A Summary of "Combinatorial Belyi Cuspidalization and Arithmetic Subquotients of the Grothendieck-Teichmüller Group"

Shota Tsujimura

This is a summary of the paper [7], entitled "Combinatorial Belyi Cuspidalization and Arithmetic Subquotients of the Grothendieck-Teichmüller Group".

First, let us fix notations. Let G be a profinite group; $H \subseteq G$ a closed subgroup. Then we shall denote by $C_G(H)$ the *commensurator* of $H \subseteq G$, i.e.,

 $C_G(H) \stackrel{\text{def}}{=} \{ g \in G \mid H \cap g \cdot H \cdot g^{-1} \text{ is of finite index in } H \text{ and } g \cdot H \cdot g^{-1} \}.$

For a connected Noetherian scheme S, we shall write Π_S for the étale fundamental group of S, relative to a suitable choice of basepoint. Write $X \stackrel{\text{def}}{=} \mathbb{P}^1_{\overline{\mathbb{Q}}} \setminus \{0, 1, \infty\}$, i.e., the projective line over the field of algebraic numbers $\overline{\mathbb{Q}}$ [in the field of complex numbers], minus the three points "0", "1", " ∞ "; $G_{\mathbb{Q}} \stackrel{\text{def}}{=} \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

Let p be a prime number. In [5], §3 [cf. [5], Corollary 3.7], S. Mochizuki developed the theory of Belyi cuspidalization and applied this theory to reconstruct the decomposition groups of the closed points of a hyperbolic orbicurve of strictly Belyi type over a p-adic local field, i.e., a finite extension of the field of p-adic numbers \mathbb{Q}_p [cf. [5], Definition 3.5; [5], Remark 3.7.2]. The technique of cuspidalization has many applications to anabelian geometry, and the theory of Belyi cuspidalization is one of them.

In [7], we develop a certain combinatorial version [which is closely related to the Grothendieck-Teichmüller group GT] of the theory of Belyi cuspidalization developed in [5], §3. We shall refer to this as the theory of *combinatorial Belyi cuspidalization*. Let us recall that GT may be regarded as a closed subgroup of the outer automorphism group of Π_X [cf. [4], Definition 1.11, (i); [4], Remark 1.11.1], and that the natural outer action of $G_{\mathbb{Q}}$ on Π_X determines natural inclusions

$$G_{\mathbb{Q}} \subseteq \mathrm{GT} \subseteq \mathrm{Out}(\Pi_X).$$

In this context, we recall the following famous open question:

Question : Is the inclusion $G_{\mathbb{Q}} \subseteq \text{GT}$ bijective?

At the time of writing of the paper [7], the author does not know

whether or not the inclusion $G_{\mathbb{Q}} \subseteq \operatorname{GT}$ is a bijection.

However, in [7], as an application of the theory of *combinatorial Belyi cuspidalization*, we obtain a partial solution to a certain *p*-adic tempered analogue of the above Question [cf. Theorem A below]. Let $\overline{\mathbb{Q}}_p$ be an algebraic closure of \mathbb{Q}_p . Then we shall write

- \mathbb{C}_p for the *p*-adic completion of $\overline{\mathbb{Q}}_p$;
- $X_{\mathbb{C}_p} \stackrel{\text{def}}{=} \mathbb{P}^1_{\mathbb{C}_p} \setminus \{0, 1, \infty\};$
- $\Pi_{X_{\mathbb{C}_p}}^{\mathrm{tp}}$ for the tempered fundamental group of $X_{\mathbb{C}_p}$, relative to a suitable choice of basepoint [cf. [1], §4, for the definition and basic properties of tempered fundamental groups].

Let us recall that [for suitable choices of basepoints] $\Pi_{X_{C_p}}$ [hence also Π_X] may be regarded as the profinite completion of $\Pi_{X_{C_p}}^{\text{tp}}$, and $\Pi_{X_{C_p}}^{\text{tp}}$ may be regarded as a subgroup of Π_X [cf. [1], §4.5]. Then the operation of passing to the profinite completion induces a natural homomorphism

$$\operatorname{Out}(\Pi_{X_{\mathbb{C}_n}}^{\operatorname{tp}}) \to \operatorname{Out}(\Pi_X).$$

It follows immediately from the fact that the normalizer of $\Pi_{X_{\mathbb{C}_p}}^{\mathrm{tp}}$ in Π_X is $\Pi_{X_{\mathbb{C}_p}}^{\mathrm{tp}}$ [cf. [1], Corollary 6.2.2; [3], Lemma 6.1, (ii)], that this natural homomorphism is *injective*. Thus, we shall use this natural injection to regard $\operatorname{Out}(\Pi_{X_{\mathbb{C}_p}}^{\mathrm{tp}})$ as a subgroup of $\operatorname{Out}(\Pi_X)$. Write

$$\operatorname{GT}_p^{\operatorname{tp}} \stackrel{\operatorname{def}}{=} \operatorname{GT} \cap \operatorname{Out}(\Pi_{X_{\mathbb{C}_p}}^{\operatorname{tp}}) \subseteq \operatorname{Out}(\Pi_X).$$

Then the following holds [cf. [7], Corollary B]:

Theorem A (Natural surjection from $\operatorname{GT}_p^{\operatorname{tp}}$ to $G_{\mathbb{Q}_p}$). One may construct a surjection

$$\operatorname{GT}_p^{\operatorname{tp}} \twoheadrightarrow G_{\mathbb{Q}_p} \stackrel{\operatorname{def}}{=} \operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$$

whose restriction to $G_{\mathbb{Q}_p}$ is the identity automorphism.

The above theorem is proved by applying the theory of *combinatorial Belyi* cuspidalization, together with the following theorem [cf. [7], Theorem C], which is an application of E. Lepage's theory of resolution of non-singularities [cf. [2], Theorem 2.7]:

Theorem B (Determination of moduli of certain types of *p*-adic hyperbolic curves by data arising from geometric tempered fundamental groups). Let $Y \to X_{\mathbb{C}_p}$ be a connected finite étale covering of $X_{\mathbb{C}_p}$; y, y' elements of $Y(\mathbb{C}_p)$. Write Y_y (respectively, $Y_{y'}$) for $Y \setminus \{y\}$ (respectively, $Y \setminus \{y'\}$); Π_Y^{tp} (respectively, $\Pi_{Y_y}^{\text{tp}}$, $\Pi_{Y_{y'}}^{\text{tp}}$) for the tempered fundamental group of Y (respectively, Y_y , Y_y). Suppose that there exists an outer isomorphism of topological

groups $\Pi_{Y_y}^{\text{tp}} \xrightarrow{\sim} \Pi_{Y_{y'}}^{\text{tp}}$ that fits into a commutative diagram of outer homomorphisms of topological groups

where the vertical arrows are the outer surjections induced by the natural open immersions of hyperbolic curves. Then y = y'.

Finally, in [7], we consider yet another interesting class of closed subgroups of GT which act naturally on the field of algebraic numbers $\overline{\mathbb{Q}}$. For any field F and positive integer n, we shall write

$$F^{\times} \stackrel{\text{def}}{=} F \setminus \{0\}, \quad \mu_n(F) \stackrel{\text{def}}{=} \{x \in F^{\times} \mid x^n = 1\},$$
$$\mu(F) \stackrel{\text{def}}{=} \bigcup_{m \ge 1} \mu_m(F), \quad F^{\times \infty} \stackrel{\text{def}}{=} \bigcap_{m \ge 1} (F^{\times})^m.$$

In the remainder of the present manuscript, let K be a field. Then we shall say that the field K is *stably* $\times \mu$ -*indivisible* if, for every finite extension L of K, $L^{\times \infty} \subseteq \mu(L)$. In fact, such fields exist in great abundance [cf. [7], Lemma D]. For instance, any *subfield* of an *abelian* or *pro-prime-to-p* Galois extension of a finite extension of \mathbb{Q} or \mathbb{Q}_p is *stably* $\times \mu$ -*indivisible*.

Suppose that K is a stably $\times \mu$ -indivisible field of characteristic 0. Let \overline{K} be an algebraic closure of K. Write $G_K \stackrel{\text{def}}{=} \operatorname{Gal}(\overline{K}/K)$. Then we apply the theory of combinatorial Belyi cuspidalization to obtain the following [cf. [7], Corollary E]:

Theorem C (Natural homomorphism from the commensurator in GT of the absolute Galois group of a stably $\times \mu$ -indivisible field to $G_{\mathbb{Q}}$). Fix an embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{K}$. In the following, we shall use this embedding to regard $\overline{\mathbb{Q}}$ as a subfield of \overline{K} . Thus, we obtain a homomorphism $G_K \to G_{\mathbb{Q}}$ (\subseteq GT) [cf. the discussion at the beginning of the Introduction]. Suppose that this homomorphism $G_K \to G_{\mathbb{Q}}$ is injective. In the following, we shall use this injection $G_K \hookrightarrow G_{\mathbb{Q}}$ to regard G_K as a subgroup of $G_{\mathbb{Q}}$, hence also as a subgroup of GT. Then one may construct a natural surjection

$$C_{\mathrm{GT}}(G_K) \twoheadrightarrow C_{G_{\mathbb{Q}}}(G_K) \ (\subseteq G_{\mathbb{Q}}).$$

whose restriction to $C_{G_0}(G_K)$ is the identity automorphism.

The above theorem is proved by applying the theory of *combinatorial Belyi* cuspidalization, together with the injectivity portion of the section conjecture for hyperbolic curves of genus 0 over a stably $\times \mu$ -indivisible field of characteristic 0. This injectivity is a consequence of a certain weak version of the Grothendieck conjecture for hyperbolic curves of genus 0 over a stably $\times \mu$ -indivisible field of characteristic 0 [cf. [7], Theorem F], which generalizes a result of J. Stix [cf. [6], Theorem A].

References

- [1] Y. André, On a geometric description of $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ and a *p*-adic avatar of \widehat{GT} , Duke Math. J. **119** (2003), pp. 1–39.
- [2] E. Lepage, Resolution of non-singularities for Mumford curves, Publ. Res. Inst. Math. Sci. 49 (2013), pp. 861–891.
- [3] S. Mochizuki, Semi-graphs of anabelioids, Publ. Res. Inst. Math. Sci. 42 (2006), pp. 221–322.
- [4] S. Mochizuki, On the combinatorial cuspidalization of hyperbolic curves, Osaka J. Math. 47 (2010), pp. 651–715.
- [5] S. Mochizuki, Topics in absolute anabelian geometry II: Decomposition groups and endomorphisms, J. Math. Sci. Univ. Tokyo 20 (2013), pp. 171– 269.
- [6] J. Stix, On cuspidal sections of algebraic fundamental groups, Galois-Teichmüller Theory and Arithmetic Geometry, Adv. Stud. Pure Math. 63, Math. Soc. Japan (2012), pp. 519–563.
- [7] S. Tsujimura, Combinatorial Belyi Cuspidalization and Arithmetic Subquotients of the Grothendieck-Teichmüller Group, 2019.