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Abstract

A seismic response analysis for a mountain tunnel is often two-dimensional,

using the tunnel cross-section. However, responses in the longitudinal direc-

tion should not be neglected, especially when considering the tunnel lining

damage that has been caused by recent earthquakes. A critical factor in

the evaluation of the longitudinal seismic response of mountain tunnels is

the construction joints, which exist at intervals of approximately 10m along

the lining. In this study, elastic solutions for a cylindrical tunnel with con-

struction joints subjected to longitudinal ground displacement are presented.

The surrounding ground is considered to be an infinite elastic, homogeneous,

isotropic medium. The lining is treated as an elastic, homogeneous, isotropic

medium. The zeroth mode component of an obliquely incident plane har-

monic shear wave, which contributes to compression-extension deformation,

is used as the longitudinal ground displacement. A no-slip boundary condi-
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tion is applied at the ground-lining interface, and a traction-free boundary

condition is imposed between the interface of the lining blocks. The point-

matching method is used to satisfy the boundary conditions at the ground-

lining interface approximately. The numerical results show that there is no

difference in the seismic response between the case with and the case without

the inclusion of construction joints except for the large surface loading in the

area neighboring the joints. However, in actuality, the slippage between the

ground and the lining can occur and cannot be neglected. Therefore, seismic

resistance can be improved by construction joints. When considering slip-

page, unusually large normal surface loading is required to cause longitudinal

seismic damage. Smoothing of the interface between the sheet membrane and

the lining, which can also prevent the destruction of the waterproofing mem-

brane and the production and growth of cracks due to drying shrinkage, is

an effective countermeasure to prevent the longitudinal seismic damage of

mountain tunnels.

Keywords: Mountain tunnel, Seismic response, Elastodynamics,

Construction joints, Longitudinal deformation

1. Introduction

It is well known that tunnels experience lower rates of damage than sur-

face structures during earthquake events. Nevertheless, some mountain tun-

nels have experienced significant damage in recent earthquakes, including

the 1995 Kobe (Asakura and Sato, 1996), the 1999 Chi-Chi (Wang et al.,

2001; Chen et al., 2002), the 2004 Niigata (Yashiro et al., 2007), the 2008

Wenchuan (Tianbin, 2008; Li, 2012), and the 2016 Kumamoto (Zhang et al.,

2



2018) events.

Seismic response analyses performed on mountain tunnels are often two-

dimensional to evaluate ovaling deformation (Hashash et al., 2005; Kontoe

et al., 2008; Amorosi and Boldini, 2009), using only the tunnel cross-section

and neglecting the longitudinal direction. However, considering tunnel lining

damage caused by recent earthquakes (Wang et al., 2001; Yashiro et al., 2007;

Li, 2012; Zhang et al., 2018), responses in the longitudinal direction are also

significant. For example, many cracks in the transverse direction of the lining

of Tawarayama tunnel were observed to the result from the 2016 Kumamoto

earthquake.

The most significant deformation mode for the longitudinal seismic re-

sponse of mountain tunnels is the compression-extension deformation mode,

which causes a large longitudinal thrust loading to be applied to the lining

(Yasuda et al., 2019). This deformation mode can cause more severe damage

to the lining than ovaling deformation mode, which mainly causes bend-

ing deformation, because large thrust can cause sudden compression failure.

Recently built tunnels that have been constructed using the New Austrian

Tunnelling Method (NATM), including the Tawarayama tunnel, are more

prone to damage resulting from this deformation than older tunnels, which

were built using prior tunnelling methods. This is due to a decrease in the lin-

ing thickness, which resulted in a decreased stiffness for longitudinal thrust.

Therefore, the seismic damage caused by large longitudinal thrust loading

can increase.

Construction joints, occurring at regular intervals of approximately 10m

along the lining, are a critical factor in the evaluation of the longitudinal seis-
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mic response of mountain tunnels. It is expected that construction joints im-

prove earthquake resistance because flexible joints are used in buried pipelines

and immersed tunnels to enhance earthquake resistance (Kiyomiya, 1995;

O’Rourke and Liu, 1999; Shi, 2015). In Tawarayama tunnel, the construc-

tion joints seemed to have some effects on the damage incurred from the

2016 Kumamoto earthquake as ring cracks occurred in the middle of the

lining blocks approximately every 10m (Zhang et al., 2018). However, theo-

retical explanations behind this phenomenon, especially the seismic behavior

of construction joints, are not clear.

Simplified models such as beam on elastic foundation model and beam-

spring model are usually used for the seismic design of tunnels in the longitu-

dinal direction (St John and Zahrah, 1987; Hashash et al., 2001; Miao et al.,

2018; Yu et al., 2018). However, these models are not suitable for problems

with the sudden change of properties. It is because the stiffness of the ground

model, which is often modeled as a constant spring, does not change against

sudden deformation, although the stiffness of the structure model increases

against sudden deformation. Therefore, it is difficult to evaluate the effect of

joints strictly. Three-dimensional numerical models, such as the Boundary

Element Method and the Finite Element Method, can also be used (Stamos

and Beskos, 1995; Fabozzi et al., 2018; Wang et al., 2019). However, they

are highly time-consuming and need huge computer memory. Besides, they

are also not suitable for problems with the sudden change of properties. The

multi-scale method (Yu et al., 2013) is one of the leading solutions. Never-

theless, it is still difficult to apply this study because there are many joints

to be considered, which need very fine-scale meshes.
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This paper presents elastic solutions for a cylindrical tunnel with con-

struction joints subjected to longitudinal ground displacement, which con-

tributes to compression-extension deformation. The solutions are derived

using the substructure method (Wolf, 1985) and the point-matching method

(Yasuda et al., 2017). The effects of construction joints are strictly investi-

gated. Furthermore, a possible countermeasure against longitudinal seismic

damage in the linings is proposed.

2. Theory

2.1. Problem definition

Consider an infinite cylindrical tunnel with construction joints subjected

to a plane harmonic shear wave propagating at an angle ϕ with respect

to the axis of the cylindrical tunnel, as shown in Fig. A.1. The surrounding

ground is considered to be an infinite elastic, homogeneous, isotropic medium.

The lining is treated as an elastic, homogeneous, isotropic medium with

an outer radius R and a thickness h. The layer of the sprayed concrete is

not considered. The interval between construction joints is ℓ. The local

coordinate in the z-direction in the pth lining block is zp.

Due to the azimuthal symmetry of the circular cylinder, an incident shear

wave can be assumed to propagate in the direction of the wavenumber vec-

tor kinc
s(1) on the x-z plane; superscript“ inc”denotes an incident wave and

subscript (1) denotes the ground. The angular velocity of the incident shear

wave is ω. The displacement vector of the shear wave uinc
s(1) is on the plane

perpendicular to kinc
s(1) and can be decomposed into two independent vectors:

One is parallel to the y-axis and the other is on the x-z plane. Here, only
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the seismic response resulting from a longitudinal ground displacement (dis-

placement in the z-direction) is considered. Therefore, uinc
s(1) is assumed to

be on the x-z plane.

To derive the theoretical solutions, periodic boundary conditions are as-

sumed in the longitudinal direction with an interval length of Lz. This in-

terval length equals the longitudinal wavelength and can be expressed as:

Lz =
Ls(1)

cosϕ
, (1)

where Ls(1) is the wavelength of an incident ground shear wave.

2.2. The zeroth mode component of the incident shear wave

The x- and z- components of the incident harmonic shear wave uinc
s(1) can

be expressed as:

uinc
x(1) = U inc

x(1)e
i
(
kinc

s(1)·r−ωt
)

= U inc
s(1) cosϕe

i(β(1)x+γz−ωt)

uinc
z(1) = U inc

z(1)e
i
(
kinc

s(1)·r−ωt
)

= −U inc
s(1) sinϕe

i(β(1)x+γz−ωt)


, (2)

with:

ks(1) =
2π

Ls

β(1) = ks(1) sinϕ

γ = ks(1) cosϕ =
2π

Lz


, (3)

where U inc
s(1) is the complex displacement amplitude of the incident shear wave

and U inc
x(1) and U inc

z(1) are the x- and z- components of U inc
s(1), respectively. r is
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the position vector. ks(1) is the shear wavenumber in the ground and β(1) and

γ are the x-axis and z-axis components of ks(1), respectively.

The exponential function eiβ(1)x can be expanded into a Fourier series in

its complex form, or

eiβ(1)x = eiβ(1)r cos θ =
∞∑

n=−∞

inJn(β(1)r)e
inθ, (4)

where Jn denotes the Bessel functions of the first kind, order n. From Eq. (2)

to (4), the r-, θ-, and z- components of the incident harmonic shear wave

uinc
s(1) are given by:

uinc
r(1) = U inc

s(1) cosϕ cos θ
∞∑

n=−∞

inJn(β(1)r)e
inθei(γz−ωt)

uinc
θ(1) = −U inc

s(1) cosϕ sin θ
∞∑

n=−∞

inJn(β(1)r)e
inθei(γz−ωt)

uinc
z(1) = −U inc

s(1) sinϕ
∞∑

n=−∞

inJn(β(1)r)e
inθei(γz−ωt)


. (5)

The zeroth mode component of the incident shear wave, which is independent

of θ and represents the compression-extension deformation, at the ground-

lining interface with r = R can be expressed as:

uinc
r,0(1)|r=R = U inc

s(1) cosϕiJ1(β(1)R)ei(γz−ωt)

uinc
θ,0(1)|r=R = 0

uinc
z,0(1)|r=R = −U inc

s(1) sinϕJ0(β(1)R)ei(γz−ωt)

 , (6)

where the subscript 0 denotes the zeroth mode component.

In general, the wavelength of seismic shear wave is sufficiently greater

than the size of the tunnel cavity. Therefore, β(1)R is much less than 1.
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Considering a series expansion of Jn(x) around x = 0 as follow:

Jn(x) =
∞∑
s=0

(−1)s

s!(n+ s)!

(x
2

)n+2s

, (7)

the relative amplitudes of uinc
r,0(1) and uinc

z,0(1) can be approximately expressed

as: ∣∣∣∣∣u
inc
r,0(1)

uinc
x(1)

∣∣∣∣∣
r=R

≈
β(1)R

2∣∣∣∣∣u
inc
z,0(1)

uinc
z(1)

∣∣∣∣∣
r=R

≈ 1−
(
β(1)R

2

)2

 . (8)

Thus, almost all longitudinal ground displacement of the incident shear

wave contributes to the zeroth mode component. In the following section,

the seismic response caused by the zeroth mode component of the incident

shear wave is considered.

2.3. General solutions for the ground and lining

2.3.1. Solution for the primary field of the ground

When a plane harmonic shear wave impinges on a surface of a ground

cavity with no lining, part of the incident wave is reflected at the cavity. The

primary displacement of the ground for the zeroth mode component ui
0(1),

which is the superposition of an incident wave of the zeroth component uinc
0(1)

and the reflected wave, can be calculated using elastodynamics (Mow and

Pao, 1971). At the ground-lining interface with r = R, ui
0(1) can be expressed

as follows:

ui
r,0(1)|r=R = U i

r,0(1)e
i(γz−ωt)

ui
z,0(1)|r=R = U i

z,0(1)e
i(γz−ωt)

 , (9)
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where U i
r,0(1) and U i

z,0(1) are complex constants. The superscript i is used to

denote initiation.

2.3.2. Solution for the secondary field of the ground

Displacement and surface loading of the ground caused by the reflected

wave at the ground-lining interface can be expressed as follows:

ur
r,0(1)|r=R =

∞∑
m=0

(
U r
r,0m(1)e

iγmz + U ′,r
r,0m(1)e

−iγmz
)
e−iωt

ur
z,0(1)|r=R =

∞∑
m=0

(
U r
z,0m(1)e

iγmz + U ′,r
z,0m(1)e

−iγmz
)
e−iωt

 , (10)

f r
r,0(1) = −σrr,0(1)|r=R =

∞∑
m=0

(
F r
r,0m(1)e

iγmz + F ′,r
r,0m(1)e

−iγmz
)
e−iωt

f r
z,0(1) = −σrz,0(1)|r=R =

∞∑
m=0

(
F r
z,0m(1)e

iγmz + F ′,r
z,0m(1)e

−iγmz
)
e−iωt

 , (11)

with:

γm =
2πm

Lz

, (12)

where U r
r,0m(1), U

′,r
r,0m(1), and so on are complex constants, and U ′,r

r,00(1), U
′,r
z,00(1),

F ′,r
r,00(1), and F ′,r

z,00(1) are assumed to be zero. The superscript r is used to

denote reaction.

The stiffness of the ground, which is defined as the relationship between

displacement and surface loading at the ground-lining interface, for the zeroth

mode can be defined as follows (Yasuda et al., 2017, 2019):F r
r,0m(1)

F r
z,0m(1)

 =

 Krr,0m(1) Krz,0m(1)

−Krz,0m(1) Kzz,0m(1)

U r
r,0m(1)

U r
z,0m(1)

 , (13)
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F ′,r
r,0m(1)

F ′,r
z,0m(1)

 =

 Krr,0m(1) −Krz,0m(1)

Krz,0m(1) Kzz,0m(1)

U ′,r
r,0m(1)

U ′,r
z,0m(1)

 , (14)

and

Krr,0m(1) =
2µ(1)

R∆

(
−

k2
s(1)βm(1)R

2
h00 + γ2

mh01 + αm(1)βm(1)h10

)
Krz,0m(1) = i

2µ(1)γm
∆

{
− 1

2
(β2

m(1) − γ2
m)h01 + αm(1)βm(1)h10

}
Kzz,0m(1) =

µ(1)αm(1)k
2
s(1)

∆
h11


, (15)

with:

∆ = γ2
mh01 + αm(1)βm(1)h10

hij = H
(1)
i (αm(1)R)H

(1)
j (βm(1)R)

αm(1) =
√

k2
p(1) − γ2

m

βm(1) =
√

k2
s(1) − γ2

m


, (16)

where µ(1) is the shear modulus of the ground and kp(1) is the pressure

wavenumber in the ground. H
(1)
n denotes the Hankel functions of the first

order n.

2.3.3. Solutions for the lining

Here, for simplicity, the lining is treated as an elastic cylindrical shell,

with thickness h being considerably smaller than the outer radius of the

lining R. Therefore, the mean radius of the shell is considered to be equal to

R. The total number of lining blocks in the interval Lz is assumed to be P .
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The general solutions of the pth lining blocks at the ground-lining inter-

face with r = R can be expressed as follows:

ur,0(2-p) =
∞∑
n=0

(
Ur,0n(2-p)e

iΓnzp + U ′
r,0n(2-p)e

−iΓnzp
)
e−iωt

uz,0(2-p) =
∞∑
n=0

(
Uz,0n(2-p)e

iΓnzp + U ′
z,0n(2-p)e

−iΓnzp
)
e−iωt

 , (17)

fr,0(2-p) =
∞∑
n=0

(
Fr,0n(2-p)e

iΓnzp + F ′
r,0n(2-p)e

−iΓnzp
)
e−iωt

fz,0(2-p) =
∞∑
n=0

(
Fz,0n(2-p)e

iΓnzp + F ′
z,0n(2-p)e

−iΓnzp
)
e−iωt

 , (18)

with:

Γn =
πn

ℓ
, (19)

where Ur,0n(2-p), U ′
r,0n(2-p), and so on are complex constants, and U ′

r,00(2-p),

U ′
z,00(2-p), F

′
r,00(2-p), and F ′

z,00(2-p) are assumed to be zero. The subscript (2-p)

denotes the pth lining block.

The relationships between displacement and loading for the zeroth mode

can be derived from Eq. (17), Eq. (18), and the relationship between the

displacement and the load acting on the shell (Flügge, 1973). They can be

expressed as follows:Fr,0n(2-p)

Fz,0n(2-p)

 =

 Krr,0n(2) Krz,0n(2)

−Krz,0n(2) Kzz,0n(2)

Ur,0n(2-p)

Uz,0n(2-p)

 , (20)

F ′
r,0n(2-p)

F ′
z,0n(2-p)

 =

 Krr,0n(2) −Krz,0n(2)

Krz,0n(2) Kzz,0n(2)

U ′
r,0n(2-p)

U ′
z,0n(2-p)

 , (21)
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where

Krr,0n(2) =
D

R2
+

K

R4
{1 + (ΓnR)4}

Krz,0n(2) = iΓnR

{
D

R2
ν(2) +

K

R4
(ΓnR)2

}
Kzz,0n(2) =

D

R2
(ΓnR)2


, (22)

with:

D =
E(2)h

1− ν2
(2)

K =
E(2)h

3

12
(
1− ν2

(2)

)
 , (23)

where D is the extensional rigidity and K is the flexural rigidity. E(2) and

ν(2) are the Young’s modulus and Poisson’s ratio of the lining, respectively.

The axial thrust and bending moment can be calculated from the dis-

placement of the lining as expressed below:

nzz,0(2-p) =
∞∑
n=0

(
Nzz,0n(2-p)e

iΓnzp +N ′
zz,0n(2-p)e

−iΓnzp
)
e−iωt

mzz,0(2-p) =
∞∑
n=0

(
Mzz,0n(2-p)e

iΓnzp +M ′
zz,0n(2-p)e

−iΓnzp
)
e−iωt

 , (24)

where Nzz,0n(2-p), N
′
zz,0n(2-p), Mzz,0n(2-p), and M ′

zz,0n(2-p) are complex constants.

These constants can be determined as:Nzz,0n(2-p)

Mzz,0n(2-p)

 =

KNr,0n(2) KNz,0n(2)

KMr,0n(2) KMz,0n(2)

Ur,0n(2-p)

Uz,0n(2-p)

 , (25)

N ′
zz,0n(2-p)

M ′
zz,0n(2-p)

 =

KNr,0n(2) −KNz,0n(2)

KMr,0n(2) −KMz,0n(2)

U ′
r,0n(2-p)

U ′
z,0n(2-p)

 , (26)
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where

KNr,0n(2) =
D

R
ν(2) +

K

R3
(ΓnR)2

KNz,0n(2) = i
D

R
(ΓnR)

KMr,0n(2) = −K

R2
(ΓnR)2

KMz,0n(2) = −i
K

R2
(ΓnR)


. (27)

The longitudinal axial stress of the pth lining σzz,0(2-p) can be approxi-

mately calculated from nzz,0(2-p) and mzz,0(2-p) as follows:

σzz,0(2-p) ≈
1

h− I
R2

{(
1± h

2R

)
nzz,0(2-p) +

(
±h2

2I
+

1

R

)
mzz,0(2-p)

}
, (28)

with:

I =
h3

12
, (29)

where I is the moment of inertia of the lining. As for ± in Eq. (28), the

positive and negative signs are chosen for the inner and outer surfaces of the

lining, respectively.

2.4. Solution under ground-lining interaction

2.4.1. Boundary conditions

A no-slip boundary condition is applied at the ground-lining interface

with r = R as follows:

ui
r,0(1)|r=R + ur

r,0(1)|r=R = ur,0(2-p)|r=R

ui
z,0(1)|r=R + ur

z,0(1)|r=R = uz,0(2-p)|r=R

fr,0(1)|r=R + fr,0(2-p)|r=R = 0

fz,0(1)|r=R + fz,0(2-p)|r=R = 0


. (30)
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A traction-free boundary condition is imposed between the interface of the

lining blocks as follows:

nzz,0(2-p)|zp=± ℓ
2
= 0

mzz,0(2-p)|zp=± ℓ
2
= 0

 . (31)

2.4.2. Point matching method

When there is no construction joint in the lining, only the no-slip con-

dition at the ground–lining interface is imposed, and the boundary con-

dition can be strictly satisfied. However, it is impossible to satisfy the

boundary conditions when there are joints. Therefore, the point match-

ing method, where the conditions are satisfied only at a finite set of se-

lected points, is adopted. For imposing the no-slip boundary condition,

Q equidistantly spaced points are selected in every lining block (zp,q =

ℓ(−Q − 1 + 2q)/(2Q + 2)). Thus, a total of PQ points are selected in the

ground. The traction-free boundary condition is imposed at both ends of

the lining (zp = ±ℓ/2). When both P and Q are odd numbers, the first

(PQ + 1)/2 terms of m (from m = 0 to (PQ − 1)/2) and (Q + 3)/2 terms

of n (from n = 0 to (Q + 1)/2) are used to represent the approximate solu-

tions. The resulting system of inhomogeneous linear equations is solved by

matrix inversion, which was performed with quadruple precision to prevent

the cancellation of significant digits.

3. Results and discussion

For the sample numerical calculations, the Shinkansen tunnel in soft

ground was considered due to the severe earthquake damage observed in

tunnels covered by soft ground. Table. A.1 lists the material properties used
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for the numerical calculations. The ratio of Young’s modulus of the ground

and the lining is 0.01:1. The shear wave velocity in the ground is approxi-

mately 240m/s. The tunnel is assumed to be constructed using NATM, and

the secondary lining is only considered. The amplitude of the incident shear

wave displacement uinc
s(1) is assumed to be 10mm.

3.1. Solutions with no construction joint

The case with no joints is first investigated to understand the basic seismic

response. In this case, the lining length ℓ becomes equal to the longitudinal

wavelength of the incident shear wave Lz, and only the first mode (m = n =

1) is contained in the solution.

Fig. A.2 shows the longitudinal displacements at the ground-lining inter-

face r = R. The frequency f of the incident shear wave is 1.0Hz. There is

little difference between the longitudinal ground displacement of the incident

shear wave uinc
z(1) and that of the primary field of the zeroth mode component

ui
z,0(1), which is the superposition of an incident wave and the reflected wave

from a ground cavity. This means that the presence of the cavity has little

effect on the longitudinal ground displacement when the frequency is low.

The longitudinal displacement of the lining uz,0(2) is smaller than ui
z,0(1). The

amplitude ratio of uz,0(2) to ui
z,0(1) is approximately 0.73 at an incident angle

of 45◦ and increases with increasing ϕ. This is mainly because the wavelength

along the tunnel axis Lz increases with increasing ϕ, and the stiffness of the

lining decreases with increasing Lz as shown in Eq. (22). It should be noted

that singular behavior is observed at an incident angle of approximately 60◦.

It is because α1(1) in Eq. (16) approaches to zero. As the longitudinal wave-

length Lz approaches to the wavelength of ground pressure wave Lp(1), the
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phase of the reflected waves excited at the ground-lining interface matches

well. As a result, a kind of resonance is excited, and the stiffness of the

ground is suddenly decreased.

Fig. A.3 shows the longitudinal displacements at the ground-lining inter-

face. The frequency is 5.0Hz. In this case, there is some difference between

uinc
z(1) and ui

z,0(1). This means that the presence of the cavity causes some

effect on the longitudinal ground displacement when the frequency is high.

The amplitude ratio of uz,0(2) to ui
z,0(1) is approximately 0.18 at an incident

angle of 45◦ and decreases at all incident angles as compared to that for

1.0Hz. This is mainly a result of the stiffness of the lining, increasing with

decreasing Lz.

Fig. A.4 shows the surface loadings and longitudinal axial stress at the

middle surfaces of the lining. The frequency f is 1.0Hz. The phase of uz,0(2),

which is shown in Fig. A.2, and fz,0(2) are close. In contrast to this, the

phase of fz,0(2) and σzz,0(2) differs by a quarter wavelength. The amplitude

of σzz,0(2) is much larger than that of fr,0(2) or fz,0(2). At an incident angle

of 45◦, the amplitude of σzz,0(2) is approximately 180 times larger than that

of fz,0(2). This is a result of σzz,0(2) being approximately consistent with

the accumulation of fz,0(2) in the longitudinal direction. σzz,0(2) becomes a

maximum at an incident angle of approximately 50◦. It should be noted that

σzz,0(2) becomes a maximum at an incident angle of 45◦ when the tunnel is

sufficiently flexible relative to the surrounding ground and completely follows

the ground deformation.

Fig. A.5 shows the surface loadings and longitudinal axial stress at the

middle surfaces of the lining. The frequency f is 5.0Hz. The amplitude of
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σzz,0(2) is still much larger than that of fr,0(2) or fz,0(2). However, the ampli-

tude ratio of σzz,0(2) to fz,0(2) is smaller than that found for a frequency of

1.0Hz. At an incident angle of 45◦, the amplitude of σzz,0(2) is approximately

36 times larger than that of fz,0(2). σzz,0(2) is a maximum at an incident angle

of approximately 70◦ as the result of the ground-lining interaction.

3.2. Solution with the inclusion of construction joints

In the following sample case solution, the interval between construction

joints ℓ and the number of the lining blocks P are assumed to be 10m and 35,

respectively. As a result, the longitudinal wavelength of the incident wave Lz

is 350m. When the frequency f is 1.0Hz, the incident angle is approximately

47◦.

Fig. A.6 shows approximate solutions for the longitudinal axial stress

at the middle lining surface. The frequency f is 1.0Hz. Q equidistantly

spaced points were selected in every lining block for imposing the non-slip

condition. The approximate solutions become more accurate with increasing

Q with the solution converging to the solution without construction joints,

except for around the joints. This means there is only a minor difference in

the longitudinal axial stress between the case with and the case without the

inclusion of construction joints.

Fig. A.7 shows a comparison of the solutions for the case with and without

construction joints. The non-slip condition was applied at 71 selected points

in every 10m lining block (Q=71). The displacements are mostly similar to

the two cases. However, a large difference in surface loading can be observed.

The surface shear loading fz,0(2) in the area neighboring the joints is especially

large. The ends are singular points with the loading approaching infinity
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as the degree of freedom increases. When neglecting slippage between the

ground and the lining, there is little difference in seismic response between the

case with and the case without construction joints. However, in actuality,

the slippage can occur and cannot be neglected. The construction joints

induce the large surface shear loading in the area neighboring the joints. As

a result, the slippage is induced more easily, and the seismic resistance can

be improved.

Fig. A.8 shows solutions derived from a simplified model assuming a con-

stant ground stiffness. Details of the solution are shown in Appendix A. The

subscript (2s) denotes the solution of the simplified model. For longitudinal

axial stress σzz,0(2s), the value multiplied by ten is plotted. When there is

no construction joint, the simplified model can well evaluate the solutions.

When there are construction joints, σzz,0(2s) becomes almost zero. Assuming

the result is correct, it is difficult to explain the cracks in the transverse di-

rection of the lining that occurred during past earthquakes. This is because

the stiffness of the ground around joints does not change, although the stiff-

ness of the tunnel around joints increases. Therefore, the model assuming a

constant ground stiffness overestimate the effect of construction joints and is

not suitable.

3.3. Relationship between the applied surface loading and the resulting axial

stress in the lining

To discuss the effects of construction joints in detail, it is necessary to

consider the slippage. Recent tunnels, including the Tawarayama tunnel,

have a sprayed concrete layer between the ground and the tunnel lining.

Additionally, a sheet membrane with a geotextile fleece is placed between the
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sprayed concrete layer and the lining. For simplification, only the relationship

between the surface shear loading and the resulting longitudinal axial stress

in the lining is herein considered.

Fig. A.9 shows the applied surface loading fz,0(2) and the resulting longi-

tudinal axial stress at the middle surfaces of the lining. fr,0(2) is assumed to

be zero for simplicity because fr,0(2) has little effect on the longitudinal axial

stress. Furthermore, the surface shear loading fz,0(2) is assumed to be zero

at the center of the lining block and monotonically increases or decreases

towards the edge. The maximum allowable surface shear loading is assumed

to be 0.2MPa. A surface shear loading of approximately 0.2MPa is required

to cause tensile cracks in the lining for an assumed concrete tensile strength

of 2.0MPa. It should be noted that the effect of construction joints can be

ignored for the compression side, and the required surface shear loading for

the compressive failure of the lining is approximately the same magnitude as

compared to that required to cause tensile cracks, as predicted from Fig.A.4

and Fig.A.5.

A result of a shear test, which was performed in the laboratory to investi-

gate the load-shearing effects between the sheet membrane with a geotextile

fleece and the lining, shows that Coulomb’s law of friction is valid and appli-

cable, and the shear angle is approximately 16.5 degrees (Galler and Lorenz,

2018). This means that the allowable surface shear loading to the lining

depends on the surface normal loading. Furthermore, the normal loading re-

quired for a shear loading of more than 0.2MPa in the lining is approximately

0.7MPa. This is equivalent to an approximately 30m overburden and means

unusually large normal surface loading is required to cause tensile cracks in
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the lining.

For actual tunnels, there are likely more irregularities in their construction

than assumed in a laboratory test. Therefore, longitudinal seismic damage

would occur at much less than 0.7MPa. Nonetheless, a large normal loading

is required to cause longitudinal seismic damage and such damage rarely

occurs.

Recently, the Shinkansen tunnel in Japan is required to apply the Flat

Insulated Lining Method, which adds a layer between the sheet membrane

and the lining to eliminate the unexpected significant irregularities that of-

ten occur in actual tunnels. This method is for preventing the waterproof-

ing membrane destruction and the production and growth of cracks due to

drying shrinkage. Although this method was not developed for improving

seismic resistance, it can reduce the shear loading acting on the lining. Such

a smoothing of the interface is an effective countermeasure to prevent the

longitudinal seismic damage of tunnels. Besides, it can also improve the seis-

mic resistance in the transverse direction of tunnels (Sedarat et al., 2009). It

should be noted that the isolation layer, which is a method to cover a tun-

nel lining with a soft and thin coating (Kim and Konagai, 2000; Chen and

Shen, 2014), is not suitable for mountain tunnel because it can loosen the

surrounding ground, which can apply the large loading on the lining before

an earthquake.

4. Conclusions

The elastic solutions for a cylindrical tunnel with construction joints sub-

jected to longitudinal ground displacement were presented. The effects of
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construction joints were investigated with a countermeasure against the lon-

gitudinal seismic damage. The following conclusions can be drawn from this

study:

(1) There is no difference in the seismic response between the case with

and the case without the inclusion of construction joints except for the

large surface loading induced in the area neighboring the joints when

considering the interaction between the tunnel and the surrounding

ground strictly with the no-slip condition.

(2) The model assuming a constant ground stiffness is not suitable for

evaluating the effect of construction joints. This is because the stiffness

of the ground does not change around the joints although the stiffness

of the tunnel increases around the joints.

(3) When considering the slippage, seismic resistance is improved by con-

struction joints because the slippage is induced by the large surface

shear loading in the area neighboring the joints.

(4) When the shear angle between the sheet membrane and the lining is

equal to that obtained from the laboratory tests, unusually large nor-

mal surface loading is required to cause longitudinal seismic damage.

Therefore, longitudinal seismic damage rarely occurs.

(5) Smoothing of the interface to reduce the shear loading acting on the

lining, which is usually applied for preventing the destruction of the

waterproofing membrane and the production and growth of cracks due
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to drying shrinkage, is an effective countermeasure to prevent the lon-

gitudinal seismic damage of mountain tunnels.

Appendix A. Solutions of simplified model assuming a constant

ground stiffness

The governing equation of the simplified model, in which lining is assumed

as a rod and the surrounding ground is assumed as a constant stiffness, is

given by (St John and Zahrah, 1987):

−E(2)Ac

d2uz,0(2s)

dz2
= Ka

(
uz,0(1) − uz,0(2s)

) (
= fz,0(2s)

)
, (A.1)

where E(2), Ac, and uz,0(2s) are the Young’s modulus, the cross-sectional area,

and the longitudinal displacement of the lining, respectively. A constantKa is

a complex constant, and uz,0(1) is the longitudinal displacement of the ground.

The validity of this model has been confirmed based on elastodynamics and

shell theory (Yasuda et al., 2014), and parameter Ac, Ka and uz,0(1) can be

expressed as follows:

Ac = 2πRh, (A.2)

Ka = 2πRKzz,01(1), (A.3)

uz,0(1) = ui
z,0(1)|r=R = U i

z,0(1)e
i(γz−ωt), (A.4)

where R and h are mean radius and thickness of the lining, respectively.

ui
z,0(1)|r=R and Kzz,01(1) are defined by Eq. (9) and Eq. (15).

When the lining is infinite and there is no construction joint, the solution

of Eq. (A.1) can be expressed as follows:

uz,0(2s) =
λ2

λ2 + γ2
U i
z,0(1)e

i(γz−ωt), (A.5)
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with:

λ2 =
Ka

E(2)Ac

. (A.6)

It should be noted that the beam on the elastic foundation model, which is a

similar simplified model and used to evaluate longitudinal bending deforma-

tion, overestimates the longitudinal axial stress of the lining because beam

theory ignores the equilibrium of the force in the axial direction (Yasuda

et al., 2018).

When the lining is finite and there are construction joints, a traction-free

boundary condition is imposed as follows:

σzz,0(2s) |z=z1 = E(2)

duz,0(2s)

dz

∣∣∣
z=z1

= 0

σzz,0(2s) |z=z2 = E(2)

duz,0(2s)

dz

∣∣∣
z=z2

= 0

 , (A.7)

where z1 and z2 are the position of both ends of the lining.

The solution satisfying Eq. (A.1) and Eq. (A.7) can be expressed as fol-

lows:

uz,0(2s) =
λ2

γ2 + λ2
U i
z,0(1)e

i(γz−ωt) + Aeλz +Be−λz, (A.8)

where A and B are the coefficients calculated by the following equations:A

B

 = U i
z,0(1)

iγλ

γ2 + λ2

−eλz1 e−λz1

−eλz2 e−λz2

−1ei(γz1−ωt)

ei(γz2−ωt)

 . (A.9)
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Table A.1: Material properties.

Parameters Ground Structure

Young’s modulus (GPa) 0.30 30

Poisson’s ratio 0.30 0.20

Density (kg/m3) 2000 2300

Radius (m) 5.0

Lining thickness (m) 0.30
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Figure A.1: A cylindrical tunnel with construction joints subjected to an obliquely incident

plane harmonic shear wave.
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(a) (b)

Figure A.2: Longitudinal displacements at the ground-lining interface for the case without

construction joints (f = 1.0Hz): (a) distributions at an incident angle of 45◦ and (b)

amplitudes for various incident angles.

(a) (b)

Figure A.3: Longitudinal displacements at the ground-lining interface for the case without

construction joints (f = 5.0Hz): (a) distributions at an incident angle of 45◦ and (b)

amplitudes for various incident angles.
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(a) (b)

Figure A.4: Surface loadings and longitudinal axial stress at the middle lining surface for

the case without construction joints (f = 1.0Hz): (a) distributions at an incident angle of

45◦ and (b) amplitudes for various incident angles.

(a) (b)

Figure A.5: Surface loadings and longitudinal axial stress at the middle lining surface for

the case without construction joints (f = 5.0Hz): (a) distributions at an incident angle of

45◦ and (b) amplitudes for various incident angles.
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Figure A.6: Approximate solutions of longitudinal axial stress at the middle lining surface

(f = 1.0Hz). Q equidistant points were selected in every 10m lining block for imposing

the non-slip condition.
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(a) (b)

(c)

Figure A.7: Comparison of the solutions for the cases with and without construction joints

(f = 1.0Hz). For imposing the non-slip condition for the case with construction joints, 71

equidistant points were selected in every 10m lining block: (a) radial displacement, (b)

longitudinal displacement, and (c) surface loadings.
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(a) (b)

(c)

Figure A.8: Solutions derived from a simplified model assuming a constant ground stiff-

ness (f = 1.0Hz): (a) longitudinal displacement, (b) longitudinal axial stress, and (c)

longitudinal surface shear loading.
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Figure A.9: Applied surface shear loading fz,0(2) and the resulting axial stress at the

middle surfaces of the lining (fr,0(2) = 0).
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