1	Title: Lateral position preference in grazing feral horses
2	Short running title: Spatial lateralisation in feral horses
3	
4	Sota Inoue ¹ , Shinya Yamamoto ² , Monamie Ringhofer ² , Renata S Mendonça ^{3,4} , Satoshi
5	Hirata ¹
6	1 Wildlife Research Center, Kyoto University, Kyoto, Japan
7	2 Institute for Advanced Study, Kyoto University, Japan
8	3 Primates Research Institute, Kyoto University, Japan
9	4 Centre for Functional Ecology - Science for People & the Planet, Department of Life
10	Sciences, University of Coimbra, Coimbra, Portugal
11	
12	Correspondence:
13	Sota Inoue
14	Wildlife Research Center, Kyoto University
15	2-24 Tanaka Sekiden-cho, Sakyo, Kyoto 606-3201, Japan
16	

18 Acknowledgements

19	Special thanks to Viana do Castelo city for supporting our project. We are also grateful to
20	Carlos Pereira, Agostinho Costinha, Director of Descubra Minho, and Lourenço Almada
21	of Associação O Caminho do Garrano. We also thank the villagers in Montaria for their
22	support during our stay, Tetsuro Matsuzawa for generous guidance throughout the study.
23	We thank Bronwen Gardner, PhD, from Edanz Group (www.edanzediting.com/ac) for
24	editing a draft of this manuscript.
25	

27 Abstract

28	Behavioural lateralisation is an effective way for animals to manage daily tasks by
29	specializing behaviour to either side of the body. Many types of lateralisation are linked
30	to the function of each brain hemisphere. Lateralisation of monitoring behaviour in
31	mother-infant relationships occurs in a wide range of mammals, where infants
32	frequently use their left eye to monitor their mother. However, few studies have focused
33	on this type of spatial relationships among adults in daily life, such as during foraging.
34	The present study focused on monitoring adult feral horse behaviour using quantitative
35	analysis of spatial relationships, using drone technology. We found that horses form a
36	localised spatial relationship to their nearest neighbour. Specifically, the nearest
37	neighbour was located to the left rear of a target individual significantly more frequently
38	than to the right rear. Furthermore, the nearest neighbour was less frequently located
39	behind a target individual. We propose that this relationship is caused by a left-eye
40	preference, because information via the left eye predominantly proceeds to the right
41	hemisphere, which is dominant for social processing.
42	

43 Key words: Laterality, spatial positioning, horses, drone

45 **1. Introduction**

46 Many animals demonstrate various types of laterality. There is functional and 47 morphological asymmetry between the left and the right brain hemispheres (Bisazza, 48 Rogers, & Vallortigara 1998; Halpern, 2005; LeMay, 1976; Levy, 1977; Lindell, 2013), 49 and this asymmetry corresponds to several types of behavioural laterality. Many studies 50 have supported the right hemisphere theory, where the right hemisphere is superior for social processing (Brancucci, Lucci, Mazzatenta, & Tommasi, 2009; Jackson, 1915; 51 52 Okubo, Ishikawa, & Kobayashi, 2013). This superiority is considered to be related to the 53 dominance of the left eye in the perception of social stimuli (Brancucci et al., 2009). 54 Specifically, monitoring conspecifics using the left eye/right hemisphere provides 55 advantages including better facial expression detection, increased frequency of positive 56 interactions that strengthen inter-individual relationships, more aggression during 57 agonistic behaviour, and quicker reactions to movement by conspecifics and predators 58 (Austin & Rogers, 2012, 2014; Karenina, Giljov, Ingram, Rowntree, & Malashichev, 59 2017; Nagy, Ákos, Biro, & Vicsek, 2010). Most previous reports focusing on the laterality 60 of social interactions have investigated interactions in a counter-directed position, where

61	individuals face each other, and findings include the left-cradling bias in mother-infant
62	relationships in humans and great apes (Giljov, Karenina, & Malashichev, 2018; Harris,
63	2010; Sieratzki & Woll, 1996). In species that have a relatively large binocular field of
64	view, mothers hold their infants on the left side of the body in a counter-directed position,
65	so that both are in an optimal position to monitor each other because both can use optimal
66	information flow. The left-cradling bias in mother-infant relationships has recently been
67	expanded to a diverse range of mammals, especially in species moving in codirected
68	positions, where individuals are side-by-side on parallel paths. For example, offspring of
69	the feral horse, Pacific walrus, Siberian tundra reindeer, saiga antelope, muskox, eastern
70	grey kangaroo, red kangaroo, sheep, orca, and beluga whale are more often on the right
71	side of their mothers than on the left (Giljov et al., 2018; Karenina, Giljov, Glazov, &
72	Malashichev, 2013; Karenina et al., 2017; Karenina, Giljov, Ivkovich, Burdin, &
73	Malashichev, 2013; Versace, Morgante, Pulina, & Vallortigara, 2007). Researchers
74	consider that infants take the initiative in positioning in situations such as rest or slow
75	movement, and prefer to view their mothers using the left eye. This consistency in
76	laterality among mammals implies an ancient evolutionary origin of this bias. However,

77	it remains unknown whether the bias is limited to mother-infant relationships. If using the
78	left eye field of view works well in mother-infant relationships, we might expect that this
79	type of position bias also occurs between adults that live in groups, because adults also
80	need to adjust their distance and positioning relative to other individuals to maintain
81	group cohesion. To investigate whether lateral bias exists in spatial positioning among
82	adult animals, we analysed data from adult feral horses. Feral horses usually form long-
83	term stable groups (Berger, 1977) and do not frequently face each other in foraging
84	situations, although mutual grooming and mutual swatting of flies are performed in
85	counter-directed positions (i.e., two individuals facing opposite directions) (Feist,
86	Mccullough, & Dean, 1976; Heleski, Shelle, Nielsen, & Zanella, 2002). Horses are a good
87	species for studying behavioural lateralisation because they have a relatively small field
88	of binocular vision, estimated at 80°, and their left and right eyes have largely independent
89	views of their left and right sides, respectively (Harman, Moore, Hoskins, & Keller, 1999).
90	Several studies have reported laterality in behaviours including agonistic and affiliative
91	behaviours in counter-directed positions, vigilance to auditory stimuli, and relative spatial
92	positioning in mother-infant relationships in horses in co-directed positions (i.e., two

93	individuals facing the same direction) (Austin & Rogers, 2012, 2014; Farmer, Krueger,
94	& Byrne, 2010; Farmer, Krüger, Byrne, & Marr, 2018; Karenina et al., 2017; Karenina,
95	Giljov, & Malashichev, 2018). According to previous studies, horses frequently use their
96	left eyes during these behaviours, similar to other species. Specifically, horses have a left-
97	eye preference for monitoring novel stimuli, and a left-body preference for threatening
98	and attacking within harem bands and for positive social interactions in mother-infant
99	relationships (Austin & Rogers, 2014; Karenina et al., 2017; Larose, Richard-Yris,
100	Hausberger, & Rogers, 2006). Thus, functional lateralisation is not limited to infancy but
101	continues throughout adulthood. We therefore hypothesised that this left-eye bias in
102	monitoring conspecifics also occurs in adult-adult spatial positioning, although we did
103	not have a detailed specific hypothesis as to which way such a lateral bias might appear
104	in spatial positioning; as such, our study was exploratory in nature. The present study
105	aimed to address the question of whether previously observed lateral preferences are
106	reflected in the positioning of adult horses while grazing, and if so, which side is preferred.
107	

2. Materials and methods

109	In the present study, we analysed images taken from drones, which allowed us to test
110	whether there was any lateral bias in spatial positioning in adult horses during foraging,
111	with a focus on the position of a target horse and its nearest neighbouring individual.
112	The study was conducted in Serra D'Arga, an 825 m high mountain located in
113	northern Portugal (8°42'N, 41°48'E). The horses' habitat included a grass field, rocky
114	ground, a forest, and shrub areas (Ringhofer et al., 2017) (Appendix 1). Over 250
115	identified feral horses, categorised as Garrano horses, lived in the site. They roamed freely
116	over the mountain living on the natural grazing and water resources. There were no
117	artificial barriers to impede their movement, they did not have daily human contact, and
118	they were not fed by humans. Horses form long-term stable harems and unstable bachelor
119	groups, and we focused on two harems in June 2016, May–July 2017, and May–July 2018.
120	We chose the two groups because it was relatively easy to find these groups compared
121	with other groups. Both were one-male harems. We followed 10 individuals in 2016, 19
122	individuals in 2017, and 11 individuals in 2018. Kameoka, in Kyoto 17, was one year old,
123	and was an immature male and, not the stallion (Appendix 2). In 2017, Kyoto and Hyogo
124	were constantly together and kept a close distance between one another; there were

125	therefore cases in which the nearest neighbour of an individual was a horse from the other
126	group. Eight horses were less than 1 year old and these individuals were excluded from
127	the analysis due to their high dependency on their mothers, because the aim of the present
128	study was to analyse adult individuals. For the same reason, data from the mothers of
129	these foals were also excluded from the analysis. Although seven foals died before 1 year
130	of age, one foal survived beyond 1 year and the individual was included in the analysis
131	from this point on. In sum, 5 individuals in 2016, 11 individuals in 2017, and 7 individuals
132	in 2018 contributed to the data.
133	The recordings involved 4–13 (average 6.7) video clips per day and these were
134	taken between 9:00 and 18:00. Video clips were taken for approximately 15 min every 30
135	min, from 25-80 m above the ground (the heights were decided on a case-by-case basis
136	to be able to include all target group individuals in one image) using unmanned aerial
137	vehicles (drones). Still images were obtained by taking images from the video clips after
138	1 min from the beginning of the clips (i.e., there was 30 min between two consecutive
139	still images). The distortion of the camera lens was corrected using the lens filter function
140	in Photoshop CC (Adobe Systems incorporated) (Inoue et al., 2018). The drone took off

141	10–50 m away from the horses. The drones used for collecting data were the Phantom 3
142	Advanced, Phantom 3 Professional, and Mavic Pro (DJI, China). Behavioural observation
143	was performed by SI during flights to estimate group states. We defined the states as
144	foraging, traveling, and resting, and only analysed data during foraging because horses
145	change their spatial positioning formation depending on their state (Inoue et al., 2018).
146	After excluding images of horses in the resting or traveling states, 184 images were
147	analysed. All harem group members were recorded and clearly visible in each of the 184
148	images (Appendix 1).
149	We measured an individual's coordinates as a central point between the head
150	and the base of the tail and defined an individual's direction as a vector from the base of
151	the tail to the base of the neck; the magnitude of the vector was defined as the body length.
152	Mean body length of adult horses was used as a unit of distance, because it is relatively
153	stable and fixed (Appendix 1). Using individuals' coordinates in each image, nearest
154	neighbours were determined for each individual. When the distance to the nearest
155	neighbour was more than two body lengths, data were excluded from the analysis
156	according to previous studies (Karenina et al., 2017; Inoue et al., 2018). To analyse spatial

relationships among adults only, we excluded mothers and foals from the analysis.
Although it is known that proximity between individuals is related to their social bonds,
our analysis did not rely on just a few pairs (Appendix 3) (Kimura, 1998; Schneider &

- 161 to quantify relative positioning.

160

162 Circular variance was calculated to analyse the degree of variance in body 163 direction of individuals (CV_d) :

Krueger, 2012; Wolter, Stefanski, & Krueger, 2018). A total of 308 points were analysed

164
$$CV_d = 1 - \frac{1}{N} \sum_i |\vec{v}_{di}|$$

where *N* is the number of vectors \vec{v}_{di} , and \vec{v}_{di} indicates a unit vector of the direction of individual *i* (Appendix 4). If all individuals face the same direction, $CV_d = 0$, whereas if they face completely random directions, $CV_d = 1$. Circular variance among individuals'

168 positions (*CVp*) was calculated from the same formula:

169
$$CV_p = 1 - \frac{1}{N} \sum_{i} \left| \vec{v}_{pi} \right|$$

170 where \vec{v}_{pi} indicates a unit vector from the central point of an individual to the central 171 point of their nearest neighbour *i* (Appendix 4). A Rayleigh test was used to investigate

172 whether the population of circular data from which a sample was drawn differed from

173 randomness, by comparing the sum of random vectors and the sum of observed vectors174 (Wilkie, 1983).

175	To further analyse the spatial positions of nearest neighbours, we created a two-
176	body-length-diameter circular area surrounding a target individual and divided it into 24
177	zones with an angle of 15° per zone. The front direction of a target individual was set as
178	0° (or 360°), and the angle was defined in a counterclockwise direction. Each zone had a
179	15° range (0°–15°, 15°–30°, etc.; the left of a target individual was 90°, the back 180°,
180	and the right 270°). G-tests and residual analyses were run to examine the frequency at
181	which the nearest neighbour was located in each of these 24 zones compared with the
182	expected value. To investigate whether the overall trend came from just a few pairs, we
183	computed the laterality index (LI) in all observed pairs as follows: $LI = L/(L + R)$, where
184	L indicates the frequency of the nearest neighbour being located on the left side of the
185	target individual and R indicates the frequency for the right side. We computed the LI of
186	the rear individual in reference to the front individual because (1) if we calculated the LI
187	of a pair of individuals, A and B, by counting both the sides (left or right) of A in reference
188	to B and of B in reference to A, then the LI would always be zero, so the reference

189	individual needed to be fixed to one of the two individuals; and (2) the overall result
190	(described in the Results section) showed that the position of the nearest neighbour was
191	biased to the left-rear compared with the right-rear, and so we were interested to see if the
192	same trend could be seen in a pair-by-pair comparison, or if a certain pair contributed to
193	the overall results. Circular analyses and all statistical analyses were performed using
194	"Circular" package (Pocernich & Agostinelli, 2017), R 3.3.2 and RStudio (V1.1.447,
195	Rstudio, Inc.).
196	
197	3. Results
197 198	3. Results For nearest neighbours within two body lengths, circular variance among directions was
197 198 199	3. ResultsFor nearest neighbours within two body lengths, circular variance among directions was0.52, which means that the distribution differed from uniform distribution, but that the
197 198 199 200	3. Results For nearest neighbours within two body lengths, circular variance among directions was 0.52, which means that the distribution differed from uniform distribution, but that the horses faced the same direction ($p < 0.01$, Rayleigh test; Appendix 5). Excluding mothers
197 198 199 200 201	3. Results For nearest neighbours within two body lengths, circular variance among directions was 0.52, which means that the distribution differed from uniform distribution, but that the horses faced the same direction (<i>p</i> < 0.01, Rayleigh test; Appendix 5). Excluding mothers
197 198 199 200 201 202	3. Results For nearest neighbours within two body lengths, circular variance among directions was 0.52, which means that the distribution differed from uniform distribution, but that the horses faced the same direction ($p < 0.01$, Rayleigh test; Appendix 5). Excluding mothers and foals, density maps of nearest neighbours showed clear trends of locations that significantly differed from uniform distribution (Figure 1; $n = 308$, $p < 0.01$, Rayleigh
197 198 199 200 201 202 202 203	3. Results For nearest neighbours within two body lengths, circular variance among directions was 0.52, which means that the distribution differed from uniform distribution, but that the horses faced the same direction ($p < 0.01$, Rayleigh test; Appendix 5). Excluding mothers and foals, density maps of nearest neighbours showed clear trends of locations that significantly differed from uniform distribution (Figure 1; $n = 308$, $p < 0.01$, Rayleigh test). Nearest neighbours were significantly more likely to be located in the left rear area

205	frequency in the right front area compared with the left front area was not significant (n
206	= 178, $p = 0.30$, binomial test). These data came from a total of 45 pairs, and among these
207	pairs, 26 pairs showed bias to the left rear compared with right rear (i.e., $LI > 0.5$), 12
208	pairs showed bias to the right rear (LI < 0.5), and the remaining 7 pairs did not show side
209	bias (LI = 0.5; Appendix 3). When the surrounding area of an individual was divided into
210	15° zones, there was non-uniform frequency in the zone of the nearest neighbour (G-test,
211	G = 40.641, $df = 23$, $p = 0.01$). Residual analyses showed that the frequency of the nearest
212	neighbour in the 180°–195° zones was significantly lower than in other zones, while the
213	frequency of the nearest neighbour in the 120°-135° zones was significantly higher
214	(Table 1, Figure 2). Circular variance of vectors of an individual and its nearest neighbour
215	were 0.10 in the right front area and 0.086 in the left rear area (Figure 2).
216	
217	4. Discussion
218	Our results were threefold. Firstly, the nearest neighbour was located to the left

220 the nearest neighbour tended to be located to the right front of a target individual more

219

rear of a target individual significantly more frequently than to the right rear. Secondly,

221	frequently than to the left front, although this trend was not significant. Thirdly, the
222	nearest neighbour was less frequently located behind a target individual, which is
223	consistent with a previous study (Inoue et al., 2018).
224	The following two scenarios can be postulated to interpret these three findings.
225	The first scenario assumes that the rear individual has the initiative in positioning behind
226	the front individual when the rear individual approaches the front individual. Given that
227	the nearest neighbour is located more often in left-rear of a target individual, this first
228	scenario would indicate that the rear individual has a preference to use its right eye to
229	monitor the front individual at its right front.
230	In contrast, the second possible scenario assumes that the front individual has
231	the initiative in positioning when it is approached by an individual from behind. When an
232	individual approaches another individual from behind, the front animal changes its
233	direction to avoid a situation where the other individual is located in its blind spot (i.e.,
234	behind the target individual). The front individual then turns its body to see the rear
235	individual using its left eye, resulting in the nearest neighbour (the rear individual) being
236	located in the left rear more than in the right rear position.

237	We consider the second scenario to be more plausible, because laterality would
238	be expected to appear more strongly when monocular vision is used than when binocular
239	vision can be used. When a rear individual approaches a front individual, the rear
240	individual can use binocular vision to see the front individual. However, when a front
241	individual attempts to see a rear individual, the front individual can use only monocular
242	vision (either the left eye or the right eye) by turning left or right. Because information
243	via the left eye, which predominantly proceeds to the right brain hemisphere, is dominant
244	in perceiving social stimuli, the front individual may then tend to turn its body to see the
245	rear individual using its left eye. This may explain why the nearest neighbour was less
246	frequently located behind the target individual, and was more frequently located in the
247	left rear than in the right rear.
248	A further interpretation is that, when individual A is the nearest neighbour of a
249	target individual B, then individual B is also likely to be the nearest neighbour of
250	individual A. Therefore, if the nearest neighbour of a target individual is more frequently
251	located in the left rear of the individual, then the nearest neighbour of the latter individual
252	would be located in the right front, assuming that the two individuals' head directions are

253	similar. This is consistent with our results, where the nearest neighbour tended to be
254	located in the right front rather than the left front. However, the head direction of the rear
255	individual is not always the same as that of the front individual and can vary (the rear
256	individual could approach the front individual from the right or left, because the rear
257	individual can use both eyes to monitor the front individual). Therefore, any trend in the
258	nearest neighbour's location would be expected to be weak due to variation in head
259	direction of the rear individual. This is also consistent with our finding that there was no
260	significant lateralisation of the nearest neighbour in the front of individuals.
261	To verify our results and interpretation, a sequential analysis of the change in
262	head direction of a front individual when it is approached from behind, toward the blind
262 263	head direction of a front individual when it is approached from behind, toward the blind spot, is warranted. Recordings of movements of a target and its nearest neighbour would
262 263 264	head direction of a front individual when it is approached from behind, toward the blind spot, is warranted. Recordings of movements of a target and its nearest neighbour would reveal which of these two has the initiative to decide positioning, and whether the
262 263 264 265	head direction of a front individual when it is approached from behind, toward the blind spot, is warranted. Recordings of movements of a target and its nearest neighbour would reveal which of these two has the initiative to decide positioning, and whether the individual with the initiative has a preference to see conspecifics using its left or right eye.
262 263 264 265 266	head direction of a front individual when it is approached from behind, toward the blind spot, is warranted. Recordings of movements of a target and its nearest neighbour would reveal which of these two has the initiative to decide positioning, and whether the individual with the initiative has a preference to see conspecifics using its left or right eye. The very short battery life of drones (approximately 15–20 min) is the most prominent
262 263 264 265 266 267	head direction of a front individual when it is approached from behind, toward the blind spot, is warranted. Recordings of movements of a target and its nearest neighbour would reveal which of these two has the initiative to decide positioning, and whether the individual with the initiative has a preference to see conspecifics using its left or right eye. The very short battery life of drones (approximately 15–20 min) is the most prominent challenge to conducting a sequential analysis, and we could therefore not conduct such a

269	In sum, we found that spatial positioning of nearest neighbours is lateralised
270	among adult feral horses during foraging. Previous studies reported that the left eye and
271	right hemisphere are frequently used during agonistic and affiliative behaviours in horses
272	and other species (Austin & Rogers, 2012, 2014; Deckel, 1995; Farmer et al., 2018;
273	Garbanati et al., 1983). In addition, offspring of various mammal species tend to monitor
274	their mother using their left eye (Karenina et al., 2017). Our study illustrates that spatial
275	positioning bias is not restricted to mother-infant relationships, but can also be seen
276	between adults. However, we did not investigate developmental change with aging in the
277	present study and further research is needed to understand how this bias might change
278	with age. In addition, our research site was characterised by the presence of wolves, which
279	are predators of horses, and a future direction to be studied would thus include the
280	possibility that horses might use different eyes to detect conspecifics and predators.
281	Further quantitative studies using drones to investigate relationships between spatial
282	positioning and social variables, including sex and social rank, will provide new insight
283	into the effect of social relationships on spatial distributions, from local aspect to global
284	views; that is, from nearest neighbours to the whole group. In conclusion, technological

285	developments have allowed us to investigate the spatial relationships of terrestrial animals
286	in detail, and future advances may reveal the underlying mechanisms of these
287	relationships, which could lead to a better understanding of the evolutionary foundations
288	of human behaviour (Torney et al., 2018; Westley, Berdahl, Torney, & Biro, 2018)
289	
290	

292	Author contributions

293	S.I. configured the study and collected and analysed data. M.R. and R.M. identified horses
294	and their groups. All authors contributed to the manuscript and approved the final version.
295	
296	

297	Compe	eting	interests
-----	-------	-------	-----------

- 298 We declare no competing interests.
- 299

300 Ethical Statement

- 301 The field observations complied with guidelines for animal studies in the wild issued by
- 302 the Wildlife Research Center of Kyoto University, Japan.

303

304

306 Table 1 Residual analyses following a G-test for the frequency of nearest neighbours307 within each zone.

Zone (Degree)	Frequency	<i>P</i> -value
0-15	13	0.96
15-30	17	0.23
30-45	13	0.96
45-60	17	0.23
60-75	11	0.60
75-90	14	0.74
90-105	11	0.60
105-120	12	0.81
120-135	22	0.0090 *
135-150	9	0.27
150-165	11	0.60
165-180	11	0.60
180-195	3	0.0050 *
195-210	6	0.051
210-225	6	0.051
225-240	10	0.42
240-255	13	0.96
255-270	16	0.37
270-285	17	0.23
285-300	19	0.079
300-315	18	0.14
315-330	16	0.37
330-345	8	0.17
345-360	15	0.54

* indicates p < 0.05

309

311 **Figure**

312

313 **Figure 1**

Heat map showing the density of nearest neighbours within two body lengths (BL) around an individual. In total, 308 points were used to create this map and bin sizes were $\Delta x = \Delta y$

317 = 0.67 BL; there were 17 points per square unit.

320

322 represents the frequency of nearest neighbours in each zone. Circular variance was

323 higher in the right and front zones compared with the left and rear zones.

325	References
	Iterer entees

326	Angelo Bisazza.	L. J. Rogers.	and G. Y	Vallortigara.	(1998).	The Origins	of Cerebral
	mgero biomblen,			, will of the generation .	(- / / / / /		01 00100100

- 327 Asymmetry: A Review of Evidence of Behavioural and Brain Lateralization in
- 328 Fishes, Reptiles and Amphibians, 22(3), 411–426. https://doi.org/10.1016/S0149-
- 329 7634(97)00050-X
- 330 Austin, N. P., & Rogers, L. J. (2012). Limb preferences and lateralization of aggression,
- 331 reactivity and vigilance in feral horses, Equus caballus. *Animal Behaviour*, 83(1),
- 332 239–247. https://doi.org/10.1016/j.anbehav.2011.10.033
- 333 Austin, N. P., & Rogers, L. J. (2014). Lateralization of agonistic and vigilance
- 334 responses in Przewalski horses (Equus przewalskii). *Applied Animal Behaviour*

335 *Science*, *151*, 43–50. https://doi.org/10.1016/j.applanim.2013.11.011

- Berger, J. (1977). Organizational systems and dominance in feral horses in the Grand
- 337 Canyon. *Behavioral Ecology and Sociobiology*, 2(2), 131–146.
- 338 https://doi.org/10.1007/BF00361898
- 339 Brancucci, A., Lucci, G., Mazzatenta, A., & Tommasi, L. (2009). Asymmetries of the
- human social brain in the visual, auditory and chemical modalities. *Philosophical*
- 341 *Transactions of the Royal Society B: Biological Sciences*, *364*(1519), 895–914.

- 342 https://doi.org/10.1098/rstb.2008.0279
- 343 Deckel, A. W. (1995). Laterality of Aggressive Responses in Anolis, 200, 194–200.
- 344 Farmer, K., Krueger, K., & Byrne, R. W. (2010). Visual laterality in the domestic horse
- 345 (Equus caballus) interacting with humans. *Animal Cognition*, 13(2), 229–238.
- 346 https://doi.org/10.1007/s10071-009-0260-x
- 347 Farmer, K., Krüger, K., Byrne, R. W., & Marr, I. (2018). Sensory laterality in affiliative
- 348 interactions in domestic horses and ponies (Equus caballus). Animal Cognition,
- 349 21(5), 631–637. https://doi.org/10.1007/s10071-018-1196-9
- 350 Feist, D., Mccullough, R., & Dean, J. (1976). Behavior patterns and communication in
- 351 feral horses population, with the exception of completion of a range boundary
- 352 fence. *Ethology*, *371*(4), 337–371. https://doi.org/10.1111/j.1439-
- 353 0310.1976.tb00947.x
- 354 Garbanati, J. A., Sherman, G. F., Rosen G. D., Hofmann M., Yutzey, D. A., Denenberg,
- 355 V. H. (1983). Handling in infancy, brain laterality and muricide in rats.
- 356 Behavioural Brain Research, 7, 351–359.
- 357 Giljov, A., Karenina, K., & Malashichev, Y. (2018). Facing each other: Mammal

- 358 mothers and infants prefer the position favouring right hemisphere processing.
- 359 *Biology Letters*, 14(1). https://doi.org/10.1098/rsbl.2017.0707
- 360 Halpern, M. E. (2005). Lateralization of the Vertebrate Brain: Taking the Side of Model
- 361 Systems. *Journal of Neuroscience*, 25(45), 10351–10357.
- 362 https://doi.org/10.1063/1.4810907
- 363 Harman, A. M., Moore, S., Hoskins, R., & Keller, P. (1999). Horse vision and an
- 364 explanation for the visual behaviour originally explained by the "ramp retina."
- 365 Equine Veterinary Journal, 31(5), 384–390. https://doi.org/10.1111/j.2042-
- 366 3306.1999.tb03837.x
- 367 Harris, L. J. (2010). Side biases for holding and carrying infants: Reports from the past
- 368 and possible lessons for today. *Laterality* (Vol. 15).
- 369 https://doi.org/10.1080/13576500802584371
- 370 Heleski, C. R., Shelle, A. C., Nielsen, B. D., & Zanella, A. J. (2002). Influence of
- housing on weanling horse behavior and subsequent welfare, 78.
- Jackson H. (1915). On the nature of the duality of the brain. *Brain*, *38*(1–2), 80–86.
- 373 https://doi.org/10.1093/brain/38.1-2.80

374	Karenina, K., Giljov, A., Glazov, D., & Malashichev, Y. (2013). Social laterality in
375	wild beluga whale infants: Comparisons between locations, escort conditions, and
376	ages. Behavioral Ecology and Sociobiology, 67(7), 1195–1204.
377	https://doi.org/10.1007/s00265-013-1545-2
378	Karenina, K., Giljov, A., Ingram, J., Rowntree, V. J., & Malashichev, Y. (2017).
379	Lateralization of mother-infant interactions in a diverse range of mammal species.
380	Nature Ecology and Evolution, 1(2). https://doi.org/10.1038/s41559-016-0030
381	Karenina, K., Giljov, A., Ivkovich, T., Burdin, A., & Malashichev, Y. (2013).
382	Lateralization of spatial relationships between wild mother and infant orcas,
383	Orcinus orca. Animal Behaviour, 86(6), 1225–1231.
384	https://doi.org/10.1016/j.anbehav.2013.09.025
385	Karenina, K., Giljov, A., & Malashichev, Y. (2018). Lateralization of mother-infant
386	interactions in wild horses. Behavioural Processes, 148(November 2017), 49-55.
387	https://doi.org/10.1016/j.beproc.2018.01.010
388	Kimura, R. (1998). Mutual grooming and preferred associate relationships in a band of
389	free-ranging horses. Applied Animal Behaviour Science, 59(4), 265-276.

390	Larose, C., Richard-Yris, M. A., Hausberger, M., & Rogers, L. J. (2006). Laterality of
391	horses associated with emotionality in novel situations. <i>Laterality</i> , 11(4), 355-367.
392	LeMay, M. (1976). Morphological Cerebral Asymmetries of Modern Man, Fossil Man,
393	and Nonhuman Primate. Annals of the New York Academy of Sciences, 280(1
394	Origins and E), 349–366. https://doi.org/10.1111/j.1749-6632.1976.tb25499.x
395	Levy, J. (1977). the Mammalian Brain and the Adaptive Advantage of Cerebral
396	Asymmetry. Annals of the New York Academy of Sciences, 299(1), 264–272.
397	https://doi.org/10.1111/j.1749-6632.1977.tb41913.x
398	Lindell, A. K. (2013). Continuities in Emotion Lateralization in Human and Non-
399	Human Primates. Frontiers in Human Neuroscience, 7(August), 1–9.
400	https://doi.org/10.1016/j.neuron.2014.08.058
401	Nagy, M., Ákos, Z., Biro, D., & Vicsek, T. (2010). Hierarchical group dynamics in
402	pigeon flocks. Nature, 464(7290), 890-893. https://doi.org/10.1038/nature08891
403	Okubo, M., Ishikawa, K., & Kobayashi, A. (2013). No trust on the left side: Hemifacial
404	asymmetries for trustworthiness and emotional expressions. Brain and Cognition,
405	82(2), 181-186. https://doi.org/10.1016/j.bandc.2013.04.004

406	Pocernich, M., & Agostinelli, M. C. (2017). Package ' circular .'
407	Ringhofer, M., Inoue, S., Mendonça, R. S., Pereira, C., Matsuzawa, T., Hirata, S., &
408	Yamamoto, S. (2017). Comparison of the social systems of primates and feral
409	horses: data from a newly established horse research site on Serra D'Arga,
410	northern Portugal. Primates, 58(4), 479–484. https://doi.org/10.1007/s10329-017-
411	0614-у
412	Schneider, G., & Krueger, K. (2012). Third-party interventions keep social partners
413	from exchanging affiliative interactions with others. Animal behaviour, 83(2), 377-
414	387.
415	Sieratzki J.S., & Woll B. (1996). Why do mothers carry babies on their left. Advances in
416	Child Development and Behavior, 1746–1748.
417	https://doi.org/10.1103/PhysRevLett.87.133603
418	Inoue S., Yamamoto S., Ringhofer M., Mendonça R. S., Pereira C. & Hirata S. (2018).
419	Spatial positioning of individuals in a group of feral horses : a case study using
420	drone technology, e.

421 Torney, C. J., Lamont, M., Debell, L., Angohiatok, R. J., Leclerc, L. M., & Berdahl, A.

422	M.	(2018).	Inferring	the rule	s of s	ocial	interaction	in	migrating	caribou.
-----	----	---------	-----------	----------	--------	-------	-------------	----	-----------	----------

- 423 *Philosophical Transactions of the Royal Society B: Biological Sciences,*
- 424 *373*(1746). https://doi.org/10.1098/rstb.2017.0385
- 425 Versace, E., Morgante, M., Pulina, G., & Vallortigara, G. (2007). Behavioural
- 426 lateralization in sheep (Ovis aries). *Behavioural Brain Research*, 184(1), 72–80.
- 427 https://doi.org/10.1016/j.bbr.2007.06.016
- 428 Wolter, R., Stefanski, V., & Krueger, K. (2018). Parameters for the Analysis of Social
- 429 Bonds in Horses. *Animals*, *8*(11), 191.
- 430 Westley, P. A. H., Berdahl, A. M., Torney, C. J., & Biro, D. (2018). Collective
- 431 movement in ecology: From emerging technologies to conservation and
- 432 management. *Philosophical Transactions of the Royal Society B: Biological*
- 433 *Sciences*, *373*(1746). https://doi.org/10.1098/rstb.2017.0004
- 434 Wilkie, D. (1983). Rayleigh test for randomness of circular data. In *Applied statistics*.

Appendix 1

439 (a) Feral horses and the drone (circled in the figure) soon after take-off in Serra D'Arga.

440	(b) An example of images that were taken by the drone and used for analysis. An
441	individual's vector was defined as a vector from the base of the tail to the base of the
442	neck. Body length of an individual was defined as the magnitude of the individual's
443	vector, because this region was relatively inflexible and stable. Mean body length of all
444	adult individuals in one image was used as the unit of measurement for distance.
445	Because the absolute height of the drone was not consistent, we needed to use relative
446	distance to measure distances. We only used images that contained all group members.
447	Therefore, mean body length was always constant and was used as the unit of
448	measurement for distance.
449	
450	Appendix 2
451	

Kyoto 2016		Kyoto 2	2017	Hyogo	2017	Нуодо 2018		
Name	Sex	Name	Sex	Name	Sex	Name	Sex	
Uzumasa	Male	Uzumasa	Male	Kobe	Male	Kobe	Male	
Akashi	Female	Ayabe	Female	Akashi	Female	Akashi	Female	
Ayabe	Female	Fushimi	Female	Himeji	Female	Fushimi	Female	

453

454 **Appendix 3**

455

- 456 Ratio of lateral positioning of the nearest neighbor located in the rear area in all observed pairs.
- 457 LI indicates the Laterality Index, computed as LI = L/(L + R), where L is the frequency of the
- 458 nearest neighbor in the left rear area of the target individual, and R is the frequency of the nearest

459 neighbor in the right rear area.

2016					Tarumi	Uji	0	3	0.00
Name	Name	L	R	LI	Uji	Miki	1	0	1.00
Ayabe	Fushimi	2	0	1.00	Uzumasa	Gion	1	0	1.00

Ayabe	Gion	2	0	1.00	Uzumasa	Kishiwada	0	1	0.00
Fushimi	Ayabe	1	0	1.00					
Gion	Fushimi	1	0	1.00	2018				
Kishiwada	Gion	1	0	1.00	Name	Name	L	R	LI
					Fushimi	Gion	3	1	0.75
2017					Fushimi	Himeji	2	0	1.00
Akashi	Kakogawa	1	0	1.00	Fushimi	Kakogawa	2	2	0.50
Akashi	Miki	6	1	0.86	Fushimi	Maiko	2	1	0.67
Akashi	Uji	5	2	0.71	Fushimi	Miki	4	2	0.67
Ayabe	Kameoka	1	0	1.00	Gion	Himeji	2	1	0.67
Ayabe	Kishiwada	4	2	0.67	Gion	Kakogawa	1	2	0.33
Gion	Kameoka	2	0	1.00	Gion	Kobe	1	1	0.50
Gion	Kishiwada	1	1	0.50	Gion	Miki	3	1	0.75
Gion	Uji	2	2	0.50	Himeji	Maiko	0	3	0.00
Kakogawa	Kobe	1	0	1.00	Himeji	Miki	3	7	0.30
Kakogawa	Miki	1	0	1.00	Kakogawa	Maiko	3	1	0.75
Kakogawa	Uji	2	4	0.33	Kobe	Himeji	2	0	1.00
Kameoka	Kishiwada	0	2	0.00	Kobe	Kakogawa	0	1	0.00
Kameoka	Miki	2	0	1.00	Kobe	Maiko	2	2	0.50
Kameoka	Uzumasa	1	0	1.00	Kobe	Miki	1	1	0.50
Kobe	Tarumi	0	1	0.00	Maiko	Gion	0	1	0.00
Miki	Kobe	1	1	0.50	Maiko	Miki	4	3	0.57
Tarumi	Miki	0	1	0.00	Miki	Kakogawa	2	3	0.40

Appendix 4

- 465 Relationships among vectors used in the analysis of circular variance, and definitions of
- 466 each zone in the rear area of the target individual. We defined quadrants as the front and
- 467 right, rear and right, rear and left, and front and left areas.
- 468
- 469 **Appendix 5**

- 471 The histogram of the directions of nearest neighbours within two body lengths, with 0
- 472 being the same direction as the target individual.