einstein-Hilbert action. This prescription is consis-
tent with the boundary (or defect) conformal symmetry in a
way similar to the AdS=BCFT [15]. Again we can describe
the perturbation (4) by the profile of a massless scalar field
ϕ. When the deformation δλ is infinitesimally small, we
have

T ≃ nd
ðδλÞ2
Rdþ1

; ð20Þ

where nd is an Oð1Þ constant which is fixed from the
normalization of the two-point function (8). The Einstein
equation shows that T is proportional to ðδλÞ2, as the bulk
stress tensor is quadratic with respect to the scalar field. The
dependence on R can be explained by the dimensional
reason or by comparing with the Janus computation. In this
limit, we can treat the brane as a probe, ignoring its
backreaction. Finally we impose the equation of motion
with respect to the brane embedding. This requires that the
action (19) is extremized and thus in the Lorentzian
signature, and Σ is the maximal area surface Σmax that
ends on the time slice τ ¼ 0 at the AdS boundary. Together
with (20), we reach our claim (2).
For a CFTdþ1 on Rdþ1, the holographic formula (2)

leads to

Gλλ ¼ ndVd

Z
∞

ϵ

dz
zdþ1

¼ ndVd

dϵd
; ð21Þ

which indeed agrees with (9).
Similarly we can analyze the global AdSdþ2, which is

described by the metric

ds2 ¼ R2

�
−ðr2 þ 1Þdt2 þ dr2

r2 þ 1
þ r2dΩ2

d

�
ð22Þ

to obtain the information metric for a CFTdþ1 on R × Sd:

Gλλ ¼ ndVd

Z
r∞

0

rdffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p dr ¼ ndVd

dϵd
þ � � � ; ð23Þ

where r∞ ∼ 1=ϵ is dual to the UV cutoff of the CFT. It
might be curious that there appears a logarithmic divergent
term ∝ log r∞ when d is even, i.e. odd dimensional CFTs.
This logarithmic term is analogous to the boundary central
charge in BCFT [17]. Also it is clear from (23) that Gλλ is
smaller than the flat space one (21) and this is due to the
mass gap in CFTs on a compact space.
Another interesting example is the dþ 2 dimensional

AdS Schwarzschild black hole

ds2 ¼ R2

�
dz2

hðzÞz2 −
hðzÞ
z2

dt2 þ
P

d
i¼1 dx

2
i

z2

�
;

hðzÞ≡ 1 − ðz=z0Þdþ1; ð24Þ
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which is dual to the finite temperature CFT. The parameter
z0 is related the temperature T via z0 ¼ dþ 1=4πT. The
information metric is computed as

Gλλ ¼ ndVd

Z
z0

ϵ

dzffiffiffiffiffiffiffiffiffi
hðzÞp

zdþ1

¼ ndVd

d

�
1

ϵd
þ bd

zd0

�
;

bd ≡ −1þ d
Z

1

0

dy

�
1 − ydþ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ydþ1

q �
−1

¼ ðd − 1Þ
ffiffiffi
π

p
2

Γ
	
1þ 1

dþ1




Γ
	
1
2
þ 1

dþ1


 ≥ 0: ð25Þ

For example, we have b1 ¼ 0, b2 ≃ 0.70, b3 ≃ 1.31.
In this thermal example (25), we are actually considering

an information metric for mixed states. By generalized
previous holographic analysis so that we still have the
formula (2), the information metric for mixed state may be
defined as follows:

Tr½ρðλÞρðλþ dλÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ρðλÞ2�Tr½ρðλþ dλÞ2�

p ¼ 1 − 2GλλðδλÞ2: ð26Þ

However, we can describe the thermal state as a pure state
in the doubled Hilbert space. In this equivalent description,
our result (25) can be interpreted as (a half of) the
information metric for the pure state as we will see later.
Finally wewould like to study a time-dependent example

in order to confirm our proposed formula (2) can be applied
to such a nontrivial setup. For this purpose, we consider
thermofield double (TFD) description of finite temperature
state in a two-dimensional (2D) CFT:

jΨTFDðtÞi ∝ e−iðHðAÞþHðBÞÞtX
n

e−ðβ=4ÞðHðAÞþHðBÞÞjniAjniB;

ð27Þ
where HðAÞ and HðBÞ are the identical Hamiltonians for the
first and second CFT of the TFD; the states jniA;B are the
unit norm energy eigenstates in the two CFTs. This TFD
setup is dual to the extended geometry of eternal AdS black
hole depicted in Fig. 1.
We are interested in the inner product hΨ0

TFDðtÞjΨTFDðtÞi
and the information metric Gλλ. Here, the state hΨ0

TFDðtÞj is
the TFD state with a Hamiltonian H0ðAÞ þH0ðBÞ which is
obtained by an infinitesimal exactly marginal λ perturbation
(4) with respect to each ofHðAÞ andHðBÞ at the same time t.
We argue this deformation is dual to introduce a defect
brane Σ in the Banados-Teitelboim-Zanelli (BTZ) black
hole as in Fig. 1.
Let us compute Gλλ in a Euclidean path-integral formal-

ism of a 2D CFT. The two-point function on S1 × R, where
S1 is the thermal circle with periodicity β, reads

hOðx1;τ1ÞOðx2;τ2Þi¼
ðπβÞ2Δh

sinh2
	
πðx1−x2Þ

β



þsin2

	
πðτ1−τ2Þ

β


i
Δ :

Then, Gλλ at the Euclidean time τ is expressed as

Gλλ ¼
1

2

Z
∞

−∞
dx1dx2

Z
3β=4−τ−ϵ

β=4þτþϵ

× dτ2

Z
β=4þτ−ϵ

−β=4−τþϵ
dτ1hOðx1; τ1ÞOðx2; τ2Þi: ð28Þ

Using the formula (for 0 ≤ t ≤ π)

Z
∞

−∞
dxðsinh2xþ sin2tÞ−2

¼ 1

sin2tcos2t
þ ðt − π=2Þ 2sin

2t − 1

sin3tcos3t
; ð29Þ

we can evaluate the information metric (28) when Δ ¼ 2,
up to finite terms in the ϵ → 0 limit:

Gλλ ¼
πV1

8ϵ
−
πV1

2β
þ 2π2V1

β2
τ cot

�
4πτ

β

�
: ð30Þ

When τ ¼ 0, we simply find Gλλ ¼ πV1=8ϵ. This is
consistent with our holographic result b1 ¼ 0 in (25).
To study the real time evolution, we have only to set

τ ¼ it and we obtain the result

Gλλ ¼
πV1

8ϵ
−
πV1

2β
þ 2π2V1

β2
cosh 4πt

β

sinh 4πt
β

t: ð31Þ

At late time t ≫ β, it grows linearly:

Gλλ ≃ πV1

8ϵ
þ 2π2V1

β2
t: ð32Þ

We now turn to the holographic computation in the BTZ
black hole, where the region (I) in Fig. 1 is described by the
metric (we set β ¼ 2π for simplicity)

ds2 ¼ R2ð−sinh2ρdt2 þ dρ2 þ cosh2ρdx2Þ: ð33Þ
We can continue into the region (II) by setting κ ¼ −iρ and
~t ¼ tþ πi=2. In the region (II), if we specify Σ by κ ¼ κð~tÞ
of Σ, its volume is given by

VolðΣÞ ¼ R2V1

Z
d~t cos κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2κ − ð∂κ=∂~tÞ2

q
: ð34Þ

We define κ�ð0 ≤ κ� < π=4Þ to be the value of κ where
∂κ=∂~t ¼ 0. We can maximize the volume (34) and extend
the solution into the region (I) in a way similar to [18]. In
the end we obtain the following expression of VolðΣmaxÞ as
a function of t in terms of the parameter κ�:
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VolðΣÞ
Rdþ1V1

¼ 2 sinh ρ∞ þ 2

Z
κ�

0

dκ
cos κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2ð2κ�Þ=sin2ð2κÞ − 1
p − 2

Z
ρ∞

0

dρ
cosh ρ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ð2ρÞ þ sin2ð2κ�Þ

p
− sinhð2ρÞ

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ð2ρÞ þ sin2ð2κ�Þ

p ;

t ¼
Z

κ�

0

dκ

sin κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2ð2κÞ=sin2ð2κ�Þ

p −
Z

ρ∞

0

dρ

sinh ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinh2ð2ρÞ=sin2ð2κ�Þ

p ; ð35Þ

where ρ∞ is the UV cutoff such that eρ∞ ∝ 1=ϵ. In the late
time limit (i.e. κ� → π=4) we find the finite part
VolfiniteðΣÞ=Rdþ1 approaches to V1t, which agrees with
2Gλλ in (32). This linear t growth clearly comes from the
Einstein-Rosen bridge as already noted in [6]. In Fig. 2 we
plotted the holographic result versus the CFT result, which
shows only a very small deviation. For example, in the
limit t → 0 (or κ� → 0) we find VolfiniteðΣÞ=ðRdþ1V1Þ≃
ð2=πÞt2, while 2Gλλ=V1 ≃ 2

3
t2.

In this Letter, we introduced an information metric
in CFTs and proposed its holographic formula based on
a simple probe model. We presented nontrivial evidence
which supports our proposal. It might be interesting to note
that if we normalize the two-point function such that it is
proportional to a central charge or if we employ some
combination of energy stress tensors (related to some
metric perturbations), we have the estimation
Gλλ ∼ ½VolðΣmaxÞ=GNR�, which is the same formula argued
in [6] to measure the amount of complexity.
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