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Abstract

Classification of a superconducting gap is one of the central subjects in the research field of un-
conventional superconductivity. The momentum dependence of the superconducting gap is closely
related to the symmetry of superconductivity and the pairing mechanism. Since the superconduct-
ing gap structure can be identified by various experiments, combined studies of the superconducting
gap by theory and experiment may clarify the characteristics of superconductivity. Most of the
previous studies have been based on the classification of an order parameter by the crystal point
group [1–3], which was summarized by Sigrist and Ueda [4]. Although their classification has been
used for analyses of excitation spectrum, it may not provide a precise result of the superconducting
gap, namely excitation energy in the Bogoliubov quasiparticle spectrum. Indeed, several studies
have shown that nonsymmorphic crystalline symmetry induces unconventional gap structures which
are not predicted by the classification of order parameter [5–17]. That is because nonsymmorphic
symmetry is neglected by the above classification method based on the point group. Furthermore,
the method does not take into account electrons beyond spin-1/2, which may appear in multi-orbital
or multi-sublattice superconductors.

Stimulated by the above background, we develop the classification theory of superconducting
gap nodes, by using the combination of group theory and topology. Summaries of the study are
shown below.

1. Complete gap classification on high-symmetry planes [18–20]. — In this study, mirror-
or glide-symmetric superconductors are considered. By using the group-theoretical approach, we
completely clarify the condition for nontrivial line nodes or gap opening on theBrillouin zone bound-
ary, which are protected by nonsymmorphic symmetry. Next, we show that such nonsymmorphic-
symmetry-characterized gap structures appear only for a primitive or orthorhombic base-centered
Bravais lattice; all space groups under the additional constraint are systematically classified. As an
example, we demonstrate unusual gap structures in the model of Sr2IrO4. Furthermore, we unify
the topology of symmetry-protected line nodes and Majorana flat bands, using the knowledge of
Clifford algebra extension method.

2. Novel 9I-dependent gap structures by classification on high-symmetry lines [20, 21]. —Multi-
degree-of-freedom superconductors with crystalline rotation symmetry have potential to provide
effectively higher-spin states. In this study, we classify all crystal symmetry-protected nodes on
=-fold (= = 2, 3, 4, and 6) axes in the Brillouin zone, by using the combination of group theory
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and  theory. Especially, we elucidate gap structures depending on the total angular momentum 9I

of normal Bloch states on threefold and sixfold rotational-symmetric lines. Based on the obtained
results, we also discuss gap structures in various candidate superconductors.
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Chapter 1

Introduction

In most (conventional) superconductors, superconductivity is well described within the Bardeen-
Cooper-Schrieffer (BCS) theory in 1957 [22], which gives the microscopic picture of supercon-
ducting state as a condensation of bounded pairs of two electrons (Cooper pairs) on the Fermi
surface (FS). The BCS theory, in a narrow sense, has three assumptions about Cooper pairs: (i)
zero center-of-mass momentum, (ii) zero total spin (( = 0; spin-singlet), and (iii) isotropic B-wave
symmetry. Then, the resulting superconducting order parameter is represented as Δ (k) = Δ08fH,
where f8 is the Pauli matrix in a spin space. Here, Δ0 is a k-independent constant, which means
that the order parameter opens a gap over the whole FS.

On the other hand, recent studies have suggested unconventional superconductivity, which do not
satisfy all the assumptions (i)-(iii). If the assumption (i) is broken, for example, the resulting state is
called Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconductivity [23–25], where Cooper pairs
have a finite center-of-mass momentum. Other examples are (spin-singlet) anisotropic supercon-
ductivity without the assumption (iii), and spin-triplet superconductivity without (ii) and (iii) [26].
In anisotropic and spin-triplet superconductors, the order parameter has a momentum dependence
(e.g., ?-wave and 3-wave symmetry), which may indicates the presence of gapless points in the
superconducting state, called superconducting nodes. Such momentum dependence of the super-
conducting gap is closely related to the symmetry of superconductivity and the pairing mechanism.
Since the superconducting gap structure can be identified by various experiments [27, 28], com-
bined studies of the superconducting gap by theory and experiment may clarify the characteristics
of superconductivity.

In this context, classification of a superconducting gap is one of the central subjects in theoretical
researches of unconventional superconductivity. Most of the previous studies have been based on
the classification of an order parameter by the crystal point group [1–3], which was summarized by
Sigrist and Ueda (called the Sigrist-Ueda method in this thesis) [4]. However, their classification
may not provide a precise result of the superconducting gap, namely an excitation energy in the
Bogoliubov quasiparticle spectrum. Indeed, recent studies have discovered unusual gap structures
incompatible with the Sigrist-Ueda classification [5–17, 29–36].
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In the following, we briefly explain the Sigrist-Ueda method, and reveal inadequacies of the
classification scheme (Sec. 1.1). Then we concretely show the examples of unconventional super-
conducting gap structures elucidated in the recent studies (Sec. 1.2). Finally the organization of this
thesis is represented in Sec. 1.3.

1.1 Overview of the Sigrist-Ueda classification method

In this section, we overview the Sigrist-Ueda classification scheme of superconducting order pa-
rameters [1–4].

1.1.1 Classification scheme

In the discussion of the section, we assume the existence of spatial inversion symmetry (IS) and time-
reversal symmetry (TRS) in the normal state. Thus, the normal-state band structure has a twofold
(Kramers) degeneracy for any momentum k. Let us consider a BCS mean-field Hamiltonian,

�BCS =
∑
k,B

b (k)0†B (k)0B (k) +
1
2

∑
k,B1,B2

[Δ B1B2 (k)0†B1 (k)0
†
B2 (−k) + H.c.], (1.1.1)

where b (k) is the band energy measured relative to the chemical potential, and Δ (k) is the
superconducting order parameter. Since this Hamiltonian includes no spin-orbit coupling term, the
Hamiltonian has a certain symmetry represented by a group % × SU(2), where % is the point group
of the crystal lattice symmetry and SU(2) is the spin-rotation symmetry group.

The behavior of Δ (k) under a symmetry operation in %×SU(2) is determined by the invariance
condition of �BCS. A point group operation ? ∈ % acts only on the momentum k,

?0†B (k)?−1 = 0†B (?k), (1.1.2)
⇒ ? : Δ B1B2 (k) → Δ B1B2 (?−1k). (1.1.3)

On the other hand, the spin-rotation symmetry 6 ∈ SU(2) transforms the matrix space of Δ (k) as

60†B (k)6−1 =
∑
B′
0
†
B′ (k) [� (1/2) (6)]B′B, (1.1.4)

⇒ 6 : Δ B1B2 (k) → [� (1/2) (6)Δ (k)� (1/2) (6)T]B1B2 , (1.1.5)

where the 2 × 2 matrix � (1/2) is the representation of SU(2) in the pure spin-1/2 space. In the
presence of spin-orbit coupling, however, the point-group transformation and the spin transformation
can no longer be treated independently; the spin-rotation group SU(2) is absorbed by the point group
%. Although the Bloch states cannot be eigenstates of the pure-spin operator anymore, they can
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be labeled by pseudospin bases; we dub the new Bloch basis as 2†f (k). Thus, the transformation
property of the order parameter is changed as

?2†f (k)?−1 =
∑
f′
2
†
f′ (?k) [� (1/2) (6)]f′f, (1.1.6)

⇒ ? : Δf1f2 (k) → [� (1/2) (?)Δ (?−1k)� (1/2) (?)T]f1f2 , (1.1.7)

where ? ∈ % is a point-group operation.1
According to Landau theory for the second-order phase transition, on one side of the transition

point the crystal has the higher symmetry, while on the other side the symmetry is lower; the order
parameter of the symmetry broken phase has to belong to an irreducible representation (IR) of the
higher symmetry group in the other phase [37, 38]. In anisotropic superconductors, the point group
symmetry % as well as the U(1) symmetry is broken below the transition temperature )2, and thus,
the order parameter belongs to an IR of %. Conversely speaking, superconducting order parameters
can be classified by IRs of the point group %. In the following, we concretely see the classification
method of the order parameter using the point group.

First, let us consider the limit where the spin-orbit coupling and the crystalline electric field is
negligibly small. In this case, the “point group” is represented by the rotation group: % = SO(3)×I
with the inversion symmetry I. Therefore, the superconducting order parameter is represented
in the function space � (;) × � (() , where � (;) denotes the k-space representation and � (() the
spin-space representation of %.2 As a concrete representation, the order parameter is given by the
spherical harmonics .;< (k) for � (;) , and the spin functions jB (0, 0) = 1 for � ((=0) and

jC (1, BI) =


Ĝ + 8 Ĥ BI = −1
√

2Î BI = 0
−Ĝ + 8 Ĥ BI = +1

(1.1.8)

for � ((=1) space. That is,

Δ ; (k) =


∑
<

2<.;< ( k̂)8fH singlet; ; = even,∑
<,n̂=Ĝ,Ĥ,Î

2< n̂.;< ( k̂) (2 · n̂)8fH triplet; ; = odd,
(1.1.9)

where 2< and 2< n̂ are complex numbers.
If we introduce spin-orbit coupling, these function spaces split into subspaces due to the symme-

try lowering. In order to obtain the new classification spaces, we have to decompose the Kronecker

1Since the spatial inversion I ∈ % is not an element of SU(2), we define � (1/2) (I) as the identity matrix f0.
2The indices ; = 0, 1, 2, . . . and ( = 0, 1 are relative relative angular momentum and total spin angular momentum,

respectively.
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Table 1.1: Classification of superconducting order parameters by even-parity basis functions
ΔΓ8 (k) = kΓ8 (k)8fH and odd-parity basis functions ΔΓ8 (k) = dΓ8 (k) · 28fH for the tetragonal
�4ℎ group [4].

IR (even) Basis functions IR (odd) Basis functions
�16 k(k) = 1, :2

G + :2
H, :

2
I �1D d(k) = :G Ĝ + :H Ĥ, :I Î

�26 k(k) = :G:H (:2
G − :2

H) �2D d(k) = :H Ĝ − :G Ĥ
�16 k(k) = :2

G − :2
H �1D d(k) = :G Ĝ − :H Ĥ

�26 k(k) = :G:H �2D d(k) = :H Ĝ + :G Ĥ
�6 k1(k) = :G:I �D d1(k) = :IĜ, :G Î

k2(k) = :H:I d2(k) = :I Ĥ, :H Î

product of k- and spin-space,{
� (;) × � ((=0) = � (;) singlet; ; = even,
� (;) × � ((=1) = � (;−1) + � (;) + � (;+1) triplet; ; = odd.

(1.1.10)

The basis functions of the new representations can be derived by the Clebsch-Gordan formalism,
which can be labeled by the total angular momentum �.

Nowwe turn the crystalline electric field on. The crystal symmetry is lowered from a continuous
rotation group SO(3) × I with an infinite number of IRs to a discrete point group with only a few
IRs. Thus, we can classify the basis functions of the order parameters, by considering projections
of the functions belonging to � (�) (with small �) on the IRs Γ of the crystal point group %. For
example, Table 1.1 shows the classification results for % = �4ℎ summarized in Ref. [4]. From the
table, the 3G2−H2-wave order parameter is found to belong to the �16 IR of �4ℎ, which guarantees
the presence of line nodes on the symmetry planes :G ± :H = 0. Such a gap structure is proposed in
cuprates [26] and CeCoIn5 [26, 39, 40].

1.1.2 Inadequacies of the Sigrist-Ueda method

In the previous section, we see the classification scheme of the Sigrist-Ueda method, which is useful
for symmetry analysis of superconducting order parameters. Indeed, the classification tables for
the basic point groups $ℎ, �6ℎ, and �4ℎ in Ref. [4] have been used to unveil the fundamental
properties of various unconventional superconductivity. However, recent studies have elucidated
that the results of the Sigrist-Ueda method may not be precise for actual superconducting gap
structures [5–17, 29–36]. In the following, we refer to three related problems of the method.
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(Intra-band OP) ≠ 0
(Inter-band OP) = 0

(Intra-band OP) = 0
(Inter-band OP) ≠ 0

(a) (b)

Figure 1.1: Schematic picture of two-band (four-band in the particle-hole space) superconductivity.
Each figure shows the Bogoliubov quasiparticle spectrum for (a) finite intra-band and zero inter-
band order parameters, and (b) zero intra-band and finite inter-band order parameters.

1.1.2.1 Incompatibility between order parameter and gap structure

First problem is that the order parameter obtained by the method does not appropriately indicate the
superconducting gap structure. For example, let us consider two-band superconductivity depicted in
Fig. 1.1. Figure 1.1(a) shows the situation where the intra-band order parameter is finite, while the
inter-band order parameter is zero. In this case, the amplitude of the order parameter corresponds
to the size of the superconducting gap (an excitation energy in the Bogoliubov spectrum). In
Fig. 1.1(b), on the other hand, the situation is inverted; the intra-band (inter-band) order parameter
is zero (finite). If the band splitting is sufficiently larger than the inter-band order parameter, the
superconducting gap is zero in spite of the finite order parameter. This is a simple example of the
incompatibility between an order parameter and a gap structure. From the above reason, our new
classification method focuses only on intra-band order parameters (Chapter 2).

1.1.2.2 Absence of space group symmetry analysis

Secondly, the space group symmetry is not taken into account in the method. Since a space group
is given by the combination of a point group and a translation group, it provides us with more
information than the point group. Now we point out the importance of considering nonsymmorphic
space group symmetry, by showing an example.

In 1985, Blount showed that no symmetry-protected line node exists in odd-parity superconduc-
tors [41], which is consistent with the result of the Sigrist-Ueda method. After that, however, some
studies showed a counter-example, namely, a line node in nonsymmorphic systems, and indeed
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suggested a line node protected by a nonsymmorphic space group symmetry in UPt3 [6, 11–15].
At present, it is known that Blount’s theorem holds only in symmorphic crystals. The essence
is that the nonsymmorphic symmetry causes the difference in the group-theoretical representation
of gap functions between the basal planes (BPs) and the zone faces (ZFs) in the Brillouin zone
(BZ). Although the Sigrist-Ueda method, which takes only point group symmetry into account,
appropriately implies the gap functions on the BPs, it may fail to show those on the ZFs.

1.1.2.3 Absence of higher-spin state analysis

Third issue is that the Sigrist-Uedamethod considers only spin-1/2 states. Inmulti-orbital andmulti-
sublattice superconductors, however, a band basis often acquires total angular momentum larger
than 1/2. Such higher-pseudospin (3/2, 5/2, . . . ) states may affect the resulting superconducting
gap structures. Indeed, recent theoretical studies have suggested novel type of superconducting
order parameters in higher-spin states [29–36].

1.2 Recent progress in superconductors with multi-degrees of
freedom

In this section, we introduce recent develop beyond the results of the Sigrist-Ueda classification
in the previous section. The unconventional results basically emerge in superconductors with
multi-degrees of freedom, such as multi-sublattice (Sec. 1.2.1) and multi-orbital superconductors
(Sec. 1.2.2).

1.2.1 Nonsymmorphic multi-sublattice superconductors

As mentioned in Sec. 1.1.2, recent theoretical studies have pointed out that the odd-parity supercon-
ductor UPt3 possesses line nodes characterized by nonsymmorphic symmetry [6, 11–15], which was
not predicted by the Sigrist-Ueda method. After that, nonsymmorphic-symmetry-protected nodes
have been suggested in other superconductors: UCoGe [16], URhGe [16], UPd2Al3 [16, 17, 42],
UNi2Al3 [17], and CrAs [17]. In these superconductors, nonsymmorphic symmetry (namely screw
or glide symmetry) ensures that the crystal structure includes more than one sublattice. Such
sublattice degree of freedom often play essential roles on the nodal structure.

In order to see the importance of sublattice degree of freedom, we consider an example of a
one-dimensional (1D) zigzag chain with two sublattice 0 and 1, depicted in Fig. 1.2. The system
has nonsymmorphic screw symmetry {�2I | Î2 },3 which transfers each 0 atom to the 1 atom at the
neighboring unit cell (the green arrow in Fig. 1.2). The transformation of 6 = {�2I | Î2 } is represented

3The notation 6 = {?6 | t6} is a conventional Seitz space group symbol with a point-group operation ?6 and a
translation t6.
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b

a
z

Figure 1.2: A 1D zigzag chain with two sublattice 0 and 1. The black rectangle and the red point
represents the unit cell and the inversion center, respectively. Due to screw symmetry {�2I | Î2 }, each
0 atom is transferred to the 1 atom at the neighboring unit cell (green arrow).

as follows:

62†0f (:I)6−1 = 4−8:I/2
∑
f′
2
†
1f′ (�2I:I) [� (1/2) (6)]f′f

=
∑
<′f′

2
†
<′f′ (:I) [�(perm)(6; :I)]<′0 [� (1/2) (6)]f′f . (1.2.1)

where 2†<f (:I) (< = 0, 1) is a creation operator for sublattice < and pseudospin f. Comparing
Eq. (1.2.1) with Eq. (1.1.6), there newly appears [�(perm)(6; :I)]<′< = 4−8:I/2X<′,6<, which is a
representation matrix describing the interchange of the two sites.4 The momentum (:I) dependence
of the matrix, which is a consequence of nonsymmorphic symmetry, has a crucial role in the clas-
sification of superconducting gap functions. However, few works have investigated gap structures
for general nonsymmorphic symmetries as well as some representative superconductors [15, 17].

1.2.2 Multi-orbital superconductors

The Sigrist-Ueda method performs classification of the superconducting order parameter based
on the band-based representation, where the normal Bloch states are assumed to possess spin-1/2
degrees of freedom. Although the classification scheme is always possible, the electrons have
other internal degrees of freedom such as orbital and sublattice, which cannot be neglected in real
superconductors. Indeed, we have shown that sublattice degree of freedom affects the gap structure
in the previous subsection. Now let us consider the effect of orbital degree of freedom on the
transformation property of gap functions.

In multi-orbital superconductors, the normal Bloch states have a local orbital as well as
(pseudo)spin-1/2 degrees of freedom. Here, we suppose a real atomic orbital with angular mo-
mentum !. Then, the normal Bloch basis is represented by the creation operator 2(!)†

;f
(k) with the

4Note that 2†<f (:I) in Eq. (1.2.1) is defined by the sublattice-dependent Fourier transformation, while the sublattice-
independent one is used in the discussion of Appendix B.2.
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orbital (;) and the pseudospin (f) bases, which transforms as

?2
(!)†
;f
(k)?−1 =

∑
; ′f′

2
(!)†
; ′f′ (?k) [� (!) (?)]; ′; [� (1/2) (?)]f′f, (1.2.2)

for a point-group operation ? ∈ %. Here, � (!) (?) is a representation matrix describing the
transformation among the orbital bases with angular momentum !, which makes a difference from
Eq. (1.1.6). The product of � (!) × � (1/2) generates the Bloch states with higher total angular
momentum than 1/2, which play crucial roles on the superconducting gap structures. Indeed,
the recent classification theory of order parameter in multi-orbital superconductors [29, 43] has
suggested the nontrivial k dependence of the gap function. For example, multi-orbital even-parity
superconductors can possess spin-triplet (and orbital-triplet) order parameter, which is forbidden in
single-orbital even-parity superconductors.

Furthermore, recent theoretical studies have investigated the pairing of Bloch states with 9 = 3/2
total angular momentum [30–36]. The theories have shown that 9 = 3/2 fermions permit Cooper
pairs with quintet or septet total angular momentum, in addition to the usual singlet and triplet
states. Also, a new type of nodal structure is founded to appear in the 9 = 3/2 system; in TRS
breaking even-parity superconductors, the conventional nodal structure (a point or a line node) is
“inflated,” which means the appearance of a surface node [31, 32]. They called it a Bogoliubov FS
and elucidated that the Bogoliubov FS is characterized by a zero-dimensional (0D) Z2 topological
number.

1.3 Organization of this thesis
In this thesis, we offer a comprehensive classification theory of superconducting gap nodes beyond
the Sigrist-Ueda method [4] in various superconductors with spin-orbit coupling and multi-degrees
of freedom. In Chapter 2, the modern classification method of superconducting gap, which makes
use of the combination of group theory and topology, is introduced. Using the method, we sys-
tematically classify gap structures on high-symmetry regions in the BZ: mirror-invariant planes
(Chapter 3) and rotation-invariant axes (Chapter 4). In Chapter 3, general conditions for nontrivial
nonsymmorphic-symmetry-protected gap structures are shown from both aspects of finite-group
representation theory [20] and topology [19]. As an example, such unusual gap structures are
demonstrated in the model of Sr2IrO4 [18]. In Chapter 4, on the other hand, the classification
results on rotational axes show that unconventional nodal structures appear even in symmorphic
superconductors. We emphasize that higher-spin 3/2 states affect the superconducting gap struc-
tures; the gap classification depends on the total angular momentum 9I = 1/2, 3/2, . . . of normal
Bloch states on threefold and sixfold rotational-symmetric lines [20, 21]. Such 9I-dependent gap
structures are also discussed in various candidate superconductors. Especially, we elucidate the
presence of perfectly spin-polarized nonunitary superconductivity in UPt3 [21].
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Chapter 2

Method: classification theory of
superconducting gap

In this Chapter, we introduce modern gap classification theory using group theory (representation
theory) and topological argument. First, in Sec. 2.1, we make a remark about some terminologies
and notations of finite-group representation theory, which are used throughout the thesis, for the
avoidance of confusion. In Sec. 2.2, we introduce the group-theoretical analysis of the super-
conducting gap on high-symmetry points in the BZ [5, 7–11, 15–18, 20]. Next, we explain the
topological classification of nodes on the high-symmetry points by using the Wigner criteria and
the orthogonality test in Sec. 2.3 [21]. Also, an intuitive understanding of the classification methods
is given by showing simple examples (Sec. 2.4).

2.1 Preparation

In this section, we define some terminologies and notations which are commonly used in the
group-theoretical classification (Sec. 2.2) and the topological classification (Sec. 2.3). In all the
discussions below, we assume centrosymmetric superconductors,1 which have the IS I = {� |0}.
Also, paramagnetic (PM) and antiferromagnetic (AFM) superconductors have the TRST = {) | tT },
while ferromagnetic (FM) ones possess no TRS. Note that t) represents a non-primitive translation
for AFM superconductors, while it is zero for PM superconductors.

First, we focus on a magnetic space group "; suppose that � is a unitary space group including
IS, " is equal to � + T� for PM and AFM, and is � for FM superconductors. In order to classify
the gap structure on high-symmetry k-points (mirror planes and rotation axes) in the BZ, we restrict
� (") to Gk ⊂ � (Mk ⊂ "), which is the (magnetic) little group leaving k points on the axes
invariant modulo a reciprocal lattice vector. Thus the factor group of the (magnetic) little group by

1Indeed, our topological classification theory (Sec. 2.3) can also be applied to other cases, e.g., noncentrosymmetric
superconductors.
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the translation group Gk/T (Mk/T) is called the (magnetic) little cogroup. The (magnetic) little
cogroup is isomorphic to the corresponding (magnetic) point group; Ḡk = �B (M̄k = �B + TI�B)
for mirror planes, and Ḡk = �= or �=E (M̄k = �= + TI�= or �=E + TI�=E) for =-fold rotational
axes (= = 2, 3, 4, and 6).

Here, we define _kU (<) as a double-valued small corepresentation of symmetry operations
< ∈ Mk , which represents the normal Bloch state with the crystal momentum k:

<2
†
U8
(k)<−1 =

∑
8

2
†
U 9
(k) [_kU (<)] 98 . (2.1.1)

U is the label of the double-valued IR,which corresponds to the total angularmomentumof the Bloch
state 9I = ±1/2,±3/2, . . . in spin-orbit coupled systems.2 Since Mk is the semi-direct product
between the magnetic little cogroup M̄k and the translation group T, the small corepresentation
satisfies the following equation for the translation subgroup T ⊂ Mk :

_kU ()X) = 4−8k·)X , (2.1.2)

where )X ∈ T. Furthermore, _kU has a factor system {lin(;1, ;2)} ∈ �2(",U(1)q), which arises
from internal degrees of freedom (e.g. a half-integer spin of electrons):

lin(<1, <2)_kU (<1<2) =
{
_kU (<1)_kU (<2) q(<1) = 1,
_kU (<1)_kU (<2)∗ q(<1) = −1,

(2.1.3)

where q :M → Z2 = {±1} is an indicator for unitary/antiunitary symmetry. Next, we consider a
more general element ; ∈ " . The sewing matrix DkU on " , corresponding to _kU, can be defined by

;2
†
U8
(k);−1 =

∑
8

2
†
U 9
(;k) [DkU (;)] 98, (2.1.4)

where we note that the momentum ;k is not equivalent to k for a general ; ∈ " . DkU also satisfies
the following equation:

lin(;1, ;2)DkU (;1;2) =
{
D
;2k
U (;1)DkU (;2) q(;1) = 1,
D
;2k
U (;1)DkU (;2)∗ q(;1) = −1.

(2.1.5)

Especially, DkU (<) = _kU (<) for < ∈ Mk . The factor system satisfies the following 2-cocycle
condition,

lin(;1, ;2)lin(;1;2, ;3) = lin(;1, ;2;3)lin(;2, ;3)q(;1) , (2.1.6)

2Strictly speaking, U is an double-valued IR of the finite group M̄k = Mk/T while 9I is a basis of the con-
tinuous group. Therefore there is no one-to-one correspondence between U and 9I in some cases. In the �2E
symmetry, for example, the IR U = 1/2 includes all normal Bloch states with half-integer total angular momentum
9I = ±1/2,±3/2,±5/2, . . . . In this thesis, however, we represent 9I with minimum absolute value, which satisfies
9I ↓ M̄k = U, as the angular-momentum counterpart of the IR U.
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which is easily derived from the associativity of product of representation matrices.
For easy treatment of the sewing matrix DkU (and the small corepresentation _kU), it is useful

to consider the finite factor group "/T. Then, the corresponding sewing matrix D̄kU on "/T is
introduced by

DkU (;) = 4−8;k·3; D̄kU ( ;̄), (2.1.7)

where ;̄ is the representative in "/T for ; ∈ " , and

3; = t; − t ;̄ , (2.1.8)

is the Bravais lattice translation in T corresponding to ;. Substituting (2.1.7) into (2.1.5),

lin(;1, ;2)4−8;1;2k·.(;1,;2) D̄kU (;1;2) =
{
D̄
;2k
U (;1)D̄kU (;2) q(;1) = 1,
D̄
;2k
U (;1)D̄kU (;2)∗ q(;1) = −1,

(2.1.9)

.(;1, ;2) = 3;1;2 − 3;1 − ?;13;2 = −[t;1;2 − t
;1
− ?;1 t;2] . (2.1.10)

In Eq. (2.1.9), the nonsymmorphic part of the factor system3 is described by a Bravais lattice
translation .(;1, ;2), namely

lk
ns(;1, ;2) = 4−8k·.(;1,;2) , (2.1.11)

which depends only on the corresponding representatives: lk
ns(;1, ;2) = lk

ns(;1, ;2). Especially, the
IR _̄kU of magnetic little cogroup M̄k = Mk/T, which corresponds to the small corepresentation
_kU, satisfies the following equations:

_kU (<) = 4−8k·3<_̄kU (<̄), (2.1.12)

lin(<1, <2)lk
ns(<1, <2)_̄kU (<1<2) =

{
_̄kU (<1)_̄kU (<2) q(<1) = 1,
_̄kU (<1)_̄kU (<2)∗ q(<1) = −1,

(2.1.13)

where <̄ is the representative in M̄k for < ∈ Mk .
_̄kU is constructed from the projective IR W̄kU of the (unitary) little cogroup Ḡk with the appropriate

factor system {lk (;1, ;2) = lin(;1, ;2)lk
ns(;1, ;2)} [44, 45], by using the Wigner criterion (Herring

test) [38, 45–48]:

,T
U ≡

1
|Ḡk |

∑
6̄∈Ḡk

lk (T6̄,T6̄)j[W̄kU ((T6)2)] =


1 (a),
−1 (b),
0 (c),

(2.1.14)

3The factor system also satisfies the 2-cocycle condition:

l
;1;2;3k
ns (;1, ;2)l;1;2;3k

ns (;1;2, ;3) = l;1;2;3k
ns (;1, ;2;3)l;2;3k

ns (;2, ;3)q (;1) .
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Table 2.1: Notations of some intriguing groups and representations. The terminologies in the first
column are associated with an unitary group, while those in the third column are with a nonunitary
group including antiunitary operators. In the table, we adopt the terminologies of Ref. [45].

Terminology Notation Terminology Notation Definition
Space group � Magnetic space group " Whole crystal symmetry of the system
Little group Gk Magnetic little group Mk Stabilizer of k
Small representation WkU Small corepresentation _kU IR of (magnetic) little group
Little cogroup Ḡk Magnetic little cogroup M̄k Factor group of (magnetic) little group by T
N/A W̄kU N/A _̄kU IR of (magnetic) little cogroup

where j is the character of the representation, T ≡ TI is a TRS-like operator preserving k. In the
(b) and (c) cases, the degeneracy of _̄kU is twice as much as that of W̄kU , while _̄kU (6̄) gives the same
representation as W̄kU (6̄) for 6̄ ∈ Ḡk in the (a) case (for details, see Appendix A.1). In the above
discussion, we have introduced a lot of notations for groups and representations. For the avoidance
of confusion, we summarize the intriguing notations in Table 2.1, and show a simple example in
the next section.

2.2 Group-theoretical classification of superconducting gap
In this section, we introduce the group-theoretical classification of the superconducting gap on
high-symmetry points in the BZ [5, 7–11, 15–17].

2.2.1 Classification theory

As seen in Sec. 2.1, we can obtain the magnetic small representation _kU corresponding to the
normal Bloch state on a high-symmetry k point. In the superconducting state, zero center-of-mass
momentum Cooper pairs have to be formed between degenerate states present at k and −k in the
same band when we adopt the weak-coupling BCS theory. Then, the two states should be connected
by IS I and/or TRS T , except for an accidentally degenerate case. As a result, the representation
%k
U of the Cooper-pair wave function can be constructed from the representations of the Bloch state

_kU.
Next, we calculate the single-valued representation %k

U of the Cooper-pair wave function. Taking
into account the antisymmetry of theCooper pairs and the degeneracy of the two states, we can regard
%k
U as an antisymmetrized Kronecker square [45, 49], with zero total momentum, of the induced

representation _kU ↑ Mk
pair. Here,Mk

pair ≡ Mk + IMk is the group to which the representation %k
U

of the pair wave function belongs. This is given by %k
U (<) = %̄k

U (<̄), where < = <̄C for < ∈ Mk
pair,

<̄ ∈ M̄k
pair ≡ Mk

pair/T, and C ∈ T. %̄k
U , which is the representation of M̄k

pair, is obtained in a
systematic way by using the double coset decomposition and the corresponding Mackey-Bradley
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theorem [45, 49, 50],

j[%̄k
U (6̄)] =

lk (I, 6̄)
lk (6̄,I)

j[_̄kU (6̄)]2, (2.2.1a)

j[%̄k
U (I6̄)] = −

lk (I, 6̄)lk (6̄, 6̄)
lk (6̄,I)

j[_̄kU (62)], (2.2.1b)

where 6̄ ∈ Ḡk . A proof of theMackey-Bradley theorem in the context of Cooper pair wave functions
is shown in Sec. 2.2.2.

Finally, we reduce %̄k
U into single-valued IRs of the point group M̄k

pair. The gap functions should
be zero, and thus, the gap nodes appear, if the corresponding IRs do not exist in the results of
reductions [5, 7, 51]. Otherwise, the superconducting gap will open in general. Therefore the
representation %̄k

U of pair wave function tells us the presence or absence of superconducting gap
nodes.

2.2.2 Proof of Mackey-Bradley theorem in the context of Cooper pair wave
function

We prove here the Mackey-Bradley theorem [45, 49, 50] described by Eq. (2.2.1) by considering the
symmetry transformation of the Cooper pair wave function. First, we introduce a creation operator
of a Bloch state in a band-based representation denoted by 2†

U8
(k), where U and 8 are the IR of the

little cogroup M̄k and its basis, respectively. This operator is transformed as

<̄2
†
U8
(k)<̄−1 =

∑
8′
2
†
U8′ (k) [_̄

k
U (<̄)]8′8, (2.2.2)

by a space group operation <̄ ∈ M̄k , where _kU is the representation matrix of the small represen-
tation U. Then, we define the Cooper pair wave function

[ΔU (k)]8 9 ≡ 2†U8 (k) · I2
†
U 9
(k)I, (2.2.3)

which is assumed to form a pair between two Bloch states belonging to the same IR U. Using
Eq. (2.2.2), the Cooper pair wave function is transformed by 6̄ ∈ Ḡk as follows4:

6̄[ΔU (k)]8 9 6̄−1 = 6̄2†
U8
(k)6̄−1 · I(I6̄I)2†

U 9
(k) (I6̄I)−1I

=
∑
8′
2
†
U8′ (k) [_̄

k
U (6̄)]8′8 · I

{
lk (I, 6̄)
lk (6̄,I)

∑
9 ′
2
†
U 9 ′ (k) [_̄

k
U (6̄)] 9 ′ 9

}
I

4Here,

(I6̄I)2†
U 9
(k) (I6̄I)−1 =

∑
91

(I6̄)2†
U 91
(Ik) (I6̄)−1 [D̄kU (I)] 91 9

=
∑
91 , 92

I2†
U 92
(6̄Ik)I−1 [D̄IkU (6̄)] 92 91 [D̄kU (I)] 91 9

=
∑

91 , 92 , 93

2
†
U 93
(I6̄Ik) [D̄6̄IkU (I)] 93 92 [D̄IkU (6̄)] 92 91 [D̄kU (I)] 91 9

13



=
∑
8′, 9 ′
{2†
U8′ (k) · I2

†
U 9 ′ (k)I}

lk (I, 6̄)
lk (6̄,I)

[_̄kU (6̄)]8′8 [_̄kU (6̄)] 9 ′ 9

=
∑
8′, 9 ′
[ΔU (k)]8′ 9 ′

lk (I, 6̄)
lk (6̄,I)

[_̄kU (6̄)]8′8 [_̄kU (6̄)] 9 ′ 9 . (2.2.4)

On the other hand, ΔU
8 9
(k) is transformed by I6̄ ∈ IḠk as

(I6̄) [ΔU (k)]8 9 (I6̄)−1 = −(I6̄)I2†
U 9
(k)I · 2†

U8
(k) (I6̄)−1

= −(I6̄I)2†
U 9
(k) (I6̄I)−1 · I{6̄2†

U8
(k)6̄−1}I

= −
∑
8′, 9 ′
{2†
U8′ (k) · I2

†
U 9 ′ (k)I}

lk (I, 6̄)
lk (6̄,I)

[_̄kU (6̄)]8′ 9 [_̄kU (6̄)] 9 ′8

= −
∑
8′, 9 ′
[ΔU (k)]8′ 9 ′

lk (I, 6̄)
lk (6̄,I)

[_̄kU (6̄)]8′ 9 [_̄kU (6̄)] 9 ′8, (2.2.5)

where we use the anticommutation relation of fermions.
From the above calculations, we obtain the representation of the Cooper pair wave function %̄k

U:

[%̄k
U (6̄)]8 9 ,8′ 9 ′ =

lk (I, 6̄)
lk (6̄,I)

[_̄kU (6̄)]8′8 [_̄kU (6̄)] 9 ′ 9 , (2.2.6a)

[%̄k
U (I6̄)]8 9 ,8′ 9 ′ = −

lk (I, 6̄)
lk (6̄,I)

[_̄kU (6̄)]8′ 9 [_̄kU (6̄)] 9 ′8 . (2.2.6b)

Therefore, the character of %k
U is given by

j[%̄k
U (6̄)] =

∑
8 9

lk (I, 6̄)
lk (6̄,I)

[_̄kU (6̄)]88 [_̄kU (6̄)] 9 9

=
lk (I, 6̄)
lk (6̄,I)

j[_̄kU (6̄)]2, (2.2.7a)

j[%̄k
U (I6̄)] = −

∑
8 9

lk (I, 6̄)
lk (6̄,I)

[_̄kU (6̄)]8 9 [_̄kU (6̄)] 98

= −l
k (I, 6̄)lk (6̄, 6̄)
lk (6̄,I)

j[_̄kU (62)] . (2.2.7b)

These equations are Mackey-Bradley theorem described in Eqs. (2.2.1a) and (2.2.1b). �

= lI6̄Ik (I, 6̄)lI6̄Ik (I6̄,I)
∑
93

2
†
U 93
(I6̄Ik) [D̄kU (I6I)] 93 9

=
lk (I, 6̄)
lk (6̄,I)

∑
9′
2
†
U 9′ (k) [_̄

k
U (6̄)] 9′ 9 ,

where we use I6̄I ∈ Gk and I6I = 6̄ in the last equal.

14



2.3 Topological classification of superconducting gap
In this section, we consider the topological classification of the superconducting gap on high-
symmetry points (mirror plane or rotation axis) in the BZ. As mentioned in Sec. 2.1, a unitary
little cogroup on high-symmetry k points in the BZ is denoted by Ḡk , and a IR of Ḡk by U, which
corresponds to the total angular momentum of the normal Bloch state 9I = ±1/2,±3/2, . . . . Here,
we define TRS, particle-hole symmetry (PHS), and chiral symmetry (CS) like operators preserving
any k points by T ≡ TI, ℭ ≡ CI, and Γ ≡ TC, respectively. Thus the intrinsic symmetry is
represented by the following group:

Ḡk = Ḡk + TḠk + ℭḠk + ΓḠk . (2.3.1)

Then, using the factor system {lk (<1, <2)} ∈ /2(Ḡk ,U(1)q), we execute theWigner criteria [38,
45–48] for T and ℭ,

,T
U ≡

1
|Ḡk |

∑
6̄∈Ḡk

lk (T6̄,T6̄)j[W̄kU ((T6̄)2)] =


1,
−1,
0,

(2.3.2)

,ℭ
U ≡

1
|Ḡk |

∑
6̄∈Ḡk

lk (ℭ6̄,ℭ6̄)j[W̄kU ((ℭ6̄)2)] =


1,
−1,
0,

(2.3.3)

and the orthogonality test [38, 48] for Γ:

,Γ
U ≡

1
|Ḡk |

∑
6̄∈Ḡk

lk (6̄, Γ)∗

lk (Γ, Γ−16̄Γ)∗
j[W̄kU (Γ−16Γ)∗]j[W̄kU (6̄)] =

{
1,
0.

(2.3.4)

In the above tests, we investigate the orthogonality between {2†
U8
(k)} and {02†

U8
(k)0−1} (0 =

T, ℭ, or Γ), where 2†
U8
(k) is the 8-th basis of the IR W̄kU (for details, see Appendixes A.1 and

A.2). From Eqs. (2.3.2)-(2.3.4), we obtain the set of (,T
U ,,

ℭ
U ,,

Γ
U ), which indicates the effective

Altland-Zirnbauer (EAZ) symmetry class of the Bogoliubov-de Gennes (BdG) Hamiltonian on
the high-symmetry points by using the knowledge of  theory [48, 52, 53]. Table 2.2 shows the
correspondence between the set of (,T

U ,,
ℭ
U ,,

Γ
U ) and the EAZ symmetry class.

Furthermore, from the EAZ symmetry class, we can classify the IR at the k point into 0, Z, 2Z
or Z2 (Table 2.2). In this context, (,T

U ,,
ℭ
U ,,

Γ
U ) gives a symmetry-based topological classification

of the Hamiltonian at each k point on the plane (line). Therefore, when the plane (line) intersects a
normal-state FS, the above information is nothing but a topological classification of superconducting
gap nodes on the plane (line); when the classification is nontrivial (Z, 2Z, or Z2), the intersection
leads to a node characterized by the topological invariant. Otherwise, a gap opens at the intersection
line (point).
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Table 2.2: Correspondence table between the set of (,T
U ,,

ℭ
U ,,

Γ
U ) and the EAZ symmetry class.

The fifth column shows a topological classification of the IR at the k point for each EAZ class.

,T
U ,ℭ

U ,Γ
U EAZ class Classification

0 0 0 A Z

0 0 1 AIII 0
+1 0 0 AI Z

+1 +1 1 BDI Z2
0 +1 0 D Z2
−1 +1 1 DIII 0
−1 0 0 AII 2Z
−1 −1 1 CII 0
0 −1 0 C 0
+1 −1 1 CI 0

2.4 Example: space group %21/<
In this section, we consider a unitary space group � = %21/< as a simple example, which
helps us understand the terminologies in Table 2.1 and the superconducting gap classification
methods in Secs. 2.2 and 2.3. In the following discussion, we treat a magnetic space group
" = � + {) |0}� = %21/<1′ assuming the PM system.

2.4.1 Preparation
Since themagnetic space group" has amirror operatorMI = {"I | Î2 }, we focus onmirror-invariant
planes :I = 0 and :I = c in the BZ, where the (magnetic) little group is

Gk = T +MIT, (2.4.1)
Mk = Gk + TGk = T +MIT + TT +MITT. (2.4.2)

Therefore the (magnetic) little cogroup is

Ḡk = Gk/T = {�,MI}, (2.4.3)
M̄k =Mk/T = {�,MI,T,MIT}. (2.4.4)

We find that the factor system is

lin(MI,MI) = −1, lin(T,T) = −1, lin(MI,T) = lin(T,MI), (2.4.5a)
lk
ns(MI,MI) = 1, lk

ns(TMI,TMI) = 48:I . (2.4.5b)
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The projective IRs W̄k±1/2 of the little cogroup Ḡk , with the factor system lk (MI,MI) = −1,
are given by

W̄k±1/2(�) = 1, W̄k±1/2(MI) = ±8, (2.4.6)

which corresponds to spin-up and spin-down states, respectively. For the spin-up one (U = +1/2),
the Wigner criterion [38, 45–48] for TRS T is

,T
+1/2 =

1
2

∑
6̄∈{�,MI}

lk (T6̄,T6̄)j[W̄k+1/2((T6̄)
2)]

=
1
2
(−1 + 48:I ) =

{
0 :I = 0,
−1 :I = c.

(2.4.7)

Thus the representation _̄k±1/2 of the magnetic little cogroup M̄k can be constructed as follows:

<̄ � MI T MIT

_̄k±1/2(<̄)
(
1 0
0 1

) (
+8 0
0 −848:I

) (
0 1
−1 0

) (
0 8

848:I 0

)
(2.4.8)

By using the above representation, the small corepresentation of < ∈ Mk is given by

_k (<) = 4−8k·X_̄k (<̄), (2.4.9)

where < = <̄)X with <̄ ∈ M̄k and )X = {� |X} ∈ T.

2.4.2 Group-theoretical gap classification
Now we execute the group-theoretical gap classification (Sec. 2.2) on the mirror-invariant planes in
the BZ. First of all, the factor system about the inversion symmetry I is represented as follows:

lin(I,MI) = lin(MI,I) = 1, (2.4.10a)
lk
ns(I,MI) = 48:I , lk

ns(MI,I) = 1. (2.4.10b)

Using the normal-state representation [Eq. (2.4.8)] and the Mackey-Bradley theorem [Eq. (2.2.1)],
therefore, the representation %̄k

±1/2 of Cooper-pair wave function is given by

j[%̄k
±1/2(�)] =

lk (I, �)
lk (�,I)

j[_̄k±1/2(�)]
2 = 4, (2.4.11a)

j[%̄k
±1/2(MI)] =

lk (I,MI)
lk (MI,I)

j[_̄k±1/2(MI)]2 = −48:I (1 − 48:I )2, (2.4.11b)

j[%̄k
±1/2(I)] = −

lk (I, �)lk (�, �)
lk (�,I)

j[_̄k±1/2(�2)] = −2, (2.4.11c)

j[%̄k
±1/2(S2)] = −

lk (I,MI)lk (MI,MI)
lk (MI,I)

j[_̄k±1/2(M2
I )] = 248:I , (2.4.11d)
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where S2 = {�2 | Î2 }. We can decompose the pair representation %̄k
±1/2 into IRs of the point group

�2ℎ � Ḡk + IḠk :

6̄ � MI I S2 Decomposition
%̄
:I=0
±1/2 (6̄) 4 0 −2 2 �6 + 2�D + �D
%̄
:I=c

±1/2 (6̄) 4 4 −2 −2 �6 + 3�D
(2.4.12)

The decomposition shows the difference of superconducting gap structures between the BP :I = 0
and the ZF :I = c, which is attributed to the nonsymmorphic screw symmetry S2; for example, �D
appears on :I = 0, while it is prohibited on :I = c. This means that, if the superconducting pairing
symmetry belongs to the �D IR, line nodes emerge only on the :I = c plane. Such an unusual nodal
structure is considered to appear in some superconductors, e.g., UPt3 [6, 11–15], UCoGe [16], and
CrAs [17].

2.4.3 Topological gap classification

We here confirm the group-theoretical classification result in the previous section, in terms of
topological classification based on the EAZ symmetry class (Sec. 2.3). In this case, the little
cogroup Ḡk and its IR matrices W̄k±1/2 have been given by Eqs. (2.4.3) and (2.4.6), respectively.
Here we choose the representation matrix W̄k+1/2 of the IR U = +1/2 and apply the topological
classification introduced in Sec. 2.3.5

2.4.3.1 �6 gap function

Now we consider the �6 pair wave function of the point group �2ℎ. According to the group-
theoretical gap classification, this function opens a superconducting gap on the line (see Eq. 2.4.12).
Before going to the tests for the EAZ symmetry class, we prepare some relationships among the
intrinsic symmetries. For the �6 pairing, we get the following factor system:

lin(ℭ,ℭ) = 1, lin(ℭ,MI) = lin(MI,ℭ), (2.4.13a)
lk
ns(ℭMI,ℭMI) = 48:I . (2.4.13b)

Therefore6

lin(Γ,MI) = lin(MI, Γ), (2.4.14a)
lk
ns(Γ,MI) = lk

ns(MI, Γ) = 1. (2.4.14b)

5In this case, the final result is not changed even if we choose the other IR W̄k−1/2.
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Next, we apply the topological classification to the normal Bloch state W̄k+1/2 and the �6 pair
wave function. Using the above factor system, theWigner criteria forT andℭ and the orthogonality
test for Γ are given by

,T
+1/2 =

{
0 :I = 0,
−1 :I = c,

(2.4.15)

,ℭ
+1/2 =

1
2

{
lk (ℭ,ℭ)j[W̄k+1/2(ℭ2)] + lk (ℭMI,ℭMI)j[W̄k+1/2((ℭMI)2)]

}
=

1
2
(+1 − 48:I ) =

{
0 :I = 0,
+1 :I = c,

(2.4.16)

,Γ
+1/2 =

1
2

{
lk (�, Γ)

l(Γ, Γ−1�Γ)
j[W̄k+1/2(�)

∗]j[W̄k+1/2(�)]

+ lk (MI, Γ)
l(Γ, Γ−1MIΓ)

j[W̄k+1/2(Γ−1MIΓ)∗]j[W̄k+1/2(MI)]
}

=
1
2
(1 + 1) = 1 (:I = 0, c). (2.4.17)

Thus, according to Table 2.2, the classifying space is identified as the EAZ symmetry class AIII
(DIII) on the :I = 0 (:I = c) plane. Since the both classes are classified into 0, the gap classification
is topologically trivial. Thismeans that the �6 pair wave function opens a gap on themirror-invariant
planes, which is consistent with the group-theoretical classification.

Here we explain the meaning of the EAZ symmetry class. Figure 2.1 represents a schematic
picture of the BdG Hamiltonian with the �6 pair wave function. First, we see the classification
on the BP :I = 0 [Fig. 2.1(a)]. In the above discussion, we started from the representation matrix
W̄k+1/2 of the IR U = +1/2, which corresponds to the normal Bloch state [the lower left particle in
Fig. 2.1(a)]. The Wigner criterion for the TRS-like operator T results in,T

+1/2 = 0 [Eq. (2.4.15)],
which indicates that T gives a basis of the nonequivalent IR (see Appendix A.1). Therefore the
lower left particle in Fig. 2.1(a) is mapped by T to the lower right particle, which belongs to the
other IR U = −1/2. Similarly, since ,ℭ

+1/2 = 0 [Eq. (2.4.16)], the lower left particle is mapped
by ℭ to the upper right hole. On the other hand, since the orthogonality test leads to ,Γ

+1/2 = 1
[Eq. (2.4.17)], the CS gives the basis of the equivalent IR (see Appendix A.2). Thus the lower left

6Taking into account the factor system in Eqs. (2.4.5) and (2.4.13), we can easily derive it by the following
commutation relation:

[D(Γ), D(MI)] = lin (T,ℭ)−1{D(T)D(ℭ)∗D(MI) − D(MI)D(T)D(ℭ)∗}
= lin (T,ℭ)−1{D(T)D(ℭ)∗D(MI) − D(T)D(MI)∗D(ℭ)∗}
= lin (T,ℭ)−1{D(T)D(ℭ)∗D(MI) − D(T)D(ℭ)∗D(MI)} = 0,

where we use Γ = TC = Tℭ.
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Particle

Hole

EAZ class: AIII
(a)

EAZ class: DIII
(b)

Figure 2.1: Schematic picture of the BdG Hamiltonian with the �6 pair wave function on mirror-
invariant planes (a) :I = 0 and (b) :I = c. The red-framed spaces for (a) and (b) belong to the EAZ
class AIII and DIII, respectively.

particle in Fig. 2.1(a) is mapped by Γ to the upper left hole, which belongs to the same IR U = +1/2.
For the above reason, the Hamiltonian in the space of W̄k+1/2 [the red frame in Fig. 2.1(a)] has only
the CS Γ, which indicates the AZ class AIII [52, 53].

On the ZF :I = c, on the other hand, the situation is changed [Fig. 2.1(b)]. In this case,
the Wigner criteria for T and ℭ are ,T

+1/2 = −1 [Eq. (2.4.15)] and ,ℭ
+1/2 = +1 [Eq. (2.4.16)],

respectively. They indicate that each of T and ℭ gives a basis of the equivalent IR +1/2, and as a
result, the CS also gives the same IR:,Γ

+1/2 = 1 [Eq. (2.4.17)]. Note that the mapped basis by the
TRST is linearly independent of the original basis, due to the result,T

+1/2 = −1 (see Appendix A.1).
Therefore the lower particle in Fig. 2.1(b) is mapped, by the any symmetries T, ℭ, and Γ, to the
particle and holes belonging to the same IR U = +1/2. That is why the Hamiltonian in the space of
W̄k+1/2 [the red frame in Fig. 2.1(b)] is classified into the AZ class DIII [52, 53].

Furthermore, we see an intuitive understanding of the gap opening in the �6 symmetry. For
simplicity, we only treat the BP :I = 0 case in the discussion. Within the weak-coupling limit, i.e.,
for the negligibly small inter-band pairing, it is sufficient to discuss the single-band model. In this
case, the BdG Hamiltonian �BdG(k) on the mirror plane is generally written as follows:

�BdG(k) =
1
2
I†(k)�̂BdG(k)I (k), (2.4.18)

I†(k) = (2†+1/2(k), T2
†
+1/2(k)T

−1, ℭ2†+1/2(k)ℭ
−1, Γ2†+1/2(k)Γ

−1), (2.4.19)

where 2†+1/2(k) is a creation operator of a 9I = +1/2 Bloch state in a band-based representation,
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which is the basis of the IR W̄k+1/2:

62
†
+1/2(k)6

−1 = W̄k+1/2(6)2
†
+1/2(k) for 6 ∈ Ḡ

k . (2.4.20)

�̂BdG(k) is the matrix representation of �BdG(k):

�̂BdG(k) =
(

b (k)f0 Δ0k(k)8fH
(Δ0k(k)8fH)† −b (k)f0

)
, (2.4.21)

where b (k) is the normal energy dispersion, and f8 represents the Pauli matrix in pseudo-spin
space. Here, the spin-singlet �6 gap function is defined as

1
2
Δ0k(k)

{
2
†
+1/2(k) (Γ2

†
+1/2(k)Γ

−1)† − T2†+1/2(k)T
−1(ℭ2†+1/2(k)ℭ

−1)†
}
+ H.c., (2.4.22)

where the magnitude of the gap function Δ0 is chosen as a real number without loss of generality.
Due to the MI symmetry, the BdG Hamiltonian matrix commutes with the mirror reflection

matrix *̂k
BdG(MI):

[�̂BdG(k), *̂k
BdG(MI)] = 0. (2.4.23)

Therefore �̂BdG(k) and *̂k
BdG(MI) are simultaneously block-diagonalized; namely, there exists a

unitary matrix +̂ such that

�̂BdG(k) = +̂
(
�̂+(k) 0

0 �̂−(k)

)
+̂†, (2.4.24)

*̂k
BdG(MI) = +̂

(
+812 0

0 −812

)
+̂†, (2.4.25)

where we use l:I=0(MI,MI) = −1. The block-diagonalized Hamiltonian �+(k) and �−(k) are
written as follows:

�±(k) =
1
2
I†±(k)�̂±(k)I±(k), (2.4.26)

�̂±(k) =
(

b (k) ±Δ0k(k)
±Δ0k(k)∗ −b (k)

)
, (2.4.27)

I†+(k) = (2†+1/2(k), Γ2
†
+1/2(k)Γ

−1), (2.4.28)

I†−(k) = (T2†+1/2(k)T
−1, ℭ2†+1/2(k)ℭ

−1), (2.4.29)

since Γ does not change the eigenvalue of *̂k
BdG(MI), but T and ℭ do that.

Figure 2.2(a) schematically illustrates the band structures obtained by the BdG Hamilto-
nian (2.4.24). First, considering Δ0 → 0 limit [left panel in Fig. 2.2(a)], we get the particle
band

b (k)2†+1/2(k)2+1/2(k) (b (k)T2
†
+1/2(k)2+1/2(k)T

−1), (2.4.30)
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(a)

(b)

Figure 2.2: Band-theoretical picture of the BdG Hamiltonian with (a) the �6 pair wave function
and (b) the �6 pair wave function on the mirror-invariant BP :I = 0. 2†+ is the abbreviated notation
of 2†+1/2(k). The red points represent nodes on the plane.
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and the hole band

−b (k)Γ2†+1/2(k)2+1/2(k)Γ
−1 (−b (k)ℭ2†+1/2(k)2+1/2(k)ℭ

−1), (2.4.31)

in the eigenspace of the eigenvalue +8 (−8). When the magnitude of the gap function Δ0 is finite,
therefore, the �6 pair wave function [Eq. (2.4.22)] can have finite off-diagonal components in each
+8 and −8 eigenspace [see Eq. (2.4.27)]. These functions open the gaps at the zero energy [right
panel in Fig. 2.2(a)]. This fact indicates the existence of gap on the mirror-invariant plane.

2.4.3.2 �6 gap function

Next, we investigate the �6 pair wave function on the mirror planes. Group-theoretical gap classi-
fication shows the emergence of line nodes on the planes (see Eq. 2.4.12).

We again choose the IR W̄k+1/2 and apply the topological classification. For the �6 pairing, the
factor system is

lin(ℭ,ℭ) = 1, lin(ℭ,MI) = −lin(MI,ℭ), (2.4.32a)
lk
ns(ℭMI,ℭMI) = 48:I . (2.4.32b)

Therefore,

lin(Γ,MI) = −lin(MI, Γ), (2.4.33a)
lk
ns(Γ,MI) = lk

ns(MI, Γ) = 1. (2.4.33b)

By using the above factor system, the Wigner criteria for T and ℭ and the orthogonality test for Γ
are given by

,T
+1/2 =

{
0 :I = 0,
−1 :I = c,

(2.4.34)

,ℭ
+1/2 =

1
2
(+1 + 48:I ) =

{
+1 :I = 0,
0 :I = c,

(2.4.35)

,Γ
+1/2 =

1
2
(1 − 1) = 0 (:I = 0, c). (2.4.36)

According to Table 2.2, therefore, the classifying space is identified as the EAZ symmetry class D
(AII) on the :I = 0 (:I = c) plane. Since the class D (AII) is classified into Z2 (2Z), nodes emerge
on the mirror-invariant planes by the �6 pair wave function when the FSs cross the planes. This
node is topologically protected.

Figure 2.3 represents the schematic picture of the BdG Hamiltonian with the �6 pair wave
function. On the BP :I = 0, the normal Bloch basis of W̄k+1/2, namely, the lower left particle
in Fig. 2.3(a), is mapped by T to the lower right particle belonging to the other IR U = −1/2,
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EAZ class: D
(a)

EAZ class: AII
(b)

Particle

Hole

Figure 2.3: Schematic picture of the BdG Hamiltonian with the �6 pair wave function on mirror-
invariant planes (a) :I = 0 and (b) :I = c. The red-framed spaces for (a) and (b) belong to the EAZ
class D and AII, respectively.

because the Wigner criterion for the TRS T is,T
+1/2 = 0 [Eq. (2.4.34)]. Similarly, since,Γ

+1/2 = 0
[Eq. (2.4.36)], the lower left particle is mapped by Γ to the upper right hole. On the other hand, since
the Wigner criterion for the PHS is,ℭ

+1/2 = +1 [Eq. (2.4.35)], ℭ gives the basis of the equivalent IR
which does not generate an additional degeneracy (see Appendix A.1). Thus the lower left particle
in Fig. 2.3(a) is mapped by ℭ to the upper left hole belonging to the same IR U = +1/2. For the
above reason, the BdG Hamiltonian in the space of W̄k+1/2 [the red frame in Fig. 2.3(a)] has only the
PHS ℭ with ℭ2 = +� , which indicates the AZ class D [52, 53].

On the ZF :I = c, the lower left particle in Fig. 2.3(b) is degenerated by T belonging to the
equivalent IR U = +1/2, because of the Wigner criterion ,T

+1/2 = −1 [Eq. (2.4.34)]. On the other
hand, since,T

+1/2 = ,
Γ
+1/2 = 0 [Eqs. (2.4.35) and (2.4.36)], the lower left particle is mapped by the

PHS ℭ and the CS Γ to the upper right holes in the nonequivalent IR U = −1/2. Therefore, the
Hamiltonian in the space of W̄k+1/2 [the red frame in Fig. 2.3(b)] has only the TRS T with T2 = −� ,
which indicates the AZ class AII [52, 53].

Furthermore, we discuss an intuitive picture of the nodes appearing in the �6 symmetry for the
BP :I = 0 case. As is the case for the �6 IR, the BdG Hamiltonian matrix �̂BdG(k) [Eq. (2.4.21)]
and the mirror reflection matrix *̂k

BdG(MI) are simultaneously block-diagonalized on the mirror-
invariant plane [Eqs. (2.4.24) and (2.4.25)]. For the �6 IR, the Hamiltonian blocks �+(k) and
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�−(k) are written as follows:

�±(k) =
1
2
I†±(k)�̂±(k)I±(k), (2.4.37)

�̂±(k) =
(
b (k) 0

0 −b (k)

)
, (2.4.38)

I†+(k) = (2†+1/2(k), ℭ2
†
+1/2(k)ℭ

−1), (2.4.39)

I†−(k) = (T2†+1/2(k)T
−1, Γ2†+1/2(k)Γ

−1), (2.4.40)

since ℭ does not change the eigenvalue of *̂k
BdG(MI), but T and Γ do that. Note that the off-

diagonal components of �̂±(k) are zero because the spin-singlet �6 gap function has the same
form as Eq. (2.4.22), which is not allowed in the equivalent eigenspace of ±8. In other words, the
momentum dependence of the �6 gap function k(k) leads to the gap closing on the mirror plane,
even when the magnitude Δ0 is finite. The band structures are schematically shown in Fig. 2.2(b),
which indicates the emergence of line nodes on the mirror plane :I = 0 [right panel in Fig. 2.2(b)].

Finally, we comment on the Z2 classification of the gap node. As shown in Eq. (2.4.24), the BdG
Hamiltonianmatrix in this symmetry can be decomposed into the twomatrices belonging to different
eigenspaces of ±8: �̂+(k) ⊕ �̂−(k). Both matrices possess the PHS ℭ with ℭ2 = +� . Therefore
�̂±(k) can be transformed into antisymmetric matrices by using the unitary part *̂ℭ = *̂ℭ,+ ⊕ *̂ℭ,−
of the PHS ℭ [31, 54]. Thus the nodes in each eigenspace are characterized by a Z2 number:

(−1);± = sgn[8= Pf{*̂ℭ,±�̂±(k)}] ∈ Z2, (2.4.41)

with = = dim(�̂±)/2. This Z2 protection of nodes is the same as that of Bogoliubov FSs in
even-parity chiral superconductors [31].
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Chapter 3

Superconducting gap classification on
high-symmetry planes

In this Chapter, using the classification theory introduced in Chapter 2, we completely classify
the superconducting gap structures on high-symmetry (namely mirror- or glide-invariant) planes in
the BZ. From the group-theoretical analysis, the classification tables for all possible symmetries
are given in Sec. 3.1. The tables clarify the condition for nontrivial line nodes or gap opening
on the BZ boundary, which are protected by nonsymmorphic symmetry. Next, in Sec. 3.2, we
see a one-to-one correspondence between the group-theoretical and topological classification: all
crystal-symmetry-protected line nodes on high-symmetry planes are also characterized by 0D
and/or 1D topological numbers. Furthermore, we discuss the possibility of Majorana flat bands as
surface states corresponding to the 1D topological number. Finally, as an example, we demonstrate
nonsymmorphic-symmetry-protected gap structures in the model of Sr2IrO4 (Sec. 3.3).

3.1 Group-theoretical classification of symmetry-protected line
nodes

In this section, we completely classify symmetry-protected line nodes on mirror- or glide-invariant
planes [6, 11–17], clarifying the condition for the presence or absence of line nodes protected
by nonsymmorphic symmetry. Furthermore, we show an additional constraint: line nodes (gap
opening) peculiar to nonsymmorphic systems appear only on the ZF for 59 primitive or orthorhombic
base-centered space groups. We provide classification tables (Table 3.2) of the space groups, which
may allow nontrivial superconducting gap structures by nonsymmorphic symmetry.
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3.1.1 Setup
First, we show constraints on crystal symmetry of the system where the formalism in Sec. 2.2 is
applicable. Since this method requires the symmetry operation connecting k and −k, the system
must be invariant under the IS I. The symmetry-protected line node may appear on the high-
symmetry k-planes when a FS crosses the plane and the gap function vanishes there. Thus, we need
to consider k-planes as high-symmetry k-points in order to discuss line nodes. Only an identity
operation and a mirror reflection (or a glide reflection) are allowed as elements of the unitary little
group for the general point on the high-symmetry k-planes.

For the above reasons, we assume that the symmetry of the system contains point group �2ℎ,
which is generated by a spatial inversion and a mirror reflection. In other words, the space group of
the system � has a subgroup � ⊂ � such that �/T � �2ℎ. Taking translations into account, � is
classified as follows:

� = {� |0}T + {"⊥ | tM}T + {� |0}T + {�2⊥ | tM}T, (3.1.1a)

tM =


0 (RM) Rotation + Mirror,
t‖ (RG) Rotation + Glide,
t⊥ (SM) Screw + Mirror,
t‖ + t⊥ (SG) Screw + Glide.

(3.1.1b)

The translation group T defines a Bravais Lattice, and t8 = Â8/2 (8 = ‖ or ⊥) are non-primitive
translation vectors. � denotes an identity operation, "⊥ is a mirror reflection about the plane
perpendicular to the A⊥ axis, and �2⊥ is a c-rotation around the A⊥ axis. Note that the direction
of the twofold axis is represented by a symbol ⊥, while the other directions orthogonal to the
twofold axis are represented by a symbol ‖ [Fig. 3.1(a)]. In Eq. (3.1.1), the (RM) space group is
symmorphic, and the other (RG), (SM), and (SG) space groups are nonsymmorphic.

Next, we discuss the magnetic (anti-unitary) symmetry of the system. When the system is FM,
all the time-reversal operation is forbidden. On the other hand, in the PM or AFM state, the system
is invariant under the anti-unitary operation,

T̄ = {) | tT }, (3.1.2a)

tT =


0 (PM),
t‖ (AFM1),
t⊥ (AFM2),
t‖ + t⊥ (AFM3).

(3.1.2b)

The pure TRS is allowed in the (PM) state, while the system is invariant under the successive oper-
ations of time-reversal and non-primitive translation in the (AFM1)-(AFM3) states. For example,
a magnetic structure of the (AFM1) state is shown in Fig. 3.1(b): although magnetic moments (red
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(a) (b)Twofold axis

Figure 3.1: (a) The coordinate A⊥ along the twofold axis, and the other coordinates A‖ perpendicular
to the twofold axis. (b) An example of the AFM1 case. The red arrows illustrate magnetic moments
on a square lattice, and the dashed line indicates a magnetic unit cell.

arrows) flip under the time-reversal operation, themagnetic structure recovers after a half-translation
t‖ = Â‖/2.

3.1.2 Gap classification

By adding the anti-unitary operators (3.1.2) to the unitary space group (3.1.1), we can construct the
magnetic space group " = � (FM) or " = � + T̄� (PM or AFM). Based on the magnetic space
group, the gap classification introduced in Sec. 2.2 is applied to high-symmetry, namely, mirror-
or glide-invariant planes in the BZ: the BP at :⊥ = 0 and the ZF at :⊥ = c. The obtained results
are summarized in Table 3.1. In this table, the representations of superconducting gap functions
are classified by the IRs of point group �2ℎ. We also show candidate materials for unusual gap
structures, one of which is Sr2IrO4 [18] discussed in Sec. 3.3.

The classification of a superconducting gap on BPs is consistent with the Sigrist-Ueda method.
On the other hand, the representations allowed on the ZF may differ from those on the BP. Then,
the line nodes (or gap opening) protected by nonsymmorphic symmetry appear on the ZF. Such
a situation is realized when the space group is (SM) or (SG), and/or the pseudo-TRS is (AFM2)
or (AFM3). In other words, when the system preserves the symmetry operation(s) including non-
primitive translation perpendicular to the mirror plane [tM]⊥ ≠ 0 and/or [tT ]⊥ ≠ 0, the symmetry
ensures nontrivial gap structures beyond the Sigrist-Ueda method.

Results consistent with Table 3.1 have been recently shown byMicklitz and Norman [17]. Using
a Clifford algebra technique, they also confirmed that the line nodes by nonsymmorphic symmetry
are protected by a Z topological number. A further discussion [19] about the topological stability
of the line nodes and resulting surface states, namely Majorana flat bands, is given in Sec. 3.2.
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Table 3.1: Classification of superconducting gap on high-symmetry k-plane. � and T̄ specify
the space group by Eqs. (3.1.1) and (3.1.2). The representations of Cooper pairs allowed on the
high-symmetry k-planes (BP and ZF) are shown. Materials realizing the space groups are also
shown.

Cases � T̄ Key ingredients
(1a) (RM), (RG) N/A [tM]⊥ = 0
(1b) (SM), (SG) N/A [tM]⊥ ≠ 0
(2a) (RM), (RG) (PM), (AFM1) [tM]⊥ = [tT ]⊥ = 0
(2b) (RM), (RG) (AFM2), (AFM3) [tM]⊥ = 0, [tT ]⊥ ≠ 0
(2c) (SM), (SG) (PM), (AFM1) [tM]⊥ ≠ 0, [tT ]⊥ = 0
(2d) (SM), (SG) (AFM2), (AFM3) [tM]⊥ ≠ 0, [tT ]⊥ ≠ 0

Cases BP (:⊥ = 0) ZF (:⊥ = c) Materials
(1a) �D �D

(1b) �D �D UCoGe (FM) [16], URhGe [16]
(2a) �6 + 2�D + �D �6 + 2�D + �D
(2b) �6 + 2�D + �D �6 + 3�D Sr2IrO4 (vertical) [18], UPt3 (AFM) [17]
(2c) �6 + 2�D + �D �6 + 3�D UPt3 (PM) [6, 11–15], UCoGe (PM) [16], CrAs [17]
(2d) �6 + 2�D + �D �6 + �D + 2�D UPd2Al3 [16, 17, 42], UNi2Al3 [17], Sr2IrO4 (horizontal) [18]

3.1.3 Application to 59 space groups

In the above discussion, we have shown the gap classification of line nodes on mirror- or glide-
invariant planes. Here we reconsider constraints on the crystal symmetry of the system. Space
groups containing�2ℎ symmetry are divided into four types: primitive, orthorhombic base-centered,
body-centered, and face-centered space groups. All types of space groups have one or more mirror-
invariant BPs (:⊥ = 0) in the BZ. On the other hand, corresponding mirror-invariant ZFs (:⊥ = c)
exist only for primitive or orthorhombic base-centered space groups. Although some of body-
centered or face-centered space groups also have mirror-invariant ZFs, all of them are :⊥ = 2c
planes, where the gap classification gives the same result as that on BPs (:⊥ = 0 planes). Examples
of mirror-invariant BPs and ZFs in the BZ of a primitive or orthorhombic base-centered Bravais
lattice are illustrated in Figs. 3.2(a)-3.2(d).

As shown in Table 3.1, unconventional line nodes (gap opening) protected by nonsymmorphic
symmetry appear on :⊥ = c planes. Therefore, we conclude that nontrivial nonsymmorphic-
symmetry-protected line nodes may appear not for a body-centered or face-centered Bravais lattice,
but for a primitive or orthorhombic base-centered Bravais lattice. This additional constraint
simplifies the classification of space groups with respect to the superconducting gap structure.

For the above reason, we classify here only primitive and orthorhombic base-centered space
groups containing �2ℎ symmetry, which may allow nontrivial gap structures by nonsymmorphic
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(a)

(c)

(d)

(b)

Figure 3.2: Mirror-invariant BPs and ZFs in the first BZ for (a) monoclinic primitive, (b) or-
thorhombic base-centered, (c) orthorhombic primitive / tetragonal primitive / cubic primitive, and
(d) hexagonal primitive Bravais lattice. The blue and red planes represent BPs and ZFs, respectively.
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Table 3.2: Gap classification for (a) monoclinic, (b) orthorhombic, (c) tetragonal, (d) hexagonal,
and (e) cubic space groups. The table for the orthorhombic groups shows primitive and base-
centered Bravais lattices, while the other tables show the primitive Bravais lattice. The first and
second columns show the number and the name of space groups. The fourth column represents
the type of the space groups in Eq. (3.1.1), corresponding to the direction (in the third column) of
mirror-invariant BP and ZF. [see also Figs. 3.2(a)-3.2(d)]. Note that the direction “E” means G and
H in the (c) tetragonal space groups, and [1−10], [120], and [210] in the (d) hexagonal ones. The
fifth and sixth columns show the gap classification for PM superconductors on the BP :⊥ = 0 and
the ZF :⊥ = c, respectively.

No. Short ⊥ Type :⊥ = 0 :⊥ = c

(a) Monoclinic
10 %2/< H (RM) �6 + 2�D + �D �6 + 2�D + �D

11 %21/< H (SM) �6 + 2�D + �D �6 + 3�D

13 %2/2 H (RG) �6 + 2�D + �D �6 + 2�D + �D

14 %21/2 H (SG) �6 + 2�D + �D �6 + 3�D

(b) Orthorhombic
47 %<<< G (RM) �6 + �36 + 2�D + �1D + �2D + 2�3D �6 + �36 + 2�D + �1D + �2D + 2�3D

H (RM) �6 + �26 + 2�D + �1D + 2�2D + �3D �6 + �26 + 2�D + �1D + 2�2D + �3D
I (RM) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 2�D + 2�1D + �2D + �3D

48 %=== G (RG) �6 + �36 + 2�D + �1D + �2D + 2�3D �6 + �36 + 2�D + �1D + �2D + 2�3D
H (RG) �6 + �26 + 2�D + �1D + 2�2D + �3D �6 + �26 + 2�D + �1D + 2�2D + �3D
I (RG) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 2�D + 2�1D + �2D + �3D

49 %22< G (RG) �6 + �36 + 2�D + �1D + �2D + 2�3D �6 + �36 + 2�D + �1D + �2D + 2�3D
H (RG) �6 + �26 + 2�D + �1D + 2�2D + �3D �6 + �26 + 2�D + �1D + 2�2D + �3D
I (RM) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 2�D + 2�1D + �2D + �3D

50 %10= G (RG) �6 + �36 + 2�D + �1D + �2D + 2�3D �6 + �36 + 2�D + �1D + �2D + 2�3D
H (RG) �6 + �26 + 2�D + �1D + 2�2D + �3D �6 + �26 + 2�D + �1D + 2�2D + �3D
I (RG) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 2�D + 2�1D + �2D + �3D

51 %<<0 G (SM) �6 + �36 + 2�D + �1D + �2D + 2�3D �6 + �36 + 3�1D + 3�2D
H (RM) �6 + �26 + 2�D + �1D + 2�2D + �3D �6 + �26 + 2�D + �1D + 2�2D + �3D
I (RG) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 2�D + 2�1D + �2D + �3D

52 %==0 G (RG) �6 + �36 + 2�D + �1D + �2D + 2�3D �6 + �36 + 2�D + �1D + �2D + 2�3D
H (SG) �6 + �26 + 2�D + �1D + 2�2D + �3D �6 + �26 + 3�1D + 3�3D
I (RG) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 2�D + 2�1D + �2D + �3D

53 %<=0 G (RM) �6 + �36 + 2�D + �1D + �2D + 2�3D �6 + �36 + 2�D + �1D + �2D + 2�3D
H (RG) �6 + �26 + 2�D + �1D + 2�2D + �3D �6 + �26 + 2�D + �1D + 2�2D + �3D
I (SG) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 3�2D + 3�3D

54 %220 G (SG) �6 + �36 + 2�D + �1D + �2D + 2�3D �6 + �36 + 3�1D + 3�2D
H (RG) �6 + �26 + 2�D + �1D + 2�2D + �3D �6 + �26 + 2�D + �1D + 2�2D + �3D
I (RG) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 2�D + 2�1D + �2D + �3D
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Table 3.2: (Continued).

No. Short ⊥ Type :⊥ = 0 :⊥ = c

55 %10< G (SG) �6 + �36 + 2�D + �1D + �2D + 2�3D �6 + �36 + 3�1D + 3�2D
H (SG) �6 + �26 + 2�D + �1D + 2�2D + �3D �6 + �26 + 3�1D + 3�3D
I (RM) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 2�D + 2�1D + �2D + �3D

56 %22= G (SG) �6 + �36 + 2�D + �1D + �2D + 2�3D �6 + �36 + 3�1D + 3�2D
H (SG) �6 + �26 + 2�D + �1D + 2�2D + �3D �6 + �26 + 3�1D + 3�3D
I (RG) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 2�D + 2�1D + �2D + �3D

57 %12< G (RG) �6 + �36 + 2�D + �1D + �2D + 2�3D �6 + �36 + 2�D + �1D + �2D + 2�3D
H (SG) �6 + �26 + 2�D + �1D + 2�2D + �3D �6 + �26 + 3�1D + 3�3D
I (SM) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 3�2D + 3�3D

58 %==< G (SG) �6 + �36 + 2�D + �1D + �2D + 2�3D �6 + �36 + 3�1D + 3�2D
H (SG) �6 + �26 + 2�D + �1D + 2�2D + �3D �6 + �26 + 3�1D + 3�3D
I (RM) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 2�D + 2�1D + �2D + �3D

59 %<<= G (SM) �6 + �36 + 2�D + �1D + �2D + 2�3D �6 + �36 + 3�1D + 3�2D
H (SM) �6 + �26 + 2�D + �1D + 2�2D + �3D �6 + �26 + 3�1D + 3�3D
I (RG) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 2�D + 2�1D + �2D + �3D

60 %12= G (SG) �6 + �36 + 2�D + �1D + �2D + 2�3D �6 + �36 + 3�1D + 3�2D
H (RG) �6 + �26 + 2�D + �1D + 2�2D + �3D �6 + �26 + 2�D + �1D + 2�2D + �3D
I (SG) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 3�2D + 3�3D

61 %120 G (SG) �6 + �36 + 2�D + �1D + �2D + 2�3D �6 + �36 + 3�1D + 3�2D
H (SG) �6 + �26 + 2�D + �1D + 2�2D + �3D �6 + �26 + 3�1D + 3�3D
I (SG) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 3�2D + 3�3D

62 %=<0 G (SG) �6 + �36 + 2�D + �1D + �2D + 2�3D �6 + �36 + 3�1D + 3�2D
H (SM) �6 + �26 + 2�D + �1D + 2�2D + �3D �6 + �26 + 3�1D + 3�3D
I (SG) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 3�2D + 3�3D

63 �<2< I (SM) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 3�2D + 3�3D
64 �<20 I (SG) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 3�2D + 3�3D
65 �<<< I (RM) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 2�D + 2�1D + �2D + �3D
66 �22< I (RM) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 2�D + 2�1D + �2D + �3D
67 �<<0 I (RG) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 2�D + 2�1D + �2D + �3D
68 �220 I (RG) �6 + �16 + 2�D + 2�1D + �2D + �3D �6 + �16 + 2�D + 2�1D + �2D + �3D

(c) Tetragonal
83 %4/< I (RM) �6 + �6 + 2�D + 2�D + �D �6 + �6 + 2�D + 2�D + �D

84 %42/< I (RM) �6 + �6 + 2�D + 2�D + �D �6 + �6 + 2�D + 2�D + �D

85 %4/= I (RG) �6 + �6 + 2�D + 2�D + �D �6 + �6 + 2�D + 2�D + �D

86 %42/= I (RG) �6 + �6 + 2�D + 2�D + �D �6 + �6 + 2�D + 2�D + �D

123 %4/<<< I (RM) �16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

�16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

E (RM) �16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

�16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D
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Table 3.2: (Continued).

No. Short ⊥ Type :⊥ = 0 :⊥ = c

124 %4/<22 I (RM) �16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

�16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

E (RG) �16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

�16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

125 %4/=1< I (RG) �16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

�16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

E (RG) �16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

�16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

126 %4/==2 I (RG) �16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

�16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

E (RG) �16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

�16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

127 %4/<1< I (RM) �16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

�16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

E (SG) �16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

�16 + �16 + �6 + 3�2D + 3�2D + 3�D

128 %4/<=2 I (RM) �16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

�16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

E (SG) �16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

�16 + �16 + �6 + 3�2D + 3�2D + 3�D

129 %4/=<< I (RG) �16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

�16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

E (SM) �16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

�16 + �16 + �6 + 3�2D + 3�2D + 3�D

130 %4/=22 I (RG) �16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

�16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

E (SG) �16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

�16 + �16 + �6 + 3�2D + 3�2D + 3�D

131 %42/<<2 I (RM) �16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

�16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

E (RM) �16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

�16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

132 %42/<2< I (RM) �16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

�16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

E (RG) �16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

�16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

133 %42/=12 I (RG) �16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

�16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

E (RG) �16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

�16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D
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134 %42/==< I (RG) �16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

�16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

E (RG) �16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

�16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

135 %42/<12 I (RM) �16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

�16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

E (SG) �16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

�16 + �16 + �6 + 3�2D + 3�2D + 3�D

136 %42/<=< I (RM) �16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

�16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

E (SG) �16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

�16 + �16 + �6 + 3�2D + 3�2D + 3�D

137 %42/=<2 I (RG) �16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

�16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

E (SM) �16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

�16 + �16 + �6 + 3�2D + 3�2D + 3�D

138 %42/=2< I (RG) �16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

�16 + �26 + �16 + �26 + 2�1D + 2�2D +
2�1D + 2�2D + 2�D

E (SG) �16 + �16 + �6 + 2�1D + �2D + 2�1D +
�2D + 3�D

�16 + �16 + �6 + 3�2D + 3�2D + 3�D

(d) Hexagonal
175 %6/< I (RM) �6 + �26 + 2�D + �D + �1D + 2�2D �6 + �26 + 2�D + �D + �1D + 2�2D
176 %63/< I (SM) �6 + �26 + 2�D + �D + �1D + 2�2D �6 + �26 + 3�D + 3�1D
191 %6/<<< I (RM) �16 + �26 +2�26 +2�1D +2�2D + �1D +

�2D + 2�1D + 4�2D

�16 + �26 +2�26 +2�1D +2�2D + �1D +
�2D + 2�1D + 4�2D

E (RM) �16 + �26 + �16 + �26 + 2�1D + �2D +
�1D + 2�2D + 3�1D + 3�2D

�16 + �26 + �16 + �26 + 2�1D + �2D +
�1D + 2�2D + 3�1D + 3�2D

192 %6/<22 I (RM) �16 + �26 +2�26 +2�1D +2�2D + �1D +
�2D + 2�1D + 4�2D

�16 + �26 +2�26 +2�1D +2�2D + �1D +
�2D + 2�1D + 4�2D

E (RG) �16 + �26 + �16 + �26 + 2�1D + �2D +
�1D + 2�2D + 3�1D + 3�2D

�16 + �26 + �16 + �26 + 2�1D + �2D +
�1D + 2�2D + 3�1D + 3�2D

193 %63/<2< I (SM) �16 + �26 +2�26 +2�1D +2�2D + �1D +
�2D + 2�1D + 4�2D

�16 + �26 + 2�26 + 3�1D + 3�2D + 6�1D

E (RM) �16 + �26 + �16 + �26 + 2�1D + �2D +
�1D + 2�2D + 3�1D + 3�2D

�16 + �26 + �16 + �26 + 2�1D + �2D +
�1D + 2�2D + 3�1D + 3�2D

194 %63/<<2 I (SM) �16 + �26 +2�26 +2�1D +2�2D + �1D +
�2D + 2�1D + 4�2D

�16 + �26 + 2�26 + 3�1D + 3�2D + 6�1D

E (RG) �16 + �26 + �16 + �26 + 2�1D + �2D +
�1D + 2�2D + 3�1D + 3�2D

�16 + �26 + �16 + �26 + 2�1D + �2D +
�1D + 2�2D + 3�1D + 3�2D
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No. Short ⊥ Type :⊥ = 0 :⊥ = c

(e) Cubic
200 %<3̄ G, H, I (RM) �6 + �6 + )6 + 2�D + 2�D + 4)D �6 + �6 + )6 + 2�D + 2�D + 4)D
201 %=3̄ G, H, I (RG) �6 + �6 + )6 + 2�D + 2�D + 4)D �6 + �6 + )6 + 2�D + 2�D + 4)D
205 %03̄ G, H, I (SG) �6 + �6 + )6 + 2�D + 2�D + 4)D �6 + �6 + )6 + 6)D
221 %<3̄< G, H, I (RM) �16 + �26 + 2�6 + )16 + )26 + 2�1D +

2�2D + 4�D + 4)1D + 4)2D

�16 + �26 + 2�6 + )16 + )26 + 2�1D +
2�2D + 4�D + 4)1D + 4)2D

222 %=3̄= G, H, I (RG) �16 + �26 + 2�6 + )16 + )26 + 2�1D +
2�2D + 4�D + 4)1D + 4)2D

�16 + �26 + 2�6 + )16 + )26 + 2�1D +
2�2D + 4�D + 4)1D + 4)2D

223 %<3̄= G, H, I (RM) �16 + �26 + 2�6 + )16 + )26 + 2�1D +
2�2D + 4�D + 4)1D + 4)2D

�16 + �26 + 2�6 + )16 + )26 + 2�1D +
2�2D + 4�D + 4)1D + 4)2D

224 %=3̄< G, H, I (RG) �16 + �26 + 2�6 + )16 + )26 + 2�1D +
2�2D + 4�D + 4)1D + 4)2D

�16 + �26 + 2�6 + )16 + )26 + 2�1D +
2�2D + 4�D + 4)1D + 4)2D

symmetry. Symmetry onBPs andZFs [colored planes in Figs. 3.2(a)-3.2(d)] are classified into (RM),
(RG), (SM), or (SG) ofEq. (3.1.1), which enables us to determine the corresponding superconducting
gap structure on the planes, using Table 3.1, when the magnetic symmetry is given. The results of
the space group classification and the gap classification for PM superconductors are summarized in
Tables 3.2(a)-3.2(e). Even for FM and AFM superconductors, we can straightforwardly elucidate
the gap structure by combining Tables 3.1 and 3.2. Therefore, the group-theoretical classification
on high-symmetry planes is completed.

Finally, space groups of the candidate materials for nonsymmorphic line nodes (gap opening)
are illustrated in the following.

• PM UPt3 [6, 11–15]:

� = %63/<<2 [Table 3.2(d)],
T̄ = {) |0};

• PM UCoGe [16]:

� = %=<0 [Table 3.2(b)],
T̄ = {) |0};

• FM UCoGe [16]:
� = %21/2 [Table 3.2(a)];

• AFM UPd2Al3 [16, 17, 42]:

� = %21/< [Table 3.2(a)],
T̄ = {) | t⊥};
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• AFM Sr2IrO4 [18]:

� = %220 [Table 3.2(b)],
T̄ = {) | t‖ + t⊥}.

3.2 Topological classification of symmetry-protected line nodes
and Majorana flat bands

Let us now discuss the symmetry-protected line nodes from the viewpoint of topology. Such
topological properties are of importance in identifying the bulk-boundary correspondence, i.e., the
line-node-induced Majorana flat bands. We can formulate the topology of line nodes using the BdG
Hamiltonian,

�BdG =
1
2

∑
k,8, 9

I†
8
(k) [�̂BdG(k)]8 9I 9 (k), (3.2.1)

with I†
8
(k) = (2†

8
(k), 28 (−k)). We note that this Hamiltonian exhibits PHS since

*̂BdG(C̄)�̂BdG(k)∗*̂BdG(C̄)† = −�̂BdG(−k), (3.2.2)

where *̂BdG(C̄) = gG is the anti-unitary operator, and g8 is the Pauli matrix in Nambu space. We
choose a periodic Bloch basis so that �̂BdG(k) = �̂BdG(k +M), where M a reciprocal lattice vector.

First, we consider how the symmetry operations affect the BdG Hamiltonian. The creation
operator of an electron transforms under a unitary space group operation 6 as

62
†
8
(k)6−1 =

∑
9

2
†
9
(6k) [4−86k·36 D̄k (6̄)] 98, (3.2.3)

where 6̄ = {� |0}, {"⊥ | tM}, and {�2⊥ | tM}. We dub them as Ī, M̄⊥, and C̄2⊥, respectively. If the
BdG Hamiltonian is invariant with respect to the symmetry operations, one yields

*̂k
BdG(6̄)�̂BdG(k)*̂k

BdG(6̄)
† = �̂BdG(6k), (3.2.4)

with *̂k
BdG(6̄) = diag[D̄k (6̄), [6D̄−k (6̄)∗]. Here, [6 = lin(C, 6)/lin(6, C) = ±1, where the choice

of sign is the same as the sign of the character of 6 in the IR of the order parameter. In addition, T
acts on the creation operators as

T 2†
8
(k)T −1 = 2†

9
(−k) [48k·3T D̄k (T̄ )] 98, (3.2.5)

which yields
*̂k
BdG(T̄ )�̂BdG(k)∗*̂k

BdG(T̄ )
† = �̂BdG(−k), (3.2.6)

with *̂k
BdG(T̄ ) = diag[D̄k (T̄ ), D̄−k (T̄ )∗].
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Next, we clarify the relations between the symmetry operations. On the mirror plane, the PHS
operator satisfies

*̂BdG(C̄)*̂k
BdG(6̄)

∗ = [6*̂
−k
BdG(6̄)*̂BdG(C̄), (3.2.7)

while *̂k
BdG(M̄⊥), *̂

k
BdG(Ī), and *̂

k
BdG(T̄ ) satisfy

*̂k
BdG(Ī)*̂

k
BdG(M̄⊥) = exp(−28k · tM)*̂−kBdG(M̄⊥)*̂

k
BdG(Ī), (3.2.8a)

*̂k
BdG(T̄ )*̂

k
BdG(M̄⊥)

∗ = exp(−28k⊥ · tT )*̂−kBdG(M̄⊥)*̂
k
BdG(T̄ ), (3.2.8b)

where we use lin(I,M⊥) = lin(M⊥,I), lin(T ,M⊥) = lin(M⊥,T), and the nonsymmorphic
part of factor system lk

ns(61, 62) in Eq. (2.1.11).
A line node in superconducting gaps, in general, appears either at (a) a general position or (b) a

high-symmetric plane, i.e., a mirror or glide plane since it occurs on the FS. See Fig. 3.3(a). For the
former case, symmetries affecting a line node are the ones keeping the arbitrary position of the line
node. Such symmetry operations are given by the PHS-like operator ℭk ≡ *̂BdG(C̄)*̂k

BdG(Ī)
∗ ,

the TRS-like operator Tk ≡ *̂−kBdG(T̄ )*̂
k
BdG(Ī)

∗ , which are obtained from combinations of the
PHS and TRS operators with inversion operators, and the chiral operator Γk ≡ 8*̂−kBdG(T̄ )*̂BdG(C̄)∗.
Here,  is the complex conjugate and [I (ℭk)2 = −(Tk)2 = (Γk)2 = 1. On the other hand, for the
latter case, a line nodes is on a high-symmetric plane, whichmay be enforced by themirror reflection
operation *̂k

BdG(M⊥). Since [*̂
k
BdG(M⊥)]

2 = −4−28k ‖ ·tM , the sign of the squared operator may also
change at the ZF. We conveniently fix the sign by definingMk ≡ 48k ‖ ·tM*̂k

BdG(M⊥) which satisfies
(Mk)2 = −1. Using Eqs. (3.2.7) and (3.2.8), we then obtain the commutation relations,

ℭkMk = 4−28k⊥·tM [M⊥Mkℭk , (3.2.9a)
ΓkMk = 4−28k⊥·tT [M⊥MkΓk , (3.2.9b)

while the commutation relation between Tk and Mk can be determined from Eq. (3.2.9). The
right-hand side of Eq. (3.2.9) may change sign in the BP and the ZF, depending on the action of
[tM]⊥ and [tT ]⊥.

3.2.1 Line node at a general position
As a vortex in the momentum space, the stability of a line node is ensured by a 1D topological
number defined on a circle enclosing the line node. However, the PHS-like or TRS-like operator
does not give a nonzero 1D topological number, so the CS is required [55–57].1 Furthermore,
since (ℭk)2 = [I , even-parity superconductors ([I = 1) and odd-parity superconductors ([I = −1)
belong to different Altland-Zirnbauer (AZ) classes [52, 53], and only even-parity superconductors

1TI symmetry also enables us to define the 1D Z2 number, but in the case of superconductors, either T or I should
be preserved in order for electrons at k and −k to form a bulk Cooper pair. Thus, TI symmetry implies the presence
of T , which gives chiral symmetry with PHS. The Z2 number then reduces to the parity of Eq. (3.2.10).
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Figure 3.3: (a) When a line node appears at a general position k0, it is encircled by a loop ;. (b) On
the other hand, if one lies on a high-symmetric plane, two points k in and kout encircle it.

can support a non-zero 1D topological number. For even-parity superconductors, the 1D topological
number in terms of Γk can be defined on a loop ;,

,; =
8

4c

∮
;

3k · Tr[Γk �̂BdG(k)−1@k �̂BdG(k)] . (3.2.10)

3.2.2 Line node on a high-symmetry plane
We takeMk into account as a symmetry operation relevant to a line node in addition to ℭk ,Tk , and
Γk . On a high-symmetric plane, a line node separates the two-dimensional (2D) BZ into two disjoint
regions, which are distinguished by a 0D topological number. See Fig. 3.3(b). For a 0D topological
number, we refer to the topological periodic table presented in Refs. [58–63] and regarding Tk , ℭk ,
and Γk in terms of the AZ symmetry. On the mirror plane, the mirror operator commutes with the
BdGHamiltonian and so the BdGHamiltonian splits into mirror sectors, �̂BdG → ℎ̂_⊕ ℎ̂−_, where _
is an eigenvalue ofMk . Then, Γk (ℭk and Tk) exists within the mirror sectors if it (anti)commutes
withMk . For instance, when [ℭk ,Mk] = {Tk ,Mk} = {Γk ,Mk} = 0, the EAZ symmetry class
of each mirror sector is the AII class [(Tk)2 = −1] and its 0D topological number is 2Z. As such,
we have determined the possible 0D topological numbers in the mirror sectors and summarized in
Table 3.3. The obtained 0D topological numbers 2Z and Z2 of a line node in the mirror sector ℎ_
can then be defined as

N̂_ = =̂(kout)_ − =̂(k in)_, (3.2.11)

(−1) â_ = sgn

[
Pf{ℎ̂_ (kout)!kout,_}
Pf{ℎ̂_ (k in)!k in,_}

]
, (3.2.12)

respectively, where =̂(k)_ is the number of occupied stateswithmomentum k,ℭk = (!k,_⊕!k,−_) ,
and k in (kout) is the momentum inside (outside) of the nodal loop. In the weak coupling limit,
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Table 3.3: Topology of the symmetry-protected line nodes, labeled by the symbol " ?@

6(D) . The
superscripts ?, @ are defined by ? = 4−28k⊥·tM [M⊥ and @ = 4−28k⊥·tT [M⊥ , respectively, while the
subscript 6(D) indicates whether the SC has even (6) or odd (D) parity. The bottom table shows the
comparison between Table 3.1 and the 0D topological numbers, where �6 (�D) and �6 (�D) in the
BP correspond to the "++

6(D) and "
−−
6(D) classes, respectively. Cases (2a)-(2d) correspond to those in

Table 3.1. The labels (i)-(iii) indicate the SC class of the Majorana flat bands.

Topological No. "++6 "+−6 "−+6 "−−6 "++D "+−D "−+D "−−D
0D 0 2Z 0 Z2 0 2Z 0 0
1D 2Z 2Z 2Z 2Z 0 0 0 0

�6 �6 �D �D

Cases BP ZF BP ZF BP ZF BP ZF
(2a) 0 → 0 (ii) Z2 → Z2 0 → 0 0 → 0
(2b) (iii) 0 → 2Z (iii) Z2 → 0 0 → 0 (i) 0 → 2Z
(2c) 0 → 0 (ii) Z2 → 2Z (i) 0 → 2Z 0 → 0
(2d) (iii) 0 → Z2 (iii) Z2 → 0 0 → 0 0 → 0

i.e., Δ (k) → 0, Eqs. (3.2.11) and (3.2.12) are directly linked to the FS topology: If we define
N_ = =(kout)_ − =(k in)_ in the normal Hamiltonian to be the topological number of the FS in the
mirror sector with eigenvalue _, Eqs. (3.2.11) and (3.2.12) are reduced to

N̂_ = 2N_, (3.2.13)
(−1) â_ = (−1)N_ , (3.2.14)

which implies that a nodal loop is only topologically stable if N_ ≠ 0.
We are now in a position to elucidate the relationship between the group theoretical and topolog-

ical classifications. The IRs �6, �D, �6, and �D then correspond to the topological classifications
labeled by "++6 , "−−D , "−−6 , and "++D in the BP, where the superscripts of the symbol encode the
commutation relations (3.2.9a) and (3.2.9b) and the subscript indicates even (6) or odd (D) parity.
Moreover, the mirror symmetry classes in the ZF depend on [tM]⊥ and [tT ]⊥ due to Eq. (3.2.9).
In Tables 3.1 and 3.3, we find a one-to-one correspondence, in which the absence of IRs coincides
with the presence of the 0D topological numbers.

3.2.3 Possible Majorana flat bands
Finally, we consider the connection between symmetry-protected line nodes and Majorana flat
bands, which are characterized by 0D and 1D topological numbers, respectively. As was discussed
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above, the 1D topological number exists only for even-parity superconductors, so do Majorana flat
bands. In such even-parity superconductors, the 0D and 1D topological numbers are intrinsically
related to each other and satisfy

|N̂_ | = |,; |, (−1) â_ = (−1),;/2, (3.2.15)

which implies that a symmetry-protected line node is always accompanied by the 1D topological
number. We note also that the 1D topological number survives even when the mirror symmetry is
broken, which reflects the strong stability of the line nodes.

Using Table 3.3 and Eq. (3.2.15), we can identify three classes with respect to the stability
of the line nodes. A line node may be protected by (i) the 0D topological number in odd-parity
superconductors with TRS (or amagnetic translation symmetry), or alternatively, by both the 0D and
1D topological numbers in even parity superconductors with (ii) TRS or (iii) a magnetic translation
symmetry. We immediately find that there is no Majorana flat band in class (i) superconductors
since there is no 1D topological number corresponding to a Majorana flat band in odd-parity
superconductors. In order to demonstrate the existence of Majorana flat bands in class (ii) and
(iii) superconductors, consider a system with an open boundary, e.g., the G8 = 0 plane. Then, an
Majorana flat band appears on the G8 = 0 plane if the 1D topological number in Eq. (3.2.10) defined
on the loop ; (: 9 , : ;) = {(:8, : 9 , : ;) | − c ≤ :8 ≤ c} is nonzero [64, 65], where (:8, : 9 , : ;) are
perpendicular to each other, and ; (: 9 , : ;) does not intersect with the line node. For superconductors
satisfying the conditions of class (ii), the operator T̄ corresponds to a pure TRS, so ; (: 9 , : ;) can be
defined for arbitrary surface direction. Thus, an Majorana flat band appears on the superconductors’
surface in analogy with high-)2 cuprate superconductors [66, 67]. On the other hand, T̄ in class
(iii) corresponds to a magnetic translation, so ; (: 9 , : ;) needs to be compatible with a translation
vector tT , i.e., an Majorana flat band only arises when one satisfies tT · ê8 = 0 for class (iii)
superconductors, where ê8 is a unit vector normal to the surface. Note that the behavior we have
outlined here is similar to that of surface states in antiferromagnetic topological insulators [68–75].
Thus, a limitation on possible Majorana flat bands in class (iii) superconductors appears in contrast
to Majorana flat bands in class (ii) and noncentrosymmetric superconductors [76–78]. In particular,
when tT is perpendicular to themirror plane, Majorana flat bands do not exist on any surface because
no surface direction simultaneously satisfies the constraints arising from the magnetic translation
and the mirror symmetry. Thus, a distortion or interaction that breaks the mirror symmetry is
necessary to reveal the hidden Majorana flat bands.

3.3 Example: Sr2IrO4 in − + +− state
In this section, we suggest that superconductivity with nonsymmorphic-symmetry-protected gap
structures in Table 3.1 appear in the − + +− magnetic state of Sr2IrO4, which is regarded as a
higher-order magnetic octupole (MO) order. These results are evidenced by a combination of group
theoretical analysis and numerical analysis of an effective �eff = 1/2 model for Sr2IrO4.
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3.3.1 Background

A layered perovskite 53 transition metal oxide Sr2IrO4 has attracted recent attention because a
lot of similarities to the high-temperature cuprate superconductors have been recognized. For
example, Sr2IrO4 (La2CuO4) has one hole per Ir (Cu) ion, and shows a pseudospin-1/2 AFM
order [79]. Moreover, recent experiments on electron-doped Sr2IrO4 indicate the emergence of
a pseudogap [80–82] and at low temperatures a 3-wave gap [83], which strengthens the analogy
with cuprates. Furthermore, 3-wave superconductivity in Sr2IrO4 by carrier doping is theoretically
predicted by several studies [84–87]. Distinct differences of Sr2IrO4 from cuprates are large spin-
orbit coupling and nonsymmorphic crystal structure, both of which attract interest in the modern
condensed matter physics.

Below )N ' 230 K, an AFM order develops in undoped Sr2IrO4. Large spin-orbit coupling
and rotation of octahedra lead to canted magnetic moments from the 0 axis and induce a small FM
moment along the 1 axis (Fig. 3.4). Several magnetic structures for stacking along the 2 axis have
been reported in response to circumstances. The magnetic ground states determined by resonant
x-ray scattering [88–90], neutron diffraction [91, 92], and second-harmonic generation [93], are
summarized in a recent theoretical work [94]. In the undoped compound, the FM component
shows the stacking pattern − + +− [88, 89, 91], as illustrated in Fig. 3.4. On the other hand, the
+ + ++ pattern is suggested as the magnetic structure of Sr2IrO4 in a magnetic field directed in
the 01 plane [88] and of Rh-doped Sr2Ir1−GRhGO4 [90, 92]. The recent observation [93], however,
advocates the − + −+ magnetic pattern indicating an intriguing odd-parity hidden order in Sr2IrO4
(see Fig. 3.4).

The crystal space group of Sr2IrO4 was originally reported as �41/023 from neutron powder
diffraction experiments [95, 96]. Very recently, however, the crystal structure has been revealed by
single-crystal neutron diffraction to be rather �41/0 [92]. In either case, the symmetry of Sr2IrO4
is globally centrosymmetric and nonsymmorphic. On the other hand, the site symmetry of the Ir
site is (4 lacking local inversion symmetry. In such noncentrosymmetric systems, antisymmetric
spin-orbit coupling (ASOC) entangles various internal degrees of freedom, such as spin, orbital,
and sublattice, namely multipole degrees of freedom. As an intriguing consequence of the ASOC,
locally noncentrosymmetric systems may realize odd-parity multipole order [97–104] beyond the
paradigm of even-parity multipole order in 3- and 5 -electron systems [105].

3.3.2 Classification of − + +− and − + −+ order based on magnetic multipole

Before going to the main issue, we show that the − + +− and − + −+ order are classified into a MO
and magnetic quadrupole (MQ) order, respectively.
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(a) z = 1/8 (b) z = 3/8

(c) z = 5/8 (d) z = 7/8

FM “−”
FM “−”

FM “+”
FM “−”

FM “+”
FM “+”

FM “−”
FM “+”

a− c−

d−

d+

c+

b−

b+

a+

Figure 3.4: Crystal and magnetic symmetries of Sr2IrO4 in the 4 IrO2 planes: (a) I = 1
8 , (b) I =

3
8 ,

(c) I = 5
8 , and (d) I = 7

8 [18, 94]. The two magnetic patterns of interest, − + +− (black arrows)
and − + −+ (red arrows), are shown. They differ by the FM in-plane component along the 1 axis.
Iridium atoms (yellow circles) are labeled as 0−, . . . , 3−, 0+, . . . , 3+.
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Table 3.4: Irreducible decomposition of �4ℎ even-parity IRs in �2ℎ point group.

(IRs of �4ℎ) �26 �16 �26 �6

(IRs of �4ℎ)↓ �2ℎ �16 �6 �16 �26 + �36

Table 3.5: Irreducible decomposition of �4ℎ odd-parity IRs in �2E point group.

(IRs of �4ℎ) �1D �2D �1D �2D �D

(IRs of �4ℎ)↓ �2E �2 �2 �2 �2 �1 + �1

3.3.2.1 − + +− order

Although the crystal symmetry of Sr2IrO4 is �4ℎ, it reduces to �2ℎ in the − + +− ordered state.
In Table 3.4, the even-parity IRs of �4ℎ except �16 (�26, �16, �26, and �6) are subduced to
representations of �2ℎ. Since only �16 contains the fully symmetric IR of �2ℎ (�6), the − + −+
order belongs to �16 representation of �4ℎ.

The lowest-order TRS-odd basis function of �16 is UGHBI + VI(HBG + GBH) in the real space. This
basis function represents an even-parity MO (; = 3) order [106],

"̂3,−2 − "̂3,2 ∝ GHÎ + HIĜ + IGĤ, (3.3.1)

"̂;,< = `�

=∑
9=1

( 2l 9
; + 1

+ 2s 9
)
· ∇ 9

(
A ;9/;,< ( r̂ 9 )∗

)
, (3.3.2)

where /;,< ( r̂) ≡
√

4c
2;+1.;,< ( r̂) is the normalized spherical harmonics. Thus, the − + +− order is

classified into a MO order.

3.3.2.2 − + −+ order

In the − + −+ ordered state, the crystal symmetry reduces from �4ℎ to �2E . Here, the odd-parity
IRs of �4ℎ (�1D, �2D, �1D, �2D, and �D) are subduced to representations of �2E (Table 3.5). Since
only �D contains the fully symmetric IR of �2E (�1), the − + −+ order belongs to �D representation
of �4ℎ.

This IR �D permits TRS-odd basis functions: UHBI + VIBH in the real space, and :G in the
momentum space. In the real space, the basis function contains an odd-parityMQ(; = 2) order [106],

"̂2,1 + "̂2,−1 ∝ HÎ + IĤ. (3.3.3)
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Table 3.6: The gap structure for �16 and �26 gap functions.

Order parameter :I = 0 :I = c/2 :G,H = 0 :G,H = c/0
�16 (B-wave) gap node gap node
�26 (3GH-wave) gap node node gap

Therefore, the −+−+ order contains the component of a MQ order, though it may include a toroidal
dipole order proportional to HÎ − IĤ [97].

3.3.3 Classification
Nowwe consider the superconductivity in the −++− state.2 The magnetic space group of the −++−
state is a nonsymmorphic group %�220 = %220 + {) | Ĝ2 +

Ĥ

2 +
Î
2 }%220. We especially focus on the

Cooper pairs on the mirror-invariant BPs :I,G,H = 0 and the ZFs :I = c/2 and :G,H = c/0. By using
Tables 3.1 and 3.2, we can calculate the character of the Cooper pair wave functions %̄k ↑ �4ℎ,
and then decompose it into IRs of the original crystal symmetry �4ℎ. The obtained results are
summarized in the following:

• On the horizontal planes :I = 0 and c/2,

%̄k ↑ �4ℎ =

{
�16 + �26 + �16 + �26 + 2�1D + 2�2D + 2�1D + 2�2D + 2�D BP,
2�6 + �1D + �2D + �1D + �2D + 4�D ZF;

(3.3.4)

• On the vertical planes :G,H = 0 and c/0,

%̄k ↑ �4ℎ =

{
�16 + �16 + �6 + 2�1D + �2D + 2�1D + �2D + 3�D BP,
�26 + �26 + �6 + 3�1D + 3�1D + 3�D ZF.

(3.3.5)

We find that possible IRs change from BPs to ZFs as a consequence of the nonsymmorphic
symmetry. The gap functions should be zero, and thus, the gap nodes appear, if the corresponding
IRs do not exist in these results of reductions [5, 7, 51]. Otherwise, the superconducting gap will
open in general. From Eqs. (3.3.4) and (3.3.5), for instance, we find the gap structure of �16 and
�26 superconducting states summarized in Table 3.6.

3.3.4 Numerical calculation
We demonstrate the results of group theory (Table 3.6) using an effective model for �eff = 1/2
manifold.

2In this thesis, we do not discuss the FFLO superconductivity in the − +−+ state [18], because it digresses from the
main subject.
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3.3.4.1 Model

We introduce a 3D single-orbital tight-binding model describing superconductivity coexisting with
magnetic order in Sr2IrO4,

�BdG =
1
2

∑
k

I†(k)�̂BdG(k)I (k), (3.3.6)

where

I†(k) = (0†−↑(k+), 0
†
−↓(k+), . . . , 3

†
−↑(k+), 3

†
−↓(k+),

0
†
+↑(k+), 0

†
+↓(k+), . . . , 3

†
+↑(k+), 3

†
+↓(k+),

0−↑(k−), 0−↓(k−), . . . , 3−↑(k−), 3−↓(k−),
0+↑(k−), 0+↓(k−), . . . , 3+↑(k−), 3+↓(k−)), (3.3.7)

with k+ ≡ k + q
2 , k− ≡ −k +

q
2 are 32-dimensional vector of creation-annihilation operators. The

center-of-mass momentum q of Cooper pairs is assumed to be zero in most cases except for the
studies of FFLO state [18]. We define 0†±B (k), . . . 3†±B (k) as the creation operators of electrons
with spin B =↑, ↓ on the sublattices 0±, . . . , 3±, respectively (see Fig. 3.4 for the sublattices) The
32 × 32 BdG Hamiltonian is described with use of the normal state Hamiltonian �̂= (k) and the
order parameter part Δ̂ (k),

�̂BdG(k) =
(
�̂= (k+) Δ̂ (k)
Δ̂ (k)† −�̂T

= (k−)

)
, (3.3.8)

where
�̂= (k) = �̂kin(k) + �̂ASOC(k) + �̂MO. (3.3.9)

The kinetic term �̂kin(k) is given by the following equation:

�̂kin(k) =


�̂intra-layer(k)
+�̂inter-layer1(k)

�̂inter-layer2(k)

�̂inter-layer2(k)†
�̂intra-layer(k)
+�̂inter-layer1(k)


, (3.3.10)

where

�̂intra-layer(k) = f(layer)
0 ⊗ [(Y2(k) − `)f(sl)

0 ⊗ f(spin)
0 + Y1(k)f(sl)

G ⊗ f(spin)
0 ], (3.3.11)

�̂inter-layer1(k) = f(layer)
G ⊗ [Re(YG3(k))f

(sl)
0 ⊗ f(spin)

0 + Re(YH3 (k))f
(sl)
G ⊗ f(spin)

0 ]
− f(layer)

H ⊗ [Im(YG3(k))f
(sl)
0 ⊗ f(spin)

0 + Im(YH3 (k))f
(sl)
G ⊗ f(spin)

0 ], (3.3.12)

�̂inter-layer2(k) = f(layer)
G ⊗ [Re(YH3 (k))f

(sl)
0 ⊗ f(spin)

0 + Re(YG3(k))f
(sl)
G ⊗ f(spin)

0 ]
+ f(layer)

H ⊗ [Im(YH3 (k))f
(sl)
0 ⊗ f(spin)

0 + Im(YG3(k))f
(sl)
G ⊗ f(spin)

0 ], (3.3.13)
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with the chemical potential `. f(spin)
8

, f(sl)
8

, and f(layer)
8

are the Pauli matrices representing the spin,
sublattice, and layer degrees of freedom, respectively. The single electron kinetic energy terms
Y1(k), Y2(k), and YG,H3 (k) are described by taking into account the nearest-, next-nearest-, and
third-nearest-neighbor hoppings,

Y1(k) = −4C1 cos
:G0

2
cos

:H0

2
, (3.3.14)

Y2(k) = −2C2(cos(:G0) + cos(:H0)), (3.3.15)

YG3(k) = −C3 cos
:G0

2
4−8:I2/4, (3.3.16)

Y
H

3 (k) = −C3 cos
:H0

2
4−8:I2/4. (3.3.17)

For our results in the −+−+ state [18], the violation of local inversion symmetry which induces
the staggered ASOC, �̂ASOC(k), plays an essential role.3 This term is given by the followingmatrix:

�̂ASOC(k) =



�̂ASOC-intra1(k)
+�̂ASOC-intra2(k)
+�̂H

ASOC-inter(k)
�̂GASOC-inter(k)

�̂GASOC-inter(k)
†

�̂ASOC-intra1(k)
+�̂ASOC-intra2(k)
+�̂H

ASOC-inter(k)


. (3.3.18)

We take into account two intra-layer terms �̂ASOC-intra1(k), �̂ASOC-intra2(k) and two inter-layer terms
�̂
G,H

ASOC-inter(k):

�̂ASOC-intra1(k) = 8U1 cos
:G0

2
cos

:H0

2
f
(layer)
0 ⊗ 8f(sl)

H ⊗ f(spin)
I , (3.3.19)

�̂ASOC-intra2(k) = U2f
(layer)
I ⊗ f(sl)

I ⊗ (sin(:G0) cos(:H0)f(spin)
G − sin(:H0) cos(:G0)f(spin)

H ),
(3.3.20)

3The ASOC is derived from atomic LS coupling [107, 108]. In our effective �eff = 1/2 model, therefore, the ASOC
takes account of the effect of LS-type SOC. Since multiorbital electronic structure does not play any essential role in
our results, we will obtain qualitatively the same results in the 53 multiorbital model.
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�̂GASOC-inter(k) = −U3

[
8f

(layer)
H ⊗ 8f(sl)

H ⊗
(
cos

:I2

4
sin

:G0

2
f
(spin)
G − 2 sin

:I2

4
cos

:G0

2
f
(spin)
I

)
+8 · f(layer)

G ⊗ 8f(sl)
H ⊗

(
sin

:I2

4
sin

:G0

2
f
(spin)
G + 2 cos

:I2

4
cos

:G0

2
f
(spin)
I

)]
,

(3.3.21)

�̂
H

ASOC-inter(k) = U3

[
8f

(layer)
H ⊗ 8f(sl)

H ⊗
(
cos

:I2

4
sin

:H0

2
f
(spin)
H − 2 sin

:I2

4
cos

:H0

2
f
(spin)
I

)
−8 · f(layer)

G ⊗ 8f(sl)
H ⊗

(
sin

:I2

4
sin

:H0

2
f
(spin)
H + 2 cos

:I2

4
cos

:H0

2
f
(spin)
I

)]
,

(3.3.22)

which are allowed by the crystal symmetry of Sr2IrO4.
The last term in Eq. (3.3.9), �̂MO, expresses the molecular field of magnetic order, − + +− and

− + −+. This term causes various superconducting phenomena, which have been demonstrated in
this section. As shown in Fig. 3.4, each site has the in-plane magnetic moment. Thus, the molecular
field is given by

�̂MO =


−h(\0−) · 2

. . .

−h(\3+) · 2

 , (3.3.23)

where

(\0−, . . . , \3−, \0+, . . . , \3+) =
{
(348◦, 192◦, 168◦, 12◦, 168◦, 12◦, 348◦, 192◦) (− + +− state)
(348◦, 192◦, 168◦, 12◦, 348◦, 192◦, 168◦, 12◦) (− + −+ state),

(3.3.24)
and h(\) = ℎ(cos \, sin \, 0) [94].

Next we describe the order parameter Δ̂ (k). When the on-site B-wave superconductivity is
assumed, it takes the form

Δ̂ (B) (k) = Δ01̂2 ⊗ f(layer)
0 ⊗ f(sl)

0 ⊗ 8f(spin)
H . (3.3.25)

For the 3GH-wave superconductivity originating from the interaction between the nearest-neighbor
sites, we obtain

Δ̂ (3) (k) = Δ0 sin
:G0

2
sin

:H0

2
1̂2 ⊗ f(layer)

0 ⊗ f(sl)
G ⊗ 8f(spin)

H . (3.3.26)

Finally, we show the parameters which are used in this section. We adopt the hopping parameters
of the effective �eff = 1/2 model [85] derived from the three-orbital Hubbard model, where the
hopping parameters are C1 = 1, C2 = 0.26, and C3 = 0.1. We here assume moderate ASOCs U1 = 0.3
and U2 = U3 = 0.1 so that the effects of ASOCs are visible in the numerical results. Since the
superconductivity has been predicted at the electron density around = ∼ 1.2 [85], we determine the

48



Figure 3.5: The contour plot of quasiparticle energy dispersion � in the B-wave superconducting
state normalized by the order parameterΔ0 on (a) :I = 0, (b) :I = c/2, (c) :G = 0, and (d) :G = c/0.
The insets in (a), (b), (c), and (d) show the dispersion �/Δ0 along the respective blue line. Line
nodes (black lines) appear on the ZF, :I = c/2 and :G = c/0.

Figure 3.6: The contour plot of quasiparticle energy dispersion �/Δ0 for the 3GH-wave order
parameter on (a) :I = 0, (b) :I = c/2, (c) :G = 0, and (d) :G = c/0. The insets show �/Δ0 along
the respective blue line. Line nodes (black lines) appear on the ZF :I = c/2 and the BP :G = 0.

chemical potential ` = 1.05 so as to be consistent with the electron density. Then, four spinful
energy bands cross the Fermi level. The magnitude of gap function is chosen to be Δ0 = 0.02. The
conclusions of this section are not altered by the choice of parameters, because they are evidenced
by the group theoretical analysis.

3.3.4.2 Results

Nowwe show the numerical results of themodel introduced in the previous section. By diagonalizing
the BdG Hamiltonian [Eq. (3.3.8)], the quasiparticle energy dispersion in the superconducting state
� = � (:G , :H, :I) is obtained. The results are shown in Figs. 3.5 and 3.6. Only 0 ≤ �/Δ0 < 2
region is colored, and especially nodal (� ∼ 0) points are plotted by black.

The gap structure of the two superconducting states reproduces Table 3.6. In both B-wave and
3GH-wave cases, the numerical results are consistent with the group theory. In other words, the
gap nodes in Figs. 3.5 and 3.6 are protected by nonsymmorphic space group symmetry. Note
that exceptional cases of the gap classification in Table 3.6 appear in some accidentally degenerate
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region [13]. For example, we see such unexpected gap structures on the :H = c/0 plane.
As introduced previously, both theory [84–87] and experiment [83] suggest 3GH-wave supercon-

ductivity analogous to cuprates4. In this case, a horizontal line node appears on the ZF (:I = c/2)
in contrast to the usual 3GH-wave state. Moreover, the gap opening at the other ZFs (:G,H = c/0)
is also nontrivial because the usual 3GH-wave order parameter vanishes not only at BPs but also at
ZFs. These nontrivial gap structures are protected by the nonsymmorphic space group symmetry.

4Because of the c/4 rotation of a principle axis, the 3GH-wave superconductivity corresponds to the 3G2−H2 -wave
state in cuprates.
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Chapter 4

Superconducting gap classification on
high-symmetry lines

In Chapter 3, the condition for nontrivial line nodes beyond the Sigrist-Ueda method has been
elucidated by using the gap classification on high-symmetry k planes. In this Chapter, on the
other hand, we show nontrivial symmetry-protected gap structures using the gap classification on
high-symmetry k lines, namely the =-fold rotational axes (= = 2, 3, 4, and 6). In the following part,
nonsymmorphic symmetry may not play any important role,1 and thus, we consider symmorphic
space groups and the PM state, for simplicity. In Secs. 4.1 and 4.2, we present the general classi-
fication table on high-symmetry axes using group theory and topology, respectively. Furthermore,
some candidate superconductors are shown: UPt3 (Sec. 4.3), SrPtAs (Sec. 4.4), CeCoIn5 (Sec. 4.5),
UCoGe (Sec. 4.6), MoS2 (Sec. 4.7), UBe13 (Sec. 4.8), and PrOs4Sb12 (Sec. 4.9).

4.1 Group-theoretical classification

The magnetic little group on a =-fold axisMk
= is given by

Mk
= = Gk

= + TGk
= =

=−1∑
<=0
{�= |0}<T + T

=−1∑
<=0
{�= |0}<T, (4.1.1)

where �= represents the =-fold rotation. The small corepresentations ofMk
= are obtained by the

double-valued IR of corresponding point groups (little cogroups) �= � Gk
= /T [Tables 4.1(a)-(d)].

Note that each IR in Table 4.1 is composed of two 1D representations, which are degenerate due
to the successive operations of time-reversal and spatial inversion T = {) � |0}. The subscripts 1/2,

1The results in Table 4.2 are not changed even when the system has non-primitive translations parallel to the =-fold
axis, because the phase factor arising from the translations is canceled during calculation of the Mackey-Bradley
theorem.
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Table 4.1: The double-valued IRs of cyclic point groups [38, 45, 109].

(a) Twofold axis (b) Threefold axis
�2 � �2 �3 � �3 �2

3
�1/2 2 0 �1/2 2 1 −1

2�3/2 2 −2 2

(c) Fourfold axis (d) Sixfold axis
�4 � �4 �3

4 �2
4 �6 � �6 �5

6 �3 �2
3 �2

�1/2 2
√

2 −
√

2 0 �1/2 2
√

3 −
√

3 1 −1 0
�3/2 2 −

√
2
√

2 0 �5/2 2 −
√

3
√

3 1 −1 0
�3/2 2 0 0 −2 2 0

3/2, and 5/2 correspond to the total angular momentum of the Bloch state 9I = ±1/2, ±3/2, and
±5/2, respectively [38, 109].

In some other cases, more generally, a high-symmetry axis in the BZ has a vertical mirror
symmetry where the mirror plane contains the axis. Therefore, the general magnetic little cogroup
is M̄k = �=(E)+T�=(E) . From the small corepresentation corresponding to the Bloch wave function,
we can calculate %̄k

U , the representation of the Cooper pair wave function, using theMackey-Bradley
theorem [Eq. (2.2.1)]. The obtained results of %̄k

U are summarized in Table 4.2.
As shown in Table 4.2, the pair wave function on �2(E)- and �4(E)-symmetric lines has a

unique representation irrespective of the IR U, namely the total angular momentum of the normal
Bloch state. On �3(E)- and �6(E)-symmetric axes, on the other hand, there are two nonequivalent
representations of the pair wave function depending on the angular momentum 9I. For example, on
the threefold axis, the �D order parameter is allowed (forbidden) in the case of the �1/2 (2�3/2) Bloch
state. This means that the �D superconducting gap opens in the energy band of the 9I = ±1/2 state,
while nodes appear for 9I = ±3/2. Therefore, the presence or absence of nodes is 9I-dependent
when the system has threefold or sixfold rotational symmetry. In this thesis, we call it a 9I-dependent
gap structure, which is not obtained by the Sigrist-Ueda method [4].

4.2 Topological classification
As revealed in Sec. 2.3, the gap (node) on high-symmetry k-points is represented by the absence
(presence) of a topological number in the classification by the EAZ symmetry class. Similarly, we
can classify all superconducting gap structures on �=- or �=E-symmetric lines in the BZ, which are
summarized in Table 4.3. Note that the EAZ classes in the table are not equal to the AZ symmetry
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Table 4.2: Group-theoretical classification of superconducting gap on high-symmetry lines where
the little cogroup is Ḡk . %̄k

U on each line is decomposed by IRs of corresponding Ḡk
pair = Ḡk +IḠk .

The labels of IR (U) are represented by the subscripts 1/2, 3/2, and 5/2.

Ḡk (Ḡk
pair) _̄kU %̄k

U

�2 (�2ℎ) �1/2 �6 + �D + 2�D
�3 ((6) �1/2 �6 + �D + �D

2�3/2 �6 + 3�D
�4 (�4ℎ) �1/2, �3/2 �6 + �D + �D
�6 (�6ℎ) �1/2, �5/2 �6 + �D + �1D

�3/2 �6 + �D + 2�D
�2E (�2ℎ) �1/2 �6 + �D + �2D + �3D
�3E (�33) �1/2 �16 + �1D + �D

�3/2 �16 + 2�1D + �2D
�4E (�4ℎ) �1/2, �3/2 �16 + �1D + �D
�6E (�6ℎ) �1/2, �5/2 �16 + �1D + �1D

�3/2 �16 + �1D + �1D + �2D

classes of the total BdG Hamiltonian, but represent the symmetry of the Hamiltonian decomposed
by the IRs of Ḡk . From Table 4.3, we can identify whether the superconducting gap closes or not
on almost all the high-symmetric axes with some exceptions2 by determining the IR of the normal
Bloch state and that of the superconducting order parameter.

Now we remark the treatment of the 2D IRs in Table 4.3. A general 2D superconducting
order parameter matrix has the form Δ̂ (k) = [+Δ̂+(k) + [−Δ̂−(k); for example, we consider a
superconducting order parameter belonging to the �6 IR of �3, for which

�3Δ̂±(k)�)3 = 4
±82c/3Δ̂±(k), (4.2.1)

on the�3-symmetric line. For arbitrary parameters [+ and [−, however, it is impossible to determine
a commutation relation between the rotation symmetry �3 and the PHS C. On the other hand, if we
choose the 1D order parameter with one of the two rotation-invariant bases Δ̂ (k) = Δ̂±(k), namely
([+, [−) = (1, 0) or (0, 1), the commutation can be given by

lin(�3, C) = 4±82c/3lin(C, �3). (4.2.2)

In other words, Δ̂ (k) = Δ̂+(k) (Δ̂−(k)) belongs to the 1D IR 2�6 (1�6) of (6 [see Table 4.4(a)].

2For example, the gap classification on a �2E -symmetric hinge of the BZ with glide symmetry is different from that
of Table 4.3(e) with mirror symmetry [110].
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Table 4.3: Topological classification of gap structures on high-symmetry lines in the BZ. Each
classification is represented by the type of the topological number and the gap structure on the line:
(G) full gap, (P) point nodes, (L) a part of line nodes, and (S) a part of surface nodes (Bogoliubov
FSs). In a spontaneously TRS breaking phase, since all 2D IRs are decomposed into the 1D IRs
with different eigenvalues of the rotation symmetry (see also Table 4.4), the IRs in �33 , �4ℎ, and
�6ℎ are the same as those in (6, �4ℎ, and �6ℎ, respectively. Therefore we do not show the 2D IRs
in the tables (f), (g), and (h).

(a) Ḡk = �2, U = ±1/2 (b1) Ḡk = �3, U = +[−]1/2 (b2) Ḡk = �3, U = ±3/2
IR of �2ℎ EAZ Classification IR of (6 EAZ Classification IR of (6 EAZ Classification

�6 AIII 0 (G) �6 AIII 0 (G) �6 DIII 0 (G)
�D AIII 0 (G) �D AIII 0 (G) �D CII 0 (G)
�6 D Z2 (L) 2�6 [1�6] D Z2 (S) 1,2�6 A Z (S)
�D C 0 (G) 1�6 [2�6] A Z (S)

2�D [1�D] C 0 (G) 1,2�D A Z (P)
1�D [2�D] A Z (P)

(c) Ḡk = �4, U = +[−]1/2, +[−]3/2 (d1) Ḡk = �6, U = +[−]1/2, +[−]5/2 (d2) Ḡk = �6, U = ±3/2
IR of �4ℎ EAZ Classification IR of �6ℎ EAZ Classification IR of �6ℎ EAZ Classification

�6 AIII 0 (G) �6 AIII 0 (G) �6 AIII 0 (G)
�D AIII 0 (G) �D AIII 0 (G) �D AIII 0 (G)
�6 A Z (L) �6 A Z (L) �6 D Z2 (L)
�D A Z (P) �D A Z (P) �D C 0 (G)

2�6 [1�6] D Z2 (S) 1�16 [2�16] D Z2 (S) 1,2�16 A Z (S)
1�6 [2�6] A Z (S) 2�16 [1�16] A Z (S)
2�D [1�D] C 0 (G) 1�1D [2�1D] C 0 (G) 1,2�1D A Z (P)
1�D [2�D] A Z (P) 2�1D [1�1D] A Z (P)

1,2�26 A Z (S) 1,2�26 A Z (S)
1,2�2D A Z (P) 1,2�2D A Z (P)

(e) Ḡk = �2E, U = 1/2 (f1) Ḡk = �3E, U = 1/2 (f2) Ḡk = �3E, U = 3/2
IR of �2ℎ EAZ Classification IR of �33 EAZ Classification IR of �33 EAZ Classification

�6 CI 0 (G) �16 CI 0 (G) �16 AIII 0 (G)
�D CI 0 (G) �1D CI 0 (G) �1D C 0 (G)
�16 BDI Z2 (L) �26 BDI Z2 (L) �26 D Z2 (L)
�1D BDI Z2 (P) �2D BDI Z2 (P) �2D AIII 0 (G)
�26 BDI Z2 (L) 2D IRs see (b1) 2D IRs see (b2)
�2D CI 0 (G)
�36 BDI Z2 (L)
�3D CI 0 (G)

(g) Ḡk = �4E, U = 1/2, 3/2 (h1) Ḡk = �6E, U = 1/2, 5/2 (h2) Ḡk = �6E, U = 3/2
IR of �4ℎ EAZ Classification IR of �6ℎ EAZ Classification IR of �6ℎ EAZ Classification
�16 CI 0 (G) �16 CI 0 (G) �16 CI 0 (G)
�1D CI 0 (G) �1D CI 0 (G) �1D CI 0 (G)
�26 BDI Z2 (L) �26 BDI Z2 (L) �26 BDI Z2 (L)
�2D BDI Z2 (P) �2D BDI Z2 (P) �2D BDI Z2 (P)
�16 AI Z (L) �16 AI Z (L) �16 BDI Z2 (L)
�1D AI Z (P) �1D AI Z (P) �1D CI 0 (G)
�26 AI Z (L) �26 AI Z (L) �26 BDI Z2 (L)
�2D AI Z (P) �2D AI Z (P) �2D CI 0 (G)

2D IRs see (c) 2D IRs see (d1) 2D IRs see (d2)
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Table 4.4: Character tables for 2D IRs of the point groups (a) (6, (b) �4ℎ, and (c) �6ℎ. All notations
are based on Bilbao Crystallographic Server [111]. It is noteworthy that all representations labeled
by the indices 1 and 2 are 1D IRs, which are doubly degenerated under TRS (e.g., �D = 1�D + 2�D).
In each table, characters are shown only for generators of the corresponding group.

(a) (6 � �3 � (c) �6ℎ � �6 �
1�6 Γ

+
3 1 4−82c/3 +1 1�16 Γ

+
6 1 4−8c/3 +1

2�6 Γ
+
2 1 4+82c/3 +1 2�16 Γ

+
5 1 4+8c/3 +1

1�D Γ
−
2 1 4−82c/3 −1 1�1D Γ

−
6 1 4−8c/3 −1

2�D Γ
−
3 1 4+82c/3 −1 2�1D Γ

−
5 1 4+8c/3 −1

1�26 Γ
+
3 1 −4−8c/3 +1

(b) �4ℎ � �4 � 2�26 Γ
+
2 1 −4+8c/3 +1

1�6 Γ
+
4 1 −8 +1 1�2D Γ

−
3 1 −4−8c/3 −1

2�6 Γ
+
3 1 +8 +1 2�2D Γ

−
2 1 −4+8c/3 −1

1�D Γ
−
4 1 −8 −1

2�D Γ
−
3 1 +8 −1

Note that since Δ̂+(k) and Δ̂−(k) are a pair of the order parameter connected by TRS, choosing
one of them leads to TRS and CS breaking. Thus we only have to calculate the Wigner criterion
for the PHS-like operator ℭ = CI:

,ℭ
+1/2 =

1
3

∑
6̄∈{�,�3,(�3)2}

lk (ℭ6̄,ℭ6̄)j[W̄k+1/2((ℭ6)2)]

=

{
0 1�6,

1 2�6,
(4.2.3)

,ℭ
+3/2 =

1
3

∑
6̄∈{�,�3,(�3)2}

lk (ℭ6̄,ℭ6̄)j[W̄k+3/2((ℭ6)2)]

= 0 (1,2�6), (4.2.4)

where we use Eq. (4.2.2), lin(ℭ,ℭ) = +1, lin(�3, �3)lin((�3)2, �3) = −1, and the IRs of �3 in
the following.

IR � �3 (�3)2
W̄k+1/2 1 4+8c/3 4+82c/3

W̄k+3/2 1 −1 1
(4.2.5)

Here the 1D IRs 1,2�6 of (6 are defined in Table 4.4(a). Equations (4.2.3) and (4.2.4) show that
the classification results of 1�6 and 2�6 are different (equivalent) for the IR of the normal Bloch
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(P)
FS

(L) (S)

Figure 4.1: Three cases of the gap closing on a high-symmetry axis: (P) point nodes, (L) a part of
line nodes, and (S) a part of surface nodes (Bogoliubov FSs).

state U = +1/2 (+3/2); see also Tables 4.3(b1) and 4.3(b2). We remark that the calculations of
Eq. (4.2.3) are reversed for an U = −1/2 band:

,ℭ
−1/2 =

{
1 1�6,

0 2�6 .
(4.2.6)

These results are represented in the square brackets in Table 4.3(b1). In case of the other 2D IRs,
we similarly decompose them into the 1D IRs with different eigenvalues of the rotation symmetry
(see Table 4.4). For such 1D IRs produced from 2D IRs, therefore, the groups �33 , �4ℎ, and �6ℎ
are reduced to (6, �4ℎ, and �6ℎ, respectively. Thus we do not show the 2D IRs for �33 , �4ℎ, and
�6ℎ groups in Table 4.3.

In Table 4.3, the classification “0” indicates the fully gapped structure on the intriguing high-
symmetry line, which is consistent with the results of Table 4.2. If the classification is nontrivial
(Z or Z2), on the other hand, the gap closes on the line. As shown in Fig. 4.1, such gap structures
have three types when the whole FS is considered: (P) point nodes, (L) a part of line nodes, and (S)
a part of surface nodes (Bogoliubov FSs). The condition for each node structure is specified by the
parity and TRS of the order parameter as follows.

Case (S): even-parity and TRS breaking order parameter. When both particle bands and hole
bands are doubly degenerate, nodes on the high-symmetry axis are point nodes. Indeed, most of
the single-band models reproduce the situation. In real superconductors where multi-band effects
cannot be neglected, however, the degeneracy splits due to the inter-band pairing effect [31, 112]. As
a result, the point nodes are inflated to surface nodes, which are characterized by the 0D topological
number (Pfaffian of the antisymmetrized total BdG Hamiltonian) %(k) ∈ Z2 [31].

Case (L): even-parity and TRS preserving order parameter. When the high-symmetry axis
possesses the mirror symmetry parallel to the axis (i.e., Ḡk � �=E), we can classify the presence
or absence of line nodes on the mirror-invariant plane [17, 19, 20] (see Chapter 3). Taking into
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account the compatibility relation between the high-symmetry axis and the mirror-invariant plane,
it is found that nodes on the �=E-symmetric axis are a part of line nodes on the plane. The line
nodes are also protected by the 1D topological number (winding number) ,; ∈ Z in Eq. (3.2.10),
which is defined by the CS [19, 55, 65]. Even when the mirror symmetry is broken, therefore, the
line nodes do not vanish as long as the CS is preserved. Since the line nodes remain intersectant
with the axis because of the rotational symmetry, nodes on the �=-symmetric axis are also a part of
the line nodes.

Case (P): odd-parity order parameter. Except for the BZ boundary in nonsymmorphic space
groups,3 there is no line node in odd-parity superconductivity [41, 55].

(P1) When the order parameter breaks TRS, band degeneracy generally splits. However, nodes on
the high-symmetry axis are not a part of surface nodes since no 0D topological number is
defined at a general point in the 3D BZ. Thus the stable nodes are point nodes.

(P2) When the order parameter preserves TRS, nodes on the high-symmetry axis are point nodes
because the band splitting does not occur.

In the following sections, we see some representative candidates of symmetry-protected nodes
on high-symmetry lines.

4.3 Point nodes: UPt3 (Space group: %63/<<2)

4.3.1 Background
Superconductivity in UPt3 has been intensively investigated after the discovery of superconductivity
in 1980’s [113]. Multiple superconducting phases illustrated in Fig. 4.2 [114–117] unambiguously
exhibit exotic Cooper pairing which is probably categorized into the 2D IR of point group �6ℎ [4].
After several theoretical proposals examined by experiments for more than three decades, the
�2D representation has been regarded as the most reasonable symmetry of superconducting order
parameter [118, 119]. In particular, the multiple superconducting phases in the temperature–
magnetic-field plane are naturally reproduced by assuming a weak symmetry-breaking term of
hexagonal symmetry [118]. Furthermore, a phase-sensitive measurement [120] and the observation
of spontaneous TRS breaking [121, 122] in the low-temperature and low-magnetic-field B phase,
which was predicted in the �2D state, support the �2D symmetry of superconductivity.

The crystal structure of UPt3 is illustrated in Fig. 4.3. The symmetry of the crystal is represented
by nonsymmorphic space group %63/<<2,4 which is based on the primitive hexagonal Bravais
lattice. In this space group, the BZ takes the form of Fig. 4.4. This BZ has a threefold rotation axis
on the  -� line as well as a sixfold rotation axis on the Γ-� line.

3This case is beyond the scope of the Chapter.
4Symmetry breaking by a weak crystal distortion has been reported [124], although its reliability is under debate.

We here assume high symmetry space group %63/<<2.
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Figure 4.2: Multiple superconducting phases of UPt3 in the magnetic field-temperature plane [118,
119]. The shaded region shows the Weyl superconducting phase [13, 123]. In the system, �3
symmetry is preserved only on the dashed line.
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Figure 4.3: Crystal structure of UPt3. Uranium ions form AB stacked triangular lattice. 2D vectors,
e8 and r8, are shown by arrows. The black solid diamond shows the unit cell.
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Figure 4.4: The first BZ of primitive hexagonal lattice. The red lines show threefold and sixfold
rotation symmetric axes.

Quantum oscillation measurements combined with band-structure calculations [14, 119, 125–
128] have shown a pair of FSs centered at the � point (�-FSs), three FSs at the Γ point (Γ-FSs), and
two FSs at the  point ( -FSs) in UPt3. Although previous studies have clarified gap structures on
the �-FSs and Γ-FSs [5–7, 11–14, 123], those on the  -FSs have not been theoretically studied.
From the results of classification theory given in this section, however, it would be interesting
to examine the gap structure on the  -FSs, since they cross the  -� line. Indeed, we show the
intriguing 9I-dependent point nodes on the  -� line.

4.3.2 Gap classification on  -� line
Now we apply the gap classification in Tables 4.2 and 4.3 to the space group of UPt3. In the space
group %63/<<2, the BZ has a sixfold axis Γ-�, and threefold axes -� and ′-�′ (see Fig. 4.4). On
the Γ-� line, the little cogroup has �6E symmetry which results in three types of the normal Bloch
state �1/2, �3/2, and �5/2. In the superconducting state, we obtain two different representations of
the Cooper pair wave function (see Table 4.2):

%̄k =

{
�16 + �1D + �1D (_̄kU = �1/2, �5/2),
�16 + �1D + �1D + �2D (_̄kU = �3/2),

(4.3.1)

which have been decomposed into IRs of point group �6ℎ = �6E + ��6E. The same result has been
suggested by Yarzhemsky [5, 7]. From the discussion in this section, UPt3 is considered to possess
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the �2D superconducting order parameter. According to Eq. (4.3.1), the �2D representation is not
allowed for any representations �1/2, �3/2, and �5/2. Therefore, point nodes appear on the Γ-� line
irrespective of the property of the normal Bloch state. We can obtain the same conclusion with the
Sigrist-Ueda method.

On the other hand, the gap structure on the  -� ( ′-�′) line is 9I-dependent. The little cogroup
has�3E symmetry, which results in two representations _̄kU = �1/2 and �3/2. Corresponding to these
two Bloch states, the Cooper pair wave function has two different representations:

%̄k =

{
�16 + �1D + �D (_̄kU = �1/2),
�16 + 2�1D + �2D (_̄kU = �3/2),

(4.3.2)

which have been decomposed into IRs of point group �33 = �3E + ��3E. Then, %̄k can be induced
to the point group �6ℎ with the help of the Frobenius reciprocity theorem [45]. The induced
representations %̄k ↑ �6ℎ are summarized in the following equations:

%̄k ↑ �6ℎ =

{
�16 + �26 + �1D + �2D + �1D + �2D (_̄kU = �1/2),
�16 + �26 + 2�1D + �2D + �1D + 2�2D (_̄kU = �3/2).

(4.3.3)

From Eq. (4.3.3), the �2D superconducting gap opens for the �1/2 normal Bloch state, while point
nodes appear for �3/2. Thus, the gap structure indeed depends on the angular momentum of Bloch
states. In this case, the classification by the Sigrist-Ueda method breaks down since it has taken
into account only the pseudospin degree of freedom B = 1/2.

From the viewpoint of topology, furthermore, Tables 4.3(b1) and 4.3(b2) shows that the topo-
logical classifications for an 1,2�D order parameter indeed depend on the angular momentum:

0 ⊕ Z for U = ±1/2, (4.3.4a)
Z ⊕ Z for U = ±3/2. (4.3.4b)

However, in this case, the topological classification is slightly different from the gap classification
by symmetry. For one of the U = ±1/2 states, the gap opens while the gap closes for the other state.
Which one is gapped depends on the �3 eigenvalue of the order parameter. The inconsistency is
due to the fact that the spontaneous TRS breaking is taken into account in the topological argument
although it is not in the symmetry analysis. In this case the topological classification predicts a
correct gap structure.

In the following, we demonstrate the nontrivial 9I-dependent gap structure by analyzing a
microscopic model.
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4.3.3 Model and normal Bloch state
Here we introduce the microscopic model of UPt3, and we clarify the band structure on the  -�
line. First, we introduce the BdG Hamiltonian for a two-sublattice model [13, 123],

�BdG =
1
2

∑
k

I†(k)
(
�̂n(k) Δ̂ (k)
Δ̂ (k)† −�̂n(−k)T

)
I (k), (4.3.5)

with

I†(k) = (2†
0↑(k), 2

†
0↓(k), 2

†
1↑(k), 2

†
1↓(k), 20↑(−k), 20↓(−k), 21↑(−k), 21↓(−k)), (4.3.6)

where k, < = 0, 1, and B =↑, ↓ are the index of momentum, sublattice, and spin, respectively. The
BdG Hamiltonian matrix is described by the normal-state Hamiltonian,

�̂n(k) =
(
b (k)B0 + Ug(k) · s 0(k)B0

0(k)∗B0 b (k)B0 − Ug(k) · s

)
, (4.3.7)

and the order-parameter part Δ̂ (k) = [Δ (k)]<B,<′B′. Here B8 represents the Paulimatrix in spin space.
Taking into account the crystal structure of UPt3 illustrated in Fig. 4.3, we adopt an intra-sublattice
kinetic energy,

b (k) = 2C
∑
8=1,2,3

cos k ‖ · e8 + 2CI cos :I − `, (4.3.8)

and an inter-sublattice hopping term,

0(k) = 2C′ cos
:I

2

∑
8=1,2,3

48k ‖ ·r8 , (4.3.9)

with k ‖ = (:G , :H). The basis translation vectors in two dimensions are e1 = (1, 0), e2 = (−1
2 ,
√

3
2 ),

and e3 = (−1
2 ,−

√
3

2 ). The inter-layer neighboring vectors projected onto the G-H plane are given by
r1 = ( 12 ,

1
2
√

3
), r2 = (−1

2 ,
1

2
√

3
), and r3 = (0,− 1√

3
). These 2D vectors are illustrated in Fig. 4.3.

Although the crystal point group symmetry is centrosymmetric, �6ℎ, the local point group
symmetry at uranium ions is �3ℎ lacking inversion symmetry. Then, Kane-Mele ASOC [129] with
a 6 vector [130],

g(k) = Î
∑
8=1,2,3

sin k ‖ · e8, (4.3.10)

is allowed by symmetry. The coupling constant is staggered between the two sublattices, so as to
preserve the global �6ℎ point group symmetry [129, 131, 132].

In order to identify the Bloch state, we calculate the normal energy bands on the  -� line from
the normal part Hamiltonian [Eq. (4.3.7)]. Although the band originally has fourfold degeneracy
arising from the two sublattices and two spin degrees of freedom, this splits into twofold + twofold
degenerate bands due to the effect of the ASOC term. The band structures are schematically shown
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in Figs. 4.5(a) and 4.5(b). When the coupling constant of the ASOC term U is positive,5 |0, ↑〉
and |1, ↓〉 states cross the Fermi level on the  -� line, while |1, ↑〉 and |0, ↓〉 states cross on the
 ′-�′ line [Fig. 4.5(a)]. On the other hand, the spin state on the Fermi level changes as shown in
Fig. 4.5(b), when the U is negative. Note that the pure sublattice-based representations construct
the basis of energy bands, since the inter-sublattice hopping term Eq. (4.3.9) vanishes on the  -�
and  ′-�′ lines. This vanishing has been proved by the symmetry analysis [133, 134].

We have investigated the energy band structures of the normal state in the above discussion. In
order to identify superconducting gap structures, therefore, we should solve the following question:
Which representation does the band crossing the Fermi level belong to, �1/2 or �3/2? The difference
between these two representations is the total angular momentum 9I (= ±1/2 or ±3/2) of the Bloch
state. In the next subsection, we show that 9I contains an effective orbital angular momentum arising
from the permutation of sites, as well as the pure orbital angular momentum and the spin angular
momentum.

4.3.4 Effective orbital angular momentum

Here we investigate the total angular momentum 9I of the Bloch state, and we show that 9I includes
an effective orbital angular momentum _I arising from a Bloch phase of each site, in addition to
the pure orbital and spin angular momentum. Furthermore, we clarify that 9I of the Bloch states
crossing the Fermi level depends on the sign of the ASOC U.

First, recalling the quantum mechanics, 9I should contains the orbital angular momentum ;I and
the spin angular momentum BI. In our two-sublattice single-orbital model [Eq. (4.3.7)], the orbital
degree of freedom is neglected, and then, ;I = 0. Since electrons are spin-1/2 fermions, the spin
angular momentum is BI = ±1/2. Therefore, we might consider that 9I = ;I + BI = ±1/2 in this
model. However, this is not right, as we show below.

In order to correctly calculate 9I, we have to take into account the effective orbital angular
momentum _I due to the permutation of sites. The Bloch state has a phase factor (plane-wave part)
48k·r depending on the site [133, 134], which is illustrated in Fig. 4.6 for the  -point Bloch state
[k = (4c/3, 0, 0)]. By operating threefold rotation on the  -point Bloch state, the 0 sublattice
obtains the phase value 4+82c/3 (red arrows), while the 1 sublattice gets 4−82c/3 (blue arrows). These
phase factors, which correspond to 48_I\ (\ = 2c/3), indicate that the sublattices 0 and 1 possess
an effective orbital angular momentum _I = +1 and −1, respectively. The Bloch state at the  ′

point has a complex conjugate phase factor to that on the  -point, which results in _I = −1 (+1) for
the 0 (1) sublattice. For a more general argument, the effective orbital angular momentum can be
calculated by analyzing the space-group transformation of the Bloch state (see Appendix B.2).

Using the above discussion, we calculate the total angular momentum of the Bloch state by
9I = ;I + BI +_I. For example, in the |0, ↑〉 state on the  -� line [see Fig. 4.5(a)], ;I = 0, BI = +1/2,

5Here, we dub the ASOC coupling constant as U according to the convention. Although the symbol is the same as
that of the normal Bloch state, the difference is obvious from the context.
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(a)

(b)

K-H line K’-H’ line

K-H line K’-H’ line

Figure 4.5: Schematic band structures on the  -� and  ′-�′ lines for (a) the ASOC U > 0 and (b)
U < 0. The wave function of Bloch states crossing the Fermi level is shown in the red frame. The
wave function of the upper band is shown above the band.
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a : z = 0

b : z = 1/2

Figure 4.6: The phase factor 48k·r on sites for the  -point Bloch state. The sublattices 0 and 1
obtain different phase values by threefold rotation.

_I = +1, so that we obtain 9I = +3/2. The total angular momenta of all states are summarized in
Table 4.5. From Figs. 4.5(a) and 4.5(b), and Table 4.5, we identify the representations of the Bloch
states crossing the Fermi level as follows.

(a) U > 0: �3/2 representation, because

|0, ↑〉 = | 9I = +3
2〉 , |1, ↓〉 = | 9I = −3

2〉 ,

on the  -� line, and
|1, ↑〉 = | 9I = +3

2〉 , |0, ↓〉 = | 9I = −3
2〉 ,

on the  ′-�′ line.

(b) U < 0: �1/2 representation, because

|0, ↓〉 = | 9I = +1
2〉 , |1, ↑〉 = | 9I = −1

2〉 ,

on the  -� line, and
|1, ↓〉 = | 9I = +1

2〉 , |0, ↑〉 = | 9I = −1
2〉 ,

on the  ′-�′ line.

Assuming the �2D superconducting order parameter, therefore, the gap classification theory indicates
that point nodes emerge on the  -� ( ′-�′) line when U > 0, while the gap opens otherwise [see
Eq. (4.3.3)]. In the next subsection, we demonstrate such unusual gap structures by a numerical
analysis of the microscopic model.
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Table 4.5: The total angular momentum of the Bloch state.

 -� line  ′-�′ line
;I BI _I 9I ;I BI _I 9I

|0, ↑〉 0 +1/2 +1 +3/2 0 +1/2 −1 −1/2
|0, ↓〉 0 −1/2 +1 +1/2 0 −1/2 −1 −3/2
|1, ↑〉 0 +1/2 −1 −1/2 0 +1/2 +1 +3/2
|1, ↓〉 0 −1/2 −1 −3/2 0 −1/2 +1 +1/2

4.3.5 Gap structures depending on Bloch-state angular momentum
Now we demonstrate unconventional 9I-dependent gap structures using the numerical calculation
of the microscopic model. To investigate the superconducting gap structures, we consider the
two-component order parameters in the �2D IR of point group �6ℎ:

Δ̂ (k) = [1Γ̂
�2D
1 + [2Γ̂

�2D
2 . (4.3.11)

The two-component order parameters are parameterized as

([1, [2) = Δ (1, 8[)/
√

1 + [2, (4.3.12)

with a real variable [. The basis functions Γ̂�2D
1 and Γ̂�2D

2 are admixtures of some harmonics.
Adopting the neighboring Cooper pairs in the crystal lattice of uranium ions, we obtain the basis
functions

Γ̂
�2D
1 =

[
X1{?(intra)G (k)BG − ?(intra)H (k)BH}f0

+ X2{?(inter)G (k)BG − ?(inter)H (k)BH}
f+
2
+ X2{?(inter)G (k)∗BG − ?(inter)H (k)∗BH}

f−
2

+ 5(G2−H2)I (k)BIfG − 3HI (k)BIfH
]
8BH, (4.3.13)

Γ̂
�2D
2 =

[
X1{?(intra)H (k)BG + ?(intra)G (k)BH}f0

+ X2{?(inter)H (k)BG + ?(inter)G (k)BH}
f+
2
+ X2{?(inter)H (k)∗BG + ?(inter)G (k)∗BH}

f−
2

+ 5GHI (k)BIfG − 3GI (k)BIfH
]
8BH, (4.3.14)

which are composed of the intra-sublattice ?-wave, inter-sublattice ?-wave, and inter-sublattice
3 + 5 -wave components given by

?
(intra)
G (k) =

∑
8

4G8 sin k ‖ · e8, (4.3.15)

?
(intra)
H (k) =

∑
8

4
H

8
sin k ‖ · e8, (4.3.16)
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?
(inter)
G (k) = −8

√
3 cos

:I

2

∑
8

AG8 4
8k ‖ ·r8 , (4.3.17)

?
(inter)
H (k) = −8

√
3 cos

:I

2

∑
8

A
H

8
48k ‖ ·r8 , (4.3.18)

3GI (k) = −
√

3 sin
:I

2
Im

∑
8

AG8 4
8k ‖ ·r8 , (4.3.19)

3HI (k) = −
√

3 sin
:I

2
Im

∑
8

A
H

8
48k ‖ ·r8 , (4.3.20)

5GHI (k) = −
√

3 sin
:I

2
Re

∑
8

AG8 4
8k ‖ ·r8 , (4.3.21)

5(G2−H2)I (k) = −
√

3 sin
:I

2
Re

∑
8

A
H

8
48k ‖ ·r8 . (4.3.22)

Pauli matrices in the spin and sublattice space are denoted by B8 and f8, respectively. f+ and f− are
defined by f± = fG ± 8fH.

A similar model was introduced to investigate the topological superconductivity in UPt3 [13,
123], and it has recently been studied to show the polar Kerr effect [135] and the odd-frequency
Cooper pairs [136]. In these previous studies, the inter-sublattice ?-wave component was neglected.
Here we take into account the inter-sublattice ?-wave component and show that it actually plays
an essential role for the 9I-dependent point node, because the other components vanish on the
 -� line. We assume that the 3 + 5 -wave component is dominant among all the order parameters
since the purely 5 -wave state reproduces the multiple superconducting phase diagram illustrated in
Fig. 4.2 [114–116, 118, 119]. On the other hand, an admixture of ?-wave components allowed by
symmetry changes the gap structure. Thus, we take into account small intra- and inter-sublattice
?-wave components with 0 < |X1 | � 1 and 0 < |X2 | � 1, respectively.

Now we briefly review the multiple superconducting phases illustrated in Fig. 4.2 [114–116,
118, 119]. The A, B, and C phases are characterized by the ratio of two-component order parameters
[ = [2/8[1 summarized in Table 4.6. A pure imaginary ratio of [1 and [2 in the B phase implies the
chiral superconducting state, which maximally gains the condensation energy. A recent theoretical
study based on our two-sublattice model [135] has shown the polar Kerr effect consistent with the
experiment [122]. Owing to the ?-wave components, the B phase is a nonunitary state. It has
been considered that the A and C phases are stabilized by weak symmetry breaking of hexagonal
structure, possibly induced by weak antiferromagnetic order [118, 119, 137, 138]. We assume here
that the A phase is the Γ2 state ([ = ∞), while the C phase is the Γ1 state ([ = 0), and we assume
non-negative [ ≥ 0 without loss of generality.

Analyzing the BdG Hamiltonian Eq. (4.3.5) including the two-component order parameters
Eqs. (4.3.11)-(4.3.14), we investigate the superconducting gap structures on the  -� line. Fig-
ures 4.7(a) and 4.7(b) represent the calculated quasiparticle energy dispersion in the A phase, which
show that point nodes emerge in the positive U case, while the gap opens in the negative U case.
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Table 4.6: Range of the parameter [ in the A, B, and C phases of UPt3.

A phase |[ | = ∞
B phase 0 < |[ | < ∞
C phase |[ | = 0

-4
-3
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-1
 0
 1
 2
 3
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-3 -2 -1  0  1  2  3

(a) α > 0

E
 /
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k
z

-3 -2 -1  0  1  2  3

(b) α < 0

k
z

Figure 4.7: The quasiparticle energy dispersion on the  -� line for (a) the ASOC U = 0.2 > 0 and
(b) U = −0.2 < 0. We assume the superconducting phase preserving TRS, namely A phase ([ = ∞)
or C phase ([ = 0). The other parameters (C, CI, C′, `,Δ , X1, X2) = (1,−1, 0.4,−5.2, 0.5, 0.04, 0.2)
are assumed so that the  -FSs of UPt3 are reproduced.

Qualitatively the same results are obtained in the C phase. All the results are consistent with the
gap classification in Eq. (4.3.3). Thus, it is confirmed that the gap structures depending on the
Bloch-state angular momentum 9I are realized on the  -FSs of UPt3.

Here we discuss the effects of SSB in the superconducting phase. As mentioned at the end of
Sec. 4.3.2, group-theoretical gap classification does not take into account SSB of the ordered state.
Therefore, the results of gap classification [Eq. (4.3.3)] cannot be applied to the SSB phase in a
straightforward way. On the other hand, the spontaneous TRS breaking is taken into account in the
topological gap classification [Eq. (4.3.4)], where �3 rotation symmetry remains.

We also demonstrate such a TRS breaking case by using the effective model. The TRS breaking
and �3 preserving order parameter (1�D or 2�D) is realized for |[ | = 1 (see the dashed line in
Fig. 4.2), where a topological phase transition occurs [123]. Therefore we diagonalize the BdG
Hamiltonian for [ = 1, which results in the quasiparticle energy dispersion in Fig. 4.8. When the
ASOC U is positive, both bands create nodes at the zero energy [Fig. 4.8(a)]. For a negative U, on the
other hand, one band holds nodes but the other one is fully gapped [Fig. 4.8(b)], which indicates a
perfectly spin-polarized nonunitary state. For both IRs, the nodes on the  -� line are topologically
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Figure 4.8: The quasiparticle energy dispersion on the  -� line for (a) the ASOC U = 0.2 > 0 and
(b) U = −0.2 < 0. We assume the �3 preserving and TRS breaking B phase ([ = 1).

characterized by the number of occupied states of the block-diagonalized Hamiltonian, which is
obtained by using the threefold rotation matrix *̂BdG(�3).

In this subsection, we have revealed the 9I-dependent point nodes or gap opening corresponding
to the sign of the ASOC term in the effective model Eq. (4.3.5). The remaining question is which
representation is realized in UPt3. According to our first-principles band-structure calculation, the
Bloch state on the  -� line belongs to the �1/2 representation [139]. Combining this first-principles
calculation and the gap classification theory, we conclude that the superconducting gap opens on
the  -� line in UPt3 except for the topologically-protected point nodes emerging in the B phase.

4.3.5.1 Application to Weyl superconductivity in B phase

We also calculate the nodal structure in the B phase for a general parameter 0 < [ < ∞. In the
TRS breaking phase, there generally exists Weyl nodes characterized by a topological Weyl charge,
which is defined by a monopole of Berry flux,

@8 =
1

2c

∮
(

3k · L(k). (4.3.23)

Here, the Berry flux
�8 (k) = −8n 8 9 :

∑
�= (k)<0

m: 9 〈D= (k) |m::D= (k)〉 , (4.3.24)

is integrated on a closed surface ( surrounding an isolated point node. We identify Weyl nodes by
calculating :I-dependent Chern number,

a(:I) =
1

2c

∫
3:G3:H �I (k), (4.3.25)
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on a 2D :G-:H plane [140–142]. An =-th wave function and energy of Bogoliubov quasiparticles
are denoted by |D= (k)〉 and �= (k), respectively. By definition, when the Chern number jumps at
:I, its value is equal to the sum of Weyl charges at :I:

a(:I + 0) − a(:I − 0) =
∑
8

@8 . (4.3.26)

Therefore we can identify Weyl charges by counting point nodes and comparing it with a jump in
a(:I). Indeed, the previous study has reported the presence of many Weyl nodes on the Γ- and
�-FSs [13].

By using the abovemethod, we obtain the superconducting gap structures on the -FS illustrated
in Fig. 4.9. Weyl nodes (blue and red circles in Fig. 4.9) appear in the B phase, in addition
to the symmetry-protected point nodes for the 9I = ±3/2 normal Bloch state [orange circles in
Fig. 4.9(a)]. The former Weyl nodes are identified by jumps of the Chern number shown in
Fig. 4.10. Figure 4.10(b1) shows that the Chern number jumps by ±4, and we find two point nodes
on the  -FS at a certain :I [Fig. 4.9(b), [ = 0.95]. �6 symmetry ensures that there also exists two
point nodes on the  ′-FS at the same :I. Therefore the point nodes are identified as single Weyl
nodes with a unit charge @8 = ±1. Through the above discussion, we determine the charge of Weyl
nodes as depicted in Fig. 4.9.

It is shown that the position of Weyl nodes changes as a function of [, which indicates that the
nodal structure significantly depends on the temperature and magnetic field in UPt3. For 9I = ±3/2
bands, the A and C phases host symmetry-protected point nodes on the north and south pole of the
FS [Fig. 4.9(a), [ < 0.2 and [ > 5]. With an influence from the gap zeros, Weyl nodes appear in
the comparatively wide range of the B phase: 0.8 . [ . 3. On the other hand, there is no node in
the A and C phases for 9I = ±1/2 bands [Fig. 4.9(b), [ < 0.9 and [ > 1.5]. Therefore the B phase
hosts Weyl nodes only in the narrow region around the [ = 1 line in Fig. 4.2: 0.95 . [ . 1.1. As a
result, reflecting the angular momentum dependence of the gap classification on the �3E-symmetric
 -� line, the structures of Weyl nodes are obviously different between 9I = ±3/2 [Fig. 4.9(a)]
and 9I = ±1/2 [Fig. 4.9(b)]. The nodal structure of Weyl superconductors may be clarified by the
thermal Hall conductivity [143].

4.4 Surface nodes: SrPtAs (Space group: %63/<<2)

4.4.1 Background
SrPtAs is a pnictide superconductor with a hexagonal lattice characterized by the nonsymmorphic
space group %63/<<2 (�4

6ℎ). First-principles studies using local density approximation show 2D
FSs enclosing the Γ-� line, a 2DFS enclosing the -� line, and a 3DFS crossing the -� line [144–
146]. The pairing symmetry of SrPtAs is still under debate because of the incompatibility of some
experiments: for example, TRS breaking and a nodeless pairing gap suggested in a muon spin-
rotation/relaxation measurement [147] are incompatible with a spin-singlet B-wave superconducting

69



K

η < 0.2, η > 5 η = 0.8

η = 1.5

kz

η = 3

η = 1q = −2

q = +2

q = −1

q = +1

η < 0.9, η > 1.5 η = 0.95

η = 1.05 η = 1.1

η = 1

kz

ky

(a)

(b)

ky

Figure 4.9: Illustration of pair creation and annihilation ofWeyl nodes on the -FS for (a) 9I = ±3/2
bands and (b) 9I = ±1/2 bands. Blue and red circles show single Weyl nodes with @8 = 1 and −1,
respectively. Large circles are double Weyl nodes with @8 = ±2. Orange circles are trivial point
nodes protected by �3 symmetry. Closed (open) circles represent nodes on the front (back) side of
the FS.
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Figure 4.10: Chern number of the 2DBdGHamiltonian parameterized by :I for (a) 9I = ±3/2 bands
and (b) 9I = ±1/2 bands on the  -FS reproduced by the parameter set (C, CI, C′, U, `,Δ , X1, X2) =
(1,−1, 0.4,±0.2,−5.2, 0.1, 0.04, 0.2).
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state with an isotropic gap indicated by recent 195Pt-nuclear magnetic resonance (NMR) and 75As-
nuclear quadrupole (NQR) resonance measurements [148].

From the theoretical point of view, on the other hand, the �26 state with a chiral 3-wave
pairing [149–151] and the �1D state with an 5 -wave pairing [152, 153] have been proposed besides
the fully-gapped �16 order parameter suggested by the NMR measurement [148]. In the following
discussion, we mainly assume the chiral �26 state [149–151], which is consistent with broken
TRS [147] and the decrease of spin susceptibility below )c [148], but is incompatible with the
nodeless gap structure [147, 148]. Especially, we focus on the gap structure on the �3E-symmetric
 -� line, since the presence of Weyl nodes [150] or Bogoliubov FSs [31, 57, 112] have been
suggested on the line.

4.4.2 Classification on  -� line

Now we consider the gap structure on the  -� line with the �3E symmetry, which has been already
classified in Eq. (4.3.3). Since �26 representation is not allowed for both _̄kU = �1/2 and �3/2 in
Eq. (4.3.3), the chiral 3-wave state hosts nodes on the  -� line, which is incompatible with the
nodeless gap structure. The �1D state is consistent with the nodeless gap structure, if the Bloch state
on the  -� line belongs to �3/2, although this 1D representation is incompatible with broken TRS.
The �1D and �2D superconducting states for the �1/2 Bloch state are consistent with both nodeless
gap and broken TRS. However, these odd-parity superconducting states are incompatible with NMR
Knight shift measurement, which indicates the decrease of spin susceptibility below )c [148].

Here, as an example, we discuss the topological classification of the �26 pairing state. The
compatibility relation reveals that �26 of �6ℎ corresponds to �6 of �33 . According to Table 4.2, �6
gap closes on the line irrespective of the angular momentum of normal Bloch states, as mentioned
in the previous paragraph. However, Tables 4.3(b1) and 4.3(b2) shows the distinct topological
classifications of such nodes depending on the angular momentum: Z2 ⊕ Z for U = ±1/2 and Z ⊕ Z
for U = ±3/2.

Next, we concretely identify the topological number. In the discussions below, we fix the
superconducting order parameter to the 2�6 IR, which obtains the phase factor +2c/3 under a �3
rotation:

�3Δ̂+(k)�)3 = 4
+82c/3Δ̂+(k), (4.4.1)

for k on the �3-symmetric line. Some theoretical studies [149–151] have suggested such a TRS
breaking chiral order parameter. Although only the PHS ℭ is preserved in this TRS (CS) breaking
superconducting state, the TRS T and the CS Γ recover by considering Δ0 → 0 limit. Thus, in this
limit, we can define the BdG Hamiltonian on the �3-symmetric line as Eq. (2.4.18) and

I†(k) = (2†+1/2(k), T2
†
+1/2(k)T

−1, ℭ2†+1/2(k)ℭ
−1, Γ2†+1/2(k)Γ

−1) for U = ±1/2, (4.4.2)

I†(k) = (2†+3/2(k), T2
†
+3/2(k)T

−1, ℭ2†+3/2(k)ℭ
−1, Γ2†+3/2(k)Γ

−1) for U = ±3/2. (4.4.3)
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(a)

(b)

Figure 4.11: Band-theoretical picture of the 2�6 symmetric BdG Hamiltonian on a �3 line for (a)
U = ±1/2 and (b) U = ±3/2 normal Bloch states. 2†+ in (a) and (b) is the abbreviated notation of
2
†
+1/2(k) and 2

†
+3/2(k), respectively. In the right panels, the red points represent nodes on the line.

Although the particle bands and the hole bands for Δ0 = 0 are doubly degenerated, they split for a
finite Δ0 due to the TRS breaking in the superconducting state.

The BdG Hamiltonian matrix is written by the following effective single-band model:

�̂BdG(k) =
(
b (k)f0 − ℎ(k)Δ2

0fI Δ0k(k)8fH
(Δ0k(k)8fH)† −(b (k)f0 − ℎ(k)Δ2

0fI)

)
, (4.4.4)

where ℎ(k)Δ2
0 is the “pseudomagnetic” field representing the TRS breaking in the superconducting

ordered state. The low-energy effective theory elucidates that such a field arises from the second-
order perturbation of the inter-band pairing [36, 112], which cannot be generally neglected in real
multiband systems. Note that the pseudomagnetic field does not break �3 symmetry since it is
parallel to the �3-symmetric axis.

Then, we discuss the topological numbers for U = ±1/2 bands. Reflecting the �3 symmetry, the
BdG Hamiltonian matrix commutes with the threefold rotation matrix *̂BdG(�3):

[�̂BdG(k), *̂BdG(�3)] = 0, (4.4.5)
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which indicates that �̂BdG(k) and *̂BdG(�3) are simultaneously block-diagonalized. There exists a
unitary matrix +̂ such that

�̂BdG(k) = +̂
©«
�̂4+8 c/3 (k) 0 0

0 �̂4−8 c/3 (k) 0
0 0 �̂−1(k)

ª®®¬ +̂†, (4.4.6)

*̂BdG(�3) = +̂
©«
4+8c/312 0 0

0 4−8c/3 0
0 0 −1

ª®®¬ +̂†. (4.4.7)

The block-diagonalized Hamiltonians �4+8 c/3 (k), �4−8 c/3 (k), and �−1(k) are written as follows:

�4+8 c/3 (k) =
1
2
(2†+1/2(k), ℭ2

†
+1/2(k)ℭ

−1)

×
(
b (k) − ℎ(k)Δ2

0 0
0 −(b (k) − ℎ(k)Δ2

0)

) (
2+1/2(k)

ℭ2+1/2(k)ℭ−1

)
, (4.4.8)

�4−8 c/3 (k) =
1
2
T2
†
+1/2(k)T

−1(b (k) + ℎ(k)Δ2
0)T2+1/2(k)T

−1, (4.4.9)

�−1(k) =
1
2
Γ2
†
+1/2(k)Γ

−1(−b (k) − ℎ(k)Δ2
0)Γ2+1/2(k)Γ

−1. (4.4.10)

The band structures obtained by the Hamiltonian (4.4.6) are schematically shown in Fig. 4.11(a).
For the Δ0 → 0 limit, we can identify the eigenvalue of �3 for each band by using the property of
T, ℭ, and Γ. Even when Δ0 is finite, i.e., the TRS T and the CS Γ are broken, the eigenvalues
are not changed since the commutation relation Eq. (4.4.5) remains preserved. Then, the bands
split due to the pseudomagnetic field ℎ(k)Δ2

0, and they create nodes at the zero energy because the
spin-singlet 2�6 gap function cannot have offdiagonal components in the same eigenspace. The
nodes corresponding to the U = −1/2 particle band [the pink one in Fig. 4.11(a)] are obviously
characterized by the Z number,

a− ≡ #(occupied states of �̂4−8 c/3 (k)) ∈ Z. (4.4.11)

On the other hand, the nodes corresponding to the U = +1/2 particle band [the blue one in
Fig. 4.11(a)] cannot be characterized by the filling, since there simultaneously exists the hole band
belonging to the same eigenspace of �3. Instead, the PHS ℭ with ℭ2 = +� in the eigenspace
ensures that these nodes are protected by the Z2 index [31, 54],

(−1);+ ≡ sgn[8= Pf{*̂ℭ,4+8 c/3 �̂4+8 c/3 (k)}] ∈ Z2, (4.4.12)

with = = dim(�̂4+8 c/3)/2.
The topological numbers for U = ±3/2 bands are obtained in the following. In this case, the

BdG Hamiltonian matrix and the threefold rotation matrix are simultaneously block-diagonalized
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as

�̂BdG(k) = +̂
(
�̂−1(k) 0

0 �̂4−8 c/3 (k)

)
+̂†, (4.4.13)

*̂BdG(�3) = +̂
(
−12 0

0 4−8c/312

)
+̂†, (4.4.14)

where

�−1(k) =
1
2
(2†+3/2(k), T2

†
+3/2(k)T

−1)

×
(
b (k) − ℎ(k)Δ2

0 0
0 b (k) + ℎ(k)Δ2

0

) (
2+3/2(k)

T2+3/2(k)T−1

)
, (4.4.15)

�4−8 c/3 (k) =
1
2
(ℭ2†+3/2(k)ℭ

−1, Γ2†+3/2(k)Γ
−1)

×
(
−(b (k) − ℎ(k)Δ2

0) 0
0 −(b (k) + ℎ(k)Δ2

0)

) (
ℭ2+3/2(k)ℭ−1

Γ2+3/2(k)Γ−1

)
. (4.4.16)

Figure 4.11(b) shows the band structures obtained by the BdG Hamiltonian matrix (4.4.13). For
both of the U = ±3/2 particle bands [the green ones in Fig. 4.11(b)], the nodes on the�3-symmetric
line are characterized by the Z number,

a± ≡ #(occupied states of �̂−1(k)) ∈ Z. (4.4.17)

Irrespective of the IR of the normal band U, the TRS breaking even-parity 2�6 order parameter
induces the band splitting and nodes on the �3-symmetric axis. These facts indicate that the nodes
are parts of inflated Bogoliubov FSs, which are characterized by the Pfaffian of the antisymmetrized
BdG Hamiltonian, %(k) ∈ Z2, defined for all k [31]. Indeed, the previous studies have suggested
the existence of Bogoliubov FSs in SrPtAs [31, 57, 112]. In addition, our theory finds that the
topological protection of the nodes on the high-symmetric line is differently defined in response to
the IR U. Although the above intuitive discussions are based on the single-band model in the weak
coupling limit, the topological protection ensures the stability of nodes against multiband effects.

4.5 Line nodes: CeCoIn5 (Space group: %4/<<<)

4.5.1 Background

A Ce-based heavy-fermion compound CeCoIn5 is a tetragonal lattice which is characterized by
the space group %4/<<< (�1

4ℎ). According to angle-resolved photoemission spectroscopy stud-
ies [154, 155], de Haas van Alphen (dHvA) measurements [156–159], and first-principles calcula-
tions [160, 161], the compound possesses 3D FSs crossing the high-symmetry Γ-/ line. CeCoIn5
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shows superconductivity at ambient pressure below 2.3 K [162]. Regarding the pairing symmetry
in this compound, the presence of line nodes on the FS is indicated by specific heat and thermal
conductivity measurement [163], and NQR relaxation rate 1/)1 [164]. Furthermore, scanning
tunneling spectroscopy [165–167], field-angle-resolved measurements of thermal conductivity [39]
and heat capacity [168], and torque magnetometry [169] strongly suggest that the superconducting
order parameter possesses 3G2−H2-wave (�16) symmetry.

4.5.2 Classification on Γ-/ line
We classify the gap structure on the Γ-/ line with the �4E symmetry. According to the group-
theoretical classification, the gap structure on the line is nodal for the 3G2−H2-wave order parameter
belonging to the �16 IR of �4ℎ, irrespective of the angular momentum of the normal Bloch state
(Table 4.2). The nodes on the axis are a part of a line node because of the following reason. In
the BZ of �4ℎ, the Γ-/-�-" plane is invariant under the diagonal mirrorM[110] . Therefore the
combination of the compatibility relation

(�16 of �4ℎ) ↓ � [110]
2ℎ = �6, (4.5.1)

and the gap classification on the plane (Table 3.1)

%̄k = �6 + 2�D + �D, (4.5.2)

shows that a line node emerge on the [110] plane.6 The line node is protected by the 1D winding
number,; ∈ Z defined on a loop ; encircling the nodal line [Eq. (3.2.10)], using the CS Γ [19, 55].
Thus the node is stable even when the mirror symmetryM[110] is broken as long as the CS exists.
More generally, when the superconducting order parameter is even-parity and preserves TRS, nodes
on a high-symmetry axis may be a part of (trivial) line nodes [see (L) in Table 4.3].

Table 4.3(g) shows that the topological classification for the �16 order parameter is Z. The
orthogonality test for the CS Γ is ,Γ

U = 0, which indicates that Γ changes the bases of the IR
U = 1/2 (3/2) to those of U′ = 3/2 (1/2). Therefore the Z index is defined by the number of
occupied states of the block-diagonalized Hamiltonian belonging to the IR U.

4.6 Point nodes: UCoGe (Space group: %=<0)

4.6.1 Background
UCoGe is a orthorhombic superconductor whose crystal structure belongs to the nonsymmorphic
space group %=<0 (�16

2ℎ) [170]. In this material, superconductivity at ambient pressure coexists
with ferromagnetism [171, 172], and therefore, odd-parity superconductivity is strongly suggested.

6The same result is obtained for the [1−10] plane.
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The high-pressure superconducting phase [171–177] ((2 phase in Ref. [174]), where TRS recov-
ers by the vanishing ferromagnetic moments [173–175, 178], is also expected to be odd-parity
superconductivity, since it is continuously connected to the FM superconducting phase [173–177].

Although the symmetry of superconductivity in UCoGe is still under debate, recent studies
have suggested the possibility of topological crystalline superconductivity, which is characterized
by Z4 and/or Z2 indices, for all odd-parity IRs (�D, �1D, �2D, and �3D) of the superconducting order
parameter [110, 179]. Especially, when the order parameter belongs to the �1D IR of �2ℎ, point
nodes emerge on the Γ-/ line [110]. In the following discussion, therefore, we focus on the �1D
order parameter as a candidate of the odd-parity superconducting order.

4.6.2 Classification on Γ-/ line
Considering the paramagnetic high-pressure superconducting phase, we classify the gap structure on
the Γ-/ line which has �2E symmetry. Since the group-theoretical classification of �2E-symmetric
line is %̄k = �6+�D+�2D+�3D (Table 4.2), point nodes appear on the line in the �1D superconducting
state. Note that the gap classification results on the other eleven �2E-symmetric lines in the BZ are
changed due to the nonsymmorphic symmetry of %=<0 [110]. According to Table 4.3(e), the point
nodes are characterized by the Z2 topological number.

Now we identify the Z2 topological number. First, the IR of the little cogroup �2E is written by

W̄k1/2(�) = f0, (4.6.1a)

W̄k1/2(C2I) = −8fI, (4.6.1b)

W̄k1/2(MH) = −8fH, (4.6.1c)

W̄k1/2(MG) = −8fG , (4.6.1d)

where the bases [2†±8 (k)] are the eigenstates of C2I with the eigenvalues ±8. Thus the minimal BdG
Hamiltonian is expressed by the four bases, 2†±8 (k) and ℭ2

†
±8 (k)ℭ−1. Here, we remark that the PHS

ℭ changes the eigenvalue of C2I since ℭ is an antiunitary operator with [ℭ, C2I] = 0 in the �1D
superconducting state. Furthermore, Eq. (4.6.1) shows that the mirror operatorMH also changes
the eigenvalue of C2I. Therefore a new PHS operator ℭ̃ ≡ ℭMH preserves the eigenvalue of C2I,
and it has the following relation,

ℭ̃2 = ℭ2M2
H = +�, (4.6.2)

where we use [ℭ,MH] = 0 for the �1D order parameter. As a result the BdG Hamiltonian matrix
�̂BdG(k) are decomposed by C2I eigen-sectors �̂±(k), each of which has the PHS-like operator ℭ̃.
Due to the symmetry, the Z2 number can be defined in each sector [31, 54]:

(−1);± ≡ sgn[8= Pf{*̂
ℭ̃,±�̂±(k)}] ∈ Z2, (4.6.3)

with = = dim(�̂±)/2.
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Figure 4.12: The quasiparticle energy dispersion (blue lines) and the Z2 topological number (red
line) on the Γ-/ line for the +8 sector of the block-diagonalized BdG Hamiltonian. The result for
the −8 sector is the same as the +8 case. We adopt the effective model in Refs. [110, 179]. The
parameters (C1, C2, C3, C01, C′01, `, C

′
1, U) = (1, 0.2, 0.1, 0.5, 0.1,−0.5, 0.1, 0.3) are assumed so that the

Γ-FSs of UCoGe are reproduced.
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We demonstrate the topological crystalline point nodes by using the effective four-sublattice
single-orbital model introduced in Refs. [110, 179]. Figure 4.12 shows the eigenvalues of the BdG
Hamiltonian and the Z2 index for the +8 eigen-sector on the Γ-/ line. Obviously, we find that the
Z2 topological number (−1);+ changes at the point nodes.

4.7 MoS2 (Space group: %63/<<2)

4.7.1 Background

MoS2 is a member of the group-VI transition-metal dichalcogenides MX2 (" = Mo,W; - =

S, Se,Te). Superconductivity of MoS2 has been observed in the ion-gated atomically thin 2D
system [130, 180–183], and in the bulk intercalated system [184, 185]. In these electron-doped
systems, Mo-3I2 orbitals contribute to the spin-split lowest conduction bands, which form FSs
around the  point [186]. However, the FSs do not cross the  -� line, because the lowest
conduction bands are almost dispersionless along this line due to the absence of the nearest inter-
layer hopping [133]. On the other hand, 3G2−H2 ± 83GH orbitals of Mo ions contribute to the
spin-split top valence bands [186], which have sizable dispersion on the  -� line in the 2H stacking
structure [133]. Thus, these top valence bands may form FSs crossing the  -� line in a hole-doped
MoS2.

4.7.2 Classification on  -� line

In the material characterized by the hexagonal space group %63/<<2, the superconducting gap on
the  -� line is classified by Eq. (4.3.3). The result of the gap classification in each material is
discussed below.

Although the symmetry of superconductivity in MoS2 has not been determined, a recent theo-
retical study [187] suggests the conventional BCS state (�16) in the paramagnetic regime, and the
pair-density-wave (PDW) state (�2D) under the external magnetic field. Since Eq. (4.3.3) contains
�16 and �2D representations for both _̄kU = �1/2 and �3/2, the superconducting gap opens on the
 -� line irrespective of the Bloch-state angular momentum. The �16 symmetry is supported by
recent first-principle calculations, which take into account electron-phonon interactions [188–190].
On the other hand, topological superconductivity in electron-doped [191] and hole-doped [192]
monolayer MoS2 has been theoretically proposed, where the pairing symmetry is classified into �1
or � representation of the point group �3E. Assuming that the pairing symmetry in bulk MoS2 is
the same as that in monolayer MoS2, these representations are induced to �6ℎ as

�1 ↑ �6ℎ = �16 + �26 + �2D + �1D, (4.7.1)
� ↑ �6ℎ = �16 + �26 + �1D + �2D . (4.7.2)

79



Table 4.7: Gap structure on the  -� line in bulk MoS2 where the pairing symmetry belongs to �1
or � representation of �3E. “PS” in the first and second columns represents pairing symmetry.

PS in �3E PS in �6ℎ Bloch state Gap structure
�1 �16 �1/2, �3/2 Gap

�26 �1/2, �3/2 Gap
�2D �1/2 Point node

�3/2 Gap
�1D �1/2 Point node

�3/2 Gap
� �16 �1/2, �3/2 Point node

�26 �1/2, �3/2 Point node
�1D �1/2 Gap

�3/2 Point node
�2D �1/2 Gap

�3/2 Point node

Therefore, the presence or absence of point nodes on the  -� line depends on the choice of the basis
function of the �1 or � representation, which is summarized in Table 4.7. The superconducting gap
structure depends on the effective angular momentum 9I when the pairing symmetry is �2D, �1D,
�1D, or �2D.

4.8 UBe13 (Space group: �<3̄2)

4.8.1 Background

Although superconductivity in UBe13 was discovered in 1983 [193], the nature and the symmetry
of superconductivity are still under debate. A point-nodal ?-wave [194] and line-nodal [195] su-
perconductivity have been proposed, while recent angle-resolved heat-capacity measurements have
suggested a fully opened superconducting gap [196]. Furthermore, another mystery about UBe13
is the emergence of a second phase transition in the superconducting state when a small amount of
U atoms are replaced by Th [197, 198]; `SR [199] and thermal-expansion [200] experiments have
reported the existence of four superconducting phases.
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Figure 4.13: The first BZ of (a) face-centered cubic lattice and (b) body-centered cubic lattice. The
red lines show threefold rotation symmetric axes.

4.8.2 Classification on Γ-! line
The space group of UBe13 is face-centered cubic �<3̄2, where the BZ has a threefold rotation axis
Γ-! [see Fig. 4.13(a)]. Although first-principle calculations show only a tiny FS crossing the Γ-!
line [201, 202], such a FS structure has not been confirmed by experiments. Thus, we carry out the
gap classification on the Γ-! line, assuming the existence of FSs in the [111] direction. The little
group on the Γ-! line has �3E symmetry, which results in the two distinct representations of the
Cooper pair wave function given by Eq. (4.3.2), corresponding to two representations _̄k = �1/2
and �3/2. Inducing %̄k to the original crystal point group $ℎ, we obtain the induced representation
%̄k ↑ $ℎ summarized in the following equations:

%̄k ↑ $ℎ =

{
�16 + )26 + �1D + �D + )1D + 2)2D (_̄k = �1/2),
�16 + )26 + 2�1D + �2D + )1D + 2)2D (_̄k = �3/2).

(4.8.1)

For UBe13, the �D state [203, 204] and the accidental �1D + �2D mixed state [203] have been
proposed, consistent with the double transition inU1−GThGBe13. In the former �D state, 9I-dependent
point nodes emerge: the superconducting gap opens for _̄k = �1/2, while point nodes appear for
_̄k = �3/2 [see Eq. (4.8.1)]. Previous studies based on the �D scenario simply assumed the
�1/2 Bloch state and obtained the full gap superconducting state in the TRS preserving A and C
phases [203]. Their results are not valid when the FS crossing the Γ-! line is formed by the �3/2
Bloch state. In the accidentally mixed state, on the other hand, the �1D component makes the gap
open irrespective of the angular momentum of the Bloch state. The �2D component gives rise
to the gap only for the �3/2 Bloch state. In both �D and �1D + �2D scenarios, it is necessary to
identify the angular momentum of Bloch states in order to relate the symmetry and gap structure
of superconductivity. The experimental data should be carefully interpreted by taking into account
this fact.
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4.9 PrOs4Sb12 (Space group: �<3̄)

4.9.1 Background
PrOs4Sb12 is a heavy-fermion superconductor with the filled skutterudite structure RT4X12 (' =
rare earth or U; ) = Fe,Ru,Os; - = P,As, Sb). Many studies have reported the manifestation of
unconventional superconductivity in PrOs4Sb12 [205, 206]. For example, multiple superconducting
phases have been suggested by specific-heat [207, 208] and thermal transport [209] measurements.
However, the superconducting pairing symmetry in PrOs4Sb12 remains unclear even now: a point-
nodal superconductivity has been suggested by some NQR [210], penetration depth [211], and
specific heat [207, 208] studies, while other thermal conductivity [212], `SR [213], and NQR [214]
measurements have proposed a fully gapped FS. Furthermore, several experiments have observed
TRS breaking in the low-temperature and low-magnetic-field superconducting phase (B phase) [215,
216].

4.9.2 Classification on Γ-% and %-� lines
Here we carry out a group-theoretical analysis for the gap structure of PrOs4Sb12. PrOs4Sb12 has
a body-centered cubic space group �<3̄, where the BZ has threefold rotation axes Γ-% and %-�
[see Fig. 4.13(b)]. The FS topology of PrOs4Sb12 has been confirmed by the combination of dHvA
experiment and first-principles calculation [217]. The determined FS consists of three parts, two of
which cross the Γ-% line and the other does the %-� line. Therefore, the gap structure on these lines
is worth considering. The little group on the Γ-% and %-� lines has �3 symmetry, which results in
two representations _̄k = �1/2 and 2�3/2, given by Table 4.1(b). Corresponding to these two Bloch
states, the Cooper pair wave function has two nonequivalent representations as shown in Table 4.2.
Thus, the induced representation %̄k ↑ )ℎ is obtained in the following equations:

%̄k ↑ )ℎ =
{
�6 + )6 + �D + �D + 3)D (_̄k = �1/2),
�6 + )6 + 3�D + 3)D (_̄k = 2�3/2).

(4.9.1)

Theoretical studies have suggested various possibilities of the pairing symmetry in PrOs4Sb12
[218–223]. For example, the 3D )6 and )D states [218], the mixed �6 + �6 state with a B + 6-wave
pairing [219], and that with a B + 83-wave pairing [221] have been proposed. In these cases, the
superconducting gap opens on the Γ-% and %-� lines irrespective of the angular momentum of the
Bloch state. However, the 9I-dependent point nodes may emerge, if the order parameter belongs to
the �D representation [see Eq. (4.9.1)].
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Chapter 5

Conclusion

In this thesis, we investigate the gap structures in various unconventional superconductors with
spin-orbit coupling and multi-degrees of freedom, by using the modern classification theory of
superconducting gap nodes.

In Chapter 2, we present the recently developed classification methods of superconducting gap,
from both aspects of group theory and topology [18–21]. The methods take into account space
group symmetry and higher-spin normal Bloch states, which enables us to reveal novel types of
nodal structures beyond the order parameter analysis by the Sigrist-Ueda method. Moreover, the
combination of group-theoretical and topological classifications offers the complementary under-
standing of nodes appearing in unconventional superconductors: the group-theoretical analysis
helps us to easily search symmetry-protected superconducting nodes, while the property of topo-
logical number tells us the stability of such nodes. Our classification theory motivates the research
community to reacknowledge the importance of such complementary studies, and to expect that all
crystal symmetry-protected nodes are protected by topology.

In Chapter 3, we completely classify gap structures on high-symmetry planes (mirror- or glide-
invariant planes) in the Brillouin zone [20]. When the system has symmetry including non-primitive
translation parallel to a twofold axis, the Cooper pair wave functions on the basal plane and the zone
face, which are perpendicular to the twofold axis, have different representations as a consequence
of the nonsymmorphic symmetry. In this case, therefore, line nodes (or a gap opening) protected
by nonsymmorphic symmetry may emerge on the Brillouin zone boundary. We classified the gap
structure of all the centrosymmetric space groups. From the list of space groups, wemay understand
the symmetry-protected line node for each crystal, magnetic, and superconducting symmetries.
Furthermore, we have established the relationship between such symmetry-protected line nodes and
Majorana flat bands using a topological argument [19]. The zero-dimensional topological number
not only reflects the group theoretical results, but also relates to the one-dimensional topological
number that ensures the existence of Majorana flat bands. By analyzing the relationship between the
two topological numbers, we can categorize the symmetry-protected line nodes into three distinct
classes. Each class is distinguished by the Majorana flat bands and the symmetry-protected line
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nodes may be distinguished through surface sensitive experiments such as tunneling conductance
measurements. Finally, as an example, we suggest the nonsymmorphic symmetry-protected gap
structures in the−++− (magnetic octupole) state of Sr2IrO4 [18]. We confirmed the symmetry-based
classification results by the realistic model for Sr2IrO4.

In Chapter 4, on the basis of the symmetry and topology we classified superconducting gap
structure on high-symmetry =-fold lines in the Brillouin zone [20, 21]. First, we execute the
comprehensive group-theoretical classification; on threefold and sixfold axes, the gap classification
depends on the total angular momentum of the normal Bloch state 9I, while that is unique on
twofold and fourfold axes. Next, we find that the topological analysis completely corresponds with
the above group-theoretical classification; all nodes shown by group theory are characterized by a
zero-dimensional Z or Z2 index. Thus the symmetry-protected nodes are topologically protected.
Such topological crystalline superconducting nodes on the high-symmetry axes are classified into
three types: point nodes, a part of line nodes, and a part of surface nodes (Bogoliubov Fermi
surfaces). Furthermore, we applied such classification to various candidate superconductors: UPt3,
SrPtAs, CeCoIn5, UCoGe, MoS2, UBe13, and PrOs4Sb12. Especially, we showed that the structure
ofWeyl nodes also depends on the angular momentum of the normal Bloch state in the time-reversal
symmetry breaking B phase of UPt3, reflecting the 9I-dependent gap structure on the�3E-symmetric
 -� line.

This thesis offers almost complete classification of superconducting gap nodes on high-symmetry
regions in the Brillouin zone. However, there are several remaining issues to be uncovered. First,
gap classification on high-symmetry lines may be changed by taking nonsymmorphic symmetry into
account, although only symmorphic symmetry is considered in Chapter 4. Indeed, Ref. [110] shows
gap classification for the nonsymmorphic magnetic space group %=<01′, which gives nontrivial gap
structures on �2E-symmetric hinges of the Brillouin zone with glide symmetry. Secondly, it may be
interesting to investigate the relationship among more than one topological numbers characterizing
nodes on high-symmetry axes. In time-reversal symmetry breaking superconductors, for example,
it may be possible to reveal such relationship between a two-dimensional Chern number and a
zero-dimensional topological number, which enables us to understand the stability of the Weyl
nodes and the corresponding surface Majorana arc states. Finally, our classification theory can
be extended to lower-dimensional superconductors and/or spin-orbit decoupled superconductors;
such classification may be useful in determining superconducting symmetry of a twisted bilayer
graphene, which has recently attracted much attention. The above ideas are interesting problems
and have the potential to find new physical phenomena in future.
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Appendix A

Representation theory

A.1 Wigner criterion
We review the method and meaning of the Wigner criterion used in Secs. 2.1 and 2.3. For detailed
proofs of the criterion, see Refs. [38, 48].

A.1.1 Formulation
We first suppose that � is a unitary group and U is a certain 3U-dimensional IR of �, which has the
basis functions k8 (8 = 1, 2, . . . , 3U). k8 transforms under the symmetry operation ℎ ∈ � as

ℎk8 =

3U∑
9=1
k 9 [�U (ℎ)] 98, (1.1.1)

where �U is a representation matrix of the IR U. Then, we consider whether the degeneracy of
the representation increases or not by adding an antiunitary operator 0 to the group: � + 0�. The
problem can be solved by the Wigner criterion [38, 48]:

,0
U ≡

1
|� |

∑
ℎ∈�

l(0ℎ, 0ℎ)j[�U ((0ℎ)2)] =


1 (a),
−1 (b),
0 (c).

(1.1.2)

Here, {l(ℎ1, ℎ2)} ∈ /2(� + 0�,U(1)q) is a factor system arising in a representation

l(ℎ1, ℎ2)*ℎ1ℎ2 =

{
*ℎ1*ℎ2 (q(ℎ1) = 1),
*ℎ1*

∗
ℎ2
(q(ℎ1) = −1),

(1.1.3)

where q : � + 0� → Z2 = {±1} is an indicator for unitary/antiunitary symmetry. The meanings of
the cases (a), (b), and (c) are shown in the following.
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1. There is no additional degeneracy due to the presence of the antiunitary operator 0, because
{k8} and {0k8} are not independent.

2. The presence of the operator 0 gives rise to additional degeneracy, because {0k8} is linearly
independent of {k8} although they belong to the same IR U.

3. The degeneracy is doubled by applying 0, because the basis {0k8} belongs to a representation
U′ inequivalent to U.

A.1.2 Example: �3 symmetry
As an example of the Wigner criterion, we see the rotational property of the basis of spin angular
momentum k = |BI〉. In a continuous space, |BI〉 transforms under the \ rotation � (\) around the I
axis as

� (\) |BI〉 = 48\BI |BI〉 . (1.1.4)

Next, we discuss threefold-rotational symmetric system � = {�,�3, (�3)2}. In this symmetry, the
continuous rotational symmetry � (\) is restricted to discrete symmetries: \ = 0, 2c/3, and 4c/3.
Now we investigate the additional degeneracy by imposing the TRS T on the system for BI = +3/2
and +1/2.

2. BI = +3/2 case.
The eigenvalues 48\BI in Eq. (1.1.4), namely the 1D IR matrices �+3/2 with the basis |+3

2〉,
are given by

�+3/2(�) = 1, (1.1.5a)
�+3/2(�3) = −1, (1.1.5b)
�+3/2((�3)2) = 1. (1.1.5c)

Then, by adding the TRS T , the Wigner criterion leads to

,T+3/2 =
1
3

∑
ℎ∈�

l(T ℎ,T ℎ)j[�+3/2((T ℎ)2)]

=
1
3
(−1 − 1 − 1) = −1. (1.1.6)

Note that T commutes with all operators in �, and T 2 = (�3)3 = −� . Eq. (1.1.6) indicates
that T |+3

2〉 ∝ |−
3
2〉 has the same rotational property as |+3

2〉:

�−3/2(�) = 1, (1.1.7a)
�−3/2(�3) = −1, (1.1.7b)
�−3/2((�3)2) = 1, (1.1.7c)
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therefore,
�−3/2 ≡ �+3/2. (1.1.8)

In other words, the basis functions |+3
2〉 and |−

3
2〉 belong to the same IR. However, the presence

of the TRS T gives rise to additional degeneracy, since the basis |−3
2〉 is linearly independent

of |+3
2〉.

3. BI = +1/2 case.
From Eq. (1.1.4), the 1D IR matrices �+1/2 with the basis |+1

2〉 are written by

�+1/2(�) = 1, (1.1.9a)
�+1/2(�3) = 4+8c/3, (1.1.9b)

�+1/2((�3)2) = 4+82c/3. (1.1.9c)

Thus the Wigner criterion for the TRS T is calculated by

,T+1/2 =
1
3

∑
ℎ∈�

l(T ℎ,T ℎ)j[�+1/2((T ℎ)2)]

=
1
3
(−1 − 482c/3 + 48c/3) = 0. (1.1.10)

Equation (1.1.10) indicates that T |+1
2〉 ∝ |−

1
2〉 has the nonequivalent rotational property to

|+1
2〉:

�−1/2(�) = 1, (1.1.11a)
�−1/2(�3) = 4−8c/3, (1.1.11b)
�−1/2((�3)2) = 4−82c/3, (1.1.11c)

therefore,
�−1/2 ≠ �+1/2. (1.1.12)

Due to the bases of nonequivalent IRs |+1
2〉 and |−

1
2〉, the degeneracy is doubled by applying

the TRS T .

A.2 Orthogonality test
We explain the formulation of the orthogonality test for CS, used in Sec. 2.3. First, let � a (unitary)
crystal point group and U is a certain 3U-dimensional IR of � which has the basis functions k8
(8 = 1, 2, . . . , 3U). k8 transforms under the symmetry operation ℎ ∈ � as

ℎk8 =

3U∑
9=1
k 9 [�U (ℎ)] 98, (1.2.1)
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where �U is a representation matrix of the IR U. Then, we consider the situation that the system
has additional CS Γ: � + Γ�. Let {l(ℎ1, ℎ2)} ∈ /2(� + Γ�,U(1)) be a factor system of � + Γ�.
The orthogonality between {k8} and {Γk8} is investigated in the following.

The basis Γk8 is transformed by ℎ ∈ � as

ℎ(Γk8) = Γ(Γ−1ℎΓ)k8

=

3U∑
9=1
(Γk 9 )l(Γ−1, ℎΓ)l(ℎ, Γ) [�U (Γ−1ℎΓ)] 98,

=

3U∑
9=1
(Γk 9 )

l(ℎ, Γ)
l(Γ, Γ−1ℎΓ)

[�U (Γ−1ℎΓ)] 98, (1.2.2)

where we use the 2-cocycle condition

l(ℎ1, ℎ2)l(ℎ1ℎ2, ℎ3) = l(ℎ1, ℎ2ℎ3)l(ℎ2, ℎ3), (1.2.3)

for ℎ1, ℎ2, ℎ3 ∈ � + Γ�. We remark that � is not changed under the CS: Γ−1�Γ = �. In other
words, the representation matrix of � with the bases {Γk8} is given by l(ℎ,Γ)

l(Γ,Γ−1ℎΓ)�U (Γ−1ℎΓ). Next,
we recall the orthogonality relation between two IR matrices �U and �V [38, 48],

1
|� |

∑
ℎ∈�
[�U (ℎ)]8 9 [�V (ℎ)∗]:; =

1
3U
XUVX8:X 9 ; . (1.2.4)

By taking 8 = 9 and : = ;, we calculate the summation of Eq. (1.2.4) over 8 and ::

1
|� |

∑
ℎ∈�

3U∑
8=1
[�U (ℎ)]88

3V∑
:=1
[�V (ℎ)∗]:: =

XUV

3U

3U∑
8=1

3U∑
:=1

X8: ,

∴
1
|� |

∑
ℎ∈�

j[�U (ℎ)]j[�V (ℎ)∗] = XUV. (1.2.5)

Finally, Eqs. (1.2.2) and (1.2.5) lead to the orthogonality test between {k8} and {Γk8},

1
|� |

∑
ℎ∈�

l(ℎ, Γ)∗
l(Γ, Γ−1ℎΓ)∗

j[�U (ℎ)]j[�U (Γ−1ℎΓ)∗]

=

{
1 ({k8} and {Γk8} are equivalent),
0 ({k8} and {Γk8} are nonequivalent),

(1.2.6)

which is nothing but Eq. (2.3.4).
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Appendix B

Other remarks

B.1 Sr2IrO4

B.1.1 Accidental gap of �16 state at :H = c/0 in − + +− state

Gap classification using the space group symmetry reveals that the �16 gap functions in the − + +−
state possess vertical line nodes on the ZF :H = c/0, although the �16 representation is allowed
on the BP :H = 0. In our numerical calculation, however, a small gap appears in the excitation
spectrum on the ZF although the magnitude of the gap is smaller than that on BP (see Fig. B.1).
That is because single-particle states are accidentally fourfold degenerate all over the ZF :H = c/0
in our model. This fourfold degeneracy is not protected by symmetry except for on some high-
symmetry lines (Sec. B.1.2). The group theoretical analysis of gap classification can be applied
only to the intra-band gap, which are diagonal components of the band-based order parameter
matrix [13, 15, 16]. In ordinary cases, intra-band gap is equivalent to the excitation gap since inter-
band gap (offdiagonal components of the band-based order parameter matrix) hardly affects the
energy spectrum near � = 0. In the presence of (nearly) fourfold degeneracy, however, inter-band
gap may induce excitation gap [13]. Then, the gap nodes expected from the gap classification can
be lost. Indeed, such a gap opening changes the nodal line to nodal loops in UPt3 [13]. In many
cases including UPt3, however, the inter-band gap appears only on the high-symmetry lines, and the
dimension of nodes is not altered. Our tight-binding model accidentally has fourfold degeneracy on
the plane, and therefore, we obtain the excitation gap on the ZF :H = c/0. We believe that the gap
at :H = c/0 is lifted by taking into account all the spin-orbit couplings allowed by the symmetry.

B.1.2 Symmetry-protected Dirac line nodes on BZ boundary in − + +− state

We show the symmetry protection of the fourfold degeneracy on the BZ boundary in − + +− state.
The fourfold degeneracy appears at *-', '-) , )-. , and . -( lines in the first BZ (Fig. B.2). Using
the little group on each line, we prove the presence of the degeneracy by symmetry.
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Figure B.1: (Color online) The contour plot of quasiparticle energy dispersion � in the B-wave
superconducting state normalized by the order parameter Δ0 on (a) :H = 0 and (b) :H = c/0. The
insets in (a) and (b) show the dispersion �/Δ0 along the respective blue line. (a) On the BP :H = 0,
quasiparticle in almost whole region except for on the BZ boundary :I = c/2 are gapped. This is
consistent with the gap classification. (b) On the ZF :H = c/0, line nodes vanish in disagreement
with the gap classification.
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Figure B.2: (Color online) The first BZ for primitive orthorhombic lattice. Single particle states
are fourfold degenerate on the red lines.

On the*-' line (:H = c/0 and :I = c/2), the magnetic little group is given by

Mk = Gk + TGk , (2.1.1)
Gk = {� |0}T + {"I | Ĝ2 +

Î
2 }T + {"G | Î2 }T + {�2H | Ĝ2 }T, (2.1.2)

where T = {) � | Ĝ2 +
Ĥ

2 +
Î
2 }. The fourfold degeneracy is proven from algebra, ({�2H | Ĝ2 })

2 = −1,{
{�2H | Ĝ2 }, {"G | Î2 }

}
= 0, and

{
{�2H | Ĝ2 },T

}
= 0 [13, 224, 225]. Because of the rotation symmetry

{�2H | Ĝ2 }, the normal part Hamiltonian on the *-' line is block diagonalized and decomposed into
the ±8 subsectors. The T symmetry is preserved in each subsector as ensured by the anticommu-
tation relation between {�2H | Ĝ2 } and T. Thus, Kramers pairs are formed in each subsector. The
anticommutation relation between {�2H | Ĝ2 } and {"G | Î2 } ensures that a Kramers pair in the 8 subsec-
tor is degenerate with another Kramers pair in the −8 subsector. Thus, the fourfold degeneracy is
protected by symmetry.

On the other lines, the fourfold degeneracy is proved in a similar way. On the '-) and . -(
lines, we use the relations, ({�2G | Î2 })

2 = −1,
{
{�2G | Î2 }, {"H | Ĝ2 }

}
= 0, and

{
{�2G | Î2 },T

}
= 0.

Finally on the )-. line, the fourfold degeneracy is proved by the relations, ({"H | Ĝ2 })
2 = −1,{

{"H | Ĝ2 }, {�2I | Ĝ2 +
Î
2 }

}
= 0, and

{
{"H | Ĝ2 },T

}
= 0.

91



B.2 Effective orbital angular momentum due to site permuta-
tion

In Sec. B.2, we introduced the effective orbital angular momentum _I due to the permutation of
uranium sites. Here, we provide a general formulation for this angular momentum considering the
transformation of the Bloch state wave function. First, we introduce a creation operator of a Bloch
state in a sublattice-based representation denoted by 2†

<Z
(k), where< and Z = ;I + BI are the indices

of the sublattice and angular momentum, respectively. Fourier transformation of the Bloch state is
defined as

2
†
<Z
(k) =

∑
X

4−8k·X2†
Z
(X + r<), (2.2.1)

where X represents the position for the unit cell (lattice vector) and r< is the relative position of
the < sublattice in a unit cell. Using this equation, the creation operator is transformed by a space
group operation 6 = {? |a} as

62
†
<Z
(k)6−1 =

∑
X

4−8k·X62†
Z
(X + r<)6−1

=
∑
X

4−8k·X
∑
Z ′
2
†
Z ′ (?(X + r<) + a)�

( 9̃)
Z ′Z (?).

Defining X′ + r?< ≡ ?(X + r<) + a, we have

=
∑
X′
4−8k·[?

−1 (X′+r?<−a−?r<)]
∑
Z ′
2
†
Z ′ (X

′ + r?<)� ( 9̃)Z ′Z (?)

= 48?k·a
∑
Z ′

(∑
X′
4−8?k·X

′
2
†
Z ′ (X

′ + r?<)
)
4−8?k·(r?<−?r<)� ( 9̃)

Z ′Z (?)

= 48?k·a
∑
Z ′
2
†
?<,Z ′ (?k)4

−8?k·(r?<−?r<)� ( 9̃)
Z ′Z (?)

= 48?k·a
∑
<′

∑
Z ′
2
†
<′Z ′ (?k) [�(perm)(?, k)]<′<� ( 9̃)Z ′Z (?), (2.2.2)

where � ( 9̃) (?) is a representation matrix of ? in 9̃ = ; + B space. From Eq. (2.2.2), we define a
representation matrix indicating the permutation of sites as

[�(perm)(?, k)]<′< = 4−8?k·(r?<−?r<)X<′,?< . (2.2.3)

The phase factor in this matrix corresponds to the effective orbital angular momentum _I. For
example, a threefold rotation in UPt3 is represented by

�(perm)(�3, k) =
( 0 1

0 4+82c/3 0
1 0 4−82c/3

)
, (2.2.4)
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on the  point k = (4c/3, 0, 0). This phase factor gives the effective angular momentum _I = ±1
as we demonstrated in Sec. 4.3.4.
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