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ABSTRACT 

Critical issues arising from the governing nonlinear equations in surface water hydrodynamic 
include discontinuities in water surface levels, blow-up of water surface gradient, and treatment 
of dry beds or zero water depths, involving mathematical problems related to functional 
regularities of unknown variables such as the water depth. The level-set method is a powerful 
approach to relax requirements for functional regularities of unknowns in nonlinear partial 
differential equations of first order. In this study, the level-set method is applied to the one-
dimensional kinematic wave equation, resulting in a linear level-set equation of the first order 
in a two-dimensional space to tackle dry beds. The zeros of the level-set function represent the 
water depths. Hypothesizing that the level-set function is continuous in the domain, it is 
numerically computed with a characteristic method. The development of overturning is 
regulated with singular viscosity regularization (SVR), whose effect is to relocate the zeros of 
the level-set function close to the exact positions of the shock fronts in dam-break problems. 
The method is firstly verified with the explicitly known exact solutions of primitive dam-break 
problems, optimizing a parameter of SVR. Then, abrupt water release from Chan Thnal 
Reservoir, Kampong Speu Province, Cambodia into an initially dry bed of its irrigation canal 
system is simulated as a practical demonstrative example. In contrast to most of the available 
software tools using either the shallow water equations with some artificial viscosity or the 
diffusion wave approximation, the proposed method turns out to be free from spurious diffusive 
deformation of water surfaces even if relatively coarse computational mesh is used. 
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Analysis of surface water flows is essential in understanding hydrodynamic phenomena 
such as flash floods, surge propagation and inundation resulting from dam-breaks, tsunami, 
flows resulting from operation of hydraulic structures such as gate and weir (Khan, 2000). 
Those hydrodynamic phenomena influence on humans, environment, and economics (Alvarez 
et al., 2019). For instance, the sudden release of water stored in a reservoir could lead to severe 
environmental issues, risks to human life and economical damage (Castro-Orgaz and Chanson, 
2017). The more vulnerable areas that would be at risk due to such flooding caused by dam 
failure are the downstream dry bed terrains occupied by humans, infrastructures, industries, and 
agricultural lands. Frequency of extreme precipitation events and thus floods are expected to 
increase due to global climate change (Berndtsson et al., 2019). Flood simulation outputs play 
pivotal roles in flood risk management (Mohanty et al., 2020). Disaster risk reduction is better 
achieved if a socio-hydrological approach is well linked with hydrodynamic modelling (Abebe 
et al., 2019). On the other hand, abrupt operation of irrigation facilities is commonly practiced 
in order to increase water efficiency in agriculture. 

The surface water flows have been well comprehended in the context of the shallow water 
equations (SWEs) with the assumption that the vertical scale is much smaller than the horizontal 
scale. They consist of two conservation laws: mass and momentum in analogy to the Navier-
Stokes equations for incompressible fluids. The SWEs have been applied to various fields, such 
as coastal, environmental, and water resources engineering. The coastal engineering deals with 
the problems of tsunami-wave propagation, tide-currents, and storm-surges, etc. Liu et al. 
(2009) compared linear and nonlinear SWEs in describing tsunami-wave propagation over 
China Sea. Zhu et al. (2017) estimated tidal currents and residual currents by using the SWEs 
to analyze their generation mechanisms. Akbar and Aliabadi (2013) used hybrid finite element 
and finite volume techniques to solve two-dimensional (2D) SWEs for dealing with hurricane 
induced storm surge flow problem. The SWEs have been consistently used in flood propagation, 
flood inundation modelling, and river flooding in the field of water resources engineering and 
pollution transport problems in the environmental engineering. Cozzolino et al. (2019) 
considered a simplification of the complete SWEs called the Local Inertia Approximation, 
which is derived by neglecting the advective term in the momentum equation. This model is 
generally applied to simulate slow flooding propagation at moving wetting-drying area on even 
and uneven beds. A set of equations was derived from 1D SWEs to be used for simulating 2D 
flood inundation (Bates et al., 2010). Audusse and Bristeau (2003) computed the transport of a 
passive pollutant with the SWEs using a finite volume kinetic method. Kuriqi and Ardiclioglu 
(2018) investigated the hydraulic regime of the Loire River in France using HEC-RAS, which 
is a widely adapted simulation software based on the 1D SWEs. Ardiclioglu and Kuriqi (2019) 
applied HEC-RAS to discuss the channel roughness of a natural river in six different flow 
regimes. 

The complexity of the SWEs is attributed to that they model dynamics of water with all 
aspects including local acceleration term, convection acceleration term, pressure force term, 
gravity force term, and friction force term. There are major two approximation methods for the 
1D SWEs. The first approximation method is diffusion wave approximation, in which the local 
acceleration term and convection acceleration term are not considered. The second one is to 
consider only gravity force term and friction force term as force terms, resulting in the kinematic 
wave equation. The model is originally introduced and specifically described in Lighthill and 
Whitham (1955). In the kinematic wave equation, several terms in the equation of motion such 
as local acceleration term, convective acceleration term, and pressure force term are assumed 
to be insignificant; hence, the equation of motion is simply expressed that the bed slope is 
equivalent to friction slope (Miller, 1984). The kinematic wave equation has been employed to 
a number of hydraulic processes of subsurface flow, surface flow, sediment transport, solute 
transport and glacier hydrology. Singh (2001) presented the history of the kinematic wave 
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theory and its applications in water resources. Singh (2017) discussed the general concept of 
kinematic wave for overland flows such as mathematical formulation and validity of the 
concept. The mixed runoff generation model and 2D kinematic wave model were introduced 
for overland flow routing in the upper Kongjiapo basin in the Qin River (Bao et al., 2017). 
Huang et al. (2015) combined rainfall-runoff and snowmelt modules, which were derived from 
the kinematic wave equation and the energy budget method, respectively, to estimate the 
surface water resources in the semiarid area of Heilongjiang Province, China. Yomota and 
Islam (1992) used the kinematic wave equation for calculating the flood runoff discharge from 
the inclined upland field in Hiroshima Prefecture, Japan, concluding that the application of the 
kinematic wave equation with Manning’s roughness produced the better results than the other 
resistance law of Darcy and laminar. 

In mathematical viewpoints, an initially dry bed for simulation of surface water flows 
using the kinematic wave equation is a challenging issue, involving the deformation of the 
domain. Most of conventional flow models assume sufficiently small positive water depths in 
the domain for a well-posed hyperbolic problem to avoid failure in producing solutions. The 
level-set method is powerful in relaxing requirements for functional regularities of unknowns 
in nonlinear partial differential equations of first order. The method is one of the approaches to 
track the motion of propagating fronts or surfaces, which are considered as the zero level-set of 
higher level-set functions (Caselles et al., 1993). Originally introduced for curvature flows by 
Osher and Sethian (1988), the overview of level-set method to solve Hamilton-Jacobi equations 
has been described in the review paper by Gibou et al. (2018). The method has been seen in 
various fields such as image segmentation (Li et al., 2010), computed tomography (Malladi et 
al., 1995), and geometry optimization (Osher and Santosa, 2001). Li et al. (2011) successfully 
applied the level-set method to solving image segmentation which had faced the difficulty of 
intensity inhomogeneity in real world images. In structural engineering, the level-set method is 
applied for structural optimization to minimize the structural load while satisfying the constraint 
(Sethian and Wiegmann, 2000). The method has been applied to fluid mechanics for both 
incompressible and compressible flows as well, in terms of ship hydrodynamics, image 
segmentation, and shape or topology optimization. For instance, a coupled level-set and volume-
of-fluid method has been used for the computation of interfacial flows in the ship 
hydrodynamics (Wang et al., 2009). Sethian and Smereka (2003) tracked fluid interfaces. Duan 
et al. (2008) proposed the variational level-set function to optimize the shape-topology in the 
Navier-Stokes problem by maintaining the smooth evolution without re-initialization and 
topology change. Yue et al. (2003) presented a numerical method to simulate free surface flows 
by solving the 3D incompressible Navier-Stokes equation with the level-set method. However, 
the kinematic wave equation has not yet been tackled with the level-set method in the literature. 

This study aims at clarifying advantages and limitations of regarding the kinematic wave 
equation as a Hamilton-Jacobi equation. The level-set method is firstly applied to the continuity 
equation of one-dimensional (1-D) open-channel flows, resulting in a nonlinear level-set 
equation of first order in a two-dimensional (2-D) space governing a level-set function whose 
zeros represent the water depths. Prior to the analysis of surface water flows, the Eikonal 
equation is considered as a primitive but an important example to comprehend the general idea 
of the level-set method. The Eikonal equation is often used for delineating the first-arrival time 
problems, and it has various practical applications including computational geometry, computer 
vision, and material science, etc. (Fomel et al., 2009). Transmit times for 3D seismic waves can 
be computed numerically from the Eikonal equation using the finite difference method (Vidale, 
1988). However, calculation of expanding wave fronts requires the notion of characteristics (Qin 
et al., 1992). Therefore, we numerically compute the level-set function for the kinematic wave 
equation with a characteristic method, and the numerical solutions are verified with the 
analytical solutions of relevant dam-break problems. The analytical weak solutions of the dam-
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break problems are obtained from theoretical celerity, which becomes the speed of propagating 
shock front on a dry bed. However, it turns out that the problems related to overturning 
phenomena appear. In order to control the development of overturning, singular viscosity 
regularization (SVR) is employed (Tsai et al., 2003). Then, the computational results with and 
without SVR are compared with the analytical weak solution representing time evolution of the 
shock front propagating downstream, optimizing a parameter of SVR. Finally, abrupt water 
release from Chan Thnal Reservoir, Kampong Speu Province, Cambodia into an initially dry 
bed of its irrigation canal system is simulated as a practical demonstrative example.  

 
 
2. Methods 
 
Mathematical models for surface water flows involve nonlinear partial differential equations. 
In this section, the kinematic wave equation is derived from the SWEs, and the level-set method 
is briefed with the Eikonal equation. Inclusion relations and dependency among those concepts 
are delineated in Figure 1.  

 
Figure 1. Inclusion relations and dependency among the concepts appearing in the methods 

 
 
2.1. Governing equation of surface water flows 
 

In one-dimensional surface water flows of hydrostatic pressure distribution, the 
conservation laws of mass and momentum of the SWEs are written as 

 2

f

Q qA
QQt x gA gAS

xA
ηβ

    ∂ ∂    + = ∂     ∂ ∂ − −     ∂  

  (1) 

where t  is the time, A  is the cross-sectional area, Q  is the discharge, x  is the local curvilinear 
abscissa along the channel bed, β  is the momentum coefficient, η  is the water level, q  is the 

Quasilinear differential equations of first order 

Hamiltonian-Jacobi equations 

Eikonal equation 

Kinematic wave equation 

Shallow water equations (SWEs) 

Modelling surface water flows 

Level-set method 

Singular viscosity 
regularization (SVR) 
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lateral inflow discharge per unit length, g  is the acceleration due to gravity, and fS  is the 
friction slope which is given by the Manning’s formula (Unami and Alam, 2012). The kinematic 
wave equation assumes local equilibrium of momentum and negligible changes in water depths, 
to reduce (1) to 

 

( )

2 3 1 2
0

1

AVA q
t x

V R S
n

∂∂
+ = ∂ ∂

 =

  (2) 

where V is the cross-sectional averaged velocity, n is the Manning’s roughness, R is the 
hydraulic radius, and 0S is the bed slope. When a dry bed takes place, the cross-sectional 
averaged velocity V  simply vanishes. 
 
2.2. Analytical solution of kinematic wave equation   
 

Analysis of the kinematic wave equation stems from regarding the system (2) as 
quasilinear differential equation of first order expressed as 

 ( )F uu r
t x

∂∂
+ =

∂ ∂
  (3) 

where u is a generic unknown variable, F is the flux which is a nonlinear function of u , and r  
is a source term. For a piecewise continuous weak solution having a jump from lu  to ru , the 
local celerity is given by 

 ( ) ( ) ( ), l r
l r

l r

F u F u
C u u

u u
−

=
−

  (4) 

provided that ( ) ( ) ( ),l l r rF u C u u F u′ ′> > (Osher and Fedkiw, 2001). In the continuous case, 
the celerity approaches to 

 ( ) ( ),
F u

C u u
u

∂
=

∂
  (5) 

which is known as the Kleitz-Seddon law in the context of the kinematic wave equation. The 
analytical solutions will be employed to verify the level-set method with SVR appropriately 
working. 
 
2.3. Level-set method 
 

The level-set method firmly relies on the Hamilton-Jacobi equation, which often appears 
in variational calculus. The conservative form (3) is formally rewritten as the Hamilton-Jacobi 
equation (6) 

 ( ), , , 0x
u H t x u u
t

∂
+ =

∂
  (6) 

where H  is the Hamiltonian. The notion of viscosity solution is commonly applied to 
Hamilton-Jacobi equations. The level-set function ( ), ,t x zϕ ϕ=  is a function of t, x, and 
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another secondary independent variable z, such that its zeros represents u. The governing 
equation of ϕ  is the level-set equation 

 , , , 0x

z

H t x z
t z

ϕϕ ϕ
ϕ

 ∂ ∂
− − = ∂ ∂  

 (7) 

which must be treated in the viscosity sense, as it is formally derived from 0t z tuϕ ϕ+ =  and 
0x z xuϕ ϕ+ = (Tsai et al., 2003). 

 
2.4. Example of the level-set method applied to Eikonal equation 
 

A primitive but important application of the level-set method is to the Eikonal equation. The 
unsteady form of the Eikonal equation is  
 

 1u u
t x

∂ ∂
+ =

∂ ∂
,  (8) 

whose Hamiltonian H  is  

 ( ) ( ), , , 1H t x u p H p p= = − ,  (9) 

and the corresponding level-set equation is 
 

 0z

zt x z
ϕϕ ϕ ϕ
ϕ

∂ ∂ ∂
− + =

∂ ∂ ∂
.  (10) 

 
The level-set function (10) with the initial and boundary condition ( )0, ,x z zϕ =  and 

( ), 1,t z zϕ ± =  is numerically computed in the t-x-z-domain ( ) ( ) ( )0,6 1,1 2,2× − × − , using an 
upwind differencing discretization scheme in the x-z-space and the fourth-order Runge-Kutta 
method in time t. With meshes of 0.1t∆ = , 0.1x∆ = , and 0.1z∆ = , the computed results at t = 
0, 1, 2, and 3 are presented in Figure 2, where the zeros are highlighted with different colors for 
different times. As the solution u to the Eikonal equation (8) represents the minimum first exit 
time from the domain, there is a steady-state 

 1u x= − ,  (11) 

which is achieved within a finite time. The computational results well reproduce the solution, 
as can be seen from the transient state at t = 1 followed by the identical values at t = 2 and 3. 
However, the case of the kinematic wave equation is not straightforward, due to the vanishing 
Hamiltonian for dry beds. 
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Figure 2. Numerical solutions to the level-set equation for the Eikonal equation 

 
2.5. Derivation of level-set equation for kinematic wave equation 
 

For the sake of simplicity, unit width of an open channel having very broad rectangular 
cross-section without any lateral flow is considered in the kinematic wave equation (2), 
implying that  R h= , u h= , ( ) ( )1 2 5 3

0F u S n u= , and ( ) ( )1 2 2 3
05 3F u S n u′ = , where h is the 

water depth. The bed slope 0S and the Manning’s roughness n are assumed piecewise constant. 
Then, the Hamiltonian H becomes 

 ( )
1 2

2 305, , ,
3
SH t x u p u p
n

=   (12) 

and then the level-set equation becomes 

 
1 2

2 305 0
3
S z

t n x
ϕ ϕ∂ ∂
+ =

∂ ∂
  (13) 

which governs ϕ  almost everywhere in the t-x-z-domain ( )30,∞ . The initial condition is 
imposed as 

 ( )0, ,x z zϕ =   (14) 

to represent the initial dry bed. Then, assuming dam-break or sudden operation of a hydraulic 
structure at the upstream end, the boundary condition 

 ( ) up,0,t z z hϕ = −   (15) 

is imposed to specify the upstream water depth as uph . Although u  is a function of bounded 
variation (BV function) allowing discontinuities, the level-set function ϕ is possibly continuous 
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in the domain but not up to the boundary. Since there is no term of zϕ , (13) is solved as it is an 

advection equation in the t-x-domain ( )20,∞ . 
  
2.6. Computational method with SVR 
 

The domain is discretized into meshes of equal size t∆  by x∆  by z∆ , to compute the 
approximate values of ϕ . The notation , ,k i jϕ  represents the approximated ( ), ,k t i x j zϕ ∆ ∆ ∆  for

, ,k i j∈ . The characteristic method analogous to the one solving a Bellman equation in dynamic 
programming is employed (Unami et al., 2019). The piecewise linear interpolation is applied to 
the x-direction as 

 ( ) ( ), , , 1, , ,ˆ , , k i j k i j k i j
x i xk t x j z

x
ϕ ϕ ϕ ϕ+

− ∆
∆ ∆ = + −

∆
  (16) 

where ϕ̂  is the interpolated ϕ , and ( )1i x x i x∆ ≤ < + ∆ . Then, the level-set equation (13) is 
approximately solved as 

 ( )1, , ˆ , ,k i j k t j zϕ ϕ ξ+ = ∆ ∆   (17) 

where 

 ( )
1 2

2 305
3
Si x j z t
n

ξ = ∆ − ∆ ∆ .  (18) 

In practical implementation of (17), “overturning” may develop due to violation of the 
minimum principle ( ), , 0z t x zϕ ≥  for 0t ≥ , and adding a singular viscosity term to (13) serves 
as regularization. The singular viscosity term , ,k i jψ  at the discretized stage is given as 

 ( )

, , 1 , , , , , , 1

, , , ,

tanh tanhk i j k i j k i j k i j

k i j k i j

z z
M

z

ϕ ϕ ϕ ϕ
γ γ

ψ ϕ

+ −− −   
−   ∆ ∆   = ∇
∆

  (19) 

where 

 ( )
2 2

, 1, , 1, , , 1 , , 1
, , 2 2

k i j k i j k i j k i j
k i j x z

ϕ ϕ ϕ ϕ
ϕ + − + −− −   

∇ = +   ∆ ∆   
  (20) 

with parameters M  to be optimized and 1/ zγ = ∆ , as recommended in the paper. 
 The zeros of the computed level-set function at each time stage k t∆ , which are 
represented by  ( ), , ,k i j j zξ ∆  or  ( ), ,, k i ji x ζ∆ , solve 

 ( ) , ,
, , , 1, , , 0k i j

k i j k i j k i j

i x
x

ξ
ϕ ϕ ϕ+

− ∆
+ − =

∆
  (21) 

with ( ), , 1k i ji x i xξ∆ ≤ < + ∆  or 

 ( ) , ,
, , , , 1 , , 0k i j

k i j k i j k i j

j z
z

ζ
ϕ ϕ ϕ+

− ∆
+ − =

∆
  (22) 

with ( ), , 1k i jj z j zζ∆ ≤ < + ∆ , respectively, for each i  and j . 
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3. Results 
 
3.1. Effect of SVR in dam-break problems 
 

The level-set method for the kinematic wave equation is now applied to the dam-break 
problems with the dry bed initial condition. Without loss of generality, 1 2

0 1S n =  is assumed, and 
the local celerity of dam-break flows over the dry bed becomes ( ),0C u 2 3u=  (m/s) in the model. 
Numerical experiments for the level-set equation are performed over the subset 
( ] ( ] ( )0,100 0,500 0,12× ×  of ( )30,∞ , with meshes of 0.01t∆ =  (s), 1x∆ =  (m), and 0.5z∆ =  
(m). The boundary 0x =  is considered as the position of a dam, separating upstream and 
downstream areas. At the initial time, the downstream area is set to be a dry bed. Setting a 
boundary condition to specify a water depth uph  at 0x =  formulates a dam-break problem for 
the kinematic wave equation. Firstly, the dam-break problem for uph  = 2 (m) is numerically 
solved by the level-set method without SVR. Figure 3 compares the computed zeros of the 
level-set function (circular dots, noSVR) with the exact positions of the shock fronts obtained 
from the analytical solution (lines, Exact). The different colors show the time stages every 10 
(s) as the shock front propagates downstream. The computed zeros constitute the upstream 
water surface uph  = 2 (m) and the propagating shock front for each t. However, the overturning 
phenomena occur, which cause unwanted shock front motion. Hence, SVR is introduced with 
an optimized 0.01M = . The results are similarly depicted in Figure 4 where the triangular dots 
indicate the zeros of level-set function with SVR (SVR). The overturning still remains in the 
zeros of level-set function with SVR, however, they better approximate the analytical solution 
with reasonable reproduction of celerity. 
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Figure 3. Zeros of the computed level-set function without SVR (noSVR) for the dam-break over 
the dry bed in comparison with the exact positions of the shock front (Exact) for the case 

uph =2 (m) 
 

 
Figure 4. Zeros of the computed level-set function with SVR (SVR) for the dam-break over the 

dry bed in comparison with the exact positions of the shock front (Exact) for the case 
uph =2 (m) 

 
 
3.2. Optimal values of coefficient M 
 

Coefficient M and γ are two parameters that are required to be specified when SVR is 
included in the level-set method. According to Tsai et al. (2002), γ  was set to be 1 z∆ ; however, 
M was stated to be a sufficiently large value. Such a case the coefficient M has not well defined 
in the paper. Thus, this study examines the optimal values of the coefficient M by implementing 
different cases of boundary conditions: uph  = 1, 2,…, 10. The subset and meshes where 
numerical experiments are performed are the same as in the subsection 3.1. For each case of 

uph , different values of M in the range ( )0,1  are specified to produce the corresponding zeros 
of the level-set function with SVR. For each value of M, the minimum distance between the 
zeros of the level-set function and the exact solution are calculated to obtain the optimal value 
of the coefficient M. The optimized results of the coefficient M for the different cases of uph  
are summarized in Figure 5. The higher upstream water depth is, the greater the coefficient M 
is needed. The relation is approximated by the quadratic function of 

20.0063 0.0134 0.0098up upM h h= − +  with 2 0.99R = .  
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Figure 5. Optimal coefficient M for different cases of upstream water depth  
 

To visualize the difference between the cases with and without the optimized SVR, the 
error in each case is determined by the maximum distance between the zeros of the level-set 
function and the exact positions of shock fronts, as illustrated in Figure 6. The blue dots and the 
red dots represent the errors in the cases without and with the optimized SVR, respectively. 
Figure 6 implicates that the effect of SVR is so significant that it bounds the error without 
depending on uph . 

 
Figure 6. The errors in the zeros of the level-set functions with the optimized SVR (red dots) and 

without SVR (blue dots) 
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3.3. Practical demonstrative example 
 

Chan Thnal Reservoir is located in Kampong Speu Province of Cambodia, having the 
maximum capacity of 3 million cubic meters. It collects rainwater from a catchment area of 268 
km2, supplying the stored water to the irrigation canal system from the main gate at the 
coordinates 11°34'13"N and 104°31'26"E (Perera et al., 2007). As one of the central low lands 
of Cambodia, the average annual rainfall in Kampong Speu Province is about 1400 mm 
(Thoeun, 2015). Tropical Monsoon climate usually shows the characters of a unimodal rainfall 
intensity curve with a specific long dry spell (Alam et al., 2018), and the catchment area and 
the command area of Chan Thnal Reservoir are not an exception. The reservoir is operated both 
in the rainy seasons (May to October) for 1000 ha of agricultural area and in the dry seasons 
(November to April) for 115 ha, often encountering the problem of abrupt water release to an 
initially dry bed of the irrigation canal system. Such operation may aim at increasing water 
efficiency in agriculture as well as enhancing the flood retention function of the reservoir 
(McMinn et al., 2010). The main canal of the system, having the total length of 7320 m, as 
shown in Figure 7, is modeled as an open channel with varied bed slopes, which are 0.0089, 
0.0018, 0.0016, 0.0020, and 0.0005 for the five reaches divided by the points 610 m, 2070 m, 
3670 m, and 5060 m distant from the reservoir. A constant Manning’s roughness 0.03n =  
( 1 3m s− ) is applied to the model since the canal is earthen type with vegetation (Chow, 1959). 

The ability of the level-set method with SVR applied to the kinematic wave equation is 
demonstrated in the practical problem of abrupt water release from Chan Thnal Reservoir into 
an initially dry bed of the main canal. The level-set equation is numerically solved for the dam-
break problem for uph  = 2 (m) over the subset ( ] ( ] ( )0,3600 0,7320 1,3× × −  of  ( )30,∞ , with 
meshes of 0.1t∆ =  (s), 10x∆ =  (m), and 0.1z∆ =  (m), considering the varied bed slopes. As 
we have observed in the primitive test cases, strong overturning occurs as the fronts propagate 
downstream when M is small. If M is large, then artificial diffusion takes place so that the 
upper parts of the fronts tend to move slower than the lower parts. With an optimized value of 

0.003M = , surface water flows are computed and delineated in Figure 8. The computed zeros 
of the level-set function are plotted every 100 (s) with different colors. It is clearly seen that the 
fronts propagate downstream with varied celerity according to the bed slope during the 
computational period of 3600 (s). 
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Figure 7. Satellite image of Chan Thnal Reservoir and its irrigation command area with the 
main canal (green line) (Google Earth image taken on January 12, 2014, accessed on 
April 08, 2020) 

 
 

 
Figure 8. Zeros of the computed level-set function with SVR over the dry bed of Chan Thnal 

irrigation canal for uph =2 (m) 
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4. Discussion 
  
 The standpoint that regards the kinematic wave equation as a Hamilton-Jacobi equation 
has been almost untracked, but the model development and the numerical experiments conducted 
here have revealed its advantages and limitations. 
 The kinematic wave equation remains hyperbolic even if the water depth becomes zero 
and does not involve any well-posedness issue when dealing with the initially dry bed problems. 
While, the dam-break problems imply discontinuities in the water depths. The level-set method 
is powerful in relaxing requirements for functional regularities of unknowns in nonlinear partial 
differential equations of first order including Hamilton-Jacobi equations. Thanks to this 
property, the computational method successfully worked in the practical demonstrative 
example of Chan Thnal irrigation canal with the varied bed slopes as well. However, 
inhomogeneous slight overturning phenomena can be seen in the propagating shock front 
mostly in the midstream of the canal, implicating that the constant coefficient M was not the 
optimal for the varied bed slopes. The Froude numbers achieved after the arrival of the shock 
front were 1.1272, 0.5069, 0.4779, 0.5343, and 0.2672 for the five reaches divided by the points 
610 m, 2070 m, 3670 m, and 5060 m distant from the reservoir, respectively, implying that 
there was a hydraulic jump in terms of the SWEs at the point 610 m from the reservoir. This 
incapability of detecting hydraulic jumps is one of the limitations of the level-set method for 
the kinematic wave equation. While, in contrast to most of the available software tools using 
either the 1-D SWEs with some artificial viscosity or the diffusion wave approximation, the 
proposed method turns out to be free from spurious diffusive deformation of water surfaces. As 
demonstrated in the practical example with  10x∆ =  (m) and  0.1z∆ =  (m), the use of relatively 
coarse mesh admits the efficiency of the method despite the computation is implemented in the 
2-D space.  
 The critical point of applying the level-set method to the kinematic wave equation is 
the requirement of SVR. The applications of level-set method to the kinematic wave equation 
with and without SVR have been compared and verified with analytical solutions of dam-break 
problems. These results clearly indicated the importance of SVR in improving the numerical 
solutions. The formal deduction of (7) tentatively assuming the continuous differentiability of 
u  without treatment in the viscosity sense causes the overturning phenomena. We conjecture 
that the level-set method with SVR for ϕ  in (13) is consistent with the vanishing viscosity 
method for u  in (7) with (12) and thus regulates the development of overturning. However, 
examining that conjecture with mathematical rigor is beyond the scope of this paper. 
 
 
5. Conclusions 
 

This paper discussed the applicability of the level-set method to the kinematic wave equation 
for reproduction of propagating discontinuous water surface caused by dam-break over an initially 
dry bed in the downstream side. Unlike the Eikonal equation, overturning is intrinsic to the 
kinematic wave equation whose Hamiltonian vanishes on the dry bed. The introduction of SVR 
was effective for relocating the zeros of the level-set function close to the correct positions of the 
shock front. However, that effect was sensitive to the coefficient M, which was optimized to 
produce a better numerical solution of the level-set function for each case of upstream water depth. 
The relation between upstream water depth and coefficient M is approximated by the quadratic 
function of 20.0063 0.0134 0.0098up upM h h= − +  with 2 0.99R = . The maximum distance 
between the zeros of the level-set function and the exact positions of shock fronts was used for 
determining the error. An important outcome of this study is to implicate that SVR can uniformly 
suppress the overturning phenomena which might linearly grow as the upstream water depth is 
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increased. Finally, the practical application understandably shows that the level-set method with 
SVR applied to the kinematic wave equation is versatile for dry beds with varied bed slopes, 
although the coefficient M still needs adjustment depending on the varied bed slopes for better 
performance of the method.  

The level-set method for the full SWEs over common digital elevation mesh shall be tackled 
in the follow-up study to develop methodologies for better understanding the practical 
hydrodynamic phenomena. Future works shall also deal with technical issues such as treatment of 
more irregular channel topography and roughness, as well as inclusion of lateral flows and then 
channel junctions. 
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Nomenclature 

Symbols  

A Cross-sectional area 

( ),l rC u u  Local celerity at jump from lu  to ru  

F  Flux 
g  Acceleration due to gravity 

H  Hamiltonian 

h  Water depth 
uph  Upstream water depth 

M  Parameter controlling singular viscosity regularization 
n  Manning’s roughness 
p  

xu  as an argument of Hamiltonian 

Q Discharge 
q  Lateral inflow discharge per unit length 

R  Hydraulic radius 

r  Source term 

fS  Friction slope 

0S  Bed slope 
t  Time 
u  Generic unknown variable 

lu  u  at the left hand side of a jump 

ru  u  at the right hand side of a jump 
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V  Cross-sectional averaged velocity 
x  Space coordinate 

  The set of integers 

z  Secondary coordinate for level-sets 
β  Correction coefficient for velocity distribution 
γ  Parameter to approximate singular diffusion 
η  Water level 
ξ  x  at the previous time stage 

( ), ,t x zϕ ϕ=  Level-set function as a function of t , x , and z  
ϕ̂  Interpolated ϕ  
ψ  Singular viscosity term 

Subscripts  
, ,k i j  Integers indexing discretized , ,t x z  

x  Partial derivative with respect to x   
z  Partial derivative with respect to z  

Prefix  

∆  Increment 
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