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There is an independent splitting family
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ABSTRACT

Let § be the splitting number, that is, the size of the least splitting family. We show there is
an independent splitting family of size §.

Introduction

This is an old note written back in 1996 and originally not intended for publication, the reason being that
the question it addressed had been solved 20 years earlier. However, recent work of Hrussk and Steprans
[HS] and others indicated there was some interest in the size of the smallest independent splitting family,
and since this note showed this was actually equal to the splitting number § we decided to publish it after
all. We tried to keep the original text, but inserted a few references. We apologize that the contents of
this note is quite disjoint from our talk at the conference, but the latter paper has been accepted alrecady
for publication elsewhere.

We call T C [w]* an independent family iff every Boolean combination of elements of T is in-
finite (i.e., iff for all finite partial functions 7: T — {1, -1}, the set A, = Acdom(r) A4
is infinite where A' = A and A~! = w\ A). Given A, B € [w]* we say A splits B iff both
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AN B and B\ A are infinite. § C [w]” is a splitting family iff for all B € [w]” there is
A € 8 which splits B. 7 is an independent splitting family iff it’s both independent and
splitting. We answer a question of . Kunen [Mi, Problem 4.6] by showing

THEOREM 1. (ZFC) There is an independent splitting famaly.

Tt turns out this has been proved for the first time 20 years ago by P. Simon [Si]. It has
been reproved independently by S. Shelah (unpublished) and the present author. — We
also develop some related combinatorics.

1. Proof of Theorem 1

Before starting out with the proof, we need to introduce several of the classical cardinal
invariants of the continuum. Let s be the size of the smallest splitting family (the splitting
number); i stands for the cardinality of the least maximal independent family (the indepen-
dence number). Given A, B € [w]¥, write A C* B iff A\ B is finite; similarly, we define C*.
Given functions f and g in the Baire space w®, say that f eventually dominates g (g <* f,
in symbols) iff {n € w; g(n) > f(n)} is finite; similarly, we define <*. The dominating
number 0 is defined to be the size of the smallest D C w* such that every member of w*
is eventually dominated by a member of D (such families are called dominating families).
It is well-known that w; < s <9 < i< ¢ holds in ZFC (where ¢ stands for the Cardinality
of the continuum). The inequality s < ? is due to P. Nyikos [vD]; and 9 < i was proved by
S. Shelah [Va]. We shall use the main idea of the first proof, as well as the second result
for our argument.

We call a sequence P = (I,; m € w) a partition iff it is a partition of w into finite
adjacent intervals (i.e. 0 = min(lp) < ... < max(I,)+1 = min(l,41) < ...). Given a strictly
increasing function f € w* (with f(0) > 1), let Py, the partition associated with f, be
defined by Ip = [0, f(0)),.... I, = [f™(0), f*+1(0)), ... where we put f*+1(0) = f(£7(0)).
Given F C w¥, let Pxr = {Pf; f € F} be the family of associated partitions. We say
A € [w]® splits a partition P = (I,,;; n € w) iff there are infinitely many n € w with I, C A
and infinitely many m € w with I,, N A = . We shall prove "

THEOREM 2. Let D C w® be a dominating family of size . Then there is an inde-
pendent family T C [w]¥ (also of size d) such that every partition from Pp is split by a
member from T.
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Before proving Theorem 2, let us see how to deduce Theorem 1 from it. Note that
the argument is a straightforward reformulation of the proof of s < .

Proof of Theorem 1 from Theorem 2. We claim that the T provided by Theorem 2 is
splitting. Given B € [w]“, define g € w* such that gg(n) is the least k € B larger than
n. Choose f € D cventually dominating gp, and take A € T splitting the partition Py
We claim that A splits B.

To see this, simply note that if P; = (I,; n € w), then almost all I, have non-
trivial intersection with B (because gp(f"(0)) < f**1(0) for almost all n). Since A avoids
infinitely many of the I,,’s and contains infinitely many I,,.’s, it splits B. O

Proof of Theorem 2. Let D = {f,; a < 0} be an enumeration of D. We shall

recursively construct sets A, for & < 0 such that

(1) Aq is independent from Z,, = {As; B < o},

(ii) Ag splits the partiton Py,_.
So suppose I, has been produced. Let B be any set independent from Z,. Such a set
exists by |Zo| < 0 < i. We describe how to modify B so that it splits Pf_ and remains
independent. ‘

Fix a finite partial function 7: a — {1, -1} and look at A, = Nsedom(r) A;‘ﬁ ). Also
let Ps, = (In; n € w). Since A, has infinite intersection with both B and w \ B, we
can define g, € w* such that g,(n) is the least k& > n such that both 4, N BN (Uf:,f L)
and A; N (w \ B) ﬂ(Uf_:'; I;) are non-empty. Let G be the closure of the family of the
g-’s under taking finite maxima. (That is, if go,...,gn € G, then g € G where g(k) =
max{go(k), ..., gn(k)} for all k € w.) Since |G| < 9, we can find f € w* which is not
dominated by any member of G. Without loss, f is strictly increasing,.

We partition w into the four sets

Cm = [F*1m0), f*41(0), med
kew
Notice that there is m € 4 such that for all  there are infinitely many n € C,, with
g-(n) < f(n). (If there were no such m we could find a 7, witnessing the failure for each
m; then the maximum of the g, , would eventually dominate f, a contradiction.) Without

loss m = 0. Now put
Dn=|J | I, me4
k€w n€Jgk4m
where J; = [f£(0), f+1(0)). We next define A, such that A,N(DoUD;) = BN (DyUDy)
and Ay N (D2 U D3) = Dy. Tt is immediate from the second clause of this definition that
A, splits Py, .
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We still have to check A, is independent of Z,,. For this take 7 : @ — {1,—1} a finite
partial function. Choose n € Cp with g,(n) < f(n). Let k be such that n € Jy. Then
g-(n) < f*+2(0), hence both A, N B and A, N (w\ B) intersect I = J;c[74x(0y, per+2(0y) L
non—trivially. Since BN I = A, NI, this is still true for B replaced by A,. Hence both
intersections A, N A, and A, N (w\ A,) are infinite, and we’re done. O

2. The partition—splitting number

We now try to shed some more light on a phenomenon which was crucial in the above
proof. Call a family S C [w]“ partition—splitting iff every partition is split by some member
of §. It is immediate from the way Theorem 1 was proved from Theorem 2 that every
partition—splitting family is a splitting family as well. Let ps denote the size of the smallest
partition-splitting family. The unbounding number b is the cardinality of the least family
F C w® such that no g € w® eventually dominates all members of F (such families are
called unbounded families). Clearly b < 9. Then we have

THEOREM 3. (Kamburelis—-Weglorz [KW]) ps = max{b, s}.

Proof. ps > s follows from the remark in the preceding paragraph.

Next, given A € [w]* co~infinite, define g4 € w* by ga(n) = the least & > n such that
the interval [n, k) intersects both A and w\ A. We see immediately that if f >* gs then
Py is not split by A. ps > b follows.

Finally, we show that ps < max{b,s}. Modifications of the argument shall be used
several times later on. Given B € [w]* and f € w*, define C(B, f) = U,nep If, Where
Py = (I} ; m € w). We shall prove that C = {C(B, f); B € S and f € F} is partition-
splitting if S C [w]“ is splitting and F C w* is unbounded.

To see this, let P = (Jp; ¢ € w) be any partition. Define gp € w* such that gp(n) =
the least £ > n such that at least two of the intervals J, are contained in the interval
[n,k). We claim that if f £* gp, then there are infinitely many m such that I7, contains
some .Jy.

For this, take n such that f(n) > gp(n). Find m such that n € If,. Note that
n < f™+1(0), hence gp(n) < f™+%(0). This means at least two intervals J; are contained
in I U T/, +1- Hence either some J; is contained in I}, or some J; is contained in I’ 1

Let A = A(P, f) be the set of all m such that I contains some Jo. If B splits A,
then C(B, f) splits the partition P, and we’re done. O

COROLLARY 4. ps < 0. O




85

(Of course, this also follows from Theorem 2; for there, we produced an independent

partition-splitting family of size 9.)

We briefly mention duality (see Blass for a detailed account). To many cardinal
invariants, we can associate a dual cardinal which is gotten essentially by necgating the
basic statement in the definition of the given cardinal and by replacing a quantifier of the
form 3%°n (“there are infinitely many n”) by one of the form V**n (“for almost all n”) or
vice-versa. So b and 0 are dual to each other. The dual of s is the reaping (or: refinement)
number v which is defined as the size of the smallest R C [w]* such that no 4 € [w]* splits
all elements of R (or, equivalently, given A € [w]* there is R € R with either R C* A
or R C* w\ A). The proof that s < 9 dualizes to b < t. A maximal independent family
is easily seen to be reaping and, hence, we see t < i. Similarly, we say a family P of
partitions is partition-reaping iff there is no A € [w]“ splitting all members of P. pr, the
partition—reaping number, is the size of the smallest partition-reaping family. We now get

PROPOSITION 5. [Br] pr = min{r, 0}.

Proof. In the proof of Theorem 1 (from Theorem 2) we saw that, given B € [w]®,
if A € [w]” splits the partition Py, then it also splits B. Hence, if R C [w]* is such
that no A € [w]“ splits all members of R, then no A € [w]* can split all members of
P = {P,,; B € R}; and pr < t follows.

By the second paragraph of the previous proof, we conclude that if F C w® is domi-
nating, then {Py; f € F} is not split by a single A € [w]* — and hence pr < D.

From the last part of the previous proof, we see that if P is a family of partitions of
size less than min{r, 9}, then all elements of P are split by C(B, f) where f £* gp for
P € P and B splits all A(P, f). O

COROLLARY 6. pt > b. O

We digress a little further to comment on a problem addressed by J. Steprans [St]. -
The Ro-splitting number s(w) is the size of the smallest S C [w]“ such that given any
countable {A;; j € w} C [w]“ there is S € S splitting all A;. Similarly we may define
the Ro-partition splitting number ps(w) to be the size of the smallest S C [w]“ such that
all members of any countable family of partitions are split by a single S € S. Clearly,
5(w) > s, ps(w) > ps and ps(w) > s(w). Steprans asked whether s = s(w). A modification
in the proof of Theorem 3 gives

PROPOSITION 7. ps(w) = ps.

Proof. It suffices to show that ps(w) < max{b,s}. For this, we show the family C
defined in the proof of Theorem 3 is actually Ro—partition—splitting.




Given a set P = {P; = (Jjs:£ € w); j € w} of partitions, define gp € w* such that
gp(n) = the least k > n such that there is ¢ between n and k such that for each j < n
at least one interval Jj is contained in each of [n,) and [4, k). The rest of the argument
goes through as before. O

COROLLARY 8. $ > b implies § = s(w). O

On the other hand, A. Kamburelis [KW] proved that s < cov (meager) implies s =
s(w), where cov (meager) is the size of the smallest covering of the real line by meager sets.
Hence, if s < s(w) is at all consistent, we must have cov (meager) < s < s(w) < b.

3. Independent splitting families of different cardinalities

Equipped with the ideas from the last section, we investigate independent splitting families
in somewhat more detail. It is relatively easy to modify the argument in the proof of
Theorems 1 and 2 to get an independent partition—splitting family of size ¢. Concerning
smaller cardinalities we have

THEOREM 9. Therc is an independent partition—splitting family of size ps.

Proof. We construct such a family 7 of size max{b, s} by modifying the argument for
ps < max{b,s} in the proof of Theorem 3. By Theorem 2, we can assume b < 0.

Let {fa; @ < b} C w* be an unbounded family of strictly increasing functions which
is well-ordered by <* (i.e. a < § implies f, <* fg). Also choose {B,; v < s} C [w]¥ a
splitting family; and let {Day; {0, 7) € b x s} be an independent family of size ps. Finally
fix a partition (Ex; k € w) of w into countably many countable sets. Since b < d we find
f € w® which is not eventually dominated by any f, on any Ej (that is, {n € E;; f(n) >
fa(n)} is infinite for all k and all ).

We're ready to define the sets C,.,, where {a,7) € b x s, as follows. Let K, =
{n; fa(n) 2 f(n)}. Put Coy N Ko = Ko N (Umep, I7) where Pr, = (I7: m € w) is the
partition associated with fo; and let Coy N (w\ Ko) = (w\ Ka) N (Ugep, ., Er)- We claim
that T = {Cay; (®,7) € b x s} is the family we are seeking. : .

We first check 7 is independent. Let 7: b x s — {1,—1} be a finite partial function.
Fix o maximal in the first coordinate of the domain of 7. Note that if B is in the first
coordinate of the domain of 7, then (w\ K,) C* (w\ Kj). By choice of the Dgy and by
definition of the Cg,, we now see they're independent oun the set w \ K.
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The proof 7 is partition=splitting is a minor variation on the proof of Theorem 3, and
therefore we confine ourselves to a brief sketch. Given a partition P = (J; ¢ € w), define
gp as before. Find a < b such that f, €* fogp. If n is such that fo(n) > f(gp(n)), and
n € I, then some interval J; will belong to either I or to I, as before; furthermore,
we will have that f, dominates f on all of ['n,, gp( n)), and, a fortiori, on J¢; hence J, C K.
This allows us to couclude as in Theorem 3. O

Let x be a cardinal. A collection {T,; a < s} of subsets of w is called a tower iff
o < 3 implies Tg C* T, and there is no T € [w]¥ such that T C* T, for all & < . Let t,
the tower number, be the size of the smallest tower. It’s well-known that t < b and t < s.
We're ready to prove

THEOREM 10. There is an independent splitting family of size s.

Proof. By the previous result we can assuine s < b. The construction will be quite
similar to the one in the preceding theorem.

Let {Ta; a < t} be a tower; fix {B,; v < s} a splitting family and {Dq~; {a,7) € txs}
an independent faniily as before. Using t < b, we easily find a partition (Ex; k € w) of w
into countably many countable sets such that E;, N T, is infinite for all £ and all a. Define
Ca, for {a,7) € tx 5, by CoyN(w\Ts) = ByN(w\T,) and Coy NT, = To (Ugep... Ex)-
As in the proof of the previous theorem, we see T = {Coqi {@,7) € t x s} is independent.
To see it’s splitting fix A € [w]“: then find & < t such that A\ T, is infinite; next find
7 < & such that A\ T, is split by B,. Then C,~ also splits A4 \ Ty, and, a fortiori, A. O

@y

Note added in December 2003. Michael Hrusdk remarked that the assumption t < b is unnecessary for

ﬁ1;- proof of Theorem 10. Instead one may replace a given tower {T; o < t} by {T(;' a < f} where

T! ={(m,n); m€ T, andn < m}. Then we can easily find the required partition (E]“ k€ w).
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