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A high-mobility Cu2O thin film was fabricated using the mist chemical vapor deposition 

(CVD) method. This was achieved by suppressing the contamination from nitrogen 

impurities and optimum growth conditions to obtain single-phase Cu2O without CuO. A 600 

nm Cu2O thin film was obtained using ethylenediaminetetraacetic acid as a complexing 

agent in dry-air growth atmosphere for 120 min. The resulting thin film had a resistivity of 

2.8×102 Ω∙cm, carrier concentration of 1.2×1015 cm−3, and hole mobility of 19.3 cm2∙V−1∙s−1. 

This hole mobility improved by two or more orders of magnitude that of previous Cu2O thin 

film obtained by mist CVD method. 
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Cuprous oxide (Cu2O) has attracted considerable attention as a promising material for 

photovoltaic applications1–7) owing to its high elemental abundance and nontoxicity. Cu2O 

is a p-type oxide semiconductor with a direct bandgap of 2.0–2.1 eV8) and high absorption 

coefficient of 104 cm−1 in the visible light region9). The current possible conversion 

efficiency of Cu2O-based solar cells is greater than 8%10,11), and further improvements are 

expected. For many of the highly efficient Cu2O-based solar cells10,12–14), Cu2O sheets 

produced by thermal oxidation are used. The thermally oxidized Cu2O sheets have excellent 

electrical characteristics, such as a high mobility, which require a high-temperature 

(>1000 °C) process. Furthermore, it is difficult to obtain a thin film suitable for solar cell 

applications. In addition, most other high-quality Cu2O thin films15–20) are obtained using a 

vacuum process and/or high-temperature process that is neither environmentally friendly nor 

low cost. In the use of non-vacuum and low temperature process, although there are a few 

reports of high quality Cu2O thin films by the electrochemically deposition method21,22), it 

is difficult to continuously produce solar cell laminate structure. Herein, we focus on mist 

chemical vapor deposition (CVD)23–32) as a film-deposition method with a low 

environmental load and high productivity. The mist CVD technique allows the growth of 

high-quality films in atmosphere without vacuum equipment and can be easily applied for 

large substrates. However, the Cu2O thin film obtained using the mist CVD method has a 

hole mobility of 0.2 cm2∙V−1∙s−1 33), which is remarkably lower than that of Cu2O (110 

cm2∙V−1∙s−1) obtained by the thermal oxidation method. Similarly, the mobility of the Cu2O 

thin film obtained by non-vacuum and low-temperature (solution) processes, such as 

atmospheric atomic layer deposition (AALD) and the molecular precursor method, is also 

low7,14,20,33–38). Representative studies on Cu2O thin films are summarized in Table I. The 

improvement in the electrical characteristics of the Cu2O thin film is indispensable for high-

efficiency solar cell applications39). In particular, it is important to realize high mobility Cu2O 

thin film using a method suitable for industrial application. Under atmospheric pressure (or 

a certain oxygen partial pressure condition), Cu2O easily changes to CuO as the temperature 

rises. The mist CVD method is no exception, and the generation of CuO appears from 

approximately 400 °C. Therefore, Cu2O thin films are grown in low-temperature conditions 

of less than 400 °C. 

In this work, we report a dramatic improvement in the mobility of Cu2O thin films by the 
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mist CVD method, i.e., an increase of two orders of magnitude, by controlling the complex 

forming material and film-growth atmosphere. A high-quality Cu2O thin film that is 

comparable to one fabricated by the conventional high-temperature and/or vacuum process 

is realized by the mist CVD method. The latter is excellent in productivity at low 

environmental loads and leads to the realization of highly efficient oxide solar cells. 

Prior to the growth of Cu2O, soda-lime glass substrates were sequentially washed in 

acetone, methanol, and deionized water in an ultrasonic cleaner. The Cu2O thin films were 

grown by the mist CVD method, described elsewhere in detail25–27,30,32). The growth 

conditions of Cu2O are summarized in Table II. The precursor used for the Cu2O thin-film 

growth was copper acetylacetonate, Cu(acac)2, which was diluted in a solution of methanol 

and deionized water of concentration 0.020 mol/L. Etylenediamine (EDA) or 

ethylenediaminetetraacetic acid (EDTA), which is an additive for forming a complex 

together with copper ions, was added to the solution. In a previous study33), EDA was used 

as a complex agent. In this case, two EDA molecules coordinate with one Cu atom to form 

a complex40), as shown in Fig. 1 (a). In Fig 1 (a), the Cu atom coordinates only with the N 

atoms. The Cu2O thin films grown using the EDA as a complex agent at a low temperature 

of 400 °C or less contained a considerable amount of N atoms as impurities, which was 

indicated by the shifting peak of the XRD patterns to a higher angle, and nitrogen was 

detected by energy dispersive X-ray spectrometry (EDX). It is assumed that these N 

impurities lead to a decrease in mobility, so EDTA as a complex agent was investigated to 

suppress the incorporation of N. When EDTA was used as a complexing agent, one EDTA 

molecule and one Cu atom form a complex as shown in Fig. 1 (b). One Cu atom is 

coordinated with two N and four O atoms, and the suppression of the incorporation of N 

atoms is expected. To sufficiently promote the thermal decomposition reaction and oxidation 

reaction, even at low temperatures, dry air (N2 80%, O2 20%) was investigated as the carrier 

and dilution gas as well as the growth atmosphere. Conventional growth conditions with N2 

alone were tested for comparison. Furthermore, the film formation time was prolonged with 

the expectation of improvement in the electrical characteristics owing to the increase in 

crystal grain size. 

First, the phase of the obtained samples was confirmed by XRD. The XRD patterns of the 

samples obtained under representative conditions is shown in Fig. 2. Although Cu2O growth 
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was confirmed regardless of the complex agent, growth atmosphere, and growth time, the 

obtained sample was a single-phase Cu2O at a growth temperature of 375 °C or below, and 

a mixed phase of Cu2O and CuO at a growth temperature of 400 °C or above under any 

growth conditions. Interestingly, each diffraction position of the Cu2O thin films represented 

by Cu2O (111), shown in Fig. 2 (b), approached the reference position by further using EDTA 

as the complex agent, dry air as the growth atmosphere, and 120 min as the growth time. In 

addition, nitrogen was detected below the measurement limit in the EDS measurement, also 

indicating that contamination of the nitrogen impurity was suppressed. 

The optical properties of the samples were characterized by visible spectrometry. Figure 

3 shows the transmittance spectra and Tauc plot of the Cu2O thin film obtained using EDTA 

as a complexing agent and dry air as the growth atmosphere for 120 min. In the transmittance 

spectra, the marked decrease in the transmission rate at a wavelength shorter than 600 nm is 

clearly due to the absorption by Cu2O. The bandgap of the Cu2O films calculated from the 

Tauc ((αhν)2–hν) plot was 2.02 eV, and was almost constant irrespective of the film growth 

conditions. This bandgap value agrees well with that of Cu2O41). It is noteworthy that the 

thin film in which CuO was observed by XRD analysis, has a smaller band gap value, i.e., 

1.2–1.8 eV42), which is suggestive of the CuO bandgap. 

The electrical resistivity was determined by the four-terminal method, using the film 

thickness determined by the cross-sectional SEM image. Van-der-Pauw–Hall measurements 

were performed at room temperature to characterize the electrical properties of the Cu2O 

thin films. Hall measurements could not be performed on the Cu2O thin film obtained using 

EDA as a complexing agent because of the measurement limits. All of the samples for which 

the Hall measurement could be performed exhibited p-type conductivity. Figure 4 shows the 

growth temperature influence on the (a) resistivity, (b) carrier concentration, and (c) mobility, 

of the Cu2O thin films obtained under each growth condition (complexing agent, atmosphere, 

and growth time). Using EDTA as the complexing agent, the resistivity was reduced by 

approximately one order of magnitude, compared with that using EDA as the complexing 

agent. From the measurement limit, it was inferred that the Cu2O thin film obtained using 

EDA as the complexing agent had a low mobility of approximately 10−2 cm2∙V−1∙s−1 or less, 

and that the resistivity was lowered by a dramatic improvement in the hole mobility. By 

changing the growth atmosphere from N2 to dry air, the resistivity further decreased. At a 
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growth temperature of 400 °C or below, the carrier concentration slightly decreased, mobility 

improved by approximately one order of magnitude, and resistivity decreased overall. This 

may be due to the promotion of the thermal decomposition reaction by O2 in dry air, which 

reduces N impurities and contributes to a lower carrier concentration and mobility. However, 

at a growth temperature of 425 °C or above, the electrical characteristics were reversed, and 

the hole mobility of the Cu2O grown in a dry air atmosphere dropped significantly. This is 

because the O2 in dry air promotes not only the thermal decomposition reaction but also the 

oxidation of Cu2O to CuO, such that the proportion of CuO in the film abruptly increased. 

Increasing the growth time further improved the hole mobility. At a growth time of 30 min, 

the film thickness was 150 nm, and the particle diameter of Cu2O observed from the SEM 

image was approximately the same. Assuming that the growth time was 120 min, the film 

thickness was 600 nm and the particle diameter also increased to approximately 600 nm. 

This increase in grain size was thought to suppress the grain boundary scattering and 

improve the mobility. 

Figure 5 shows the crystallite size of Cu2O obtained under each growth condition. The 

relationship between the X-ray diffraction peak width and crystallite size is expressed by the 

following Scherrer equation: 

 τ = 𝐾𝐾𝐾𝐾
𝛽𝛽 cos𝜃𝜃

. 

Here, 𝐾𝐾 = 1.15 is the shape factor, 𝜆𝜆 = 0.154 nm is the X-ray wavelength, 𝛽𝛽 is the 

full width at half maximum (rad) of the peak, 𝜃𝜃  is the Bragg angle (rad), and τ  is the 

average size (nm) of the crystallite. From the XRD results, the diffraction peak of Cu2O (111) 

was used to calculate the crystallite size. Figure 5 shows that the crystallite size of Cu2O 

gradually increased when using the EDTA as the complexing agent and dry air as the growth 

atmosphere, with a 120 min growth time. Therefore, the increase in the crystallite size was 

correlated with the improvement in electrical characteristics. Figure 6 shows the influence 

of the crystallite size on the (a) resistivity and (b) mobility. The resistivity slightly decreased 

as the crystallite size increased. Similarly, the carrier concentration also slightly decreased 

as the crystallite size increased. However, the hole mobility abruptly increased as the 

crystallite size increased. The mobility was improved by approximately one order of 

magnitude by increasing the crystallite size by 5 nm. Hence, we conclude that the 

optimization of the growth conditions that increase the crystallite size is effective for 
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improving the hole mobility of Cu2O. A Cu2O thin film of resistivity 2.8×102 Ω∙cm, carrier 

concentration 1.2×1015 cm−3, and hole mobility 19.3 cm2∙V−1∙s−1 was obtained using EDTA 

as the complexing agent, dry air as the growth atmosphere, and 120 min as the growth time 

at a growth temperature of 375 °C. This is one of the best hole mobility value attained in a 

Cu2O thin film fabricated by a non-vacuum and low-temperature (solution) process, and this 

hole mobility improved by two or more orders of magnitude compared with that of previous 

Cu2O thin film obtained by mist CVD method. 

In conclusion, a high-mobility Cu2O thin film was obtained using the mist CVD method. 

To grow a Cu2O thin film with excellent electrical characteristics by the mist CVD method, 

the following two criteria must be met: (i) growth at 375 °C or below, in which a Cu2O single 

phase is obtained instead of a mixed phase with CuO, and (ii) improvement of the crystallite 

size by suppressing N impurities and improving crystallinity. The Cu2O thin film obtained 

using EDTA as the complexing agent and a dry-air growth atmosphere for 120 min of growth 

exhibited a hole mobility of 19.3 cm2∙V−1∙s−1. We found that the improvement in the 

electrical characteristics, particularly the hole mobility, correlated with the improvement in 

the crystallite size. Combined with n-type oxide semiconductors such as ZnO and Ga2O3, 

which have already been realized with high quality by the mist CVD method, the 

development of highly efficient solar cell devices is expected. 

 
Acknowledgments 

This work was partially supported by the JSPS Grant-in-Aid for Young Scientists B 

(JP25870613) and Grant-in-Aid for Early-Career Scientists (JP18K13788). 

  



  Template for APEX (Jan. 2014) 

7 

References 
1) L.C. Olsen, F.W. Addis, and W. Miller, Sol. Cells 7, 247 (1982). 

2) K. Fujimoto, T. Oku, and T. Akiyama, Appl. Phys. Express 6, 086503 (2013). 

3) C. Jayathilaka, V. Kapaklis, W. Siripala, and S. Jayanetti, Appl. Phys. Express 8, 065503 (2015). 

4) Y. Ievskaya, R.L.Z. Hoye, A. Sadhanala, K.P. Musselman, and J.L. MacManus-Driscoll, Sol. Energy 

Mater. Sol. Cells 135, 43 (2015). 

5) Y.S. Lee, D. Chua, R.E. Brandt, S.C. Siah, J.V. Li, J.P. Mailoa, S.W. Lee, R.G. Gordon, and T. 

Buonassisi, Adv. Mater. 26, 4704 (2014). 

6) S.W. Lee, Y.S. Lee, J. Heo, S.C. Siah, D. Chua, R.E. Brandt, S.B. Kim, J.P. Mailoa, T. Buonassisi, and 

R.G. Gordon, Adv. Energy Mater. 4, 1301916 (2014). 

7) K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 93, 

202107 (2008). 

8) F.L. Weichman, Phys. Rev. 117, 998 (1960). 

9) C. Malerba, F. Biccari, C. Leonor Azanza Ricardo, M. D’Incau, P. Scardi, and A. Mittiga, Sol. Energy 

Mater. Sol. Cells 95, 2848 (2011). 

10) T. Minami, Y. Nishi, and T. Miyata, Appl. Phys. Express 9, 052301 (2016). 

11) T. Minami and T. Miyata, Oyobuturi 8, 677 (2017). 

12) T. Minami, Y. Nishi, and T. Miyata, Appl. Phys. Express 8, 022301 (2015). 

13) T. Minami, Y. Nishi, and T. Miyata, Appl. Phys. Express 6, 044101 (2013). 

14) T. Minami, Y. Nishi, T. Miyata, and J. Nomoto, Appl. Phys. Express 4, 062301 (2011). 

15) B.S. Li, K. Akimoto, and A. Shen, J. Cryst. Growth 311, 1102 (2009). 

16) Y.S. Lee, M.T. Winkler, S.C. Siah, R. Brandt, and T. Buonassisi, Appl. Phys. Lett. 98, 192115 (2011). 

17) Y. Guo, H. Lei, L. Xiong, B. Li, Z. Chen, J. Wen, G. Yang, G. Li, and G. Fang, J. Mater. Chem. A 5, 

11055 (2017). 

18) S.H. Wee, P.S. Huang, J.K. Lee, and A. Goyal, Sci. Rep. 5, 16272 (2015). 

19) G. Kaur, K.L. Yadav, and A. Mitra, Appl. Phys. Lett. 107, 053901 (2015). 

20) Z. Wang, P.K. Nayak, J.A. Caraveo-Frescas, and H.N. Alshareef, Adv. Mater. 28, 3831 (2016). 

21) S.K. Baek, Y.H. Kwon, J.H. Shin, H.S. Lee, and H.K. Cho, Adv. Funct. Mater. 25, 5214 (2015). 

22) Y. Takiguchi, A. Orisaka, and S. Miyajima, J. Electrochem. Soc. 164, D802 (2017). 

23) H. Nishinaka, T. Kawaharamura, and S. Fujita, Jpn. J. Appl. Phys. 46, 6811 (2007). 

24) T. Kawaharamura, H. Nishinaka, and S. Fujita, Jpn. J. Appl. Phys. 47, 4669 (2008). 

25) D. Shinohara and S. Fujita, Jpn. J. Appl. Phys. 47, 7311 (2008). 

26) H. Nishinaka, Y. Kamada, N. Kameyama, and S. Fujita, Jpn. J. Appl. Phys. 48, 121103 (2009). 

27) H. Nishinaka, Y. Kamada, N. Kameyama, and S. Fujita, Phys. Status Solidi 247, 1460 (2010). 

28) T. Ikenoue, N. Kameyama, and S. Fujita, Phys. Status Solidi C 8, 613 (2011). 

29) J. Piao, S. Katori, T. Ikenoue, and S. Fujita, Phys. Status Solidi A 209, 1298 (2012). 

30) K. Akaiwa and S. Fujita, Jpn. J. Appl. Phys. 51, 070203 (2012). 



  Template for APEX (Jan. 2014) 

8 

31) T. Ikenoue, H. Nishinaka, and S. Fujita, Thin Solid Films 520, 1978 (2012). 

32) N. Suzuki, K. Kaneko, and S. Fujita, J. Cryst. Growth 364, 30 (2013). 

33) T. Ikenoue, S. Sakamoto, and Y. Inui, Jpn. J. Appl. Phys. 53, 05FF06 (2014). 

34) G. Aggarwal, C. Das, S. Agarwal, S.K. Maurya, P.R. Nair, and K.R. Balasubramaniam, Phys. Status 

Solidi RRL 12, 1700312 (2018). 

35) K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Phys. Status Solidi A 206, 

2192 (2009). 

36) V. Figueiredo, E. Elangovan, R. Barros, J. V Pinto, T. Busani, R. Martins, and E. Fortunato, J. Disp. 

Technol. 8, 41 (2012). 

37) D. Muñoz-Rojas, M. Jordan, C. Yeoh, A.T. Marin, A. Kursumovic, L.A. Dunlop, D.C. Iza, A. Chen, H. 

Wang, and J.L. MacManus Driscoll, AIP Adv. 2, 042179 (2012). 

38) H. Nagai, T. Suzuki, H. Hara, C. Mochizuki, I. Takano, T. Honda, and M. Sato, Mater. Chem. Phys. 137, 

252 (2012). 

39) Y. Takiguchi and S. Miyajima, Jpn. J. Appl. Phys. 54, 112303 (2015). 

40) F.H. Allen, Acta Crystallogr. Sect. B Struct. Sci. 58, 380 (2002). 

41) M. Heinemann, B. Eifert, and C. Heiliger, Phys. Rev. B 87, 115111 (2013). 

42) A.Y. Oral, E. Menşur, M.H. Aslan, and E. Başaran, Mater. Chem. Phys. 83, 140 (2004). 

 

 

  



  Template for APEX (Jan. 2014) 

9 

Figure Captions 

Fig. 1. Complex formation of Cu using (a) EDA and (b) EDTA as complexing 

agents. 

 

Fig. 2. (a) XRD patterns of Cu2O thin films obtained under representative 

conditions. (b) Relative shift in Cu2O (111) peak. 

 

Fig. 3. (a) Transmittance spectra and (b) Tauc plot of Cu2O thin film obtained using EDTA 

as a complexing agent. 

 

Fig. 4. Growth temperature influence on (a) resistivity, (b) carrier concentration, 

and (c) hole mobility of the Cu2O thin film obtained under each growth condition. 
 

Fig. 5. Crystallite size for each growth condition calculated from the Cu2O (111) 

diffraction peak.  
 

Fig. 6. Crystallite size influence on (a) resistivity and (b) hole mobility. 
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Table I. A brief summary of the properties of representative Cu2O thin films 

Method Substrate 
Tgrowth 

[°C] 

Tanneal 

[°C] 

μ 

[cm2 V−1 s−1] 
Ref 

Va
cu

um
 

RF-magnetron sputtering Glass 600 - 256 15) 

PLD 
MgO 

(100) 
700 - 90 33) 

RF-magnetron sputtering Glass 
RT - 0.65 

34) 
RT 200 18.47 

A
tm

os
ph

er
ic

 p
re

ss
ur

e 

Thermal oxidation - 1010 - 110 14) 

Electrochemically deposition ITO 60 - 28.5 21) 

AALD Glass 225 - 5.3 35) 

Molecular precursor Glass RT 450 4.8 36) 

Mist-CVD (previous) Glass 350 - 0.2 31) 

Mist-CVD (this work) Glass 375 - 19.3  
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Table II.  Growth condition of Cu2O thin films.  
 

Source, concentration Cu(acac)2, 0.050 mol/L 
Complexing agent, concentration EDA, 0.100 mol/L 

or 
EDTA, 0.050 mol/L 

Solvent H2O:CH3OH = 3:7 
Carrier gas, flow rate N2 or Dry air, 3 L/min 
Dilution gas, flow rate N2 or Dry air, 3 L/min 
Growth temperature 350–450 °C 
Growth time 30–120 min 
Substrate, size Soda lime glass, 25 mm × 25 mm 
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Fig. 3.  
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Fig. 4.  
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Fig. 5.  
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Fig. 6.  

 


