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Abstract In this paper, we present a brief review on the central results of two generalizations
of a classical convex optimization technique named the projected gradient method 1,2]. The 1st
generalization has been made by extending the convex projection operator, used in the projected
gradient mcthod, to the (quasi-)nonexpansive mapping in a real Hilbert space. By this general-
ization, we deduce the hybrid steepest descent method [3-10] (see also [11]) that can minimize the
convex cost function over the fixed point set of nonexpansive mapping [3-9, 11] (these results can
also be interpreted as generalizations of fixed point iterations found for example in [12-15}) or,
more generally, over the fixed point set of quasi-nonexpansive mapping [10]. Since (i) the solu-
tion set of wide range of convexly constrained inverse problems, for example in signal processing
and image reconstruction, can be characterized as the fixed point set of certain nonexpansive
mapping [5,6,9,16-18], and (ii) subgradient projection operator and its variations are typical
examples of quasi-nonexpansive mapping [10, 19], the hybrid steepest descent method has rich
applications in broad range of mathematical sciences and engineerings. The 2nd generalization
has been made for the Polyak’s subgradient algorithm [20] that was originally developed as a ver-
sion, of the projected gradient method, for unsmooth convex optimization problem with a fixed
target value. By extending the Polyak’s subgradient algorithm to the case where the convex cost
function itself keeps changing in the whole process, we deduce the adaptive prajected subgradient
method [21-23] that can minimize asymptotically the sequence of unsmooth nonnegative convex
cost functions. The adaptive projected subgradient method can serve as a unified guiding principle
of a wide range of set theoretic adaptive filtering schemes [24-30] for nonstationary random pro-
cesses. The great flexibilities in the choice of (quasi-)nonexpansive mapping as well as unsmooth
convex cost functions in the proposed methods yield naturally inherently parallel structures (in
the sense of [31]).

1 Preliminaries

Let H be a real Hilbert space equipped with an inner product (-,-) and its induced norm
Il - ||. For a continuous convex function ® : H — R, the subdifferential of ® at Vy € H,
the set of all subgradients of ® at y: 0%(y) :={g e H | (z —y,9) + ®(y) < ®(z),Vz € H}
is nonempty. The convex function ® : H — R has a unique subgradient at y € H if
® is Gateaux differentiable at y. This unique subgradient is nothing but the Gateaux
differential ®'(y). A fized point of a mapping T : H — H is a point £ € H such that
T(z) = z. Fiz(T) := {z € H| T(z) = z} denotes the fixed point set of T. A mapping
T : M — His called (i) strictly contractive if || T(z) — T(y)|| < &ljz —y|| for some & € (0,1)
and all z,y € H [The Banach-Picard fized point theorem guarantees the unique existence
of the fixed point, say z. € Fiz(T), of T and the strong convergence of (T™(zo)),5o t0
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z, for any zo € H.]; (ii) nonezpansive if ||T(z) — T(y)|| < ||z — yll, Vz,y € H; (iii) firmly
nonezpansive if | T(z) — T(y)||* < {z —y, T(z) — T(y)), Vx,y € H [32]; and (iv) attracting
nonezpansive if T is nonexpansive with Fiz(T) # 0 and ||T'(z)—f|| < ||z—f||, Vf € Fiz(T)
and Vz ¢ Fiz(T) [32]. Given a nonempty closed convex set C' C H, the mapping that
assigns every point in H to its unique nearest point in C is called the metric projection
or convez projection onto C and is denoted by F¢; ie., ||t — Pe(z)|| = d(z,C), where
d(z,C) := infyec ||z — y||. Pc is firmly nonexpansive with Fiz(Pc) = C [32]. A mapping
T :'H — H is called quasi-nonezpansive if ||T(z)—T(f)| < |lz— f|l, V(=z, f) € H x Fiz(T).
In this paper, for simplicity, a mapping T': H — H is called attracting quasi-nonezpansive
it Fiz(T) # 0 and |T(z) — f|| < |lz — fl|, ¥(z, f) € Fiz(T)¢ x Fiz(T). Moreover, a
mapping T' : H — H is called a-averaged quasi-nonezpansive if there exists o € (0,1)
and a quasi-nonexpansive mapping N : H — H such that T = (1 — a)I + aN (Note:
Fix(T) = Fiz(N) holds automatically). In particular, 1/2-averaged quasi-nonexpansive
mapping, which we specially call firmly quasi-nonezpansive mapping. Suppose that a
continuous convex function ® : H — R satisfies leveq® := {z € H | ®(z) < 0} # 0. Then
a mapping T,ps) : H — H defined by

d(z) .
T : z— mg(:v) if®(z) >0 1

where g is a selection of the subdifferential ®, is called a subgradient projection rela-
tive to ® [32].The mapping Topey : H — M is firmly quasi-nonezpansive and satisfies
Fiz(Tepp)) = lev<g® (see for example [19]).
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Figure 1: Subgradient projection relative to ®

A mapping F : H — H is called (i) monotone over S C H if (F(u) — F(v),u —v) >0,

Vu,v € S. In particular, a mapping F which is monotone over S C H is called (ii)
paramonotone over S if (F(u) — F(v),u—v) = 0 & F(u) = F(v), Yu,v € S [34];
(iii) uniformly monotone over S if there exists a strictly monotone increasing continu-
ous function a : [0,00) — [0,00), with a(0) = 0 and a(t) — oo as t — oo, satisfying
(Flu) = F(v),u —v) > a(lju —v||)||u — v|| for all u,v € S [38]; (iv) n-strongly monotone
ove}r S if there exists > 0 such that (F(u) — F(v),u —v) > nllu — v||* for all u,v € S
38].

| The variational inequality problem VIP(F,C) is defined as follows: given F : H — H
which is monotone over a nonempty closed convex set C C H, find u* € C such that
(v—u*,F(u*)) 20, Vv € C. If a function © : H — R U {oco0} is convex over a closed
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convex set C and Géateaux differentiable with derivative @ over an open set U O C, then
©’ is paramonotonc over C. For such a O, theset I' := {u € C | O(u) = inf O(C)} is
nothing but the solution set of VIP(©',C) [33]. Given F : H — H which is monotone
over a nonempty closed convex set C, u* € C is a solution of VIP(F, () if and only if
u* € Fiz (Pc (I — pF)) for an arbitrarily fixed u > 0 (For related mathematical discussion
in this section, the readers should consult, c.g., [6,9,19,31-38]).

2 Hybrid Steepest Descent Method

Theorem 1 (Strong convergence for nonexpansive mapping [6,9]) Let T : H —
H be a nonexpansive mapping with Fiz (T') # 0. Suppose that a mapping F : H — H is k-
Lipschitzian and n-strongly monotone over T(H). Then, by using any sequence (A,)n>1 C
[0, 00) satisfying (W1) limp 100 An =0, (W2) 37 1 An = +00, (W3) 3051 [ A = Al <
400 [or (An)nz1 C (0,00) satisfying (L1) limp—ioo An = 0, (L2) 3,5, An = +00, (L3)
HMpo0(An — Ans1)A Y1 = 0], the sequence (u,)n>o generated, with arbitrary ug € H, by

Un41 = T(un) - )‘n+1}- (T(un)) (2)

converges strongly to the uniquely existing solution of the VIP: find u* € Fiz(T) such
that (v — u* .7-' (u*)) 2 0, Vv € Fiz(T). (Note: The condition (L3) was relaxed recently
to limp,—, o 728~ - =1[11]) O

Theorem 1 is a generalization of a fixed point iteration [12-15] so called the anchor method:
Uptl = )\n+1a + (1 - An+1)T(un)y

which converges strongly to Prig(r)(a).

The hybrid steepest descent method (2) can be applied to more genaral monotone op-
erators (7, 8] if dim(H) < oco. Moreover, by the use of slowly changing sequence of nonex-
pansive mappings having same fixed point sets, a variation of the hybrid steepest descent
method is gifted with notable robustness to the numerical errors possibly unavoidable in
the iterative computations [9].

The next theorem shows that the hybnd steepest descent method can also be apphed to
the variational inequality problem over the fixed point sct of quasi-nonezpansive mappings.

Definition 2 (Quasi-shrinking mapping[10]) Suppose that T : H — H is quasi- non-
expansive with Fiz(T) N C # 0 for some closed convex set C C H. Then T : H — H is
called quasi-shrinking on C(C H) if

inf d(u, Fiz(T)) — d(T'(u), Fiz(T))
ues(Fiz(T),r)NC
D:re[0,00) — if o (Piz(T),r)NC #0
o0 otherwise
satisfies D(r) = 0 & r = 0, where b(Fiz(T),r) := {x € H | d(z, Fix(T)) > r}. a

Proposition 3 [10] Suppose that a continuous convex function ® : H — R has lev<y # 0
and bounded subdiferential 0® : H — 2%, i.e., 0® maps bounded sets to bounded sets.
Define T, := (1 — a)] + oTyps) for a € (0,2) [hence Fiz(T,) = leveo®: see (1) for the
definition of Typs)]. Then, we have the followings:

(a) If a selection of subgradient of ®, say ® : H — H, is uniformly monotone over H,

then T, is quasi-shrinking on any nonempty bounded closed convex set C satisfying
cn ICVSQq) 7(-' @




(b) Assume dim(H) < oo. Then T, is quasi-shrinking on any nonempty bounded closed
convex set C(C H) satisfying C N levey® # 0. a

Theorem 4 (Strong convergence for quasi-shrinking mapping [10]) Suppose that
T :'H — 'H is a quasi-nonexpansive mapping with Fiz(T) # 0. Let F : H — H be «-
Lipschitzian and n-strongly monotone over T(H) [Hence VIP(F, Fiz(T)) has its unique
solution u* € Fiz(T)]. Suppose also that there exists some ([, up) € Fiz(T) x H for which
T is quasi-shrinking on

Ci(ug) == {w € H|llz - fll < Ry :=max (HUO - fl - \/ll[lii((j;)71|_ /mg)> } :

Then for any p € (0,2}) and any (An)ns>1 C [0, 1] satisfying (H1) limy, .00 An = 0, and (H2)
Y n>1 An = 00, the sequence (un)n>o, generated by

Uns1 = T(tn) = Ang1pF (T(un)),

converges strongly to u*. O

If dim(H) < oo, in a way similar to the discussions in [7-9], we can generalize Theorem
4 for application to more genaral monotone operators [10].

3 Adaptive Projected Subgradient Method

a1

Theorem 5 (Adaptive Projected Subgradient Method [21,22]) Let©, : H — [0, 00)

(Vn € N) be a sequence of continuous convex functions and K C H a nonempty closed
convex set. For an arbitrarily given ug € K, the adaptive projected subgradient method
produces a sequence (UnJnen C K by

. - On{un) ! . / »
tng :={ Prc (tn = Mfe2in®l () IO (um) 0,

u, otherwise,

where O/ (u,) € 909,(u,) and 0 < A, < 2. ‘Then the sequence (up)nen Satisfies the
followings.

(a) (Monotone approximation) Suppose that
Un & Q= {u € K| O,(u) =06} #0,

where 6}, := inf,cx ©,(u). ' Then, by using VA, € (0, 2 (1 — 6;6_(:*:"_))), we have

vur™ e Q,, ltns: — w* || < |jun — w*@|].
(b) (Boundedness, Asymptotic optimality) Suppose

©; =0, Vn > Ny and
END € N s.t. { Q0= nnZNo Qn # @ (3)

Then (uy)nen is bounded. Moreover if we specially use Y, € [€1,2 — &3] C (0,2),
we have lim ©,(u,) = 0 provided that (67 (u,)),ex is bounded.

In this case, ©,(u,) > 0% > 0.
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(©)

(d)

(Strong convergence) Assume (3) and § has some relative interior w.r.t. a hyperplane

II(C H), i.e., there exist u € TINQ and Je > 0 satistying {v € I | |lv — u|| <&} C Q.

Then, by using VA, € [e1,2 — €3] C (0, 2), (un)nen converges strongly to someu € K,

ie, lim |ju, — || = 0. Moreover lim ©,(u) = 0 if (i) (O] (us)), ey i5 bounded and
n—o00 n—od

(ii) there exists bounded (©/,())nen where ©,() € 80,(7),Vn € N.

(A characterization of ) Assume the existence of some interior U of €2, i.e., there
exists g > 0 satisfying {v € H | |lv — ul| < ¢} C Q. In addition to the conditions (i)
and (ii) in (c), assume that there exists § > 0 satisfying

Vn > No,Vu € T\ (lev<o8r), 30;,(u) € 80, (u), |0, (u)|| > 6, -

where ' := {(1—s)u+st € H | s € (0,1)}. Then, by usingVA, € [e1,2 — g5] C (0,2),

lim u, =: 4 € liminf Q,,, where liminf ), stands for the closure of liminfQ,, =
n-—00 n—oo n-—o0 n—oo

UnZO ﬂkzn Qk : 0

4 Concluding Remarks

In this paper, we briefly present central results on the hybrid steepest descent method and
the adaptive projected subgradient method recently developed by our research group. For
detailed mathematical discussions of the methods and their applications to inverse prob-
lems and signal processing problems, see [3-10,16,17,21-23,30] and references therein.
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