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Abstract

To construct quantum gravity theory is one of the most critical issues in particle physics. While

string theory can describe the graviton, its perturbative formulation has difficulty in treating

the quantum aspects of spacetime. This problem is believed to be solved by constructing the

non-perturbative formulation of string theory, and the IIB matrix model is one of the most

promising candidates. There have been a lot of works pointing out that the IIB matrix model

contains the spacetime and gravity. On the other hand, the physical meaning of the degrees of

freedom in it is not fully understood.

In many works, matrices are interpreted as noncommutative coordinates. There it has

been reported that the matrix model contains the graviton with this interpretation despite

the lack of general covariance. On the other hand, when one regards matrices as derivative

operators on curved spacetimes, gravitational fields can be described more directly. This is

called the operator interpretation. It is in question, however, whether the model with it is

positive-definite, since the model contains infinitely many fields that are massless at tree-level,

and the presence of higher spin gauge symmetries is not trivial. The structure of its effective

field theory remains to be studied as well.

There are many aspects left to be discussed. In this thesis, we study the IIB matrix model

with the focus on the gravitational and higher spin fields. After reviewing the IIB matrix model,

we discuss how the gravitational force should be described by the model in the noncommutative

treatment, which is somewhat unnatural. Next, we move to the operator interpretation. We

see that the naive reduction of the massless fields leads to inconsistency. However, we show

that the model possesses higher spin symmetries for them, and that mass terms for them are

induced when the supersymmetries are broken. These two results are partial evidence for the

positive-definiteness of the matrix model.

We also study possible structures of the effective field theory for the IIB matrix model, by

pursuing the consistent structures within the framework of field theory. It has been known

that the effective action become a function of ordinary actions, which gives a theoretical origin

for degenerate vacua. Since the direct analysis is quite difficult, we instead investigate how

inflation can be realize with that action, and obtain the allowed form of inflaton potential.

As another study, we attempt to construct the Lagrangian for a massive higher spin field in

curved background, which is expected to emerge from the matrix model. There we show that

a field whose spin is higher than 2 cannot be described by a consistent Lagrangian. It is likely

that infinitely many higher spin fields are needed to be introduced. This is consistent with the

analysis of the IIB matrix model.
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Chapter 1

Introduction

Nowadays, particle physics at the low-energy region we can access is well-described by the

Standard Model (SM). It appears that, since the discovery of of the Higgs particles, we have

not encountered the essential discrepancy between experimental observable values and the

predictions by the model. Although some anomalies are being reported in several measurements

such as muon g − 2 factor, they tend to be resolved as the experimental data is accumulated.

Therefore it is natural to think that we need no drastic change in SM to describe the low-energy

particle physics.

On the other hand, it is certain as well that SM or its slight extension is not a UV-complete

theory. It has some problem to be solved involving the gravity.

One of the most important and difficult issues of field theory is to construct a theory of

quantum gravity. It is a notorious problem that the general relativity is incompatible with the

quantum field theory, in a sense that the action of graviton, which is obtained by expanding

the Einstein-Hilbert action around a background, is non-renormalizable.

Confronting this fact, there have been two philosophy researchers take. First, one can

assume that there is some UV completion over the quantum field theory and the theory of

classical gravity. It is supposed to consist in Planck scale. In this direction, string theory has

been considered to be such a UV completion and intensively discussed for a couple of decades.

As a second option, one can suspect that the theory of classical gravity can be actually lifted to

a quantum theory when we treat quantum fluctuation non-perturbatively. In such a standpoint,

no theory beyond quantum field theory is needed to describe quantum gravity. While a lot of

progress has been made in the both directions, the question which is the correct way is not

settled as yet.

We take the former philosophy, and assume that quantum gravity should be described by

string theory. So far we have much (but not sufficient) knowledge and understanding on string

theory at the perturbative level. It is certain that string theory includes the massless spin-

two mode that is identified to the graviton on a background target spacetime. On the other
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hand, its non-perturbative behavior is relatively less understood. It is critical to establish a

non-perturbative formulation of string theory for describing quantum gravity.

We would like to stress that it is not sufficient just to take into account some non-perturbative

objects such as D-branes. String-phenomenological models, intersecting D-branes for example,

do not provide the mechanism for them to form. It is closely related to the spacetime geometry

since the branes have basically large energy density. In order to evaluate the exact consistency

of those models, we need a formulation of string theory that treats the dynamics of spacetime as

well. Moreover, since “gravity” means the nontrivial structure of spacetime, a theory of quan-

tum gravity must treat not only the quantum graviton on some classical background spacetime,

but the quantum nature of spacetime itself. If string theory describes that, it goes outside a

perturbative formulation. The above observation forces us to investigate a non-perturbative

formulation of string theory.

It is hardly possible to deduce the appropriate form of the formulation directly from some

least principles. Instead, we can take a more realistic approach, where we study and analyze

the candidates for it.

In this thesis, we focus on one of the the most promising candidates, namely the IIB matrix

model [1, 2]. The dynamical valuables in this model are several matrices, and the action is

written only with the trace of their products. The most important feature of the matrix model

is that it does not require the existence of the spacetime at the starting point. Spacetimes

emerge as a result of the dynamics of the matrices. Nevertheless, it contains rich physics, a

part of which reproduces results we have in string theory and field theory. First of all, its

partition function coincides with that of the ordinary Yang-Mills theory at large-N limit. On

the other hand, it yields the action of type IIB string in a double-scaling limit. Moreover,

there are diverse works reporting many interesting aspects of it. It reproduces the Hamiltonian

of light-cone string field theory [3], or it induces (3+1) expanding universe [4], or it realizes

some special non-commutative spacetimes [5], and so on. Many of those studies suggest that

the IIB matrix model describes gravity and spacetimes at the quantum level, going beyond

perturbative string theory.

However, we still have a fundamental question to be settled. What should we interpret the

physical meanings of matrices as? Up to today, there is no consensus about the answer for

that question. Some works treat the expectation values of them as the coordinates in the flat

spacetime [6–17]. Other works treat them as momenta or its generalization [18–22]. Further

other works treat them as noncommutative coordinates [23–26, 43]. The relation among those

interpretations, and whether they are related to each other in the first place, are unclear.

Accordingly, it is still in question how the gravitational degrees of freedom (DoF) are actually

contained in the IIB matrix model.

Among several interpretations, the most sophisticated one is called the operator interpre-
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tation [27]. With this interpretation, we regard matrices as derivative operators on curved

spacetimes. There the matrix model can describe the curved spacetime emergent from the

dynamics of matrices, and possesses manifest diffeomorphism (diffeo) invariance. This fact im-

plies that the matrix model directly contains gravitational DoF with this interpretation. While

there has been several works on its DoF and equations of motion (EoM) for them [28–33], the

positivity and symmetries of the model largely remains to be studied. In particular, the matrix

model contains infinitely many fields which are massless at the classical level. While most of

them seem to be higher spin fields,1 the existence of their higher spin gauge symmetries is not

trivial. The structure of radiative corrections has to be discussed as well. We see them as an

interesting problem to investigate.

On the other hand, we should pay attention in the study of the matrix model to how it con-

nects to the theory describing our current universe. In principle, the appropriate Planck scale

theory should reproduce SM as the low-energy effective field theory. The connection between

high- and low-energy physics is a challenging problem, which is related to the construction of

a theory of quantum gravity.

Therefore, in this thesis, we will study both the IIB matrix model and aspects of field theory

that can be related to the matrix model as its UV completion.

In the study on the matrix model, before we treat the operator interpretation, we first treat

it with one of the popular interpretation, where matrices represent coordinates for noncommu-

tative geometry. There we investigate how we can describe the gravitational force, and point

out the necessity of taking average of the noncommutativity in order to reproduce ordinary

gravitational interactions. Although it might be possible to treat the gravity in the matrix

model with this interpretation, we see that the formulation is rather awkward.

Then, as one of the main parts of this thesis, we study the matrix model with the operator

interpretation, with an expectation that it is a model of Planck scale to describe quantum grav-

ity. Concretely, we investigate the topics mentioned above. We will see the minimality of the

original operator interpretation, existence of higher spin gauge symmetries, and generation of

mass terms by the radiative correction. The latter two results are partial evidence of positivity

of the matrix model.

As for the study on field theory, we analyze two problems. One is on a possible mechanism

of inflation. The IIB matrix model suggests that its low-energy effective field theory [31, 32]

have naturally-tuned coupling constants [33], forcing the Higgs potential to have degenerate

minima. It is related to the principle called the multiple point criticality principle [34]. There

is works [35, 36] which claim that this mechanism and Higgs inflation [37] can be compatible

with an introduction of a novel conformal factor and the frame transformation. We generalize

this statement and determine the form of the inflaton (or Higgs) potential allowed by Planck

1we refer to spin larger than 2 as higher spin.
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scale physics, the matrix model for example.

Another field-theoretic issue we study is to construct a formulation of massive higher spin

fields (MHSF). In the analysis of the matrix model, the higher spin fields acquire their mass

terms when the supersymmetries get broken. Since there is no signal of supersymmetry at

low-energy scale (concretely TeV scale), it is natural to expect that the effective field theory of

the matrix model contains MHSF in the curved spacetime, although it might be too heavy to

be detected. It is worthwhile to describe them directly in the framework of field theory. In the

flat spacetime, the formulation to describing MHSF is well-known [38,39]. On the other hand,

the analysis for those in curved backgrounds is not enough as yet. Therefore, we attempt to

construct a consistent Lagrangian for MHSF in the curved spacetimes.

In addition to the two studies, we have one more investigation on a field-theoretic problem:

regularization of chiral gauge theory. Although it is rather independent topic in this thesis and

thus we will put it in the appendix, it is indirectly related to the IIB matrix model. There

are several reports [40, 41] that the IIB matrix model can yield the chiral gauge theory which

is defined on background branes as a classical solution. It should be connected to the UV

behavior of chiral gauge theory. Therefore, in an attempt to grasp that connection, we propose

a possible gauge-invariant regularization of chiral gauge theory by taking advantage of a lattice

formulation called the domain-wall fermion [42], which can be seen as a fermion on a brane.

This work is in progress.

This thesis is organized as follows. In Chapter 2 we introduce the IIB matrix model, focusing

on how it reproduces results of theories with a spacetime. In Chapter 3, we investigate the

gravitational interaction in the matrix model with the noncommutative interpretation, based

on [43]. As a more promising treatment, in Chapter 4, we explain the operator interpretation

of the matrix model, which is the main approach of our study on the model. Subsequently, we

present one of the main analysis of the thesis in Chapter 5, which is on the stability of the matrix

model with the operator interpretation. This chanter is based on our two papers [44, 45]. In

turn, Chapters 6 and 7 are devoted to the other analyses of the thesis, on a model of inflation and

on a construction of a theory of MHSF in the curved background, respectively. These chapters

are based on our papers [46] and [47], respectively. Finally, we summarize and conclude the

thesis in Chapter 8. As an appendix, we also report an ongoing study on a regularization of

chiral gauge theory in Appendix A. This is rather an independent part of the thesis, based on

an ongoing work [48].



Chapter 2

A Review of the IIB Matrix Model

In this chapter, we have a brief review of the IIB matrix model with the focus on how the

spacetime emerges from it. First, we will show the notion of large-N reduction, by which a field

theory gets equivalent to the corresponding matrix model.1 Then, we will introduce the IIB

matrix model as a special case. Various aspects of it are discussed, including the reproduction

of type-IIB string theory and emergence of spacetimes.

2.1 Large-N reduction of a field theory

As a simple example, consider a Euclidean self-interacting scalar field theory described with

the following action:

S =
1

g2
0Λ6−d

0

∫
ddxTr

(
1

2
(∂µφ(x))2 +

m2

2
φ(x)2 +

1

3!
φ(x)3

)
. (2.1)

Here φ(x) represents a scalar field which takes the value of a N × N hermitian matrix. We

can regard it as a field in the adjoint representation of U(N), although it is unimportant what

DoF the matrix denotes. Λ0 is the energy scale specific to the theory. g0 is the dimensionless

coupling constant. To calculate the physical quantity, we need to extract its Feynman rules:

〈φ(k)ijφ(−k)kl〉 = g2
0Λ6−d

0

δilδjk
k2 −m2

, (2.2)

1In this thesis, we use the term “matrix model” to mean the model which is described by matrices without
the space nor time.
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Figure 2.1: The propagator and vertex in the double line notation. The arrows lie in the direction from
the row-index toward colomn-index. Indices connected by a line are contracted. In the corresponding
matrix model (Eq.(2.7)), the indices denotes the frow of partial momenta p

(i)
µ .

=
−1

g2
0Λ6−d

0

δjkδlmδni (2.3)

The propagator and vertex can be represented in the double-line notation as Fig.(2.1). By

using them we can calculate amplitudes, green functions or the free energy. The diagrams are

classified into two types: the planer and non-planer diagrams. Examples of them among the

vacuum diagrams are the ones in Fig.(2.2), B1 and B2. Their loop integrations are given by

B1 = V

∫
ddk1

(2π)d
ddk2

(2π)d
g2

0N
3Λ6−d

0

1

k2
1 +m2

1

k2
2 +m2

1

(k1 + k2)2 +m2
, (2.4)

B2 = V

∫
ddk1

(2π)d
ddk2

(2π)d
g2

0NΛ6−d
0

1

k2
1 +m2

1

k2
2 +m2

1

(k1 + k2)2 +m2
, (2.5)

with V denoting the volume of the spacetime. Note that the non-planar diagram is suppressed

compared to the planar one by 1/N2. This is because that it consists of one index line while

the planar one has three index lines. Since each line represents the contraction of the indices,

a closed line gives the factor of N . Then we can take the following limit:

N →∞, g0 → 0 with λ := g2
0N fixed. (2.6)

λ is called the ’t Hooft coupling constant. This is a large-N limit.2 In gengeral, vacuum planar

diagrams with n-loops (in the viewpoint of field theory) are O(N2λn−1), while non-planar ones

2There are various variations of the limit where N goes to infinity. They are referred to as large-N limits as
well, according to the context.
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B1 B2

Figure 2.2: Examples of vacuum diagrams. (B1) A planar diagram. This gives a leading contribution
in the large-N limit. (B2) A non-planar diagram. This is suppressed by the factor 1/N2 compared
to the planar, hence it drops in the limit.

are O(Nkλn−1) with k ≤ 0. Thus, in the large-N limit, only planar diagrams do contribute to

physical quantities.

Next, we show that the planar diagrams in the above theory can be reproduced from a

matrix model, the action of which is given by

S =
1

g2
0Λ6

0

Tr

(
−1

2
[Pµ,Φ][Pµ,Φ] +

m2

2
Φ2 +

1

3!
Φ3

)
. (2.7)

Here, Φ is a N × N hermitian matrices and Pµ is a hermitian matrices which serves like

an external field. We assume that its eigenvalues distribute in Rd uniformly. Then we can

diagonalize it by some unitary transformation Φ→ UΦU−1:

Pµ = diag(· · · , p(i)
µ , p

(i+1)
µ , p(i+2)

µ , · · · ). (2.8)

Let us calculate the same diagrams as the above ones in this matrix model. With Pµ diago-

nalized, Eq.(2.7) is written as

S =
1

g2
0Λ6

0

Tr

1

2

∑
i,j

(
(p(i)
µ − p(j)

µ )2 +m2
)
|Φij |2 +

1

3!

∑
i,j,k

ΦijΦklΦli

 . (2.9)

The propagator and vertex is given by

〈ΦijΦkl〉 = g2
0Λ6

0

δjkδli

(p(i) − p(j))2 +m2
,

(3-pt. vertex) =
−1

g2
0Λ6

0

δjkδlmδni. (2.10)

By comparing the propagator with Eq.(2.2), we can regard that a matrix element Φij has the

momentum p
(i)
µ − p(j)

µ . Index lines transfer the partial momenta p
(i)
µ . We represent as B̃1 and
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B̃2 the diagrams corresponding to B1 and B2. They are calculated as:

B̃1 =
∑
i,j,k

g2
0Λ6

0

1

(p(i) − p(j))2 +m2

1

(p(j) − p(k))2 +m2

1

(p(k) − p(i))2 +m2
(2.11)

B̃2 =
∑
i

g2
0Λ6

0

1

m2

1

m2

1

m2
. (2.12)

Note that B̃2 contains no momenta because the diagram (the same as B2) consists of one line,

hence every propagator has the vanishing momentum p
(i)
µ − p

(i)
µ = 0. Although B̃2 takes a

different form from B2, they drop in the both theory, in the large-N limit.

As for B̃1, we make a transformation of the variables:

l(i)µ ≡ p(i)
µ − p(j)

µ , l(j)µ ≡ p(j)
µ − p(k)

µ . (2.13)

From the assumption of uniform distribution for
{
p

(i)
µ

}
i
, the values of l

(i)
µ and l

(j)
µ distribute

uniformly as well. B̃1 is rewritten as

B̃1 =
∑

l(i),l(j),k

g2
0Λ6

0

1

(l(i))2 +m2

1

(l(j))2 +m2

1

(l(i) + l(j))2 +m2
. (2.14)

There is one summation of the index which keeps l
(i)
µ and l

(j)
µ fixed. We have represented it as

Σk. In the large-N limit, we can replace the summations over l
(i)
µ and l

(j)
µ with the integrations

over continuous variables:

Λd0
1

N

∑
l(i)

f(l(i))→
∫

ddk

(2π)d
f(k), (2.15)

With Λ0 required to give the quantity the appropriate dimension. Through the replacement we

treat it as the UV cutoff scale. Using Eq.(2.15) and
∑

k 1 = N , the diagram takes the following

form:

B̃1 =

∫
ddk1

(2π)d
ddk2

(2π)d
g2

0N
3Λ6−2d

0

1

k2
1 +m2

1

k2
2 +m2

1

(k1 + k2)2 +m2
, (2.16)

B̃2 = g2
0N

Λ6
0

m6
. (2.17)

B̃1 coincides with Eq.(2.4) when we identify the volume of the matrix model (Eq.(2.7)) to

1/Λd0. This coincidence occurs in general planar diagrams of arbitrary loops. In this sense, The

matrix model reproduces the quantities derived from the field theory (Eq.(2.1)) in the large-N

limit.

Generically, the physical quantities of a matrix field theory in the large-N limit can be

reproduced in the corresponding matrix model. It can be shown by focusing on the planar
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diagrams [49]. Thus, the matrix model is referred to as the large-N reduction of the original field

theory. The reduction means that the information of spacetimes can partially be absorbed into

the matrix, which originally takes values in the internal spaces, gauge group for example. Due to

the fact that the spacetime information is included in Pµ, whose eigenvalues serve as momenta,

the treatment of the present matrix model is called the momentum interpretation. In this

treatment, the spacetime in the coordinate space emerges as below. In the basis diagonalizing

Pµ, we can introduce a set of parameters {xµ} ∈ Rd to rewrite the trace of the commutator as

Tr
(
−[Pµ,Φ]2

)
= Tr

(
eiPx[iPµ,Φ]e−iPxeiPx[iPµ,Φ]e−iPx

)
= Tr

(
∂µ(eiPxΦe−iPx)∂µ(eiPxΦe−iPx)

)
. (2.18)

By using a parameter-dependent matrix Φ(x) ≡ eiPxΦe−iPx, Eq.(2.7) turns into the following

form:

S =
1

g2
0Λ6

0

Tr

(
1

2
(∂µΦ(x))2 +

m2

2
Φ(x)2 +

1

3!
Φ(x)3

)
. (2.19)

Here, under the assumption that we can separate the trace over DoF corresponding to Pµ, it

can be replaced to the integration over xµ due to the uniformity of eigenvalues of Pµ. As a

result, we obtain Eq.(2.1).

In the above example, we had to introduce Pµ as an external matrix. Contrary to this,

the large-N reduction of gauge theory requires no such matrices, and the model contains only

dynamical matrices. This fact can be easily seen in the Pure Yang-Mills theory. Consider the

following action:

S =
1

g2Λ4−d

∫
ddx

1

4
Tr(F 2

µν),

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ], (2.20)

where Aµ is a gauge field in the adjoint representation of U(N). The large-N reduction of this

system is represented as

S =
1

g2Λ4
Tr

(
−1

4
([Pµ, Aν ]− [Pν , Aµ] + [Aµ, Aν ])2

)
.

=
1

g2Λ4
Tr

(
−1

4
[Pµ +Aµ, Pν +Aν ]2

)
. (2.21)

By redefining the matrix as Pµ +Aµ → Aµ,

S =
1

g2Λ4
Tr

(
−1

4
[Aµ, Aν ]2

)
. (2.22)

Thus the spacetime information is completely absorbed into the gauge field matrix. It is
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remarkable that Eq.(2.22) is the same form as that obtained from the dimensional reduction

of the original action (Eq.(2.20)). Conversely, starting from the matrix model (Eq.(2.22)), the

equation of motion for Aµ is

[Aν , [Aν , Aµ]] = 0. (2.23)

As a solution of this, a diagonal momenta matrix exists:

Aµ = Pµ = diag(· · · , p(i)
µ , p

(i+1)
µ , p(i+2)

µ , · · · ). (2.24)

When we expand the action around this classical solution, i.e. substituting Aµ = Pµ + Ãµ,

we obtain Eq.(2.21). From this viewpoint, spacetimes emerge from classical solutions of the

matrix model, and the fluctuation around them describes the field theory on the spacetime.

This concept is the standard approach of analyzing the matrix model.

2.2 The IIB matrix model and emergence of type-IIB string

theory

Among various matrix models, we intensively treat the IIB matrix model and its deformation

in this thesis. Its action is given by

SIIB = −αTr

(
1

4
[Aµ, Aν ]2 +

1

2
Ψ̄α(Γµ)αβ[Aµ,Ψβ]

)
,

α =
N

g2Λ4
0

. (2.25)

Here, Aµ (µ = 1, · · · , 10) and Ψα (α = 1, · · · , 16) are N ×N bosonic and fermionic hermitian

matrices, respectively. a is a ten-dimensional vector index, and α is a spinor index. Ψα is

assumed to satisfy conditions for a ten-dimensional Majorana-Weyl spinor. Eq.(2.25) is the

large-N reduction of ten-dimensional super Yang-Mills theory:

SSYM =
NΛ6

0

g2

∫
d10x

(
1

4
F 2
µν +

1

2
ψ̄ /Dψ

)
. (2.26)

In this section, we re-interpret matrices as DoF which have spacetime information directly

in the form of the coordinates. In other words, we will interpret eigenvalues of matrices as

coordinates of the target spacetime. This interpretation is called the coordinate interpretation.

With this interpretation, we reproduce the action of type-IIB string theory from the IIB matrix

model. First, we show that a form of actions for string theory, namely Schild action can be

obtained from the classical limit of a particular matrix model. Then, we derive the model as

an effective theory of the IIB matrix model.
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Consider the following action for string theory:

SNG = −T
∫
d2σ

[√
−1

2
Σ2 + iεab∂aX

µ(θ̄1Γµ∂bθ
1 + θ̄2Γµ∂bθ

2) + εabθ̄1Γµ∂aθ
1θ̄2Γµ∂bθ

2

]
,

(2.27)

where θ1 and θ2 are ten-dimensional Majorana-Weyl spinors, and they have the same chirality.

Σµν is defined as

Σµν = εabΠµ
aΠν

b ,

Πµ
a = ∂aX

µ − iθ̄1Γµ∂aθ
1 + iθ̄2Γµ∂aθ

2. (2.28)

Note that θ2 in the above action has been analytically-continued from that in the ordinary GS

action as θ2 → iθ2 This operation is necessary in order to make the path integral well-defined.

Eq.(2.27) has N = 2 super symmetry

δSUSYθ
1 = ε1,

δSUSYθ
2 = ε2,

δSUSYX
µ = iε̄1Γµθ1 − iε̄2Γµθ2, (2.29)

and kappa symmetry

δκθ
1 = (1 + Γ̃)κ1,

δκθ
2 = (1− Γ̃)κ2,

δκX
µ = iθ̄1Γµ(1 + Γ̃)κ1 − iθ̄2Γµ(1− Γ̃)κ2, (2.30)

Γ̃ =
1

2
√
−1

2Σ2
ΣµνΣµν . (2.31)

Let us gauge-fix the kappa symmetry by imposing the conditions θ1 = θ2 = ψ. The action

changes its form as

S̃GS = −T
∫
d2σ

[√
−1

2
σ2 + 2iεab∂aX

µψ̄Γµ∂bψ

]
, (2.32)

σµν = εab∂aXµ∂bX
ν . (2.33)

S̃GS is equivalent to the following action (up to the normalization of fields) through the intro-

duction of a Poisson bracket:

SSchild =

∫
d2σ

[
α
√
g(

1

4
{Xµ, Xν}2 − i

2
ψ̄Γµ{Xµ, ψ}) + β

√
g

]
, (2.34)
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{f, g} =
1√
g
εab∂af∂bg. (2.35)

α and β are constants. In this action, the transformation laws for N = 2 super symmetries are

written as

δ(1)ψ = − 1

2
√
−1

2σ
2
σµνΓµνε(1),

δ(1)Xµ = 4iε̄(1)Γµψ,

δ(2)ψ = ε(2),

δ(2)Xµ = 0. (2.36)

The quantum string theory based on Eq.(2.35) is formally defined by the following path integral:

Z =

∫
D√gDXDψe−SSchild . (2.37)

This system is, in fact, equivalent ro the classical limit of the system whose action and partition

function are given by

Smat = αTr

(
−1

4
[Aµ, Aν ]2 − 1

2
Ψ̄Γµ[Aµ,Ψ]

)
+ βTr1, (2.38)

Zmat =
∞∑
n=0

∫
dAdΨe−Smat . (2.39)

Here, Aµ and Ψ are n×n hermitian matrices. The equivalence is shown as below. It is natural

that the contribution of large n configurations is dominant, and that eigenvalues of the matrices

are distributed uniformly. Therefore, it is consistent to consider the classical limit, where we

replace matrices with c-numbers and their commutators with the Poisson brackets, just in the

ordinary quantum mechanics. The trace is converted to the inner-product in the functional

space. In the present case, we take the space of smooth functions on the world-sheet, and

defined their inner-product as the integration over it:

[F,G] −→ i{f(σ), g(σ)},

Tr[· · · ] −→ 1

2π

∫
d2σ
√
g. (2.40)

Note that the Poisson bracket satisfies the following conditions:∫
d2σ
√
g{f, h} = 0,∫

d2σ
√
gf{h, k} =

∫
d2σ
√
gh{k, f}. (2.41)
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These come from the vanishing trace of commutators and cyclicity of tripple products. Ap-

plying the above replacement, Eq.(2.39) turns into Eq.(2.37). The summation over n has been

converted to the functional integral over the volume element
∫
D√g. It is remarkable that

Eq.(2.39) is described only the mere matrices and thus well-defined. Indeed, it has been shown

that Eq.(2.38) is a matrix regularization of world-sheet.3

On the other hand, Eq.(2.38) is understood as the effective action of the IIB matrix model

as well. In studying Eq.(2.25), we assume that the eigenvalues of Aa are distribured in the

range of

−πΛ < (the eigen values of Aµ) < πΛ. (2.42)

Λ is the parameter characterizing the energy scale of the system. We have to consider its

interpretation with care as mentioned later. In the approach where the eigenvalues of Aµ are

the spacetime corrdinates, Λ is regarded as the IR cutoff. In the model, consider the following

background:

Aµ = Pµ = diag(· · · , p(i)
µ , p

(i+1)
µ , · · · ), (2.43)

with {p(i)
µ } distributed uniformly. In the continuum limit (large-N limit), this background is

interpreted as the flat spacetime.

Before proceeding further, we have more comments on the continuum limit. Since the size

of the matrices N is a sort of cutoffs, we have to take its limit in the coordination with that

of Λ, which has been introduced as an explicit energy scale. That simultaneous limit is called

the double scaling limit. The proper way to take it is read off from the original super Yang-

Mills theory. Eq.(2.26) has the classical energy scale m = Λ/g1/3. The double scaling limit is

required to keep both m and the coefficient α in Eq.(2.25) finite.4 From the conditions

α =
N

g2Λ4
: fixed, m6 =

Λ6

g2
: fixed, (2.44)

we obtain

N

Λ10
: fixed. (2.45)

3A matrix regularization is the regularization where the functions defined on a manifold with the Poisson
structure are regularized with the approximation by the matrices. The algebraic structure of the matrices is
determined by demanding that it coincides with that of the original functional space in the large-N limit.

4In [1], A classical solution of the IIB matrix model is regarded as D-string and the authors identified the
coupling constant as α ∼ 1/(gsα

′). The motivation of regarding the solution as D-string is based on the fact
that it is a BPS object.
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Eventually, the double scaling limit is defined as below:

Λ −→∞,

N ∼ Λ10 −→∞,

g ∼ Λ3 −→∞. (2.46)

Returning to the derivation of Eq.(2.38), we operate the path integral defined with Eq.(2.25).

When we integrate around the flat background Eq.(2.43), The bosonic and fermionic contribu-

tions from the non-diagonal components are canceled. On the other hand, nontrivial contribu-

tions from the diagonal components do not exist at least one-loop level. The partition function

is represented as

Z0(N) ∝
∫ N∏

i=1

9∏
µ=0

dAµii
N !

16∏
γ=1

dΨγiidciidbii. (2.47)

c and b are the Faddeev-Popov ghost and anti-ghost. The integration over the bosonic part

dAµii symply yields the width of the eigenvalue-distribution:

∫ N∏
i=1

9∏
µ=0

dAµii ∝ Λ10N . (2.48)

The integration over the ghosts dbiidcii, and the one over the fermionic part dΨγii gives respec-

tively

∫ N∏
i=1

dciicdbii ∝ α
N
2 , (2.49)

∫ N∏
i=1

16∏
γ=1

dΨγii ∝ α2N . (2.50)

It is easily understood through the dimensional analysis. Therefore, we obtain the folowing

partition function:

Z0(N) ∝ 1

N !
(Λ10α

5
2 )N (2.51)

After the above analysis as a preliminary, consider a background below:

Aµ =


Âµ

p
(1)
µ

p
(2)
µ

. . .

 . (2.52)
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Here Âµ is an n × n hermitian matrix. The partition function around the background is

represented as Z. The effective action for the n × n block is expected to be obtained by

subtracting the loop correction of totally flat spacetime from the correction around Eq.(2.52).

Therefore we define the effective action as

Sn×n eff ≡ − log

(
Z

Z0(N)

)
. (2.53)

In the path integral of Z, the contribution from the (N −n)× (N −n) block, which lives in the

right-bottom sector in the matrices, is nothing other than Z0(N − n). On the other hand, the

contribution from the non-diagonal block yields correction terms of the same form as those in

the super Yang-Mills theory. Combining them together, the resulting effective action is given

by

Sn×n eff = − log

(
Z0(N − n)

Z0(N)

)
− αTr

(
1

4
[Âµ, Âν ]2

)
+ · · ·

= const.× n log

(
Λ10α

5
2

N

)
− αTr

(
1

4
[Âµ, Âν ]2

)
+ · · ·

= const.× n− αTr

(
1

4
[Âµ, Âν ]2

)
+ · · · . (2.54)

The explicit terms in the above action is identical to Eq.(2.38). We have trancate in the

dots higher order correction terms of Aµ, Tr(F̂ 4) for example. They are the divergent terms

which already appear in the super Yang-Mills theory. In the exact treatment, we have to

add to Eq.(2.25) the counterterms for them. Although Eq.(2.26) is non-renormalizable action

perturbatively, we can assume the existence of a nontrivial fixed point of renormalization group

flow, due to the super symmetry. Accordingly, The correction terms included in Eq.(2.54) is

observed to be controllable or ot have no effect in the double scaling limit Eq.(2.46).

We have seen that the effective action of the IIB matrix model is identified to a form of

the action of type-IIB string theory (Eq.(2.38)). It is necessary to compare them at the level

of partition function. In Eq.(2.39), there is summation over n, the size of the matrices. It

is valid that we have calculate the effective action with n fixed, since the background has a

particular value of n as a classical solution. Yet, the path integral itself includes contributions

from blocks of verious size. In this sense, starting from Eq.(2.25), we have been able to repro-

duce Eq.(2.39).The constant term proportional to n in Eq.(2.54) is understood as a chemical

potential. Since it is natural that the configurations with large n are dominant, it reproduces

the path integral of string theory Eq.(2.37).

As above, we have had a brief introduction of the IIB matrix model and explanation of how

it reproduce string theory. One of the essential points is that the matrix model reproduce the

variety of physics only at the large-N limit, while the original model with finite N is free from
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the UV divergent and the path integral is well-defined. It suggests that the matrix model is

non-pertubatively regularized theory. Another critical point is the emergence of spacetimes. In

the both case of large-N -reducing gauge theory, and of the reproducing string theory, the notion

of spacetime has naturally emerged from the matrix model. These observation leads to the

expectation that the IIB matrix model (or its modification) describes the quantum spacetime

and gravity beyond perturbative string theory.

On the other hand, it should be paid attention that we have re-interpreted the physical

meaning of matrices in order to derive the string action from the large-N reduction of super

Yang-Mills theory. Here, the change in the interpretation of the dynamical variables leads

to the change of physics they describe. It might imply some profound relationship between

different theories. Otherwise, If we take the pessimistic standpoint, it might be just a problem

of interpretations and some of them be physically senseless or unhealthy.

Although the issue cannot be settled so far, we will attempt in the following to find out the

really appropriate mechanism of emergent spacetime and physics on it.



Chapter 3

Graviton Exchange in the Matrix

Model with the Noncommutative

Interpretation

Before studying the matrix model with the interpretation of our main interest, we first take a

noncommutative version of the momentum interpretation, the noncommutative interpretation.

This is one of the most well-studied interpretation. It is well known that there is a close

relation between the matrix model and noncommutative (NC) field theory [52–54]: The fluc-

tuation of matrices around some noncommutative classical solution is equivalent to the field of

NC field theory, where the product of fields is defined by the star product. Remarkably, the NC

U(1) gauge field is uniformly coupled with all the matters. Such a special behavior of the U(1)

gauge field reminds us the property of gravity [55–57]. In fact, the couplings between the U(1)

gauge field and the matters can be expressed by the effective metric made of the gauge field, at

the leading order with respect to the noncommutativity (see Section 3.1 for the details). Thus,

the U(1) gauge field can be viewed as the fluctuation of the metric. Moreover, it is suggested

that UV/IR mixing emerging at one-loop calculation of the U(1) NC field can be understood

in terms of induced or emergent gravity [5, 23,58–60] 1 (for a review, see also [24,62]).

While such successful results are present, it is not yet clear whether the mechanism rigor-

ously reproduces the real gravity. For example, we have not yet obtained the explicit diffeo-

invariance within the degrees of freedom of matrices.2 At a first glance, it seemingly does not

work because of the off-shell degrees of freedom; the U(1) gauge field has only four, while a

graviton does ten. However, still there is the possibility because the off-shell degrees of freedom

are unphysical. Therefore, it is quite necessary to check whether the emergent gravity scenario

can actually explain the results of the ordinary gravity. As an important check, it is interesting

1Recently, another mechanism of emergent gravity was also discussed on a specific background [61].
2On the other hand, the diffeomorphism can be explicitly seen in the operator interpretation.
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and meaningful to calculate a two-body scattering amplitude of test particles exchanging the

NC U(1) gauge field, and to compare it with that of the usual graviton exchange. In this

paper, we perform such analysis, and see that the NC U(1) gauge theory correctly reproduces

the usual graviton exchange if the noncommutativity is appropriately averaged and the test

particles are massless. Although this result shows a partial success of the mechanism, it may

also indicate the necessity of considering another framework in order to produce the correct

four-dimensional gravity. If such a new framework is actually found, we can get deep understat-

ing between the matrix model and gravity. As the most promising candidate, we will consider

the operator interpretation in the later chapters.

3.1 A brief review of emergent gravity in the NC interpretation

Before going into the calculation of the scattering amplitude, let us briefly review the emergent

gravity scenario starting from the matrix model with noncommutative interpretation. We

consider the following action:

S = SIIB + SΦ

= −Tr

(
(2π)2

4Λ4
[Aa, Ab]

2

)
− (2π)2

g2Λ4
Tr

(
1

2
[Aa,Φ]2

)
= −Tr

(
(2π)2

4Λ4
δacδbd[Aa, Ab][Ac, Ad]

)
− (2π)2

g2Λ4
Tr

(
1

2
δab[Aa,Φ][Ab,Φ]

)
(3.1)

where SIIB is the bosonic part of the IIB matrix model, with indices running as a = 1, · · · , 10.3

Λ represents a cut-off scale, and Pa and Φ are N ×N hermitian matrices. Note that δab stands

for the ten-dimensional flat metric. In the following discussion, we consider fluctuations around

a specific background P̄a. We interpret P̄a as the derivatives with respect to the coordinate.

This is called the momentum interpretation of the matrix model. In this model, P̄a’s are

determined by the classical equation of motion:

[
Ab, [Ab, Aa]

]
+ [Φ, [Aa,Φ]] = 0. (3.2)

Among the various solutions, we consider the following one that gives the four dimensional NC

spacetime:

[P̄µ, P̄ν ] = iΛ2
NC × θ̃µν1 (µ, ν = 1, · · · , 4),

P̄i = 0 (i = 5, · · · , 10), Φ = 0, (3.3)

where θ̃µν is an antisymmetric dimensionless constant, and ΛNC is a NC scale. This is the

well-known noncommutative geometry called the 4D Moyal-Weyl plane R4
θ. By considering the

3From now on, we re-label the vector indices by latin letters.
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fluctuation around the solution as Aµ → Pµ + Aµ, and using the well-known correspondence

between matrix and function on the NC spacetime [52], the action takes the form

S = −Tr

(
(2π)2

4Λ4
δµαδνβ [P̄µ +Aµ, P̄ν +Aν ][P̄α +Aα, P̄β +Aβ]

)
− (2π)2

g2Λ4
Tr

(
1

2
δµν [P̄µ +Aµ,Φ][P̄ν +Aν ,Φ]

)
=

Λ4
NC

Λ4

{
1

4
Nθ̃µν θ̃µν +

1

4

∫
d4x

√
|θ̃|
(
δµνδαβFµαFνβ

)
?

+
1

2g2

∫
d4x

√
|θ̃|δµν

(
(∂µΦ− i[Aµ,Φ]) (∂νΦ− i[Aν ,Φ])

)
?

}
, (3.4)

where we have neglected the fluctuation of Pi’s (i = 5, · · · 10,) for simplicity. Here, θ̃ = det(θ̃µν),

Fµν = ∂µAν − ∂νAµ−i
[
Aµ, Aν

]
?
, and ? represents the Moyal product defined by

(f ? g)(x) = exp

(
i

2
Λ−2

NCθ
µν∂(y)

µ ∂(z)
ν

)
f(y)g(z)

∣∣∣∣
y=z=x

, (3.5)

where θµν = (θ̃−1)µν . Furthermore, note that we can always eliminate (Λ4
NC/Λ

4)|θ̃|1/2 by the

field redefinition Φ → (Λ2/Λ2
NC)|θ̃|−1/4Φ in the last term of Eq.(3.4). The above argument is

the usual interpretation of the matrix model as NC field theory. On the other hand, it was

also argued that Aµ can be interpreted as the fluctuation of the four dimensional spacetime

metric in the semi-classical limit [55–57]. Here, ‘semi-classical’ means that we should keep

the lowest order terms in Λ−2
NCθ

µν , and neglect higher order terms. In this approximation,

noncommutativity gets switched off, and commutator turns into the Poisson bracket as

[f, g]? ∼ i{f, g}, {f, g} ≡ Λ−2
NC × θµν∂µf∂νg. (3.6)

Then, Eq.(3.4) now becomes

S

∣∣∣∣
semi

=
Λ4

NC

4Λ4

∫
d4x

√
|θ̃| (

√
|G|Gµν)θ̃µαθ̃νβ(

√
|G|Gαβ) +

∫
d4x

1

2g2

√
|G|Gµν∂µΦ∂νΦ, (3.7)

where

√
|G|Gµν = δµν+Λ−2

NC × (θαµ∂αA
ν + θαν∂αA

µ) + Λ−4
NC ×O(A2), (3.8)

From this we can read the fluctuation of the metric hµν = −(Gµν − δµν) as

hµν =Λ−2
NC ×

(
θµα∂αA

ν + θνα∂αA
µ +

1

2
δµνθαβFαβ

)
+ Λ−4

NC ×O(A2) (3.9)
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Figure 3.1: One-loop diagrams needed for the computation of the effective action of the NC U(1)
gauge field. (Source: [43], doi:10.1093/ptep/ptx036)

In the following analysis, we investigate the dynamics of Aµ which is quadratic in the effec-

tive action. In this sense, the O(A2) terms in hµν are not necessarily as long as we expand

the Einstein-Hilbert (EH) action at the linearized level because such terms give higher order

contributions.4 From the above equations, one can actually see that Φ couples to Aµ in the

covariant way, and that Aµ can be interpreted as the fluctuation of the metric. On the other

hand, as for the bosonic part of IIB matrix model, its semi-classical action cannot be written in

a covariant way. (See the first term in Eq.(3.7).) Although this is a big problem in the present

formulation of emergent gravity, we simply drop the term in the following discussion. In other

words, we will focus on the matrix model which does not contain F 2
µν ∼ [Pµ, Pν ]2 term. Then

as we will see below(3.14), such a term is not induced by the quantum correction due to the

noncommutativity.

Although we have found that the U(1) gauge field can be understood as the fluctuation

of the metric, we have not yet obtained the action for it. It was claimed that it is given by

the induced EH action by considering the one-loop effective action of Aµ in the semi-classical

limit [23].5 By calculating the scalar one-loop diagrams (Fig.3.1), we obtain the effective action

of Aµ as a NC field theory [23]:6

e−ΓΦ =

∫
DΦe−S

∣∣
1-loop without IIB action

, (3.11)

ΓΦ =− 1

32π2g2

∫
d4p

(2π)4

[
−1

6
Fµν(p)Fµν(−p) log

(
Λ2

Λ2
eff

)
4On the other hand, the O(A2) terms in hµν are necessarily when we expand the cosmological constant term.
5Here, note that there exist two ways of obtaining such a semi-classical limit: One is to take the semi-classical

limit after calculating the one-loop effective action as a NC field theory. The other is to take first the semi-
classical limit at the tree-level action, and calculate the effective action as an ordinary field theory. However, we
have checked that both of the approaches produce the same result.

6In this reference, calculation was done by adding the mass term for the scalar as a regulator, and then taking
the massless limit. Furthermore, the following replacement is used as a regularization of the loop integral:∫

d4p

(2π)4

f(p)

[p2 +42]2
→

∫ ∞
0

dαα

∫
d4p

(2π)4
f(p)e−α(p2+42)−1/(αΛ2). (3.10)

Therefore, to maintain the consistency, we also use this regularization scheme in the following calculation.
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+
1

4
θµνFµν(p)θλρFλρ(−p)

(
Λ4

eff −
1

6
p2Λ2

eff +
(p2)2

1800

(
47− 30 log

(
p2

Λ2
eff

)))]
,

(3.12)

where Λ−2
eff = Λ−2 + p̃2/(4Λ4

NC), p̃µ = θµνpν , and Λ is the cutoff momentum for loop integral.

We suppose p̃2 and p2 are the same scale, since θµν is dimentionless and expected to be O(1).

When we focus on the IR regime,

p2Λ2

Λ4
NC

< 1, (3.13)

Eq.(3.12) can be expanded as

ΓΦ ∼−
1

32π2g2

∫
d4p

(2π4)

[
Λ4

4Λ4
NC

θµνFµν(p)θλρFλρ(−p)−
Λ4

Λ4
NC

Λ2

8Λ4
NC

p̃2θµνFµν(p)θλρFλρ(−p)

− Λ2

24Λ4
NC

(
Fµν(p)Fµν(−p)p̃2 + θµνFµν(p)θλρFλρ(−p)p2

)]
=− 1

32π2g2

∫
d4x

[
Λ4

4Λ4
NC

θµνFµνθ
λρFλρ +

Λ4

Λ4
NC

Λ2

8Λ4
NC

θµνFµν(∂ ◦ ∂)θλρFλρ

+
Λ2

24Λ4
NC

(
Fµν(∂ ◦ ∂)Fµν + θµνFµν2θ

λρFλρ

)]
,

(3.14)

where ∂ ◦ ∂ = θµαθνβδαβ∂µ∂ν , and 2 = δµν∂µ∂ν . This result should be compared with the EH

action with the cosmological constant term where the metric is given by Eq.(3.9):

SG =
1

16π2

∫
d4x
√
|G|
(
−1

2
Λ4 − Λ2

12
R[G]

)
∼ − 1

32π2g2

∫
d4x

[
Λ4

4Λ4
NC

θµνFµνθ
λρFλρ +

Λ2

24Λ4
NC

Fµν∂ ◦ ∂Fµν
]
, (3.15)

where we have extracted the quadratic part in Aµ and rescaled it as Aµ → Aµ/g. From

Eq.(3.15), one can see that the terms θµνFµν2θ
λρFλρ and θµνFµν(∂ ◦∂)θλρFλρ in Eq.(3.14) are

absent in Eq.(3.15). The latter is, however, a higher-order term in (Λ/ΛNC)4. Here we consider

the effects of the noncommutativity in its lowest order. In other words, we assume that ΛNC is

larger than the cut-off momentum Λ and we shall neglect this term in the following discussion.7

The above mismatch between Eqs.(3.14) and (3.15) originates in the path-integral measure: In

the NC theory, it is induced from the flat metric in the functional space of Φ.

||δΦ||2 =

∫
d4x δΦ(x)2, (3.16)

and this apparently violates the diffeomorphism invariance. If we use the diffeomorphism

7The following analysis works in parallel and gives qualitatively the same result even if we take this term
into account.
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transformation

xµ → yµ = xµ − θµνAν , (3.17)

which is not realized in the NC U(1) gauge theory, we can make hµν traceless in the leading-

order in Aµ. In such coordinates, the one-loop effective action indeed matches the EH action.

See Appendix B for the details.

In spite of the mismatch, the similarity between Eq.(3.14) and Eq.(3.15) is impressive, and

it is meaningful to study whether the NC U(1) gauge theory can actually describe the real

gravity. In the following, we in particular consider the amplitude of the graviton exchange

between two scalars.

3.2 Does noncommutative U(1) gauge field actually describe

gravity ?

As a first step, we compute the two-body scattering amplitude of the scalar particles exchanging

the U(1) gauge field whose action is given by Eq.(3.14). In the following discussion, we put

32π2g2 = 1 for simplicity, and drop the first term in Eq.(3.14) because it corresponds to the

cosmological constant (CC) term, which we assume to be canceled by some mechanism. Adding

a gauge fixing term and rewriting them in terms of Aµ, we have

ΓΦ

∣∣
O(Λ2) without CC term

+
1

α

∫
d4p

(2π)4

Λ2

12Λ4
NC

p̃2pµAµ(p)pνAν(−p)

=
Λ2

12Λ4
NC

∫
d4p

(2π)4
Aµ(p)

[
p̃2
(
p2δµν −

(
1− 1

α

)
pµpν

)
+ 2p2p̃µp̃ν

]
Aν(−p),

(3.18)

where α represents the gauge freedom. From this, one can read off the propagator of Aµ as

Dµν(p) =
6Λ4

NC

Λ2

1

p̃2p2

[
δµν − (1− α)

pµpν
p2
− 2

3

p̃µp̃ν
p̃2

]
. (3.19)

Supposing Aµ to propagate with Eq.(3.19) , the two-body scattering amplitude of the scalar

can be calculated in the semi-classical approximation. In the following discussion, we take the

Feynman gauge α = 1. From Eqs.(3.7) and (3.8) we can read the interaction between Φ and

Aµ as

LInt = Λ−2
NC × θαµ∂αAν∂µΦ∂νΦ (3.20)

from which we can read the vertex as
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Figure 3.2: A scattering of test particles exchanging the U(1) filed or graviton. In the for-
mer case, we read its propagator from the one-loop effective action Eq.(3.14). (Source: [43],
doi:10.1093/ptep/ptx036)

= iΛ−2
NC ×

[
pµ(q · k̃) + qµ(p · k̃)

]
. (3.21)

We can now compute the two-body scattering amplitude (see Fig.3.2). Along with on-shell

conditions for the scalar

p2 = q2 = 0, (p+ k)2 = p2, (q − k)2 = q2, (3.22)

we obtain

MA =
6

Λ2

1

k2

(p · k̃)(q · k̃)

k̃2

[
(4p · q + k2)− 8

3

(p · k̃)(q · k̃)

k̃2

]
+ (s channel) + (u channel). (3.23)

This should be compared with the scattering amplitude calculated from the ordinary gravity

system:

S =SG + Sgf + SΦ, (3.24)

SG =
1

2GN

∫
d4x
√
|(δ + h)|R[δ + h]

∣∣∣
quadratic part inh

,

=

∫
d4x

[
1

8
∂λhµν∂

λhµν − 1

4
∂µhµν∂λh

λν +
1

4
∂µhµν∂

νh− 1

8
∂µh∂

µh

]
, (3.25)

Sgf =
1

4

∫
d4x

(
∂νhµν −

1

2
∂µh

)(
∂λhµ λ −

1

2
∂µh

)
, (3.26)

SΦ =

∫
d4x
√
|(δ + h)|

[
1

2
(δµν − hµν)∂µΦ∂νΦ

]∣∣∣∣
0th and 1st order of h

=

∫
d4x

[
1

2
∂µΦ∂µΦ− 1

2
hµν∂µΦ∂νΦ +

1

4
h∂µΦ∂µΦ

]
, (3.27)

where the graviton is gauge-fixed in the de Donder gauge (harmonic gauge) which leads to the
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following propagator of graviton:

D
(h)
µνλρ(k) =

2

k2
(δµλδνρ + δµρδνλ − δµνδλρ). (3.28)

From the straightforward calculation, we obtain

MG = 2GN

(
2(p · q)2

k2
+ p · q

)
+ (s↔ t) + (t↔ u) = −GN

(
su

t
+
tu

s
+
ts

u

)
, (3.29)

where s, t and u are the Mandelstam variables. This does not match Eq.(3.23) although both

of them lead to the inverse-square law. In particular, θµν explicitly remains in Eq.(3.23), and

we need some mechanism to eliminate it. Because θµν is a moduli parameter which specifies

the classical solution, it is natural to take a kind of average over it. For example, let us consider

the average over the direction of θµν with the ‘absolute value of θµν ’ being fixed:

θµαθνβδαβ = δµν . (3.30)

We assume that θµν distributes in the Lorentz covariant manner:

θµν → θµνM = Mµ
αM

ν
βθ

αβ, (3.31)

where Mµ
α is an element of SO(4). This is compatible with the assumption (3.30). Then the

average over the direction of θµν yields Lorentz covariant quantities:∫
SO(4)

dM θµνM θλρM =
1

3
(δµλδνρ − δµρδνλ) ≡ 1

3
∆µνλρ,∫

SO(4)
dM θµνM θλρM θ

αβ
M θγδM = − 1

27
(∆µνλρ∆αβγδ + ∆µναβ∆λργδ + ∆µνγδ∆λραβ)

+
1

9

{
(δνλδραδβγδδµ + δναδβγδδλδρµ + δνγδδλδραδβµ)

+ [µν][λρ][αβ][γδ]
}
, (3.32)

where dM denotes the Haar measure of SO(4), and [µν][λρ][αβ][γδ] represents the antisym-

metrized terms of the first one with respect to the superscripts in each of the brackets. Here the

coefficients in the right hand side (RHS) of Eq.(3.32) are determined so that they are consistent

with Eq.(3.30). After taking such an average, Eq.(3.23) now becomes

MA =
2

Λ2

[
52

27

1

k2
2(p · q)2 +

14

27
p · q +

1

36
k2

]
+ (s↔ t) + (t↔ u)

= − 52

27Λ2

(
su

t
+
tu

s
+
st

u

)
, (3.33)

which correctly reproduces Eq.(3.29).
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Therefore, if θµν is appropriately averaged as Eq.(3.32), the scattering amplitude in the

induced gravity scenario coincides with that of the ordinary gravity. The question is the

meaning and validity of averaging θµν . In the analysis above, we first calculated the amplitude

with a fixed θµν and then averaged over its direction. On the other hand, turning back to the

matrix model, θµν is determined by the commutator of matrices, and the path integral over

them naturally includes the integration over θµν as a fundamental variable. In the language of

NC field theory, this implies that θµν could have independent fluctuation, and that the average

over θµν corresponds to the integral over θµν :

Z =

∫
dθf(θ)

∫
DA

∫
DΦ exp (−S) , (3.34)

where f(θ) is some weight function. In order to justify this picture, it is necessary to check

whether the average as Eq.(3.32) can actually produce the correct results in other scattering

processes of gravity.

Further investigation is needed on the treatment of θµν , with the emphasis on its degrees of

freedom. For example, lifting θµν as an independent field is attractive in the aspect of degrees of

freedom. It is possible to compensate the discrepancy between the off-shell degrees of freedom of

the NC U(1) gauge field and the ordinary gravity, because θµν has six independent components.

We can also consider a new matrix model or novel interpretation of matrix variables in which

gravity does not necessarily come from the noncommutativity [27] [61].

3.3 Summarizing remark

We have investigated the emergent gravity scenario by examining the two-body scattering of

the scalar particles exchanging the NC U(1) gauge field. As long as we take Eq.(3.23) literally,

the fundamental force acting between test particles looks somewhat different from that of the

ordinary gravity, although the NC U(1) gauge field can be viewed as the metric fluctuation.

However, once we take the average over the direction of θµν , the resulting amplitude matches

that of ordinary gravity. The origin of the averaging procedure can be attributed to the path

integral of the matrices in the matrix model.

On the other hand, the mechanism discussed in this chapter is somewhat awkward because

we do not have manifest diffeomorphism invariance in the model. What we have done is that we

break that invariance and Lorentz invariance by introducing the noncommutativity, and then

integrate them out. If such a procedure correctly described gravity, it is natural to expect the

existence of more straightforward description, where the system is seen at least isotropic from

the beginning. In the next Chapter, we will introduce a promising treatment of the matrix

model which meets such a insight.



Chapter 4

The Operator Interpretation of the

Matrix Model

From this chapter, we focus on a special interpretation of the matrix model, namely the op-

erator interpretation. Among the many interpretations, the distinctive feature of the operator

interpretation is that the unitary symmetry of the matrix model is translated into the sym-

metries including the diffeomorphism and local Lorentz symmetries. Because there is a belief

that the two symmetries is closely associated to the off-shell DoF of graviton and is essential

to describing gravity, we can expect that the matrix model with the operator interpretation

reproduces gravitational and spacetime physics. In this chapter, we introduce the interpreta-

tion and briefly review the advantages of it. Note that, in this and subsequent two chapters,

we mainly focus on the bosonic sector of the IIB matrix model.

4.1 The operator interpretation

In the momentum interpretation, we assume that matrices contains the information of the

spacetime in the form of momenta. Roughly speaking, there we interpret matrices as first-

order derivative operators:

Aa ∼ i∂a + aa(x). (4.1)

These act on some functional space, the elements of which is defined on the flat spacetime. One

can make such identification in the large-N limit. We shall generalize this treatment. Consider

the general linear operator acting on the smooth functional space C∞(Rd,C), which consists

of functions living in the d− dimensional flat spacetime. When we regard a matrices as such a

operator, it is represented as a integral kernel or a bi-linear field. Furthermore, it is formally
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expanded in terms of local quantity and is written as a infinite-order derivative operator:

Aa : f(x) 7→ (Aa · f)(x) =

∫
ddyKa(x, y)f(y)

∼ aa(x)f(x) + aµa(x)∂µf(x) + aµνa (x)∂µ∂νf(x) + · · · (4.2)

Intuitively, the first term in Eq.(4.2) corresponds to the diagonal element of the matrix, and

the terms with higher derivatives can be read as the matrix elements farther from the diagonal

ones. Each coefficient field should be regarded as the field living on the d−dimensional flat

space.

Before lifting the functional space to the one defined on curved spacetimes, we see how the

diffeo-invariance and spacetime emerge in the matrix model. The fundamental DoF in the IIB

matrix model is hermitian operators, a matrix are expanded as

Aa = aa(x) +
i

2
{aµa(x), ∂µ}+

i2

2
{a(µν)

a (x), ∂µ∂ν}+ · · · . (4.3)

Here, {·, ·} is the anticommutators and aµν···a is a tensor field with the Greek indices symmetric.

The original U(N) symmetry in Eq.(2.25) is written as

δAa = [Λ, Aa], Λ : hermitian matrix. (4.4)

In the operator interpretation, Λ is expanded as a derivative operator as well as Aa:

Λ = λ(x) +
i

2
{λµ(x), ∂µ}+

i2

2
{λµν(x), ∂µ∂ν}+ · · · . (4.5)

In the special case where we take the gauge parameter as Λ = i
2{λµ, ∂µ}, the transformation

law for each coefficient field in Eq.((4.4)) is

δaa(x) = −λµ∂µaa(x),

δaµa(x) = −λν∂νaµa(x) + aνa(x)∂νλ
µ,

... (4.6)

This is nothing but the diffeomorphism transformation. On the other hand, such unitary

transformation has no influence on the ten-dimensional index a, that the matrix originally has.

One can re-treat it as the index associated to the local Lorentz transformation, which emerges

from the Lorentz symmetry of Eq.(2.25). These symmetries imply that aµa(x) is the vielbein.

While we have assumed that the functional space is defined on the flat spacetime, the

spacetime is in turn identified as a classical solution of the model. Consider the following
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solution of the EoM:

Aa =

 iδµa∂µ (a = 1, · · · , d),

0 (a = d+ 1, · · · , 10)
, Ψ = 0. (4.7)

This means that aµa(x) = δµa (a = 1, · · · , d), and that the fluctuation around it is equivalent to

the large-N reduction of the Yang-Mills theory. Thus the solution represents the d−dimensional

flat spacetime. This situation is similar to the general relativity. the EH action is defined the

integral of the curvature over some curved spacetime, which is determined (at least when one

consider the on-shell structure) through its EoM.

In order to reproduce curved spacetimes in from the matrix model, it might be a natural

generalization to replace the derivatives with the covariant ones in the matrices:

Aa = aa(x) +
i

2
{aµa(x),∇µ}+

i2

2
{aµνa (x),∇µ∇ν}+ · · · , (4.8)

∇µ = ∂µ + ωbcµ Obc. (4.9)

Here ωbcµ is the spin connection and Obc is the Lorentz generator, whose representation depends

on that of the function it acts on.

There are two difficulties in the above naive generalization. One is involved with the defi-

nition of tensor operators, including vectors. A tensor living in the curved manifold is defined

on each local patch, in a way that the locally-defined quantities are glued by the transition

function in the overlap regions of the patches. Since the gluing mixes all the components of

the tensor, we can state that they are simultaneously defined consistently to form a single

object, a tensor. On the other hand, each component of the matrices in the matrix model is

independently well-defined. Thus there is the gap between an operator and a set of matri-

ces. Related to this problem, the second problem is that the discrepancy of the multiplication

rule for matrices and covariant derivatives. For example, the product of the first and second

components of the covariant derivatives gives

∇1∇2 = ∂1∇2 + ω2c
1 ∇c. (4.10)

It contains all the components. As for the matrices, A1 ·A2 does not contains A3, A4 and so on,

of course. Eq.(4.10) comes from the fact that ∇a is a vector operators and hence is not closed

on a functional space of a specific representation. This point is discussed in the next section.

These difficulties tell us that we cannot regard a matrices naively as a derivative operator,

Aa ∼ aµa∇µ for example.
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4.2 Dressed derivative operators on curved spacetimes

In fact, the obstacles to generalization mentioned above are resolved by the extending the

functional space.

In general, a field living on the d−dimensional spacetime belongs to the irreducible rep-

resentation of the Lorentz group, Spin(d) or Spinc(d).1 Consider the space that consists of

the whole configurations of fields in the r−representation. This is the set of sections of a fiber

bundle, whose bottom is the spacetimeM and whose fiber is the r−representation space Vr of

the Lorentz group. The structure group of the fiber is Spin(d). We represent the fiber bundle

and its section as Er and Γ(Er), respectively. An action of the covariant derivative on that

space changes the representation:

∇a : Γ(Er) −→ Γ(T ⊗ Er), (4.11)

where T is the tangent bundle on the spacetime. Apparently, the action of the covariant

derivative (more generally, any tensor operator) cannot be closed in the space of a specific

representation.

However, this is not the case when we take the regular representation for r.

The regular representation of a group G is defined as action of G over G itself. Its repre-

sentation space is described as the functional space living in the group:

Vreg ≡ {f(g)|f : G −→ C}, (4.12)

h ∈ G, then (h · f)(g) ≡ f(h−1g). (4.13)

This representation contains the entire information of the group. The interesting feature of it

is that its tensor product with an arbitrary irreducible representation is decomposed into the

direct summation of regular representations:

Vr ⊗ Vreg ' Vreg ⊕ · · · ⊕ Vreg. (4.14)

Here the number of Vreg in the RHS is equal to dim(Vr). This relation means that an element of

Vr ⊗ Vreg can be write with dim(Vr) elements of Vreg by some diagonalization. More explicitly,

suppose fi(g) ∈ Vr ⊗ Vreg and i is the index for r−representation. This element transforms by

the action of h ∈ G as

fi(g)→ (h · f)i(g) = R
〈r〉j
i (h)fj(h

−1g), (4.15)

where R
〈r〉j
i (h) is the matrix element of h in r−representaion. The isomorphism Eq.(4.14) is

1We have to consider Spinc(d) in the case the spacetime does not have the spin structure.
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obtained by considering the following element:

f(i)(g) ≡ R〈r〉j(i)(g−1)fj(g). (4.16)

This indeed has one-to-one correspondence to fi(g), and transforms as

f(i)(g)→ (h · f)(i)(g) = R
〈r〉j
(i)(g−1)(h · f)j(g)

= R
〈r〉j
(i)(g−1)R

〈r〉k
j (h)fk(h

−1g)

= R
〈r〉j
(i)((h−1g)−1)fj(h

−1g)

= f(i)(h
−1g). (4.17)

Although the index (i) is for the representation matrix, it gets no influence from the above

transformation. It is merely a label for the diagonalized elements. In the following the paren-

thesis of an index shows that the index is a mere label and does not mix under the Lorentz

transformation.

Such a exceptional feature of the regular representation is equipped to Γ(Ereg) as well.

Assuming that the spacetime M is covered by the local patches {Ui}, elements of Γ(Ereg) is

first defined locally as a map Ui ×G → C. Next they are consistently glued together in the

overlapping region:

f [i] : Ui ×G −→ C f [j] : Ui ×G −→ C,

x ∈ Ui ∩ Uj then f [i](x, g) = f [j](x, tijg). (4.18)

Here tij(x) is the transition function. Therefore, There is an isomorphism involving Γ(Ereg)

and an arbitrary fiber bundle Er, corresponding to Eq.(4.14):

Γ(Er ⊗ Ereg) ' Γ(Ereg)⊕ · · · ⊕ Γ(Ereg). (4.19)

In terms of elements, This isomorphism is given by

f
[i]
(k)(x, g) = R

〈r〉 l
(k) f

[i]
l (x, g). (4.20)

By combining Eqs.(4.11), (4.19) and (4.20), one can see that the action of the following operator

is closed (at least locally) on Γ(Ereg):

∇(a) ≡ R〈V〉 b(a) (g−1)∇b ∈ End(Γ(Ereg)). (4.21)

Here, R
〈V〉 b
(a) (g−1) is the matrix element of g−1 in the vector representation. ∇(a) is a scalar

operator in a sense. It is seen by checking its definition. First, the ordinary covariant derivative
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operator ∇a is glued on the overlap of the patches x ∈ Ui ∩ Uj as

∇[i]
a = R〈V〉 ba (tij(x))∇[j]

b . (4.22)

Then the gluing of ∇(a) is traced as

∇[i]
(a) = R

〈V〉 b
(a) (g−1)∇[i]

b

= R
〈V〉 b
(a) (g−1)R

〈V〉 c
b (tij(x))∇[j]

c

= R
〈V〉 b
(a) ((tij(x)g)−1)∇[j]

b

= ∇[j]
(a). (4.23)

This tells that each component of ∇(a) is independently and globally defined.

As above, we have defined the “dressed” operator ∇(a) = R
〈V〉 b
(a) (g−1)∇b, which circumvent

the two difficulty mentioned in the previous section. Note that it is defined on Γ(Ereg). In fact,

there is a isomorphism between this and the principal fiber bundle Eprin:

Γ(Ereg) ' C∞(Eprin). (4.24)

This relation is shown from the fact that Eprin is locally equivalent to Ui×G, and that functions

from Eprin to C obey the same gluing rule Eq.(4.18) as elements of Γ(Ereg). Moreover, one can

show the hermicity of i∇(a) on this space. While we have constructed ∇(a) on Γ(Ereg), it is

naturally lifted to a dressed operator acting on Γ(Er ⊗ Ereg) by Eq.(4.19):

∇̂(a) : Γ(Er ⊗ Ereg) 3 fi(x, g) 7−→ R
〈r〉(j)
i (g)∇(a)f(j)(x, g) ∈ Γ(Er ⊗ Ereg). (4.25)

The above discussion is applicable to any tensor operator. That is, we can always obtain from

a tensor operator the corresponding scalar operator on C∞(Eprin), by dressing its indices with

the matrix elements. We can interpret the matrices Aa in the IIB matrix model as the dressed

operators A(a) on C∞(Eprin) with G = Spin(d). It is expanded as a seriese of ∇(a).

The explicit components of ∇(a) are

∇(a)f(x, g) = R
〈V〉 b
(a) (g−1)eµb (x)

(
∂µ + ωcdµ (x)Ocd − iãµ(x)

)
f(x, g). (4.26)

Here, we can identify eµb (x) to the vielbein, ωcdµ to the spin connection, and ãµ(x) to the U(1)

gauge field. The Lorentz gengerator Ocd is defined on C∞(Eprin) by the following operation:

iεabOabf(x, g) ≡ f(x, (1 + iεabMab)
−1g)− f(x, g), (4.27)

wehre Mab is the Lorentz generator in the fundamental representation.
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4.3 Emergence of curved spacetime

From the standpoint that the matrices is interpreted as the operator on C∞(Eprin) ' Γ(Ereg),

The action of the IIB matrix model should be written as below:

S =
1

g2
Tr

(
−1

4
[A(a), A(b)][A(c), A(d)]δ

(a)(c)δ(b)(d) − i

2
Ψ̄(α)(Γ(a))

(β)
(α) [A(a),Ψ(β)]

)
, (4.28)

Here (a), (b) = 1, · · · , 10 and (α), (β) = 1, · · · , 16. By using the matrix elements of Spin(10)

in the vector and spinor representation, R〈V〉 and R〈S〉, two operators

Aa = R〈V〉(b)a (g)A(b),

Ψα = R〈S〉(β)
α (g)Ψ(β) (4.29)

are maps from Γ(Ereg) to Γ(T ⊗Ereg) and froom Γ(Ereg) to Γ(S⊗Ereg) (S is the spin bundle),

respectively.

Since the operation of A(a) and Ψ(α) is closed, we can define their products. In particular,

the dressed operators are lifted to elements of End(Γ(Er ⊗ Ereg)) in a way that it commutes

the (un)dressing. In other words, the following equation holds:

A(a)A(b)A(c) · · · = R
〈V〉 a′
(a) (g−1)R

〈V〉 b′
(b) (g−1)R

〈V〉 c′
(c) (g−1)Aa′Ab′Ac′ · · · (4.30)

A(a) in the LHS is the lifted one. Aa′ in the RHS have influence on the indices b′, c′, · · · of the

function, similarly to the ordinary covariant derivative. The same discussion holds on Ψ(α) and

Ψα′ . With this lift and the orthogonality of the representation matrix R〈r〉TR〈r〉 = 1, Eq.(4.28)

is written as the followings:

S =
1

g2
Tr

(
−1

4
[Aa, Ab][Ac, Ad]δ

acδbd +
1

2
Ψ̄α(Γa) β

α [Aa,Ψβ]

)
. (4.31)

Apparently, its form is completely the same as Eq.(4.28). However, Aa and Ψα in Eq.(4.31) is

no longer matrices; they and fields from their expansion do not obey the ordinary multiplication

rule.

As a first step to study Eq.(4.31), we analyze its EoM. For simplicity, we drop the fermionic

DoF or set the classical solution with Ψ = 0. The EoM is then given by

[A(a), [A(a), A(b)]] = 0. (4.32)

This is equivalent to

[Aa, [Aa, Ab]] = 0 (4.33)
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due to the definition of the lift. We solve it with the following ansatz:

Aa = i∇a = ieµa(x)
(
∂µ + ωbcµ (x)Obc − iãµ(x)

)
. (4.34)

When we substitute this form to the LHS of Eq.(4.33), it is calculated as

[∇a, [∇a,∇b]] = [∇a, R cd
ab Ocd − ifab]

= [∇a, R cd
ab ]Ocd +R cd

ab [∇a,Ocd]− i[∇a, fab]

= (∇aR cd
ab )Ocd −R cd

ab

1

2
(δca∇d − δda∇c)− i(∇afab)

= −2(∇dRcb)Ocd −R a
b ∇a − i(∇afab)]. (4.35)

Here, we have used the Bianchi identity ∇(aRbc
de) = 0 so as to move from the third line to the

forth line.2 The condition for Eq.(4.35) to vanish is

Rab = 0, ∇afab = 0. (4.36)

Therefore, the EoM includes the Einstein equation with vanishing energy-momentum tensor,

and the Maxwell equation for the U(1) gauge field. Note that the solutions of the first equation

of Eqs.(4.36) is the vacuum spacetimes. They contains no back-reaction from the gauge field.

The first equation should have contain the energy-momentum tensor of the gauge field. This

mismatch is understood as below. While we have consider the classical solution, the dynamical

variables eµa , ωbcµ and aµ acquire the loop correction in their behavior. The exact EoM is

Eqs.(4.36) with such corrections added, and the additional terms are expected to be propotional

to powers of some dimensionfull parameter. For example, If it is the string scale, then the EoM

is expected to take the form of

Rab −
1

2
δabR = α′

(
f c
a fbc −

1

4
δabfcdf

cd

)
, ∇afab = α′ (· · · ) . (4.37)

Recalling that in string theory α′−expansion is loop expansion in the world-sheet theory, The

above observation might perhaps be a clue to investigate the connection between the matrix

model and string theory.

The treatment we have constructed so far is applicable to general zero-dimensional matrix

model. For example, consider the model with the following action:

S =
1

g2
Tr

(
−1

4
[A(a), A(b)][A

(a), A(b)] +
m2

2
A(a)A

(a)

)
. (4.38)

2Parenthesis for several indices stands for the symmetrization: X(a1a2···an) ≡ (Xa1...an +
all permutation terms)/n!. On the other hand, square bracket represents the antismmetrization.
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The EoM from it is

[A(a), [A(a), A(b)]] +m2A(b) = 0. (4.39)

By substituting Eq.(4.34), it turns into

Rab = −2m2δab, ∇afab = 0. (4.40)

As a solution of these eauations, we obtain the maximally-symmetric spacetime with the

cosmological constant Λ = −(d − 2)m2. Even though the indices originally run from 0

to 9, we can obtain d-dimensional spacetime with 1 ≤ d ≤ 9 by considering the ansatz

A(a) = 0 ((a) = d+ 1, · · · , 10).

When we consider the fluctuation around a spacetime of classical solution, it can be seen as

local fields living on that background. Here we have to be careful in expanding a matrix. Since

it is an operator acting on C∞(Eprin), we have to take into account the expansion with respect

to the derivatives in the fiber-directions, in addition to the spacetime-directions. A derivative

with respect to the fiber coordinates g ∈ G is a Lorentz generator Oab. The expansion of the

matrix is shown by the following equations: ∇(a)

Aa = âa(x, g) +
i

2
{â b

a (x, g),∇b}+
i2

2
{â bc

a (x, g),∇b∇c}+ · · · , (4.41)

where

âa(x, g) = a(0)a(x, g) +
i

2
{a bc

(1)a (x, g),Obc}+
i2

2
{a bc,de

(2)a (x, g),ObcOde}+ · · · ,

â b
a (x, g) = a b

(0)a (x, g) +
i

2
{a b,cd

(1)a (x, g),Ocd}+
i2

2
{a b,cd,ef

(2)a (x, g)OcdOef}+ · · · .
... (4.42)

As for the indices of each field, those contracted with ∇a are symmetric. As well, pairs of

indices contracted with Oab are symmetric. It is easy to see that the expansion Eq.(4.41) is

background-independent, i.e. it is well-defined without specification of the spacetime where

the covariant derivative is defined. When we write the operator as3

Aa = âa + â b
a ∇b + · · · (4.43)

Rewriting the second term on another background, (e′bµ , ω
′bc
µ ) gives4

â b
a ∇b = â b

a e
µ
b

(
∂µ + ωbcµ Obc

)
3we neglect hermicity for simplicity.
4Now we take G = Spin(d), and set to zero the U(1) gauge field.
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= â µ
a

(
∂µ + ωbcµ Obc

)
= â′µa

(
∂µ + ω′bcµ Obc

)
+ â′µa δω

bc
µ Obc

= â′µa ∇′µ + â′ba e
′µ
b δω

′bc
µ Obc, (4.44)

with δωbcµ = ωbcµ −ω′bcµ . Although there appear some extra term, it can be absorbed into redef-

inition of a′ bc
(1)a , a′ bc,de

′(2)a , · · · , that consists in the expansion with respect to Oab Eq.(4.42).

The operator on the new background written as

Aa = â′a + â′ba∇′b.+ · · · (4.45)

This represents the background-independence of Eq.(4.41).

In the above expansion Eq.(4.41) and Eq.(4.42), the coefficient fields belong to the regu-

lar representation of the Lorentz group. They are further expanded into all the irreducible

representations according to Peter-Weyl theorem:5

a(0)a(x, g) =
∑

r : irr.rep.

R
〈r〉j
i (g) a

〈r〉 i
(0)a, j(x),

... (4.46)

To summarize, an operator Aa is triply expanded into infinite series, and it contains numerous

DoF of local fields. Since this fact makes analysis difficult, it is required to reduce those DoF

under some assumption. Below we briefly discuss the symmetries of several fields by restricting

them to zero modes in the expansion Eq.(4.46).6

The unitary symmetry of the model is

δA(a) = i[Λ, A(a)], δΨ(α) = i[Λ,Ψ(α)], (4.47)

or equivalently,

δAa = i[Λ, Aa], δΨα = i[Λ,Ψα]. (4.48)

We can also expand Λ as Eqs.(4.41) and (4.42). In terms of the coeeficient fields, it exhibits

very large symmetry. As a part of it, with the choice of the gauge parameter as Λ λ(x), the

5Peter-Weyl theorem itself is applicable to the case of compact groups. However, its generalization to locally-
compact group is possible.

6In [27], the authors required that (a), (α) transform as vector and spinor indices under the right action of
Lorentz group. The left and right actions of a group commute. Using this fact and the definition of dressed
operators Eq.(4.29) implies that the undressed coefficient fields must be invariant under the right action, hence
is independent of fiber coordinate g ∈ G.
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lowest spin field transforms as

δaa(x) = ∂aλ(x). (4.49)

This is just U(1) gauge transform, with the identification of aa(x) to the gauge field. Note that

aµa(x) is interpreted as the total vielbein: aµa(x) = eµa(x) + δeµa(x).

As another choice, when we take the gauge parameter as Λ = i
2{λµ(x), ∂µ}, this is diffeo-

morphism, the same one as Eq.(4.6):

δaa(x) = −λµ(x)∂µa(x),

δaµa(x) = −λν(x)∂νa
µ
a(x) + aνa(x)∂νλ

µ(x),

δaµνa (x) = −λρ(x)∂ρa
µν
a (x) + 2aρ(µ

a (x)∂ρλ
ν)(x),

... (4.50)

A general field a
µ1···µs−1
a (x) transforms as a rank-(s − 1) symmetric tensor. It indicates that

the indices contracted with the covariant derivatives are the coordinate indices.

Moreover, the symmetry Eq.(4.48) includes the local Lorentz symmetry. It is realized by

choosing the parameter as Λ = i
2{λ ab

(1) (x),Oab}. The background vielbein and eµa and spin

connection ωabµ transform as

δeµa(x) = −λ b
(1)a (x)eµb (x),

δωabµ (x) = ∂µλ
ab

(1) (x) + 2λ
[a

(1) c(x)ωb]cµ (x). (4.51)

In the same manner, the fluctuating fields around them, the gauge field aa, the total vielbein

aba(x) and spin connection a bc
(1)a , transform according to the following law:

δaa(x) = −λ b
(1)a (x)ab(x),

δaba(x) = −λ c
(1)a (x)abc(x)− λ b

(1)c(x)aca(x),

δa bc
(1)a = −λ d

(1)a (x)a bc
(1)d + 2λ

[b
(1) d(x)a

c]d
(1)a (x). (4.52)

We have dealt with the expansion and symmetry of the bosonic matrices Aa. We can make

the same discussion on the fermionic matrices Ψα. For example, its lowest spin field χα(x)

transforms under the above local Lorantz transformation as

δχα(x) = −1

4
λ bc

(1) (x) (Γbc)αβ χβ(x). (4.53)



Chapter 5

Stability of the Matrix Model with

the Operator Interpretation

While the matrix model has the advantages mentioned in the last chapter, It has some subtly

or difficulty. The most problematic feature is that the model contains infinitely many fields. It

is a obstacle against making concrete analysis. Furthermore, all of those numerous fields are

massless at the classical level. This might cause instability in the model, especially through the

radiative correction. Existence of gauge symmetries to remove their longitudinal component is

in question as well.

Therefore, in this chapter, we study the matrix model with the operator interpretation with

the focus on such aspects. One desirable prescription is to truncate DoF so that one can control

the theory. We attempt to make it, and find that naive truncation leads to a inconsistency of

the model. Then we analyze the gauge symmetries and radiative corrections. We find evidence

partially for positive-definiteness of the matrix model.

5.1 Mimimality of the operator interpretation

As we have mentioned in the previous chapter, general elements of End(C∞(M)) cannot

be understood as matrices because they are not generally closed as an algebra under the

multiplication nor the commutator [ , ]. However, we can actually construct a set of operators

which are closed under those operations by restricting End(C∞(M)). In this section, we

attempt to construct the minimal consistent operator interpretation. As a result, we will find

the necessity of the principal bundle, and the original operator interpretation is indeed the

minimal.
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5.1.1 An attempt to construct a further minimal model

Among various possibilities, the simplest one is the set of the first-order differential operators:

Aa ∈ A ≡
{
fµ(x̂)p̂µ + g(x̂)

∣∣∣ x̂µh(x) = xµh(x), p̂µh(x) = −i ∂h
∂xµ

, h ∈ C∞(M)

}
. (5.1)

One can easily check that A is closed under the commutator. A can also be understood as a

set of quantum mechanical operators constructed by x̂µ and p̂µ = −i∂/∂x̂µ. In the following

discussion, we consider the “semi-classical” limit of those operators:

(x̂µ, p̂µ) → (xµ, pµ) (5.2)

[f̂ , ĝ] → −i{f, g} = −i
D∑
µ=1

(
∂f

∂pµ

∂g

∂xµ
− ∂f

∂xµ
∂g

∂pµ

)
, (5.3)

Tr(· · · ) →
∫
dDx

∫
dDp (· · · ) . (5.4)

In this limit, the bosonic EoM [Ab, [Ab, Aa]] = 0 in the matrix model becomes 1

{Ab, {Ab, Aa}} = 0. (5.6)

The simplest solution of this equation is Aa = δµapµ, and this corresponds to the flat spacetime

as does in other interpretations. Now, let us consider the fluctuation around this solution:

Aa = δµapµ + Ãa(x, p)

= δµapµ + fa(x) + fa
µ(x)pµ

≡ eaµ(x)pµ + fa(x), ea
µ(x) = δµa + fa

µ(x). (5.7)

In the semi-classical limit, the bosonic part of the original IIB action becomes

SIIB = − 1

4g2
Tr
(

[p̂a + Ãa(x̂, p̂), p̂b + Ãb(x̂, p̂)]
2
)
→ 1

4g2

∫
dDx

∫
dDp Gab(x, p)G

ab(x, p),

(5.8)

1As a consistency check, we derive it from the action in the semi-classical limit. As long as the Poisson
bracket satisfies the cyclicity condition∫

dDx

∫
dDp f{g, h} =

∫
dDx

∫
dDp g{h, f}, (5.5)

we have

δS =
1

g2

∫
dDx

∫
dDp {Aa, Ab}{δAa, Ab} =

1

g2

∫
dDx

∫
dDp δAa{Ab, {Aa, Ab}}

which coincides with the semi-classical limit of Eq.(4.33). We can easily check Eq.(5.5) by assuming that the
integral of the total derivative terms vanish.
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where

Gab(x, p) = {Aa, Ab} = δµa∂µÃb(x, p)− δµb ∂µÃa(x, p) + {Ãa, Ãb}. (5.9)

Furthermore, the original U(N) transformation Eq.(4.48) now becomes 2

δÃa(x, p) = {δµapµ + Ãa(x, p),Λ(x, p)}

= −δµa∂µΛ(x, p) + {Ãa(x, p),Λ(x, p)}, (5.11)

which leads to the transformation of each fields as

δfa(x) = ea
µ(x)∂µλ(x)− (∂µfa(x))λµ(x), (5.12)

δea
µ(x) = ea

ν(x)∂νλ
µ − (∂νea

µ(x))λν(x), (5.13)

where we have also expanded Λ(x, p) as λ(x) + pµλ
µ(x). Here, the first term in Eq.(5.13) cor-

responds to the gauge transformation, and the other terms correspond to the diffeomorphism.

Note that the action Eq.(5.8) is, of course, invariant under Eq.(5.11), or Eqs.(5.13) and (5.12)

up to a total derivative term:

δSIIB =
1

8g2

∫
dDx

∫
dDp {Gab,Λ}Gab. (5.14)

Therefore, the EoM Eq.(5.6) is also invariant under the transformation.

Let us now consider the dynamics of the fluctuations at the classical level. By substituting

Eq.(5.7) to Eq.(5.6), we obtain

2̄abf
b + ∂µf

b
(
∂̄aeb

µ − ∂̄beaµ
)

+ pµ

[
2̄abe

bµ + (∂νe
bµ)
(
∂̄aeb

ν − ∂̄beaν
)]

= 0, (5.15)

where

2̄ab = ∂̄c · ∂̄cδab − ∂̄a · ∂̄b, (5.16)

∂̄a = ea
µ∂µ. (5.17)

Note that ∂̄a’s do not commute each other because of ea
µ. Eq.(5.15) holds for arbitrary pµ, so

it is equivalent to the following two equations

2̄abf
b + ∂µf

b
(
∂̄aeb

µ − ∂̄beaµ
)

= 0, (5.18)

2̄abe
bµ + (∂νe

bµ)
(
∂̄aeb

ν − ∂̄beaν
)

= 0. (5.19)

2This gauge symmety does exist as long as the Poisson bracket satisfies the Jacobi identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0. (5.10)

The Poisson bracket in this section (Eq.(5.3)) satisfies it.
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Now let us study how many DoF remain at the liberalized (free) level:(2δab − ∂a∂b) f b = 0, δfa = ∂aλ− (∂µfa)λ
µ,

(2δab − ∂a∂b) f bµ = 0, δfa
µ = (δνa + fνa )∂νλ

µ − (∂νfa
µ)λν ,

(5.20)

where ∂a = δµa∂µ and 2 = ∂µ∂µ are the ordinary differential and d’Alembert operator, respec-

tively. As for fa, this is completely the same as the ordinary gauge field. Thus, by choosing

the Lorentz gauge, its EoM, gauge condition, and residual symmetry are given by

2fa = 0, ∂af
a = 0, δfa = ∂aλ, 2λ = 0, (5.21)

from which one can see that only two physical DoF remain. Next, as for fa
µ, we can also

choose a Lorentz-like gauge

∂af
aµ = 0 (5.22)

by using the diffeomorphism. As a result, we obtain the following EoM, gauge condition and

residual symmetry:

2fa
µ = 0, ∂af

aµ = 0, δfa
µ = ∂aλ

µ, 2λµ = 0 (5.23)

The above gauge conditions for fa and faµ are summarized with a condition for Aa:

{pa, Aa(x, p)} = 0, (5.24)

which fixes the original U(N) gauge symmetry.

In order to discuss physical DoF, let us move to the Fourier component f̃a
µ(k). In the light

cone coordinate, we can choose k = (k+, 0, 0, 0) without loss of generality. Then, the gauge

fixing condition and the residual symmetry give

f̃−µ = 0, f̃+µ = 0, (5.25)

so the remaining DoF are

f̃ i+, f̃ i−, f̃ ij (i = 1, 2). (5.26)

The first two are vectors, and the third one coincides with the massless states of bosonic closed

string theory: graviton, Kalb-Ramond field and dilaton. In the presence of both f̃ i+ and f̃ i−,

the theory violates positivity and is unstable.3 However, we can eliminate f̃ i− by assuming the

following additional condition:

∂µf
aµ = 0, (5.27)

3Although we are treating the Euclidean matrix model, the above analysis also applies to the Lorentzian
model straightforwardly. In this sense we refers to the stability here.
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which leads to a condition for the diffeomorphism:

∂µλ
µ(x) = 0 ⇔ δfa

a = 0. (5.28)

The second equation means that the metric fluctuation is traceless, so the above transformation

is the volume-preserving diffeomorphism. Note that the condition Eq.(5.27) is consistent with

the commutator. Consider

{
fa
µpµ, gb

µpµ
}

= pµ [(∂νfa
µ)gb

ν − (∂νgb
µ)fa

ν ] ≡ pµFabµ, (5.29)

then Fab
µ also satisfies

∂µFab
µ = 0 (5.30)

if fa
µ and gb

µ satisfy ∂µfa
µ = ∂µgb

µ = 0. The symmetry in this case is the volume-preserving

diffeomorphism, not the general one There are a number of works to discuss the gravitational

system that possesses only the volume-preserving diffeomorphism. It is sometimes called the

unimodular gravity [63]. That theory is equivalent to the general relativity in many aspects

and is a reasonable gravitational system.

With the discussion above, it seems to be the case that the present would-be minimal choice

of operator space Eq.(5.1). However, it has some difficulty. From EoM, Eqs.(5.18), (5.19), one

can see that there is no suitable D-dimensional action that produces those EoMs because the

second one has no fa dependence. This fact means that we should not expand Ãa(x, p) by

pµ at the action level, and that we should treat the stationary point of the action Eq.(5.8)

with respect to the matrices Ãa(x, p). Apart from this problem, it is seen as a fault that there

seems to be no way to define the restriction Eq.(5.27) in terms of matrices. Therefore we have

to consider the result of the previous section unsatisfactory in the viewpoint of the matrix

model. Furthermore, the local Lorentz transformation that act on the indices a, b, · · · is not

given explicitly. All of the problem suggest that the treatment in the previous section lacks

some piece in order to contain gravitational DoF. The interpretation discussed so far is thus

too-small operator interpretation.

5.1.2 The necessity of the principal bundle

Contrary to the above description, the original one proposed in [27, 29], which we have intro-

duced in the previous section, includes the local Lorentz and general diffeo-invariance as a part

of the original U(N) symmetry Eq.(4.48). When one reduce DoF of the model, we can consider

a slightly restricted version of it. That is, it is possible to interpret matrices as operators on

Eprin which are first-order in spacetime derivative. In the following, we repeat the same anal-

ysis as above taking the original interpretation, and then discuss the restriction of operators

to first-order ones. Although the result itself is trivial, it demonstrates the advantage of the



44 Chapter 5 Stability of the Matrix Model with the Operator Interpretation

principal bundle, that plays an essential role in the description.

In the original operator interpretation, we take as the operator space as

Aa ∈ A ≡
{
F (x̂, p̂, ĝ,O)

∣∣∣ x̂µf(x, g) = xµf(x, g), p̂µf(x, g) = −i ∂f
∂xµ

,

ĝijf(x, g) = gijf,Oabf(x, g) = −(Mab · g)ij
∂f

∂gij
,

f ∈ C∞(Eprin)

}
, (5.31)

where Mab is the fundamental representation of Ôab. In order to consider the semi-classical

limit, we need to define the Poisson bracket on the phase space of the principal bundle. Note

that we also have the derivative operator Oab in addition to p̂µ, and they are replaced with

c-numbers in the semi-classical limit:

p̂µ → pµ, Oab → tab. (5.32)

For the base space directions (x, p), it is natural that we employ the same Poisson bracket

as Eq.(5.3). Furthermore, it seems reasonable to assume that there is no nontrivial Poisson

structure between the (x, p) and (g, t) directions. For the fiber directions (g, t), we shall define

the Poisson bracket naturally from the algebraic structure of Spin(D). As a result, the nonzero

components of the Poisson bracket are given by

{pµ, xν} = δ ν
µ ,

{ts, gij} = i(Msg)ij , {ts, tt} = ifstutu. (5.33)

where gij is an element of Spin(D) in fundamental representation4 andMs is the fundamental

representation ofOs. In these expressions, the subscript s represents antisymmetric double local

Lorentz indices [ab]. For example, the last equation of Eq.(5.33) actually means {tab, tcd} =

i[(Mab)ceted+(Mab)detce]. Using Eq.(5.33), we can write the Poisson bracket of general functions

on the principal bundle as

{f, h} ≡ ∂f

∂pµ

∂h

∂xµ
− ∂f

∂xµ
∂h

∂pµ
+ i(Msg)ij

(
∂f

∂ts

∂h

∂gij
− ∂f

∂gij

∂h

∂ts

)
+ ifstuts

∂f

∂tt

∂h

∂tu
. (5.34)

This Poisson bracket satisfies the cyclicity condition Eq.(5.5) and the Jacobi identity Eq.(5.10).

The important point of the analysis is to take into account the factor R b
(a). For general

functions F(a) = R(a)
cFc and H(b) = R(b)

dHd, their Poisson bracket becomes,

{F(a), H(b)} = R c
(a)R

d
(b)

[
{Fc, Hd}+ i(MsF )c

∂Hd

∂ts
− i∂Fc

∂ts
(MsH)d

]
. (5.35)

4Even though some constraint is posed on {gij} so that g ∈ Spin(D), the Poisson bracket (5.33) is well-
defined.
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In particular,

{p(a), H(b)} = R c
(a)R

d
(b)

[
∂cHd + i(Msp)c

∂Hd

∂ts

]
≡ R c

(a)R
d

(b)DcHd. (5.36)

We have introduced the twisted derivative Dc by the above equation.

Let us now consider the fluctuation around the flat background p(a) = R(a)
b(g−1)δµb pµ:

A(a) = p(a) + Ã(a)

= R b
(a)(g

−1)
[
δµb pµ + Ãb(x, p, g, t)

]
= R b

(a)(g
−1)

[
δµb pµ + fb(x, g) + fµb (x, g)pµ + ωsb(x, g)ts

]
≡ R b

(a)(g
−1)

[
e µ
b (x, g)pµ + fb(x, g) + ω s

b (x, g)ts
]
. (5.37)

Here, in the third and firth lines, we have restricted Ãb(x, p, g, t) to be first order in (p, t). This

restriction is algebraically consistent because the Poisson bracket is closed among the first-order

operators in (p, t). The semi-classical limit of the original action then becomes

SIIB =
1

4g2

∫
dq {A(a), A(b)}{A(a), A(b)}

=
1

4g2

∫
dq G̃abG̃

ab, (5.38)

where ∫
dq ≡

∫
dDx

∫
dDp

∫
Spin(D)

dg

∫
Rd(d−1)/2

dt, (5.39)

G̃ab = DaÃb −DbÃa + {Ãa, Ãb}+ i(MsÃ)a
∂Ãb
∂ts
− i∂Ãa

∂ts
(MsA)b. (5.40)

Note that indices contracted outside the Poisson bracket can be replaced with ones without

parentheses due to the orthogonality of R(a)
b(g−1). Of course this action is invariant under the

gauge transformation written as

δÃ(a) = {Λ(x, p, g, t), p(a) + Ã(a)}, (5.41)

which is equivalent to the transformation

δÃa = −∂aΛ− i
∂Λ

∂ts
(Msp)a + {Λ, Ãa} − i

∂Λ

∂ts
(MsÃ)a. (5.42)

In terms of expanded fields in Eq.(5.37), and the expanded gauge parameters

Λ(x, p, g, t) = λ(x, g) + λµ(x, g)pµ + λs(x, g)ts, (5.43)
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the transformation lows are summarized as follows:

• “U(1)” gauge transformation
δfa = −e µ

a ∂µλ− iω s
a (M̂s · λ),

δe µ
a = 0,

δω s
a = 0.

(5.44)

• “Diffeomorphism” transformation
δfa = λµ∂µfa,

δe µ
a = −e ν

a ∂νλ
µ + λν∂νe

µ
a − iω s

a (M̂s · λµ),

δω s
a = λµ∂µω

s
a .

(5.45)

• “Local Lorentz” transformation
δfa = iλs(Ms f)a + iλs(M̂s · fa),
δe µ
a = iλs(Ms e

µ)a + iλs(M̂s · e µ
a ),

δω s
a = −e µ

a ∂µλ
s + iλtf stu ω

u
a − iλt(Mt ω

s)a + iλt(M̂t · ω s
a )− iω t

a (M̂t · λs).
(5.46)

Here, we have introduced an operator M̂s, which is defined as

i(M̂s · f)(x, p, g, t) ≡ ∂

∂εs
f(x, p, eiε

tMtg, t)
∣∣∣
ε=0

. (5.47)

Choosing the specific gauge parameters, which is independent from gij , these transformations

are the exact U(1) gauge, diffeomorphism and local Lorentz transformations, respectively.

If one expands each field according to Peter-Weyl theorem:

f(x, g) =
∑

r:irr.rep.

R
〈r〉j
i (g)f

〈r〉i
j (x), (5.48)

the operation of M̂s is equivalent to infinitesimal transformation for each representation:

(M̂s · f)(x, p, g, t) =
∑

r:irr.rep.

M
〈r〉k
s i R

〈r〉j
k (g)f

〈r〉i
j (x), (5.49)

where i, j, k are identified to be local Lorentz indices.

Now we focus on the dynamics of the system which has no g-dependence. Here we identify

ω s
a to the spin connection. The EoM are given by

{A(b), {A(b), A(a)}} = 0. (5.50)
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We shall restrict the space of the operators as much as possible, posing on e µ
a and ω s

a the

metricity condition:

∇µe ν
a = 0, (5.51)

and assume that ω s
a is torsion-free. In other words, we consider the first-order differential

operators which contains only fa and e µ
a as the independent DoF. The space of such operators

is closed with respect to the ordinary commutator. From these two condition one can deduce

the following formula:

∂ae
µ
b − ∂be µ

a + ω c
ab e

µ
c − ω c

ba e
µ
c = eµae

ν
b (Γλµν − Γλνµ) = 0. (5.52)

The linearized EoM are then
∂bF

ab = 0,

2fµa − ∂a∂bfµb + ∂bω s
b (iMs)

µ
a − ∂bω s

a (iMs)
µ
b − (∂bω s

a − ∂aωb,s)(iMs)
µ
b = 0,

2ω s
a − ∂a∂bω s

b = 0.

(5.53)

However, by using Eq.(5.52) and the explicit form of the vector representation matrices (iMs)
d
c =

(iMab)
d
c = δacδ

d
b − δ d

a δbc, one can derive an equation:

2fµa − ∂a∂bfµb + ∂bω s
b (iMs)

µ
a − ∂bω s

a (iMs)
µ
b = 0. (5.54)

Therefore the second equation of Eq.(5.53) falls into a simple equation

∂bω µ
ab (e)− ∂aωb µb (e) = 0, (5.55)

and the third equation of Eq.(5.53) is not independent from the second. Consequently, the

EoM for the spacetime fluctuation is given by

1

2
2h µ

a −
1

2
(∂a∂

bhµb + ∂µ∂bhba) +
1

2
∂a∂

µδbνh
ν
b = 0, (5.56)

h µ
a = f µ

a + fµa. (5.57)

One can easily see that Eq.(5.56) is equivalent to the usual linearized Einstein equation, through

combining it with its own trace part.

Looking over the above equations, we find that the crucial point is that the dynamics of the

vielbein f µ
a emerges only through the spin connection ω s

a in contrast to the previous section,

where there is no cancellation in the explicit kinetic terms for f µ
a .

Furthermore, Eq.(5.56) shows no dynamics of the antisymmetric part of f µ
a . This is not a
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problem since the local Lorentz transformation should be used to make the local Lorentz frame

parallel to the coordinate system, which means f µ
a is made symmetric.

Once we set e µ
a = eµa, we need not pose further extra conditions, because the condition

to eliminate the unstable mode Eq.(5.27) is automatically satisfied through gauge-fixing con-

dition for the diffeomorphism Eq.(5.22). In this case, the theory is stable and the dynamical

variables independent of the fiber coordinates g are the U(1) gauge field and the pure vielbein,

only. Therefore we have showed that the theory is stable without any additional condition, as

expected in the previous work. This feature suggest that the principal bundle is essential for

equipping general diffeomorphism in the operator interpretation.

Another essential point is that we have set the metricity condition. We will encounter in

spin connection a part of longitudinal components propagating. They are the torsion and so-

called non-metricity. While the dynamics of the torsion was discussed in [28], it remains to be

settled whether all of those propagating components observe the positivity. On the other hand,

it is welcome that the metricity condition can be imposed with no conflict with dynamics. We

will push this structure forward in order to analyze symmetries for fields that are coefficients

of higher derivatives, in the next section.

5.2 Higher spin gauge symmetries in the IIB matrix model

We have analyzed the symmetries and dynamics of lower spin fields. On the other hand, we

must treat more physics than that of gravity and U(1) gauge field in the matrix model. Since

string theory or its strong tension limit contains higher spin fields, the matrix model should

be. Therefore, we do not truncate operators to be first-order. However, it is still meaningful

that we focus only on a coefficient field of specific order derivatives. In this section, we take

such an approach.

U(N) symmetry of the matrices are translated into a lot of symmetries of local fields,

in addition to diffeomorphism and local Lorentz symmetry. On the other hand, one has to

introduce many DoF, which, written in terms of local fields, formally appears to be massless

higher spin fields. It is not clear whether these fields are actually physical DoF, and whether

there are gauge symmetries which eliminate their potentially dangerous components, such as

the longitudinal components of a vector field. In this section, we investigate the symmetry of

higher spin fields in some class, and see that the auxiliary fields need to be introduced in order

to close the gauge transformation.5 There are gauge symmetries to remove the longitudinal

components of the would-be spin s field and parts of the auxiliary fields. In addition, we pose

some generalization of torsion-free conditions, which enable us to rewrite the rest parts of the

auxiliary fields in terms of the physical field. As a result, we see that when we focus on the spin

5With another interpretation, where one regards matrices as noncommutative coordinates, a higher spin
structure has recently been found as well [64, 65]. It has similarity to that discussed in this section.
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s fields, the gauge symmetries and the torsion-free conditions leave the transverse components

of the fields in the totally symmetric representation.

5.2.1 Higher spin symmetries in U(N)

In this subsection, we investigate such aspect of the matrix model. We focus on a restricted

class of the fields, namely the bosonic fields that are independent of group coordinates g. Thus

they are not in the product representation of the tensor one and the regular one.

In the ordinary field theory, a massless spin s field is described by a rank-s symmetric

double-traceless tensor field [66] :

aµ(s)(x) s.t. aν1ν2

ν1ν2µ(s−4) = 0, (5.58)

where µ(s) denotes the symmetrized indices (µ1 · · ·µs).6 The gauge transformation of it is

written as

δaµ(s) = ∂µλµ(s−1) (5.59)

with λµ(s−1) is a rank-(s − 1) symmetric traceless tensor parameter. We formally express the

symmetrized indices the same letter.

Turning back the matrix model, again we take the sami-classical limit. This limit enables us

to ignore the order of the derivatives and coordinates in the expansion of Aa(x, g), and simplifies

the analysis. Naively, it seems natural that a spin s field in the flat spacetime background is

described in the operator interpretation as

Aa = pa + aaµ(s−1)(x)pµ(s−1), (5.60)

where pµ(s−1) := p(µ1
· · · pµs−1). The first term in Eq.(5.60) is for the background. We at-

tempt to find the appropriate gauge transformation for the field. First, the most simple gauge

parameter we have is the following form:

Λ = λµ(s−1)(x)pµ(s−1), (5.61)

which realizes the transformation

δA(a) = {A(a),Λ}

⇔ δaaµ(s−1) = ∂aλµ(s−1) +O(a× λ). (5.62)

In the analysis, we will ignore the second term in the RHS of Eq.(5.62). Although the validity

6In the spin-3 case, any tracelessness is not imposed.
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Figure 5.1: The representational structure of the field. The bar between the indices in the field denotes
the tensor product, as mentioned below. The field is of a tensor product of vector representation
and rank-(s− 1) symmetric one. It is decomposed into rank-s symmetric representation and the rest
“hook-type” one. Note that all the representations contain the trace part, and they are reducible.
(Source: [45], doi:10.1016/j.nuclphysb.2019.114801)

of it needs to be analyzed, in this section we assume that the discussion around the elimination

of the DoF can be held focusing only on the inhomogeneous term. Of course, Eq.(5.62) is not

sufficient for the elimination of the longitudinal components of aaµ(s−1), because it includes

non-totally symmetric tensor components. It comes from the fact that aaµ(s−1) behave as the

product representation of the vector one (having the index a) and rank-(s − 1) symmetric

tensor one (µ(s − 1)). The representation is decomposed into two representations and their

traces (Fig.(5.1)). The extra components are the two-row representation tensor, characterized

by the second tableaux in Fig.(5.1).

In terms of the field, we rewrite aaµ(s−1) as aa|µ(s−1) and the decomposition as

aa|µ(s−1) = haµ(s−1) + ba,µ(s−1). (5.63)

From now on, we separate the indices for tensor products by bars, and for different rows in the

Young tableaux by commas. The sequence of indices without commas or bars are symmetric.

The problem is whether there is any gauge transformation to remove ba,µ(s−1). We take a

new gauge parameter in the following form:

Λ = λµ(s−1)pµ(s−1) + λc,dµ(s−2)tcd pµ(s−2). (5.64)

With this parameter we get the transformation law as below:

δAa = ∂aλµ(s−1)pµ(s−1) −
1

2
(λa,µ(s−1) − λµ,aµ(s−2))pµ(s−1) + ∂aλc,dµ(s−2)tcd pµ(s−2). (5.65)

In terms of the fields this is written as

δhaµ(s−1) = ∂(aλµ(s−1)), (5.66)

δba,µ(s−1) = − s

2(s− 1)
λa,µ(s−1) + (∂aλµ(s−1))P(s−1,1). (5.67)

In the above equations, P(m,n) represents the projection into the representation for the Young

tableaux which consists of an m-boxes row and an n-boxes row. The coefficient s/(s−1) appears
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from the normalization of the projection, (λa,µ(s−1))P(s−1,1) = λa,µ(s−1). Eq.(5.67) indicates that

we can remove all the components of ba,µ(s−1) by this transformation. Furthermore, we can

remove the longitudinal components of totally symmetric tensor aaµ(s−1) with ba,µ(s−1) kept

zero by choosing λa,µ(s−1) appropriately.

However, Eq.(5.65) includes the extra change of Aa, i.e. the third term in the RHS. In

order to close the transformation law, it is necessary to introduce new DoF. Therefore we are

forced to consider the operator of the following form:

Aa = pa + aa|µ(s−1)(x)pµ(s−1) + ωa|c,dµ(s−2)tcd pµ(s−2), (5.68)

where ωa|c,dµ(s−2) is an additional field. Then we have again the problem of whether ωa|c,dµ(s−2)

can be removed by any gauge transformation.

Before discussing the gauge transformation, note that ωa|c,µ(s−1) is seen as a higher spin

counterpart for the spin connection. In the spin-2 case, the spin connection ωa|b,c is written in

terms of vielbein through the torsion-free condition

T a|bc = ∂bec|a − ∂ceb|a + ωc|d,ae b
d| − ωb|d,ae c

d| = 0. (5.69)

Keeping this fact in mind, we shall pose the generalized torsion-free condition:

2(s− 1)

s
(∂bac|µ(s−1) − ∂cab|µ(s−1)) + ωb|c,µ(s−1) − ωc|b,µ(s−1) = 0. (5.70)

In spin 2 case, this coincides with Eq.(5.69) with the vielbein being small fluctuation around

the flat space. The general solution of Eq.(5.70) is written as

ωa|b,µ(s−1) =
s− 1

s

(
∂baa|µ(s−1) − ∂aab|µ(s−1) + ∂baµ|aµ(s−2) − ∂µab|aµ(s−2)

+ ∂aaµ|bµ(s−2) − ∂µaa|bµ(s−2)
)

+ ζab,µ(s−1), (5.71)

where ζab,µ(s−1) is an arbitrary tensor corresponding to the Young tableaux whose two rows

consist of (s− 1) and 2 boxes, respectively. Therefore the additional field ωa|b,µ(s−1) is written

with aa|µ(s−1) through the above equation, except for components of ζab,µ(s−1).

Fortunately, it is possible to eliminate ζab,µ(s−1) by another gauge transformation. we choose

a gauge parameter of the form below:

Λ = λµ(s−1)pµ(s−1) + λc,dµ(s−2)tcd pµ(s−2) + λc(2),d(2)µ(s−3)t2cd pµ(s−3), (5.72)

with the notations are defined as

tncd := tc1d1 · · · tcndn . (5.73)
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The gauge transformation of Aa is then

δAa =∂aλµ(s−1)pµ(s−1) −
1

2
(λa,µ(s−1) − λµ,aµ(s−2))pµ(s−1) + ∂aλc,dµ(s−1)tcd pµ(s−2)

− 1

2
(λac,dµ(s−2) − λµc,adµ(s−3) + λca,dµ(s−2) − λcµ,daµ(s−3))tcd pµ(s−2)

+ ∂aλc(2),d(2)µ(s−3)t2cd pµ(s−3), (5.74)

hence

δaa|µ(s−1) = ∂aλµ(s−1) − s

2(s− 1)
λa,µ(s−1), (5.75)

δωa|c,dµ(s−2) = ∂aλc,dµ(s−2) − s

4(s− 2)
λac,dµ(s−2). (5.76)

Eq.(5.75) is equivalent to Eqs.(5.67), while Eq.(5.76) is consistent with the imposed condition

Eq.(5.70). As a result, a part of ωa|c,dµ(s−2) can be removed by the second term in Eq.(5.76),

and the rest part is written in terms of aa|µ(s−1). Therefore, there is no independent DoF in

ωa|c,dµ(s−2).

Due to the last term in Eq.(5.74), we have to introduce further additional field in order

to close the gauge transformation. Remarkably, the present discussion is somewhat similar to

that of the higher spin gauge theory in form language [67].7 In the viewpoint of the gauge

transformation, we find that the present analysis can be done almost in parallel with the study

in [69], although the generalized torsion-free conditions are different. Therefore, we state the

discussion briefly. In order to close gauge transformation completely, we have to consider the

operator of the following form:

Aa = pa + aa|µ(s−1)pµ(s−1) +

s−1∑
n=1

ωa|c(n),d(n)µ(s−1−n)tncd pµ(s−1−n) (5.77)

Appropriate gauge parameter is given by

Λ = λµ(s−1)pµ(s−1) +

s−1∑
n=1

λc(n),d(n)µ(s−1−n) tncd pµ(s−1−n), (5.78)

which leads to the transformation laws

δaa|µ(s−1) = ∂aλµ(s−1) − s

2(s− 1)
λa,µ(s−1), (5.79)

δωa|c(n),d(n)µ(s−1−n) = ∂aλc(n),d(n)µ(s−1−n)

− s

2n(s− 1− n)
λac(n),d(n)µ(s−1−n). (1 ≤ n ≤ s− 2), (5.80)

δωa|c(s−1),d(s−1) = ∂aλc(n),d(n). (5.81)

7For a review see [68].
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Now we impose a set of generalized torsion-free conditions

2n(s− 1− n)

s
(∂aωb|c(n),d(n)µ(s−1−n) − ∂bωa|c(n),d(n)µ(s−1−n))

+ ωa|bc(n),d(n)µ(s−1−n) − ωb|ac(n),d(n)µ(s−1−n) = 0. (1 ≤ n ≤ s− 2) (5.82)

Due to this equations, a part of each extra fields ωa|c(n),d(n)µ(s−1−n) is written in terms of the

“lower” extra fields recursively. At the same time, the rest part of ωa|c(n),d(n)µ(s−1−n) can be

removed with the gauge transformation, in particular with the second term in Eq.(5.80). As for

the highest extra field ωa|c(s−1),d(s−1), there is no gauge parameter with which we can eliminate

the DoF of the field. However, the generalized torsion-free condition for it can be solved and

the whole part of it is expressed with ωa|c(s−2),d(s−2)µ without ambiguity:

ωa|bc(s−2),d(s−1) = −1

2

[
∂aωb|c(s−2),d(s−1) − ∂bωa|c(s−2),d(s−1)

− (s− 1)
(
∂dωa|c(s−2),bd(s−2) − ∂aωd|c(s−2),bd(s−2)

− ∂bωd|c(s−2),ad(s−2) − ∂dωb|c(s−2),ad(s−2)

+ ∂dωa|bc(s−3),cd(s−2) − ∂aωd|bc(s−3),cd(s−2)
)]

(5.83)

In the derivation of the above equation, we have made use of the Bianchi identity

ωa|c(s−1),cd(s−2) = ωa|dc(s−2),d(s−1) = 0, (5.84)

and a relation which is derived from it,

ωa|dc(s−2),bd(s−2) = − 1

s− 1
ωa|bc(s−2),d(s−1). (5.85)

The fact that the ωa|c(s−1),d(s−1) can be solved is on the same foot as that the spin connection

can be solved in terms of the vielbein.

According to these discussion, we can conclude that ba,µ(s−1) and all the extra fields

ωa|c(n),d(n)µ(s−1−n) are eliminated either with gauge transformation or with generalized torsion-

free condition. In this sense, the extra fields are auxiliary fields. Furthermore, we can still

remove the longitudinal component of haµ(s−1) by an appropriate gauge transformation. It is

driven both by the parameter λµ(s−1) and the higher rank parameters λc(n),d(n)µ(s−1−n). The

former removes the longitudinal components directly, while the latter compensate the change

in ωa|c(n),d(n)µ(s−1−n) and keep them zero. Therefore, we are left the transverse component of

haµ(s−1) as the only physical DoF.

After gauge-fixing and eliminating fields except haµ(s−1), the matrices take the following
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form:

Aa = pa +
s−1∑
n=0

1

n!
∂c(n)hd(n)aµ(s−1−n)tncd pµ(s−1−n). (5.86)

On the other hand, the explicit form of the residual gauge degrees of freedom which remove

the longitudinal components of haµ(s−1) is written as

Λ =
s−1∑
n=0

s− n
n!

∂c(n)λd(n)µ(s−1−n)tncd pµ(s−1−n). (5.87)

Then we find that the unitary transformation of matrices is equivalent of a higher spin gauge

transformation:

δAa = {Aa,Λ} ⇔ δhaµ(s−1) = ∂(aλµ(s−1)). (5.88)

Here haµ(s−1) does not belong to an irreducible representation, since it contains the trace

part. In this respect, there is some difference between the field and the ordinary higher spin

fields, which satisfies the double-traceless condition Eq.(5.58). In the ordinary case, the condi-

tion is required to make the theory gauge-invariant, with the gauge parameter being traceless.

As for our case, we already have gauge invariance with the traceful field haµ(s−1) and the

parameter λµ(s−1). Thus we need no further condition. The longitudinal traceless part is

removed by gauge transformation, since λµ(s−1) is traceful. Therefore, we have no positivity-

violating component, though it is unclear whether the lower spin fields as the trace parts can

be eliminated.

5.2.2 Equations of motion for higher spin fields

In the previous section, we have discussed the higher spin symmetry in the kinematical aspect.

In other words, what we have shown is that the unitary transformation of the matrices, when

translated into terms of derivative operators, includes gauge transformations, and that they

remove components of fields except the transverse ones of totally symmetric part.

However, the transformation law for the totally symmetric field is somewhat different from

the Fronsdal theory, due to absence of traceless conditions both for the field and for gauge

parameter. Therefore there emerges one question: in what form the equations of motion

are. Even in the free part, we do not expect it to be the Fronsdal operator. Apparently it

conflicts with the existence of higher spin symmetry. In this section we explicitly write down

the equations of motions for the field and discuss their structure.

In this part we truncate the interaction part. It is still worth analyzing since the ordinary

higher spin field theory is established rigorously as free field theory.
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We shall expand the equations of motion for matrices by substituting Eq.(5.86):

0 ={pb +Ab, {pb +Ab, pa +Aa}}

∼{pb, {pb, Aa}}

=
[
∂c(s−2)

(
2haµd(s−2) − 2∂b∂(ah

µ)d(s−2)
b + ∂a∂µh̄d(s−2)

)]
ts−2
cd pµ

+
[
∂c(s−1)

(
∂b∂ah

d(s−1)
b −2had(s−1)

)]
ts−1
cd , (5.89)

where h̄d(s−2) = h
bs(s−2)

b . It is remarkable that the coefficients of tncdpµ(s−1−n) (0 ≤ n ≤ s− 3)

vanish, leaving the two equations (neglecting the interaction):

∂c(s−2)
(
2haµd(s−2) − 2∂b∂(ah

µ)d(s−2)
b + ∂a∂µh̄d(s−2)

)
= 0, (5.90)

∂c(s−1)
(
∂b∂ah

d(s−1)
b −2had(s−1)

)
= 0. (5.91)

Here we emphasize that the indices of c’s and d’s are symmetrized respectively, while the two

types of indices are antisymmetrized. Note that Eq.(5.91) is obtained from Eq.(5.90) by taking

a derivative ∂ν and antisymmetrizing µ and ν. Therefore, we have derived a single equation of

motion for the higher spion field.

Eq.(5.90) is different from the Fronsdal equation, or equivalently, from the vanishing con-

dition of the Fronsdal operator:

2haµd(s−2) − 2∂b∂(ah
µd(s−2))

b + ∂(a∂µh̄d(s−2)) = 0. (5.92)

Rather, Eq.(5.90) can be understood as a vanishing condition of a kind of curvature. the

equation can be written as

ηccR
c(s),d(s) = 0, Rc(s),d(s) = ∂c(s)hd(s). (5.93)

In the viewpoint of symmetry, Rc(s),d(s) corresponds to the Young tableaux of two rows, both

of which consist of s boxes. This quantity is the generalization of the (linearized) Riemann

curvature, that was discussed in [70]. It is the only gauge-invariant quantity without the trace-

less conditions. Thus the appearance of the generalized curvature in the equations of motion

is consistent, since we have higher spin symmetry without traceless conditions. Moreover, in

s = 2 case, the above equation is nothing but the Rich-flat condition obtained in Eq.(4.33).

This coincidence is reasonable because we need neither double-tracelessness for the field, nor

the tracelessness for the gauge parameter. in the higher spin case, we conclude that the higher

spin field is not the Fronsdal field, but the generalized curvature field.

On the other hand, once we take the interaction into account, the analysis will get far

complicated. In the free part of the equations of motion, we obtained the vanishing condition
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of a derivative operator of degree-(s − 1). However, in the presence of the interaction terms

coming from products of the second term in Eq.(5.86), the degree of the derivative operator

increases, to 2s − 3 at most. In that case, we have many independent equations since all

the coefficients of a degree-(2s − 3) derivative operator must vanish. Moreover, as long as

we consider a single field of spin s only, most of those equations should be regarded as some

constraints on the interaction terms. One way to avoid it is to introduce new fields and to

make each equation contain free kinetic terms for the field. It is likely that a true consistent

description is obtained only when we take into account fields of all spin at the same time. it is

equivalent to considering the most general derivative operators of infinite degree, without any

truncation.

Such formulation is too complicated to study by directly expanding matrices as derivative

operators. A new method to investigate needs to be established. Related to this issue, it is

remarkable that the higher spin gauge transformation in the matrix model includes both homo-

geneous and inhomogeneous terms. Our study has focused on the inhomogeneous term only,

since we have examined whether there are sufficient gauge parameters to eliminate unwanted

components. The exact gauge symmetries are far complicated, and it enables the model to

include interaction terms. The relationship to the various no-go theorems that prohibit the

existence of interacting higher-spin particles needs to be analyzed as well. Further investigation

is required. The analysis of higher spin symmetries for a general class of fields is another open

question. As reviewed in the previous section, the essential part of the operator interpretation

is actually the introduction of the principal bundle. Although we have dealt with the zero

modes in the fiber direction, aa|µ(s−1)(x, g×), the study on symmetries of general fields are a

future work. The stability, which seems to be put in danger by higher derivative term in the

equations of motions (5.93), also requires further investigation. The study will be reported

elsewhere.

5.3 One-loop corrections and induced mass terms

We have confirmed that the original description with the principal bundle is minimal possibility

to contain gravity in the operator interpretation. Then it is necessary to study quantum

correction to that model. In this section, we investigate some mass term induced by loop

diagrams and see that the theory is still stable. We compute one-loop corrections to the action

Eq.(5.38) and its supersymmetrized version, and read off the mass term for each field.

5.3.1 One-loop computation for the bosonic action

In order to compute one-loop corrections, one should confront a problem of constructing the

propagator. It is unclear whether one can define the propagator 1/D2
a with Eq.(5.36), because

Da has the explicit dependence on the coordinates (x, p). Instead of directly define 1/D2
a, we
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transform the coordinates and redefine functions as

ts → t̃s = ts − ixµδaµ(Ms)
b
a δ

ν
b pν , (5.94)

X(x, p, g, t)→ X(x, p, g, t̃ ). (5.95)

For the redefined functions with indices, the Poisson bracket Eq.(5.34) changes to the following

form:

{F(a), H(b)} −→ {F(a), H(b)}′

= R c
(a)R

d
(b)

[
∂Fc
∂pµ

∂Hd

∂xµ
− ∂Fc
∂xµ

∂Hd

∂pµ
+ i(Msg)ij

(
∂Fc

∂t̃s

∂Hd

∂gij
− ∂Fc
∂gij

∂Hd

∂t̃s

)
+ ifstut̃s

∂Fc

∂t̃t

∂Hd

∂t̃u

− i(Msp)µ
∂Fc
∂pµ

∂Hd

∂t̃s
− i(xMs)

µ∂Fc

∂t̃s

∂Hd

∂xµ

+ i(Msp)µ
∂Fc

∂t̃s

∂Hd

∂pµ
+ i(xMs)

µ ∂Fc
∂xµ

∂Hd

∂t̃s

+i(MsF )c
∂Hd

∂t̃s
− i∂Fc

∂t̃s
(MsH)d

]
. (5.96)

In particular, DcHd → ∂cHd, and thus we can define the propagator for Aa(x, p, g, t̃ ). For

convenience, we will write the new coordinates t̃s as ts in the following.

Now let us compute the loop corrections to the action Eq.(5.38) with the background field

method. We consider the quantum fluctuation of Aa. Expanding Eq.(5.38) as

Aa → Aa + φa, (5.97)

and adding the gauge-fixing terms, we obtain

S =

∫
dq

[
1

2
∂aAb∂

aAb − 1

2
∂aAa∂

bAb +R c
(a)R

d
(b) ∂cAd{A(a), A(b)}′ + 1

4
{A(a), A(b)}′{A(a), A(b)}′

+
1

2
∂aφb∂

aφb +R c
(a)R

d
(b) (∂cφd − ∂dφc){φ(a), A(b)}′ + 1

2
R c

(a)R
d

(b) (∂cAd − ∂dAc){φ(a), φ(b)}′

+
1

2
{φ(a), A(b)}′{φ(a), A(b)}′ − 1

2
{φ(a), A(b)}′{φ(b), A(a)}′ + 1

2
{φ(a), φ(b)}′{A(a), A(b)}′

−b2c+R c
(a)∂cb{A(a), c}′

]
. (5.98)

Here we have taken the Feynman gauge, and introduced the Faddeev-Popov ghost c and anti-

ghost b. Because we are interested in the induced mass terms for Aa, we calculate loop correc-

tions with a condition

∂aAb = 0. (5.99)
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It is convenient to introduce the ”momentum variables” (k, r, h, u), which are dual to (x, p, g, t),

and an operator (Ms)
b
a , which is defined as

(iMs ·A)a(p, g, t) =
∂

∂εs

[
(e−iε

tMtA)a(e
iεvMvp, eiε

wMwg, ei
1
2
εw
′Madj

w′ t)
] ∣∣∣
ε=0

, (5.100)

where Madj
∫ is the adjoint representation of Os. With these preparation, one can read off the

propagators and the vertices from Eq.(5.98). The factors needed for the calculation are bellows:

〈φa(k, r, h, u)φb(−k,−r,−h,−u)〉 =
δab
k2
, (5.101)

〈b(k, r, h, u)c(−k,−r,−h,−u)〉 =
1

k2
, (5.102)

= i
[
(k · r̄){kbδac + kaδbc − 2kcδab} − {kbus(Ms)

c
e δ

ae + kaus(Ms)
c
e δ

be − 2(k ·Ms)
cδab}

]
,

(5.103)

=−
[
(k · r̄)2(2δabδcd − δadδbc − δacδbd)

− usut{2δabδef (Ms)
c
e (Mt)

d
f − δaeδbf (Mt)

d
e (Ms)

c
f − δaeδbf (Mt)

c
e (Ms)

d
f }
]
, (5.104)
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Figure 5.2: One-loop diagrams needed for the calculation of induced mass terms. (Source: [44],
doi:10.1016/j.nuclphysb.2017.10.011)

= i [−(k · r̄)kc + us(k ·Ms)
c] . (5.105)

By calculating the one-loop diagrams (Fig.5.2), we obtain the mass terms induced in the

effective action:

Γ
∣∣∣
mass

= − 1

g2

d− 2

d+ 2

∫
dq

[
α

(
∂Ab
∂pa

)2

− α4

d

(
∂Aa
∂pa

)2

− β 2(d− 2)

d2
((Ms ·A)a)

2 + γ

(
∂Aa
∂ts

)2
]
,

= − 1

g2

d− 2

d+ 2

∫
dq

[
α{x(a), p(b) +A(b)}2− α

4

d
{x(a), p(a) +A(a)}2

−β 2(d− 2)

d2
{ts, p(a) +A(a)}2 + γ{gij , p(a) +A(a)}2

]
, (5.106)
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α =

∫
ddkddrdhdd(d−1/2)u

(2π)d+d+d(d−1)/2
, β =

∫
ddkddrdhdd(d−1/2)u

(2π)d+d+d(d−1)/2

u2

k2
, γ ∝

∫
ddk

1

k2
Tr(MsMs).

(5.107)

The second equality holds up to unimportant constant. Since α, β and γ are divergent, we

need to take the cutoff regularization. Also note that the meaning of γ is somewhat ambiguous

and its numerical factor is not determined. However, Ms’s can be regarded as a sort of angular

momentum operators. It is then natural to consider γ as the sum of the eigenvalues of their

Casimir operator, along with the momentum integral.

The EoM with gauge condition is now changed as

2Aa + α
2(d− 2)

d+ 2

(
∂

∂pb

)2

Aa − α
8(d− 2)

d(d+ 2)

∂

∂pa

(
∂Ab
∂pb

)
− γ

(
∂

∂ts

)2

Aa

−β 4(d− 2)2

d2(d+ 2)
(MsMs ·A)a = 0, (5.108)

∂aA
a = 0. (5.109)

To derive the above equation, one has to be careful to take variation of ((Ms · A)a)
2. As

mentioned above, (Ms)
b
a is equivalent to angular momentum operator, and its operation is

multiplying the corresponding generator to all the indices of the field. Therefore it should be

identified to be the derivative with respect to fiber direction, and one obtains in the action

((Ms ·A)a)
2 = −Aa(MsMs ·A)a by partial integration.

One can analyze Eq.(5.108) by expanding Aa. Note that the three terms in the first line in

Eq.(5.108) vanish since we have restricted Aa to be first order in p and ts. From the last term

in Eq.(5.108), we get mass terms for each field component. While Ma can be interpreted as the

derivative with respect to the fiber coordinates, it is the generators of Spin(D) and (Ms)
2 is

the Casimir operator. Consequently, each field arising from P-W expansion Eq.(5.48) gets the

positive mass squared, the value of which is the eigenvalue of the Casimir operator according

to the representation. The important point here is that a field of any nontrivial representation

of Lorentz group, which has implicit g-dependence, acquires a mass term. This means that

vielbein fluctuation f µ
a (x) get massive as well, even though it has no explicit g-dependence.

5.3.2 Inclusion of the fermionic sector

The above result seems to be quite bad news for us, since there is no gravitational field when

one take into account the quantum correction. However, the original IIB matrix model has

the fermionic sector as well, and it is possible that its quantum correction drastically changes

the result, as is the case in most supersymmetric theories. Therefore, we shall repeat the same

analysis as above on the action obtained from the full IIB matrix model. In this subsection,

we write the essence of the analysis briefly.
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Figure 5.3: The additional loop diagram. The loop is of Majorana fermion. (Source: [44],
doi:10.1016/j.nuclphysb.2017.10.011)

The action corresponding Eq.(5.98) is now

S = S|bos +
1

2
ψ̄TCΓa∂aψ +

1

2
(ψ̄TCΓ(a))(α){A(a), ψ(α)}′, (5.110)

where S|bos is the bosonic part Eq.(5.98), Γa is the d-dimensional gamma matrix and C is the

charge conjugation matrix. One can easily check that the Eq. (5.110) is obtained as the semi-

classical limit of the IIB matrix model. The new parts needed for computing loop diagrams is

bellow:

〈ψα(k, r, h, u)ψβ(−k,−r,−h,−u)〉 =
i(/kC−1)αβ

k2
, (5.111)

= i
[
(k · r̄){kbδac + kaδbc − 2kcδab} − {kbus(Ms)

c
e δ

ae + kaus(Ms)
c
e δ

be − 2(k ·Ms)
cδab}

]
,

(5.112)

Using them, we compute the loop diagrams containing a fermion loop (Fig.5.3) , and obtain

the induced mass terms in this case:

Γ
∣∣∣
mass

= − 1

g2

1

d+ 2

(
(d− 2)− 2[d/2]−κ

)
×
∫
dq

[
α

(
∂Ab
∂pa

)2

− α4

d

(
∂Aa
∂pa

)2

− β 2(d− 2)

d2
((Ms ·A)a)

2

]
, (5.113)
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κ =

 1 (for the Majorana fermion)

2 (for the Majorana-Weyl fermion)
. (5.114)

From this induced mass term, we conclude that all of the fields, including the vielbein, remain

massless in the IIB matrix model (d=10). On the other hand, if a matrix model contains more

DoF in the fermionic sector than in the bosonic one, then the the effective action has tachyonic

field and violates stability.

5.4 Summarizing remarks

In this section, we have analyzed the stability of the matrix model in the operator interpretation,

which is originally proposed in [27,29]. We have shown that the principal bundle is essential for

both the general diffeo-invariance and stability. Therefore, the original interpretation is indeed

the minimal description of the operator interpretation. We have also seen how the metricity

condition works to describe the curvature in EoM.

Next, we have confirmed that coefficient fields in higher derivative operators do transform

as higher spin fields under the appropriate gauge transformation in the U(N) symmetry. The

coeeficient fields include as well redundant components that are eliminated either by gauge

transformations or by generalized torsion-free conditions. Note that, however, the existence

of the higher spin symmetries have been addressed only for simple sector, namely bosonic

fiber-zero modes in the flat spacetime background.

We have computed the mass terms induced by loop corrections. While the IIB matrix model

is protected from the corrections and remains massless theory, its bosonic version acquires mass

terms with the appropriate sign. On the other hand, if we consider a matrix model which has

more fermionic DoF than bosonic ones, fields in the effective action get tachyonic and therefore

violate the stability. The important observation is that the vielbein and spin connection are

massless only in the IIB matrix model. This implies the uniqueness of it as a model describing

gravity. In the original description of the IIB matrix model [1], the correct gravitational

interaction is realized due to supersymmetry. Our result has the same feature as that work,

from the viewpoint that supersymmetry realizes gravity.

There still remain some open questions, parts of which we have already mentioned. Amongst

them the most critical and central is the definition of the trace in the action and the interaction

terms.

We have studied the higher spin symmetries at the level of transformation laws and of EoM.

It should be that the symmetries can be seen explicitly in the action as well. However, we have

no way so far to write down the action directly in terms of derivative operators. FOr example,
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consider the following action:

S =
1

g2
Tr

(
−1

4
[Aa, Ab]

2 − m2

2
A2
a

)
. (5.115)

In the operator interpretation, it possesses a U(1) gauge field and the gauge symmetry for it:

Aa = i∂a + aa(x) + · · · , (5.116)

δAa = i[Λ, Aa], Λ = λ(x) ⇔ δaa(x) = −∂aλ(x). (5.117)

It suggests the existence of U(1) gauge symmetry for massive vector field without the Stueck-

elberg field in Eq.(5.115), if we can convert the action in terms of operators. It appears to

conflict with our understanding on ordinary field theory. Although the question will be settled

once we make the well-defined trace in the action, it is a very difficult issue. At least, the

truncation of operators to first-order should not be performed. It is because the following trace

diverges:

Tr(A2
a) = Tr(∂2) + · · ·

∼
∫

ddp

(2π)d
p2 + · · · . (5.118)

Therefore we must regard matrices, at the starting point, as infinite-order derivative operators

without the truncation, as was claimed repeatedly. Still, the definition of the trace remains

to be determined. While the EoM for higher spin fields contain higher derivative, it is in fact

unclear whether it really shows Ostrogradsky instability of the theory, because we do not have

the action and hence the Hamiltonian for the fields. Related to this problem, the structure of

interaction terms in terms of the local fields need to be analyzed.

If we can define an appropriate trace for infinite-order derivative operators, then we will

eventually obtain a higher spin field theory which includes infinitely many fields with infinitely

many interactions. It seems to have a deep relationship to a high energy description of string

theory, presenting its importance as a nonperturbative formulation of string theory. Therefore,

we will tackle this issue as the most crucial future work.
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Hill-climbing Saddle Point Inflation

—— a Suggested Low-energy Model

from the Matrix Model

In the previous chapters, we have studied the IIB matrix model as a candidate for the theory

of quantum gravity. Since it is supposed to be a non-perturbative formulation of string theory,

it describes physics at very high energy region, namely Planck scale (or the string scale). The

reason for our interest to it was its simple structure in the action and its rich dynamics implying

its inclusion of gravitational physics.

On the other hand, the connection between the matrix model and low-energy physics has

yet to be revealed. The latter is described in terms of local field theory. As we have mentioned

in Chapter 1, our eventual objective is not only to construct a quantum theory including gravity

but also to theoretically connect it to low-energy effective theory which describes our current

universe. More concretely, we should make an effort to reproduce SM from the IIB matrix

model.

For this direction of study, A possible key is the inflation. There is a robust belief that an

inflaton physics is responsible the exponential expansion of early universe, and that the origin

of it consists in high-energy physics, typically at Planck scale. At the same time, the inflaton

decays to SM particle after the inflation explain the reheating. It can be a bridge between the

theories for the two different energy scale physics.

In the IIB matrix model, as has been stated in the previous section, bosonic DoF acquire

mass terms with supersymmetries broken. Therefore, it should have at least one massive scalar

at low energy region where the supersymmetries are broken, and the scalar behaves as an

inflaton.

The crucial questions are the following two: what the true color of an inflaton is, and

what the structure of its potential comes from. While string theory often suggests an axion
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playing an role of the inflaton, it is another reasonable philosophy that the inflaton is identified

to a particle discovered already. Therefore, we are attracted to identify Higgs particle as

inflation [37].

Assuming it, an inflaton potential is of course that of Higgs field. For its structure, there is

some suggestion from the IIB matrix model with the operator interpretation. It was reported

in [31] that its low-energy effective field theory should be with an action of an unusual form.

1 It could be an answer for fine-tuning problems for various coupling constants, including the

Higgs coupling constant. In particular, it favors the Higgs effective potential to have a critical

structure, which has two degenerate vacua at electro-weak and near-Planck scales. Related to

this suggestion, there has been a proposed principle that coupling constants are naturally tuned

so that the universe can have degenerate vacua. This is called the Multiple Point criticality

Principle (MPP). The low-energy effective theory of IIB matrix model, thus, gives some validity

for MPP.

Furthermore, when one focuses on Higgs potential from phenomenological point of view,

there is a good basis to believe it has degenerate two minima. The observed Higgs mass

∼ 125GeV indicates that the SM can be safely interpolated up to the Planck scale without

any divergence or instability. The observed Higgs quartic coupling λ ∼ 0.12 also shows an

interesting behavior of the Higgs potential around the Planck scale Mpl; The potential can

have another degenerate minimum around that scale. The origin of this behavior comes from

the fact that λ and its beta function βλ can simultaneously vanish around Mpl. This is the

very suggested structure from MPP or the IIB matrix model. It is surprising that the Higgs

mass was predicted to be around 130GeV about 20 years ago based on MPP [34].

Various phenomenological and theoretical studies of such a degenerate vacuum have been

done so far [71–75]. One of them is the Higgs inflation with a non minimal coupling ξφ2R/M2
pl

[37]. When this scenario was proposed, it was argued that we need large ξ ∼ 105 in order

to obtain the successful inflationary predictions of the cosmic microwave background (CMB).

However, the criticality of the Higgs potential makes it possible to realize the inflation even if

ξ is relatively small ∼ O(10) by using small but nonzero λ ∼ 10−6 around Mpl. See [76] for the

detailed analyses.

Although the SM criticality can help the realization of the Higgs inflation, it is difficult to

realize the MPP simultaneously because the latter requires λ = 0 around the Planck scale and

we can no longer maintain the monotonicity of the Higgs potential above the scale ∼Mpl/
√
ξ.

Recently, a new inflationary scenario was proposed in [35] which enables an inflation even if

the inflaton potential has multiple degenerate vacua. Then, the authors applied it to the SM

Higgs and showed that it is actually possible to obtain a successful inflation while satisfying

the MPP [36]. In those papers, the authors studied a few cases such that the inflaton potential

1See Appendix C for the detail.
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behaves as a quadratic potential around another potential minimum. Although the inflationary

predictions of this scenario does not strongly depend on the details of the inflaton potential

such as the coefficients of the Taylor expansion, they can depend on the leading exponent of

the (Jordan-frame) potential and the choice of the conformal factor. In this part, we generalize

their works to the cases where the inflaton potential has a saddle point around the Planck

scale. Our study is meaningful from the point of view of the MPP because this situation can

be understood as a natural generalization of this principle, and therefore it can associated to

the high-energy physics as the IIB matrix model, in principle. Although some fine-tunings are

needed in order to realize a saddle point, some theoretical studies [33, 77–79] suggest that we

can naturally archive such fine-tunings by considering physics beyond ordinary field theory.

6.1 Brief review of hill-climbing inflation

Let us briefly review the hill-climbing inflation. We consider the following action of an inflaton

φJ in the Jordan-frame:

S =

∫
d4x
√
−gJ

(
Mpl

2

2

ΩRJ −
KJ

2
(∂φJ)2 − VJ(φJ)

)
, (6.1)

where (∂φJ)2 = gµνJ ∂µφJ∂νφJ . If we identify φJ as the Higgs, the usual Higgs potential

corresponds to VJ(φJ) in this framework. Then, by doing the Weyl transformation

gµν = ΩgJµν , (6.2)

we have

S =

∫
d4x
√−g

[
M2
pl

2
R− 1

2

(
KJ

Ω
+

3

2

(
Mpl

∂ ln Ω

∂φJ

)2)
(∂φJ)2 − VJ(φJ)

Ω2

]
, (6.3)

where R is the Ricci scalar in the Einstein-frame and we have neglected the total derivative

term. Let us now assume that the second term of the kinetic terms dominates. In this case,

we can regard χ ≡ Mpl

√
3/2 ln Ω or −Mpl

√
3/2 ln Ω as a fundamental field instead of φJ . 2

For example, in the case of the ordinary Higgs inflation, we have

Ω(φJ) = 1 + ξ
φ2
J

M2
pl

, VJ(φJ) =
λφ4

J

4
, (6.4)

which leads to the following potential in the Einstein-frame:

VE(χ) =
λφ4

J

4Ω2
=
λM4

pl

4ξ2
(1− Ω−1)2

2The choice of the sign depends on the region we consider; When we consider Ω ≥ 1 (≤ 1), we take
χ = (−)Mpl

√
3/2 ln Ω.
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'
λM4

pl

4ξ2

(
1− exp

(
−
√

2

3

χ

Mpl

))2

, (6.5)

from which we can see that VE(χ) becomes exponentially flat when χ � Mpl ⇔ Ω � 1. See

also Ref. [76] for more detailed analyses.

On the other hand, a new possibility has been proposed in Ref. [35], where it is shown that

we can also consider the Ω � 1 region instead of Ω � 1. In this case, because VE is given by

VE = VJ/Ω
2, VJ needs to behave as

VJ = V0Ω2 (1 + · · · ) (6.6)

around Ω = 0 in order to realize the inflationary era, i.e. H = ȧ/a = const. Because the

conformal factor Ω should approaches one after inflation, the inflaton climbs up the Jordan-

frame potential. This is the reason why the authors of Ref. [35] call this scenario ”Hill-climbing

(Higgs) inflation”. Let us briefly summarize the inflationary predictions of this scenario. By

expanding the Jordan-frame potential VJ as a function of Ω

VJ = V0Ω2(1 +
∑
m≥n

ηmΩm), (6.7)

we obtain

ε =
M2
pl

2

(
V ′

V

)2

' 1

3

(∑
m

ηmmΩm

)2

, (6.8)

η = M2
pl

V ′′

V
' −2

3

∑
m

ηmm
2Ωm, (6.9)

where the prime represents the derivative with respect to χ and we have used the relation

χ =
√

3/2 ln Ω. Furthermore, we can relate the initial value of Ω to the e-folding number N :

N =

∫
dtH =

1

M2
pl

∫
dχ

V
∂V
∂χ

' 3

2ηnn
2

1

Ωn
ini

. (6.10)

From those equations, we obtain the following inflationary predictions:

ns = 1− 6ε+ 2η ' 1− 2

N
, r = 16ε =

12

n2N2
. (6.11)

Note that both of them do not depend on the details of the inflaton potential such as its

coefficients ηn’s. This is the similar behavior of the ξ or α attractor [80–82]. However, the

leading exponent n depends on a specific model we consider and the choice of the conformal

factor. In the following, we consider the hill-climbing inflation around a (UV) saddle point of

an inflaton potential.
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Figure 6.1: Upper (Lower): A schematic behavior of the Jordan (Einstein)-frame potential around
the saddle point φ0 (χ = ∞). Here, the solid (dashed) contour corresponds to k =odd (even).
(Source: [46], doi:10.1016/j.physletb.2018.01.007)

6.2 Hill-climbing saddle point inflation

Let us now consider a general situation where the Jordan-frame potential has a saddle point

φ0 around the Planck scale:

VJ(φ0) = 0, V
(1)
J (φ0) = 0, V

(2)
J (φ0) = 0, · · · , V (k)

J (φ0) = 0 (6.12)

with V
(i)
J denoting the i-th derivative of VJ . In the following, we assume

V
(k+1)
J (φ0) > 0 for odd k,

V
(k+1)
J (φ0) < 0 for even k,

V
(k+2)
J (φ0) 6= 0

(6.13)

in order to realize a positive vacuum energy in φJ ≤ φ0.3 This is schematically shown in the

upper panel of Fig.6.1. In this case, we can expand VJ around φ0 as

VJ(φJ) =
V

(k+1)
J

(k + 1)!
(φJ − φ0)k+1 +

V
(k+2)
J

(k + 2)!
(φJ − φ0)k+2

=
|V (k+1)
J |φk+1

0

(k + 1)!

(
1− φJ

φ0

)k+1

3The third assumption is not necessary for our present set up. We can also consider a more general situation
such that V

(k+1)
J (φ0) 6= 0, V

(k+2)
J (φ0) = 0, · · · , V (k+m)

J (φ0) = 0, V
(k+m+1)
J (φ0) 6= 0.
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×
(

1 + v
(k+2)
1

(
φJ
φ0

− 1

)
+ v

(k+3)
2

(
φJ
φ0

− 1

)2)
, (6.14)

where

v
(k+2)
1 =

φ0V
(k+2)
J

(k + 2)V
(k+1)
J

, v
(k+3)
2 =

φ0V
(k+3)
J

(k + 2)(k + 3)V
(k+1)
J

. (6.15)

As for the conformal factor Ω, we can consider various possibilities:4

Ω(φJ)2 =

(
1− φJ

φ0

)k+1
1 +

∑
i≥0

ωi

(
1− φJ

φ0

)i , (6.16)

∑
i≥0

ωi = 0, (6.17)

where the second equation guarantees Ω(0) = 1. In this letter, in order to give some concrete

inflationary predictions, we consider the following two models:

Ω =


(

1− φ2
J

φ2
0

) k+1
2

(Model 1),(
1− φ4

J

φ4
0

) k+1
2

(Model 2),

(6.18)

which correspond to Model 1 and Model 2 presented in Ref. [36], respectively. In the case of

Model 1, the Einstein-frame potential becomes

VE '
|V (k+1)
J |φk+1

0

(k + 1)!2k+1

(
1 +

(
k + 1

2
− v(k+2)

1

)(
1− φJ

φ0

)
+

(
v

(k+3)
2 − k + 1

2
v

(k+2)
1 +

(k + 1)(k + 2)

8

)(
1− φJ

φ0

)2)
' V0

(
1 + η 2

k+1

Ω
2
k+1 + η 4

k+1

Ω
4
k+1

)
, (6.19)

where

V0 =
|V (k+1)
J |φk+1

0

(k + 1)!2k+1
, η 2

k+1

=
1

2

(
k + 1

2
− v(k+2)

1

)
,

η 4
k+1

=
1

22

(
v

(k+3)
2 − k + 1

2
v

(k+2)
1 +

(k + 1)(k + 2)

8

)
,

(Model 1) (6.20)

4In this letter, we assume that the conformal factor Ω also becomes zero at a saddle point of VJ . This
fine-tuning might also be explained by some new physics [33,77–79].
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from which we can see that the resultant leading exponent depends on the coefficients of the

Jordan-frame potential. 5 In the lower panel of Fig.6.1, we schematically show the Einstein-

frame potential VE . Here note that the saddle point φ0 corresponds to χ = ∞ because of the

relation χ = −Mpl

√
3/2 ln Ω. Here, the solid (dashed) contour corresponds to k =odd (even).

In the case of Model 2, we have

V0 =
|V (k+1)
J |φk+1

0

(k + 1)!22(k+1)
, η 2

k+1

=
1

4

(
3(k + 1)

2
− v(k+2)

1

)
,

η 4
k+1

=
1

42

(
v

(k+3)
2 − 3(k + 1)

2
v

(k+2)
1 +

(k + 1)(9k + 10)

8

)
,

(Model 2) (6.21)

Thus, both of the models typically give the leading exponent n = 2
(k+1) as long as we do

not require a fine-tuning of the coefficients.6 As a result, the tensor-to-scalar ratio becomes

larger when we increase k. Note that, in this framework, the coefficient of the leading term in

the potential must be negative, η 2
k+1

< 0, which enables χ to roll down it. Furthermore, the

potential height V0 is also constrained by the curvature perturbation

As =
V0

24π2εM4
pl

= 2.2× 10−9 ∝ V
(k+1)
J (φ0)φk+1

0

M4
pl

. (6.22)

In Fig.6.2, we plot the parameter regions obtained from Eq.(6.22). Here, the (k+1)-th derivative

V
(k+1)
J (φ0) is normalized by φk−3

0 , and each bands corresponds to each k’s. The solid (dashed)

contours represent N = 50 (60).

In Fig.6.3, we also show the inflationary predictions obtained from the analytic formulas

Eq.(6.11). Here, the different color lines represent different k’s and the small (large) dots

correspond to N = 50 (60). Note that ns does not change within this analytic formula because

it only depends on the e-folding N . As is already mentioned in Ref. [36], the higher order terms

of the inflaton potential can have slightly large contributions to the inflationary dynamics, and

numerical studies are necessary in order to give more precise predictions. This is left for future

investigations.

we have applied the idea of the hill-climbing inflation to the models where the inflaton

potential has a saddle point around the Planck scale and shown that it is possible to archive

a successful inflation. A notable feature of this class of models is that the leading exponent of

the Jordan-frame potential as a function of the conformal factor is typically given by 2/(k+1),

5For example, in the case of the Higgs potential, we have k = 1, v
(k+2)
1 = 3, which lead to η1 = −1. This

agrees with the previous study Ref. [36].
6If we consider general VJ and Ω, the coefficients η2i/(k+1)’s are simple polynomials of (v

(k+i+1)
i , ωi), and it

is possible to eliminate some of the first η2i/(k+1)’s by choosing specific values of those parameters. Then, the
leading exponent can be n = 2l

k+1
with arbitrary l. The Model 2 of the hill-climbing Higgs inflation Ref. [36] is

such a case.
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Figure 6.2: The parameter regions that produce the observed value of the scalar perturbation As =
2.2 × 10−9. The upper (lower) panel corresponds to Model 1 (2). Here, the different color bands
represent different k’s respectively, and the solid (dashed) lines corresponds to N = 50 (60). (Source:
[46], doi:10.1016/j.physletb.2018.01.007)
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which leads to a large tensor-to-scalar ratio. Although we have just concentrated on a saddle

point of the inflaton potential, we can also consider various realizations of the hill-climbing

inflation by using a variety of VJ and Ω. So it might be interesting to investigate such possibil-

ities and construct a phenomenological model that can realize a successful inflation. From the

point that such a inflation model should be induced from high-energy physics, it is a tempting

future work to study the effective theory of the IIB matrix model in comparison with these

generalized hill-climbing structure.
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Figure 6.3: The inflationary predictions of the hill-climbing saddle point inflation. Here, the different
color lines represent different k’s and the small (large) dots correspond to N = 50 (60). (Source: [46],
doi:10.1016/j.physletb.2018.01.007)



Chapter 7

Massive Higher Spin Fields in

Curved Spacetime

Another implication of the IIB matrix model is that many massive higher spin fields (MHSF)

should exist in our universe. It is a resulting observation of Chapter 5. It is now no doubt

that the IIB matrix model contains higher spin fields, and with the supersymmetries broken at

some energy scale, they get massive through radiative corrections. Although the mechanism of

breaking supersymmetries is yet to be studied, the breaking did occur in our universe since the

experiments tell us the absence of low-energy supersymmetry. Therefore, even if real MHSF

are so heavy that the current experiments and observations do not confirm its existence, it is

important to describe them in terms of field theory. One may think that it is sufficient to treat

them within the framework of string theory. However, it is still a reasonable expectation as

well that we can describe them when we do not take into account their UV behavior, including

UV divergence.1

Attempts to construct MHSF theories showed up with the papers written by Fierz and Pauli,

who formulated a free field theory of massive spin 2 particles in the Minkowski space [83,84]. In

general, the natural object to describe a spin s particle is a rank-s traceless symmetric tensor

field, but this has more independent components than necessary, because a spin s particle has

only 2s + 1 DoF. Therefore, the Lagrangian should give the EoM that yield necessary and

sufficient constraints to eliminate the redundant DoF. In fact, for the s = 2 case, Fierz and

Pauli showed that an appropriate Lagrangian can be obtained if one introduces an auxiliary

scalar field in addition to a rank-2 traceless tensor. These fields can actually be combined to

form a single traceful symmetric tensor hµν , which we call the Fierz-Pauli (FP) field.2 For the

case s > 2, the Lagrangian with the desired property was given by Singh-Hagen [38,39], which

1Apart from the connection of string theory or the IIB matrix model with low-energy theories, MHSF is of
interest from the phenomenological viewpoint since the excited hadrons are indeed such objects. The analysis
of this chapter can also be seen as an attempt to describe them coupled with gravity.

2In [85] it was shown that the FP theory is the unique formulation of a spin 2 particle without ghosts or
tachyons.
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consist of traceless symmetric tensors of ranks s, s− 2, s− 3, s− 4 , . . . , 0 . These fields can be

combined to form two traceful symmetric tensors of ranks s and s− 3.3

All the works above only consider the case where the background spacetime is flat. However,

for curved backgrounds, it is non-trivial to formulate MHSF theories.4 In fact, as we will see

in section 7.1, the mechanism to derive the constraints from the EoM breaks down because

covariant derivatives do not commute with each other. There was also an argument that the

transverse condition is not compatible with the wave equation for arbitrary backgrounds [92].

Although verious works have been made in this direction [93–107], It seems that currently there

are no consistent massive higher spin theories for general backgrounds that reduces to the flat

case smoothly.

In this chapter, as a first step to investigate higher spin theories, we give the quadratic

Lagrangian for spin 2 particles in general gravitational backgrounds, and discuss a fundamental

problem occurs with particles of spin larger than 3.

The analysis of spin 2 particles is essentially related to [108,109]. First, we have an analysis

in Hamiltonian formalism which is motivated by the canonical analysis of ordinary gravity with

ADM decomposition. This makes the points clear. Then we give the Lagrangian and the direct

analysis. The connection to massive gravity theory [110–113] is presented as well.

On the other hand, we show that a spin 3 particle fails to couple to gravity in the subsequent

section. The EoM for it do not contain enough constraints in the general background. The

same breakdown is likely to occur with arbitrary spin higher than 2. This result implies that

we cannot describe single MHSF in curved spacetime. The way to overcome this problem is

probably to introduce infinitely many fields of different spin. The situation is consistent to

the operator interpretation of the IIB matrix model, where we have to consider infinity-order

derivative operators with higher spin fields being its coefficients.

7.1 Breakdown of the transverse condition for curved back-

grounds

In this section, we demonstrate that FP’s original mechanism to eliminate the redundant DoF

of a massive higher rank tensor field does not work for generic curved backgrounds.

We start by arguing that there is no such issue for massive spin 1 field Aµ (Proca field).

The action of the Proca field in the flat Minkowski spacetime is given by

S =

∫
d4x

[
−1

4
FµνFµν −

1

2
m2AµAµ

]
, (7.1)

where Fµν = ∂µAν −∂νAµ and the metric is chosen to be ηµν = diag[−1,+1,+1,+1] . Its EoM

3The massless limit of that Lagrangian was studied by Fronsdal [66] [86].
4For specific types of background, consistent EoM are obtained for massless fields by using the spacetime

symmetry [87–90]. An attempt to generalize the theory to the massive case was made in [91].
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are given by

∂νF
µν +m2Aµ = 0 . (7.2)

The divergence of Eq.(7.2) gives the transverse condition ∂µA
µ = 0 , and the substitution of

this to the EoM in turn gives the wave equation, (2−m2)Aµ = 0 . Thus, the action (Eq.(7.1))

gives the EoM which automatically include the constraint that eliminates the redundant DoF

correctly. It is easy to see that this mechanism also works in general curved backgrounds. In

fact, if we covariantize the action as

S =

∫
d4x
√−g

[
−1

4
FµνFµν −

1

2
m2AµAµ

]
(7.3)

with Fµν ≡ ∇µAν −∇νAµ , then the EoM are given by

∇νFµν +m2Aµ = 0 , (7.4)

whose divergence again gives the transverse condition, ∇µAµ = 0 , because ∇µ∇νFµν =

[∇µ,∇ν ]Fµν = Rµν
µ
αF

αν+Rµν
ν
αF

µα = −2RµνF
µν = 0 . Note that one could have added cur-

vature terms to the action of the form
∫
d4x
√−g

[
aRµνA

µAν + bRAµAµ
]
, where the coupling

constants a and b are not determined only by requiring the action to become Eq.(7.1) in the

flat limit. Such non-minimal couplings can be used to absorb the discrepancy that may arise

when kinematic terms are covariantized in a different manner [e.g., a kinetic term ∂µA
µ ∂νA

ν

(up to total derivatives) can be covariantized in two ways: ∇µAµ∇νAν or ∇µAν ∇νAµ].

Now we discuss the FP field. The Lagrangian in the flat spacetime is given by

L = hµν Eµνρσ0 hρσ −
m2

2
(hµνh

µν − h2) , (7.5)

where Eµνρσ0 is the Lichnerowicz operator for the flat spacetime:5

Eµνρσ0 hρσ ≡
1

2
(2hµν − ηµν2h) +

1

2
(∂µ∂νh+ ηµν∂ρ∂σhρσ)− ∂(µ∂λh

ν)λ . (7.6)

The kinetic term LE0 = hµν Eµνρσ0 hρσ can be formally obtained from the EH action6

SEH[ĝ] =
1

2

∫
d4x
√
−ĝR̂ (7.7)

by setting ĝµν = ηµν + 2hµν and taking quadratic terms in hµν . The EoM take the form

0 = 2 Eµνρσ0 hρσ −m2(hµν − ηµν h)

5We normalize the symmetrization as X(µν) ≡ (1/2) (Xµν +Xνµ).
6Throughout this chapter quantities with turret should be understood to represent those associated with

ĝµν .
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= (2−m2)(hµν − ηµνh) + ηµν∂ρ∂σhρσ − 2∂(µ∂λh
ν)λ + ∂µ∂νh . (7.8)

A rank-2 symmetric tensor hµν has ten independent components, while a massive spin 2 particle

has five DoF. In the flat background, the extra DoF are actually eliminated from the EoM as

the Proca field. In fact, the divergence, double divergence, and trace of Eq.(7.8) respectively

give

−m2(∂νh
µν − ∂µh) = 0 , (7.9)

−m2(∂µ∂νh
µν −2h) = 0 , (7.10)

2(∂µ∂νh
µν −2h) + 3m2h = 0 . (7.11)

Thus, when m 6= 0, we obtain the traceless condition, h = 0, from Eqs.(7.10) and (7.11). Then,

substituting it to Eq.(7.9), we get the transverse condition, ∂νh
µν = 0. Consequently, hµν is

a rank-2 traceless symmetric, divergence-free tensor, which has five independent components.

Note that the EoM (Eq.(7.8)) are then reduced to the Klein Gordon equations:

(2−m2)hµν = 0 . (7.12)

We thus see that the reduction mechanism works for a massive spin 2 field as long as the

background is flat.

Next we show the breakdown of the reduction mechanism when the flat theory is näıvely

lifted to curved backgrounds. A natural extension of Eq.(7.5) is obtained (a) by replacing

the derivatives with covariant derivatives, or (b) by substituting ĝµν = gµν + 2hµν to Eq.(7.7)

and taking only quadratic terms in hµν . The discrepancy between (a) and (b) appears as the

difference of non-minimal couplings (e.g., the difference of the coefficient of Rhµνhµν). In this

section we adopt the prescription (b).

The Lagrangian now takes the form

L =
√−g

[
hµνEµνρσhρσ −

m2

2
(hµνh

µν − h2)
]
. (7.13)

Here, h = gµνhµν , and Eµνρσ is the Lichnerowicz operator acting on symmetric tensors in a

curved spacetime:

Eµνρσhρσ =
1

2
(2hµν − gµν2h) +

1

2
(∇µ∇νh+ gµν∇ρ∇σhρσ)−∇(µ∇λhν)λ

+Rµρνσhρσ +Rρ(µhν)
ρ −

1

2
(gµνRρσhρσ +Rµνh)− 1

2
Rhµν +

1

4
Rgµνh , (7.14)

which reduces to Eq.(7.6) in the flat limit and enjoys the following properties:

1

2

√
−ĝ R̂ =

√−g
[1

2
R−Gµνhµν + hµν Eµνρσhρσ +O(h3)

] (
ĝµν = gµν + 2hµν

)
, (7.15)
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∇ν
(
Eµνρσhρσ

)
=

1

2
Gρσ (2∇ρhµσ −∇µhρσ) , (7.16)

gµν
(
Eµνρσhρσ

)
= ∇µ∇νhµν −2h , (7.17)

where Gµν = Rµν − (R/2) gµν is the Einstein tensor. The EoM are given by

2Eµνρσhρσ −m2(hµν − gµνh) = 0 . (7.18)

The divergence, double divergence, and trace of Eq.(7.18) respectively give

Gρσ (2∇ρhµσ −∇µhρσ)−m2(∇νhµν −∇µh) = 0 , (7.19)

∇µ
[
Gρσ (2∇ρhµσ −∇µhρσ)

]
−m2(∇µ∇νhµν −2h) = 0 , (7.20)

2(∇µ∇νhµν −2h) + 3m2h = 0 . (7.21)

Thus, if h vanished or at least could be expressed as a function of the traceless part of hµν ,

Eq.(7.19) would give four constraints on the transverse component. However, Eqs.(7.20) and

(7.21) lead to

h = − 2

3m4
∇µ
[
Gρσ (2∇ρhµσ −∇µhρσ)

]
. (7.22)

This is, except for the vacuum case (Gµν = 0), a second-order differential equation for the

trace h and the traceless part of hµν , which cannot be regarded as a constraint eliminating

unnecessary DoF. The situations are the same also for the cases of other spins, except for

spin 1 (Proca field). In the spin 1 case, the divergence of the EoM always results in a first-

order differential equation corresponding to the transverse condition, irrespective of how non-

minimal couplings are introduced. For the case of higher spins, however, there is no choice

of non-minimal couplings so as to cancel the RHS of Eq.(7.22). Another problem will emerge

when formally substituting Eq.(7.22) to Eq.(7.18), since it results in fourth-order differential

equations with respect to time. It is a singular perturbation, and yields an exponential growth

of the amplitudes because the perturbation becomes much larger than the original kinetic term

at short time scales. These facts seem to indicate that the Lagrangian above fails to describe

a consistent FP field in a general background. In the following, we resolve this issue by giving

up the attempt to express the constraint in a form that is directly related to the transverse

condition and also by paying the cost of breaking the manifest covariance in the analysis.

7.2 Fierz-Pauli field in general curved backgrounds

In this section, we construct a consistent, linear field theory of a massive spin 2 field in a general

curved spacetime.



78 Chapter 7 Massive Higher Spin Fields in Curved Spacetime

We start with the Lagrangian (Eq.(7.13)) with non-minimal couplings to the curvature:

S =

∫
d4xL, L = LE + Lm + LR (7.23)

with

LE =
√−g hµνEµνρσhρσ, Lm = −√−g m

2

2
(hµνh

µν − h2) , (7.24)

LR =
√−g

[a1

2
Rµνρσh

µρhνσ +
a2

2
Rµνh

µρhνρ +
a3

2
Rhµνh

µν +
b1
2
Rh2 + b2Rµνh

µνh
]
. (7.25)

Here LR expresses the non-minimal couplings, and the coupling constants a1, a2, a3, b1, b2

cannot be determined a priori only by requiring the action to become the FP action in the flat

limit. Note that such terms also exist in LE . In the remaining of this section, we show that

Eqs.(7.23)–(7.25) describe a massive spin 2 field with correct DoF if and only if the constants

in LR satisfy the two conditions7

a2 + 2b2 = −1 , (7.26)

a3 + b1 =
1

2
. (7.27)

The counting of DoF is usually easiest in the Hamiltonian formalism, and for this purpose

we introduce the ADM decomposition of the metric:

(ĝµν) =

 −N̂2 + ĝijN̂
iN̂ j ĝijN̂

i

ĝijN̂
j ĝij

 . (7.28)

The functions N̂ and
~̂
N = (N̂ i) (i = 1, 2, 3) are called the lapse and the shift, respectively, and

ĝij describes the induced metric on a timeslice. The EH action then takes the following form

up to surface integrals:

SEH =

∫
d4x

1

2
N̂
√
ĝ
[
(3)R̂+ K̂ijK̂

ij − K̂2
]

(K̂ ≡ ĝij K̂ij) . (7.29)

Here, (3)R̂ is the Ricci scalar associated with ĝij , and K̂ij ≡ (1/2N̂)
[

˙̂gij − δ ~̂
N
ĝij
]

is the

extrinsic curvature of the timeslice (δ ~̂
N

is the Lie derivative with respect to the shift
~̂
N). We

now expand the action around a classical background metric. By using the diffeo-invariance of

the EH action, we can set the background to the following form without loss of generality:

(
gµν
)

=

 −1 0

0 gij

 . (7.30)

7The relations were first obtained in [109].
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We then replace the metric in the action as

ĝµν = gµν + hµν (hµν ≡ 2hµν) , (7.31)

or equivalently, rewrite the lapse and shifts in Eq.(7.29) as

N̂2 = 1− h00 + ĝijh0ih0j , (7.32)

ĝijN̂
j = h0i , (7.33)

ĝij = gij + hij . (7.34)

The quadratic terms in hµν give LE , whose explicit form is given by

LE =

[
1

2
N̂
√
ĝ
[
(3)R̂+ K̂ijK̂

ij − K̂2
]]

(2)

=

[
N̂
√
ĝ

2
(3)R̂+

1

2
Ĉijkl

(
˙̂gij − δ ~̂

N
ĝij
)(

˙̂gkl − δ ~̂
N
ĝkl
)]

(2)

=
1

2
Ĉijkl(0) ḣij ḣkl + Ĉijkl(1) ḣij ġkl − Ĉijkl(0) ḣij(δ ~̂

N
gkl)(1)

+
[N̂√ĝ

2
(3)R̂+

1

2
Ĉijkl

(
ġij − δ ~̂

N
gij − δ ~̂

N
hij
)(
ġkl − δ ~̂

N
gkl − δ ~̂

N
hkl
)]

(2)
, (7.35)

where

Ĉijkl ≡
√
ĝ

4N̂

[1

2
(ĝikĝjl + ĝilĝjk)− ĝij ĝkl

]
, (7.36)

and a subscript in parenthesis denotes the order in hµν .

We now move on to the Hamiltonian formalism by making the Legendre transformation

with respect to ḣij . Since ḣij is contained only in LE , the conjugate variable to hij is given by

πij ≡ ∂L
∂ḣij

=
∂LE
∂ḣij

= Ĉijkl(0) ḣkl + Ĉijkl(1) ġkl − Ĉ
ijkl
(0) (δ ~̂

N
gkl)(1) , (7.37)

which can be solved for ḣij as

ḣij = (Ĉ−1
(0) )ijkl

(
πkl − Ĉklmn(1) ġmn + Ĉklmn(0) (δ ~̂

N
gmn)(1)

)
. (7.38)

The Hamiltonian is then obtained as

H = πij ḣij − LE − Lm − LR

=
1

2
(Ĉ−1

(0) )ijkl
(
πij − Ĉijmn(1) ġmn + Ĉijmn(0) (δ ~̂

N
gmn)(1)

)(
πkl − Ĉklpq(1) ġpq + Ĉklpq(0) (δ ~̂

N
gpq)(1)

)
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−
[N̂√ĝ

2
(3)R̂+

1

2
Ĉijkl(ġij − δ ~̂

N
gij − δ ~̂

N
hij)(ġkl − δ ~̂

N
gkl − δ ~̂

N
hkl)

]
(2)
− Lm − LR .

(7.39)

Since h0i is generically quadratic and has no kinetic terms, the corresponding DoF will

drop out from the system by solving the EoM for h0i and by substituting the obtained solution

to the action. Then, if the resulting Hamiltonian has only linear terms in h00, there will

arise the primary constraint, from which will follow the secondary constraint as a condition

for the primary constraint to be consistent under the time evolution. Furthermore, a further

consistency condition will arise for the secondary constraint, which in turn will determine the

form of h00. Thus, if the Hamiltonian has only linear terms in h00 after the elimination of h0i ,

the variables h00 and h0i will disappear from the system, leaving two constraints. This means

that the system has ten (= 6 + 6 − 2) DoF, which agree with those of a massive spin 2 field.

We are going to show that this is the case if and only if the conditions (Eqs.(7.26) and (7.27))

are met.

There are actually two sources of h2
00 terms. One is the h2

00 terms that already exist in the

Hamiltonian before solving the EoM for h0i . The other is the h2
00 terms that come out after

h0i is eliminated from the Hamiltonian.

First we point out that the latter source is absent, noticing that the mass term Lm,

Lm = −√−g m
2

8

[
−2gijh0ih0j + gikgjlhijhkl + 2h00g

ijhij − (gijhij)
2
]
, (7.40)

contains quadratic terms in h0i when m 6= 0 . If the Lagrangian contains the terms of the

form h00h0i , the EoM for h0i take the form h0i = h00 × A0i + · · · and give h2
00 terms when

substituted back to the Lagrangian. However, as we will see below, there are no such terms in

the Lagrangian. Since there are no h00h0i terms in Lm , we only need to confirm the absence

of such terms in the rest of the Hamiltonian Eq.(7.39). As for LR , we see that a2Rµνh
µρhνρ

and b2Rµνh
µνh actually give dangerous terms −a2R0ih00h

i
0 and −2b2R0ih

i
0h00. However, they

can be ignored in our present approximation, because their contributions to the coefficients

of h2
00 will be O(R2/m2) and can be neglected to the first order in the curvature. As for the

remaining part of Eq.(7.39), we see from Eqs.(7.32)–(7.34) that terms linear in h0i appear only

through δ ~̂
N
gij . Thus, the possible terms containing h00h0i are

−(Ĉ−1
(0) )ijklĈ

ijmn
(1) ġmnĈ

klpq
(0) (δ ~̂

N
gpq)(1) −

(
−Ĉijklġijδ ~̂

N
gkl
)

(2)
. (7.41)

However, the h00 h0i terms cancel out in Eq.(7.41), because it can be rewritten as

− Ĉijmn(1) ġmn(δ ~̂
N
gij)(1) + Ĉijkl(0) ġij

(
δ ~̂
N
gkl
)

(2)
+ Ĉijkl(1) ġij

(
δ ~̂
N
gkl
)

(1)
+ Ĉijkl(2) ġij

(
δ ~̂
N
gkl
)

(0)

= Ĉijkl(0) ġij
(
δ ~̂
N
gkl
)

(2)
+ Ĉijkl(2) ġij

(
δ ~̂
N
gkl
)

(0)
, (7.42)
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which does not contain h00 h0i .

We thus find that h0i do not play any role in investigating the possible appearance of h2
00

terms, so that we can safely set h0i = 0 for further arguments. Since h2
00 terms can appear only

through N̂ in Ĉijkl , we only need to look at the h2
00 terms in the reduced Hamiltonian

H ∼ 1

2

[
(Ĉ−1

(0) )ijklĈ
ijmn
(1) Ĉklpq(1) ġmnġpq − Ĉ

ijkl
(2) ġij ġkl

]
−
[N̂√g

2
(3)R

]
(2)
− Lm − LR . (7.43)

Here, the symbol ∼ stands for an equality that holds when N̂ i and hij are set to 0. Ĉijkl now

takes the form

Ĉijkl = Ĉijkl(0) + Ĉijkl(1) + Ĉijkl(2) + · · ·

∼
√
g

4N̂

[1

2
(gikgjl + gilgjk)− gijgkl

]
=

1

4

√
g
(

1 +
1

2
h00 +

3

8
h2

00 + · · ·
)[1

2
(gikgjl + gilgjk)− gijgkl

]
(7.44)

with

Ĉijkl(0) ∼
√
g

4

[1

2
(gikgjl + gilgjk)− gijgkl

]
, (7.45)

Ĉijkl(1) ∼
1

2
h00 Ĉ

ijkl
(0) , (7.46)

Ĉijkl(2) ∼
3

8
h2

00 Ĉ
ijkl
(0) . (7.47)

Because Lm does not include h2
00 terms, we thus get

H ∼ 1

2

(1

4
− 3

8

)
h2

00 Ĉ
ijkl
(0) ġij ġkl +

√
g

16
(3)R h2

00 − LR

∼ 1

64

√
g
[
ġij ġ

ij + (gij ġij)
2
]
h2

00 +

√
g

16
(3)R h2

00 − LR . (7.48)

Finally, we substitute hµν = 2hµν :

H ∼ 1

16

√
g
[
ġij ġ

ij + (gij ġij)
2
]
h2

00 +

√
g

4
(3)Rh2

00 − LR . (7.49)

From this expression, we see that appropriate curvature terms must be supplied by LR in order

for the h2
00 terms to disappear. To see that this is actually possible, we write down the explicit

form of LR for the background metric (Eq.(7.30)). Necessary formulae are

R = (3)R+ gij g̈ij +
3

4
ġij ġ

ij +
1

4
(gij ġij)

2 , (7.50)

R00 = −1

2
gij g̈ij −

1

4
ġij ġ

ij , (7.51)
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from which the h2
00 terms involved in Eq.(7.25) are obtained as

a1

2
Rµνρσh

µρhνσ ∼ 0 , (7.52)

a2

2
Rµνh

µρhνρ ∼ −
a2

2
R00h

2
00 =

a2

2

[1

2
gij g̈ij +

1

4
ġij ġ

ij
]
h2

00 , (7.53)

a3

2
Rhµνh

µν ∼ a3

2
Rh2

00 =
a3

2

[
(3)R+ gij g̈ij +

3

4
ġij ġ

ij +
1

4
(gij ġij)

2
]
h2

00 , (7.54)

b1
2
Rh2 ∼ b1

2
Rh2

00 =
b1
2

[
(3)R+ gij g̈ij +

3

4
ġij ġ

ij +
1

4
(gij ġij)

2
]
h2

00 , (7.55)

b2Rµνh
µνh ∼ −b2R00h

2
00 = b2

[1

2
gij g̈ij +

1

4
ġij ġ

ij
]
h2

00 . (7.56)

The reduced Hamiltonian is then expressed as

H =

√
g

16

{
4 (3)R+ ġij ġ

ij + (gij ġij)
2 − 2(a2 + 2b2)(2gij g̈ij + ġij ġ

ij)

− 2(a3 + b1)
[
4 (3)R+ 4gij g̈ij + 3ġij ġ

ij + (gij ġij)
2
]}
h2

00 , (7.57)

and we find that the necessary and sufficient conditions for the coefficients of four independent

terms (3)R, gij g̈ij , ġij ġ
ij and (gij ġij)

2 to disappear are given by the conditions (7.26) and

(7.27). They are the conditions we promised to show in the beginning of this section so that

the action (7.23)–(7.25) describes a massive spin 2 field with correct DoF in an arbitrary curved

background.

7.3 Analysis based on the Lagrangian

In this section we reproduce the results in the previous section directly from the Lagrangian

without resort to the ADM decomposition. We again set the background metric to the form

(7.30) by using the diffeo-invariance. Then the FP Lagrangian can be written in the following

form, by decomposing hµν and their covariant derivatives to the temporal and spatial compo-

nents and by integrating by parts appropriately:

L =
√
g

[
1

2
Cijklḣij ḣkl +

1

2
M ijklhijhkl +Dij ḣijh00 + Eijhijh00

+ F ijkḣijh0k +Gijkhijh0k +H ih0ih00 +
1

2
Iijh0ih0j +

1

2
J(h00)2

]
. (7.58)

Here, dots denote derivatives with respect to t. Cijkl does not include curvatures or spatial-

derivative operators. Iij does not include spatial-derivative operators but may include curva-

tures (as well as m2). Note that the FP kinetic term LE does not contain terms of the form

ḣ00ḣij . Completing the square with respect to ḣij leads to

L =
√
g

[
1

2
Cijkl

(
ḣij + (C−1)ijmn(Dmnh00 + Fmnph0p)

)(
ḣkl + (C−1)klqr(D

qrh00 + F qrsh0s)
)
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+
1

2
M ijklhijhkl + Eijhijh00 +

1

2
J(h00)2 +Gijkhijh0k +H ih0ih00 +

1

2
Iijh0ih0j

− 1

2
(C−1)ijkl

(
Dijh00 + F ijmh0m

)(
Dklh00 + F klnh0n

)]
. (7.59)

The condition for this Lagrangian to give the proper constraints is, as discussed in the previous

section, that the terms of the form h2
00 or h00 h0i do not survive after the Legendre transfor-

mation is made with respect to ḣij . This is translated in the Lagrangian formalism as the

condition that the second and third lines of Eq.(7.59) do not give terms of the form h2
00 or

h00 h0i . This condition can be written as

J −DC−1D = 0 , (7.60)

H i − (DC−1F )i = 0 . (7.61)

In the following, we directly compute the LHS of Eqs.(7.60) and (7.61), and show that Eq.(7.61)

is always satisfied but Eq.(7.60) requires the conditions Eq.(7.26) and Eq.(7.27).8

With the metric (7.30), the connections are given by

Γ0
00 = Γ0

0i = Γi00 = 0 , Γ0
ij =

1

2
ġij , Γi0j =

1

2
gikġkj , (7.62)

and Γijk agrees with the connection associated with gij . Accordingly, the covariant derivatives

take the forms

∇0h00 = ḣ00 ,

∇ih00 = ∂ih00 − 2Γji0h0j ,

∇0h0i = ḣ0i − Γj0ih0j ,

∇jh0i = ∂jh0i − Γkj0hki − Γ0
jih00 − Γkjih0k ,

∇0hij = ḣij − Γk0ihkj − Γk0jhki ,

∇khij = ∂khij − Γ0
kih0j − Γ0

kjh0i − Γlkihlj − Γlkjhli . (7.63)

We now write the FP Lagrangian with non-minimal couplings in the following form:

L =
√−g

[
− 1

2
∇λhµν∇λhµν +∇µhµν∇λhλν −∇µhµν∇νh+

1

2
∇µh∇µh

− m2

2
(hµνh

µν − h2)

+
ã1

2
Rµρνσh

µνhρσ +
ã2

2
Rµλhµνh

λν +
ã3

2
Rhµνh

µν +
b̃1
2
Rh2 + b̃2Rµνh

µνh

]
, (7.64)

8After the first manuscript was accepted for publication, we found that a similar analysis was made in [109].
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where the parameters are related with those in the previous section, Eq.(7.25), as

ã1 = a1 + 2 , ã2 = a2 + 2 , ã3 = a3 − 1 ,

b̃1 = b1 +
1

2
, b̃2 = b2 − 1 . (7.65)

By substituting Eqs.(7.63) to (7.64), the coefficients in Eq.(7.58) are expressed as

Cijkl =
1

2
(gikgjl + gilgjk)− gijgkl , (7.66)

(C−1)ijkl =
1

2
(gikgjl + gilgjk)−

1

2
gijgkl , (7.67)

Dij =
1

2
(gikΓjk0 + gjkΓik0)− gijgklΓ0

kl , (7.68)

F ijkh0k = 2(gijgkl − gikgjl)∂kh0l +O(Γ2) , (7.69)

H ih0i = ġij∂ih0j + gijgklġkl∂ih0j +O(Γ2) (7.70)

J = 2gijgkl(Γ0
ikΓ

0
jl − Γ0

ijΓ
0
kl) +

1

2
gij ġijg

klΓ0
kl

+ ġijΓ0
ij + gijΓ̇0

ij + 2α̃R00 + 2β̃R , (7.71)

where

α̃ = −
(
ã2

2
+ b̃2

)
= −

(
a2

2
+ b2

)
, (7.72)

β̃ =
ã3

2
+
b̃1
2

=
a3

2
+
b1
2
− 1

4
. (7.73)

One can easily check that the condition (7.61) is automatically satisfied (up to higher-order

terms). On the other hand, the LHS of Eq.(7.60) can be rewritten to the form

J −DC−1D =
1

2
(1− 2α̃+ 4β̃)gij g̈ij +

1

4
(1− 2α̃+ 6β̃)ġij ġij +

1

2
β̃(gij ġij)

2 + 2β̃ (3)R , (7.74)

which vanishes only when α̃ = 1/2 and β̃ = 0, i.e.,

ã2 + 2b̃2 = −1 → a2 + 2b2 = −1 , (7.75)

ã3 + b̃1 = 0 → a3 + b1 =
1

2
. (7.76)

We thus have reproduced the conditions (7.26) and (7.27) without using the ADM formalism.

The procedure in this section is a simpler algorithm, and might have some application to the

analysis of higher spin theories.
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7.4 Connection to massive gravity

Actually, there is a well-known theory of massive spin 2 particles. That is the so-called massive

gravity theory [110] [111], whose consistency has been proven based on the analysis of the

DoF [112] [113] (for a review, see [114] [115]). We now discuss its relation to our results.9

The massive gravity is a non-linear theory, which has a spin 2 massive field ĝµν and a fixed

reference metric fµν . Here we will consider a classical solution and the fluctuation around it. In

general, the classical solution gµν is determined after fµν and an initial condition are specified.

However, because we are interested in the fluctuation around the classical solution, it is better

to regard fµν as a function of the classical solution gµν . Then the consistency of the EoM for

the fluctuation field is automatically guaranteed due to that of the full non-linear theory. We

will see that the quadratic Lagrangian for the fluctuation indeed satisfies the conditions (7.26)

and (7.27). However, it has only one free parameter, although the massive gravity theory in

general has two free parameters.

The action of massive gravity is given by

S =

∫
d4x
√
−ĝ
[

1

2
R̂−m2

4∑
n=0

αnen(K)

]
, (7.77)

(K)µν ≡ (
√
ĝ−1f)µν − δµν . (7.78)

Here fµν is the reference metric and not a dynamical variable.
√
ĝ−1f denotes the square root

as a matrix: ((
√
ĝ−1f)2)µν = ĝµλfλν . en(K) is the elementary symmetric polynomial of degree

n in the eigenvalues of K. They are represented as follows ([X] ≡ trX):

e0(K) = 1 ,

e1(K) = [K] ,

e2(K) =
1

2
([K]2 − [K2]) ,

e3(K) =
1

6
([K]3 − 3[K][K2] + 2[K3]) ,

e4(K) =
1

24
([K]4 − 6[K]2[K2] + 3[K2]2 + 8[K][K3]− 6[K4]) . (7.79)

Several conditions are imposed on the parameters αn (n = 0, · · · , 4) in order to satisfy the

following requirements. We first set ĝµν = gµν +2hµν , and expand the Lagrangian with respect

to the fluctuation hµν around gµν . We then require that the first-order terms in hµν vanish,

and that the second-order terms involving m2 take the same form as the FP mass term in the

flat background. A straightforward calculation leads to the conditions α1 = α0, α2 = α0 − 1,

9They have developed the massive gravity theory further to construct a theory called bimetric gravity [116].
However, because our purpose is to discuss spin 2 particles in the gravitational background, it is more appropriate
to consider its original form.



86 Chapter 7 Massive Higher Spin Fields in Curved Spacetime

and we find that the reference metric fµν is expressed by gµν as

fµν = gµν +
2

m2
Rµν −

1

3m2
gµνR+O

(
R2

m4

)
. (7.80)

Since K is of first or higher order both in hµν and in the curvature, α4 does not contribute to

the quadratic Lagrangian.

After some calculation, we obtain the Lagrangian for the fluctuation

L =
√−g

[
hµνEµνρσhρσ −

m2

2
(hµνh

µν − h2)

+
2(α0 − α3)− 5

2
Rµνhµλh

λ
ν +
−4(α0 − α3) + 11

12
Rhµνh

µν

+
α0 − α3 − 2

3
Rh2 − (α0 − α3 + 2)Rµνhµνh

]
, (7.81)

which has the form of the action (7.23)–(7.25) with

a1 = 0 , a2 = 2(α0 − α3)− 5 , a3 = −2(α0 − α3)

3
+

11

6
,

b1 =
2(α0 − α3)

3
− 4

3
, b2 = −(α0 − α3) + 2 . (7.82)

The coefficients (7.82) indeed satisfy Eq.(7.76), but depend only on a single parameter α0 −
α3. We thus may conclude that the Lagrangian in sections 7.2 and 7.3 gives a more general

description than the massive gravity theory, at least for the free FP field in weak gravitational

backgrounds.

7.5 Spin 3 case

Next, we discuss a massive spin 3 theory in the general background.

The variables to describe a massive spin 3 field consist of a traceful, rank-3 symmetric

tensor Gµνλ and an auxiliary scalar D . Denoting the trace of Gµνλ by Gµ ≡ gνλGµνλ , the

Lagrangian can be written in the form

L = Lmin + LR (7.83)

with

Lmin =
√−g

[
− 1

2
∇µGνλρ∇µGνλρ +

3

2
∇αGαµν∇βGβµν − 3∇µGµνλ∇νGλ

+
3

2
∇µGν∇µGν +

3

4
∇µGµ∇νGν +

1

4
∂µD∇µD

− m2

2

(
GµνλG

µνλ − 3GµG
µ
)

+m2D2 − m

2
∇µGµD

]
, (7.84)
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LR =
√−g

[a
2
RµνλρG

µλαGνρα +
b1
2
RµνG

µαβGναβ + b2RµνG
µναGα +

b3
2
RµνG

µGν

+
c1

2
RGµνλG

µνλ +
c2

2
RGµG

µ +
c3

2
RD2

]
. (7.85)

We will set the background metric to take the form

ds2 = − dt2 + gij(t) dx
idxj (7.86)

and assume that all the fields depend only on time t . This setup greatly reduces the amount of

necessary calculation, and, as we have observed in the preceding sections, should be sufficient

for investigating how the DoF are removed due to constraints.

The coefficients in Eq.(7.84) are determined such that only the spatial, traceless part of

the tensor Gµνλ is dynamical in the flat Minkowski space. To confirm this, it is convenient to

introduce the following parametrization for the temporal components ofGµνλ in the background

metric (7.86):

G000 = X + 3F , G00i = Vi , G0ij = G̃0ij +
1

3
gijF , (7.87)

where F is the trace of G0ij , F = gjkG0jk, and G̃0ij is the traceless part of G0ij . One can easily

show that G̃0ij have a nonvanishing quadratic mass term and no kinetic terms, which means that

G̃0ij can be removed from the Lagrangian algebraically (and thus are not dynamical variables).

It is also easy to see for the case of flat Minkowski space, that the Legendre transformation

from Ġijk, Ẋ, Ḋ to their conjugate momenta P ijk, PX , PD yields only the linear terms for Vi

and F , which means that Vi and F play the role of multiplier fields.

In the flat Minkowski case, the multipliers Vi and F actually yield the constraints that

remove all the DoF except for the spatial, traceless part of the tensor Gµνλ . To see this, we

note that the dynamics of (Gijk, P
ijk, Vi) is totally decoupled from that of (X, PX , D, PD, F )

in our setup. We first discuss the subsystem (Gijk, P
ijk, Vi). The primary and secondary

constraints with respect to Vi are found to be

κi1 ≡ 3m2δjkG
ijk = 0 , (7.88)

κi2 ≡ −
3

4
m2δjkP

ijk = 0 , (7.89)

which have a nonvanishing Poisson bracket, {κi1 , κi2} = (15/4)m4 6= 0 . Thus, the multipliers Vi

remove the DoF of the trace part of Gijk and P ijk , and Vi itself is determined by the equation

κ̇i2 = 0 . As for the subsystem (X, PX , D, PD, F ), the multiplier F yields four constraints

(primary, secondary, tertiary and quaternary), which are expressed as

χ1 ≡ 2mPD + 2m2X = 0 , (7.90)
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χ2 ≡ 4m2PX + 4m3D = 0 , (7.91)

χ3 ≡ −12m3PD − 2m4X = 0 , (7.92)

χ4 ≡ −4m4PX − 24m5D = 0 . (7.93)

Their Poisson brackets take the form {χ1 , χ2} = {χ1 , χ3} = 0 , {χ1 , χ4} = −40m6 6= 0 , and

det{χa, χb} 6= 0 (a, b = 1, . . . , 4). Thus, the multiplier F removes the DoF of (X,PX , D, PD),

and F itself is determined by the equation χ̇4 = 0 .

We now require that the same mechanism also work for the background (7.86). One can

easily show that the quadratic terms in Vi and F are given by

H
∣∣(quad)

Vi,F
=
√
g
[(
−3

4
gij g̈ij −

3

8
ġij ġij

)
VkV

k +
(
−3

2
gikg̈kj −

3

4
ġikġkj

)
ViV

j

+
(31

6
gij g̈ij +

31

12
ġij ġij

)
F 2
]
− LR

∣∣(quad)

Vi,F
(7.94)

with

LR
∣∣(quad)

Vi,F
/
√
g

=
[1

2
(b1 + b2 + 3c1 + c2)gij g̈ij +

1

8
(2b1 + 2b2 + 9c1 + 3c2)ġij ġij +

1

8
(3c1 + c2)(gij ġij)

2
]
VkV

k

+
[1

4
(−2a+ b1 + b3)gikg̈kj +

1

4
(−a+ b1 + b3)ġikġkj +

1

8
(b1 + b3)gklġklg

imġmj

]
ViV

j

+
[(5

9
a− 43

18
b1 −

8

3
b2 − b3 − 5c1 − 2c2

)
gij g̈ij

+
(19

72
a− 11

9
b1 −

7

6
b2 −

1

2
b3 −

15

4
c1 −

3

2
c2

)
ġij ġij

+
(
− a

72
− b1

36
+

1

6
b2 −

5

4
c1 −

1

2
c2

)
(gij ġij)

2
]
F 2 . (7.95)

These quadratic terms must vanish in order for the Vi and F to give four primary constraints,

and we find that the parameters in the non-minimal couplings must take the following values:

a = 3 , b1 = −30

37
, b2 = −51

74
, b3 =

30

37
, c1 =

119

222
, c2 = −119

74
. (7.96)

However, the primary and secondary constraints χ1, χ2 take the forms

χ1 = 2mPD + 4gij ġijPX +
√
g (2m2 − ζ)X ,

χ2 = −4mgij ġijPD + (4m2 − 2ζ)PX +
√
g (4m3 + 2c3mR)D −√g (6m2gij ġij − 8ηgij ġij)X ,

where ζ and η are functions of the curvature. In order for the constraints to give the tertiary

and quaternary constraints, the Poisson bracket {χ1 , χ2} must vanish. However, this does not

hold at the next order m3 × (R/m2) for generic backgrounds. This means that a massive spin

field cannot described in the arbitrary curved spacetime.
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We have to consider the way to overcome this problem. There are two possible ways: the

restriction of the spacetime manifolds to specific ones, and introduction of additional particles of

different spin. The former is, however, less desirable since the theory will be very background-

dependent. On the other hand, the latter is nontrivial once one considers the mixing (or

bi-linear) terms for them. Yet, it is hard to guess that the finite number of fields can be a

remedy. This remains to be a future work.

7.6 Summarizing remarks

In this chapter we have obtained the Lagrangian that describes a free massive spin 2 particle

propagating in the general gravitational background to the first order in the curvature. The

Lagrangian contain non-minimal couplings. the coefficients have three free parameters, and,

in particular, the coupling constant associated with the Riemann tensor is arbitrary. The

Lagrangian with such parameters includes that of the linearized massive gravity theory.

On the other hand, there is no consistent Lagrangian for a massive spin 3 field, even though

we have derived the restriction of non-minimal couplings as necessary conditions. The same

problem is likely to occur with arbitrary fields of spin larger than 2. If we can describe them

coupled with gravity, it is expected to be a theory containing infinitely many MHSF. The

IIB matrix model or string theory are indeed such formulation. In particular, the operator

interpretation of the matrix model inevitably result in the introduction of infinitely many

fields with infinitely high spin. These situation is perfectly consistent, and to make further

investigation of the formulation of such MHSF will give an important clue to understanding

the structure of the effective field theory of the IIB matrix model.



Chapter 8

Summary and Conclusion of the

Thesis

In this thesis, we have shown the study both on the IIB matrix model as a Planck-scale physics,

and on low-energy physics that are expected to be induced from the former. The underlying

philosophy was that we can approach in two ways a quantum theory to describe gravity,

spacetimes and matters. One is to study a candidate for the nonperturbative formulation of

string theory, namely the IIB matrix model. The other is to analyze field theory at high-energy

region and get some inspection about its UV completion.

In Chapter 2, we have reviewed the IIB matrix model and explained why it reproduces

various theory including gauge field theory and string theory. In Chapter 3, we investigate

the gravitational interaction with the noncommutative interpretation, which is well adopted

in many works. In turn, in Chapter 4, we have introduced the operator interpretation and

exhibited its convincing features to describe gravity and spacetimes.

In Chapter 5, we have shown several studies around the stability of the IIB matrix model

with the operator interpretation. There we have presented three results. First, the original

operator interpretation is the minimal. The principal bundle is essential and we seems to have

any truncation of the class of operators anymore. Second, the U(N) symmetry for the matrix

contains, in terms of coefficient fields of derivative operators, higher spin gauge transformations

for some class of fields. Therefore it contains higher spin field, and should be identified to DoF

in string theory in tensionless limit. However, EoM for them contain higher derivatives. Third,

when we take into account radiative correction, the IIB matrix model itself remains massless

theory while it will get massive DoF with the supersymmetries broken. More bosonic DoF

than fernionic ones imply the generation of stable (non-tachyonic) mass terms, which may be

an origin of masses at low-energy effective field theory.

On the other hand, Chapters 6 and 7 have been devoted to analysis on field theory. We

have studied and investigated possible generalizations of the hill-climbing inflation, that can
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connect MPP and Higgs inflation. Note that the former is suggested in the work on the IIB

matrix model. As another issue, we have attempt to construct the lagrangian for MHSF in

curved spacetimes, which leads to the investigation to the structure of the effective field theory

of the IIB matrix model. We have shown that while spin 2 field can be described with the

non-minimal couplings, the spin 3 field cannot consistently live on arbitrary spacetime. This

and the observation of arbitrarily high spin field suggest the necessity of introducing infinitely

many higher spin fields, just as in the IIB matrix model.

All of our results strongly support the existence of underlying connection between the

matrix model as a theory of quantum gravity and field theory describing our universe. Of

course, there are many issues to be studies in the future. The most serious one is the definition

of the action for the IIB matrix model, with the operator interpretation. To settle this problem

is a straightforward way to further analyze the stability and low-energy effective theory. While

we should keep working on such aspects of the matrix model, the study on cosmological and

theoretical aspect of field theory will provides many hints to pursue its UV completion, which

can be the IIB matrix model. Such a complementary program is critical to proceed toward the

construction of quantum gravity theory.
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Appendix

A A Note on Proposal for Gauge-invariant Regularization

of Chiral Gauge Theory

If the IIB matrix model can reproduce SM, it should address well-defined high-energy behavior

of matter DoF as well as gravitational and spacetime ones. In other words, it should provide

regularizing framework for the SM. With this observation, among the several sectors in the SM,

the most problematic one is the chiral sector. It has a symmetry of SU(2)L×U(1)Y . Recently,

it was reported in [40, 41] that the IIB matrix model can yield the chiral gauge theory which

is defined on background branes (spacetime) as a classical solution. However, the high-energy

behavior of chiral fermion, in particular its regularization, still remains to be analyzed.

On the other hand, the regularization of chiral gauge theory is very problematic issue even

within the framework of field theory. It is mainly because the theory has an anomaly and no

regulator exists that maintain the gauge-invariance.

Therefore in this appendix, we investigate this issue from the point of field theory. In

contrast to the approach with which one should derive consistent field theory from the matrix

model, we will attempt to figure out the connection of field theory to the matrix model, pursuing

its sophisticated regularization. Although our present result is far from such a goal, we are

able to obtain some implication for chiral gauge theory at high-energy region.

A.1 A problems around the regularization of chiral gauge theory

If one näıvely regularizes chiral gauge theory by applying the ordinary scheme such as the

dimensional regularization or Pauli-Villars (PV) regularization, one obtains the anomaly from

one-loop Feynman diagrams. In that case, however, one has to add local finite counter terms to

the action in order to recover the gauge symmetry, even when the theory is free from anomaly.

We call the counter terms the fake anomaly. The computation of the necessary counter terms

is quite complicated in general, and it is natural to ask whether there is some regularization

scheme that yields no fake anomaly. At the level of the one-loop Feynman diagram, it has

been known that the covariant regularizations serve as such schemes. They are equivalent to

regularizations of the change of the fermion measure covariantly [120], and the diagram gives
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only the covariant anomaly.1 On the other hand, there is no such formulation known at the

Lagrangian level; the regularized Lagrangian to realize some covariant regularization remains

to be constructed. So far it has been partially achieved in various works. For example, the

generalized PV regularization [122] is one of the sophisticated formulation, which regularizes

the chiral gauge theory covariantly as long as the gauge anomaly is absent. It also reproduces

the Abelian anomaly with the correct coefficient [123]. It has been shown that when one applies

the generalized PV regularization, the regularized contribution can be regarded as a sort of the

covariant regularization [124]. However, some improvement is still required since this scheme

fails to regularize the parity-odd contribution.

On the other hand, there is a theory called the domain-wall (DW) fermion [42], where a

chiral fermion is induced from a higher dimensional Dirac fermion with a topological defect

in its mass. Its relationship to the generalized PV regularization was discussed in [125]. The

theories have been thoroughly investigated in the context of the lattice gauge theory [126–140].

In particular, it has been proposed in [135, 136] that the lattice regularization of chiral gauge

theory can be realized by combining the DW fermion and the gradient flow of the gauge

field [141,142].

Although the DW fermion was originally discussed in the context of the lattice gauge theory,

it should be useful to pursue a perturbative formulation as well. In this paper, we propose a

regularization with which no fake anomaly emerges by defining chiral gauge theory through the

DW fermion. The significant point is that the theory is vector-like and its regularized version

is expected to induce chiral gauge theory without fake anomaly. One might guess that the

problem is readily solved by combining the DW fermion with the dimensional regularization.

However, it is not the case for the following reason. For example, consider a (4 + ε + 1)-

dimensional DW fermion. Since its kinetic term respects the (4 + ε + 1)-dimensional Lorentz

invariance, the 5-th and ε-th components of loop momenta p and the corresponding gamma

matrices enter the loop integrand as a combination γ5p5+/pε. It can be rewritten as γ5(p5+γ5/pε).

Here, γ5 is the chiral operator with respect to the 4-dimensional induced chiral gauge theory.

Because γ5/pε commutes with all the 4-dimensional gamma matrices, we can replace it with its

eigenvalues ±(p2
ε)

1/2 in each eigenspace to find that the integrand depends on p5 ± (p2
ε)

1/2. As

a result, pε, the integration over that would lead to the finiteness of the loop integration in the

usual dimensional regularization, is absorbed in the integration over p5. It leaves the overall

loop integration unregularized. In order to circumvent this difficulty around the dimensional

regularization and the DW fermion, we propose the partially dimensional regularization (PDR),

where we apply the dimensional regularization to not all of field contents. In the case of the

DW fermion, the dimensional regularization is applied only to the gauge field, while fermions

are regularized with the PV regularization. As will be demonstrated in this paper, this PDR

1Although the consistent and covariant anomalies differ by the Bardeen-Zumino current [121], it vanishes
when the theory is free from any gauge anomaly. Therefore one needs no counter term in anomaly-free cases.
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might be useful to calculate the effective action.

This paper is organized as follows. In Sec.A.2, we briefly review the DW fermion and the

induced chiral fermion loops on the domain-wall. There the vacuum polarization was discussed

as an explicit example to see how we regularized fermion loops with the PV regularization.

Then in Sec.A.3, we show that this scheme gives the consistent anomaly in the 2-dimensional

case. In Sec.A.4, we present how the PDR works as a regularization with an example of the

4-dimensional Yukawa theory. It is shown that the non-conservation of ε-th components of

momenta results in the regularization of loop integrations. This mechanism slightly differs

from the usual dimensional regularization. In Sec.A.5, we analyze the case where the PDR is

applied to the 5-dimensional DW fermion. In the theory the induced chiral gauge theory is

4-dimensional. We investigate the self-energy of the fermion and discuss the renormalization.

Finally in Sec.A.6 we give the summary and several open questions.

A.2 A brief review of the domain-wall fermions

Let us have a brief review of some results in our previous work [140], where we have stated that

one can regularize a chiral fermion loop with a sort of PV fields. Although the main topic of

the work was related to the gradient flow, the discussion around the regularization also holds

in the case where the flow is switched off.

Consider the (2d+ 1)-dimensional action for a DW fermion:

S =

∫
d2dp

(2π)2d
ds
[
ψ̄(−p, s)

(
i/p+ /A+ γ5∂s − ε(s)M

)
ψ(p, s)

+ φ̄(−p, s)
(
i/p+ /A+ γ5∂s +M

)
φ(p, s)

]
+

∫
d2dp

(2π)2d

1

4
Fµν(−p)Fµν(p), (1)

where we have represented the fields in the momentum space with respect to 2d directions,

and in the coordinate space with respect to the (2d + 1)th direction. We have denoted the

coordinate for this direction as s. ψ is the ordinary DW fermion, while φ is an auxiliary

bosonic spinor field which is necessary for subtracting undesirable bulk contributions. γ5 is the

gamma matrix corresponding to the s-direction, or the chiral operator from the viewpoint of

the 2d-dimensional domain-wall.2 Fµν is a 2d-dimensional gauge field strength, and we define

its couplings to ψ and φ through copying it along the s-direction. It implies A2d+1 = 0. The

2Although we consider a (2d + 1) -dimensional theory we have assigned the subscript “five” to the matrix,
since we would like to eventually describe a four-dimensional chiral gauge theory and the matrix will correspond
to the usual chiral operator.
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p

p′ = p− k

k k

s′ s

Figure 1: The diagram of the vacuum polarization involving a fermion loop. Although we compute
it as a (2d+ 1)-dimensional diagram, one can integrate out the s and s′-dependence of the localized
mode to obtain an effectively 2d-dimensional quantity.

propagators for ψ and φ are obtained from the action (1), and are given by

Gψ(p, s, s′) =


S(+) +D(+) (0 < s, s′)

D(−+) (s < 0 < s′)

D(+−) (s′ < 0 < s)

S(−) +D(−) (s, s′ < 0)

, Gφ(p, s, s′) = S(−), (2)

where

S±(p, s, s′) =−
[
θ(s− s′)1

2

(
i/p±M√
p2 +M2

− γ5

)
e−(s−s′)

√
p2+M2

+θ(s′ − s)1

2

(
i/p±M√
p2 +M2

+ γ5

)
e−(s′−s)

√
p2+M2

]
, (3)

D±(p, s, s′) =∓M i/p

p2

1

2

(
i/p±M√
p2 +M2

± γ5

)
e∓(s+s′)

√
p2+M2

, (4)

D∓±(p, s, s′) =∓
√
p2 +M2

i/p

p2

γ5

2

(
i/p±M√
p2 +M2

± γ5

)
e±(s−s′)

√
p2+M2

. (5)

Here S(±) are the usual propagators for (2d+ 1)-dimensional fermions with their masses ±M .

On the other hand, D(±) and D(∓±) are ones for the massless modes localized on the domain-

wall, as is seen from the factors of exponential. They correspond to the 2d-dimensional chiral

fermion. Using the propagators, the vacuum polarization with an external momentum kµ

(Fig.(1)) is calculated as

∫
d2dp

(2π)2d

∫ +∞

−∞
ds

∫ +∞

−∞
ds′Πµν =

∫
d2dp

(2π)2d

∫ +∞

0
ds

∫ +∞

0
ds′Πblk

µν +

∫
d2dp

(2π)2d
ΠDW
µν , (6)

where

Πblk
µν =Tr[S(+)γµS

(+)′γν ]− Tr[S(−)γµS
(−)′γν ], (7)
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ΠDW
µν =

∫ 0

−∞
ds

∫ 0

−∞
ds′
{

Tr[D(−)γµD
(−)′γν ] + Tr[D(−)γµS

(−)′γν ] + Tr[S(−)γµD
(−)′γν ]

}
+

∫ 0

−∞
ds

∫ +∞

0
ds′
{

Tr[D(−+)γµD
(+−)′γν ]− Tr[S(−)γµS

(−)′γν ]
}

+

∫ ∞
0
ds

∫ 0

−∞
ds′
{

Tr[D(+−)γµD
(−+)′γν ]− Tr[S(−)γµS

(−)′γν ]
}

+

∫ +∞

0
ds

∫ +∞

0
ds′
{

Tr[D(+)γµD
(+)′γν ] + Tr[D(+)γµS

(+)′γν ] + Tr[S(+)γµD
(+)′γν ]

}
.

(8)

Here the arguments of the factors with primes are (p′, s′, s) with p′ = p−k, while those without

primes are (p, s, s′). ΠDW
µν and Πblk

µν represent the contributions which is and is not localized

on the domain-wall, respectively. Πblk
µν vanishes in the region s < 0, where the massive modes

of ψ and φ cancel each other. Furthermore, one can easily find out that Πblk
µν actually vanishes

even in the region s > 0 for the following observation. The parity-even contributions of ψ

and φ to Πblk
µν are canceled, since they depend on even powers of M and take the same forms

except for the overall sign. On the other hands, the parity-odd contributions would yield the

Charn-Simons term, which vanishes in our setup where Aµ is independent of s and A2d+1 = 0.

Therefore, one concludes that

Πblk
µν ≡ 0. (9)

At the same time, however, ΠDW
µν has a contribution of the massive modes S± as appears in

Eq.(8). It is the result of the interactions to the modes localized on the domain-wall as in

Eq.(8).

After some calculation we obtain the following result:

ΠDW
µν =

1

2

{
Tr

[
i/p

p2
γµ
i/p′

p′ 2
γν

]
− Tr

[
i/p+M

p2 +M2
γµ

i/p′ +M

p′ 2 +M2
γν

]}
+

1

4
Tr

[
i/p

p2
γ̂5 γµ

i/p′

p′ 2
γν

]
+

1

4
Tr

[
i/p

p2
γµ
i/p′

p′ 2
γ̂′5 γν

]
(10)

with

γ̂5 = 2

1−
√
p2 +M2

(√
p2 +M2

√
p′ 2 +M2 +M2

)
√
p′ 2 +M2

(√
p2 +M2 +

√
p′ 2 +M2

)2

 M√
p2 +M2

γ5, (11)

and γ̂′5 being the same expression with p and p′ exchanged. We emphasize that Eq.(10) is a

nontrivial result of the combination and cancellation between terms from each lines in Eq.(8).

In particular, the first line of Eq.(10) contains no root factor such as
√
p2 +M2, and is a

local expression. It is regarded as the parity-even contribution with a single usual PV field.

The leading divergent part is thus eliminated. On the contrary, the second line is highly non-
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local expression, and it can be interpreted as fermion loops with a deformed chiral operator

Eq.(11) inserted either of the two vertices. When the loop momentum is sufficiently large, i.e.

p, p′ �M , the deformed operator is roughly evaluated as

γ̂5, γ̂
′
5 ∼

M√
p2
γ5. (12)

This means that the second line of Eq.(10) contains a suppression factor of p−1 on the loop

divergence. Moreover, the factor makes it possible to expand the contribution with respect

to M2/p2 and M2/p′ 2, to obtain a series of M with the odd-order. By expanding the entire

ΠDW
µν , we obtain the following form:

ΠDW
µν =

∑
n≥1

anM
2n Tr[An] +

∑
n≥1

bnM
2n−1 Tr[Bn]. (13)

Here an and bn are numerical coefficients, An and Bn are matrices of O(p−2n−2) and O(p−2n−1),

respectively. Each of Bn includes one γ, and they represent the parity-odd part. In particular,

in the case of d = 1 and the resulting gauge theory is anomalous, they represent the anomaly.

In order to regularize ΠDW
µν , it is sufficient to introduce “PV pairs” and cancel the first few

terms in Eq.(13). Therefore, the action to consider is

S →
∫

d2dp

(2π)2d
ds
[
ψ̄(−p, s)

(
i/p+ /A+ γ5∂s − ε(s)M

)
ψ(p, s)

+ φ̄(−p, s)
(
i/p+ /A+ γ5∂s +M

)
φ(p, s)

+

m∑
i=1

|Ci|∑
r=1

ψ̄i,r(−p, s)
(
i/p+ /A+ γ5∂s − ε(s)Mi

)
ψi,r(p, s)

+

m∑
i=1

|Ci|∑
r=1

φ̄i,r(−p, s)
(
i/p+ /A+ γ5∂s +Mi

)
φi,r(p, s)

]
+

∫
d2dp

(2π)2d

1

4
Fµν(−p)Fµν(p), (14)

where the masses of the additional pairs, ψi,r and φi,r, are denoted as Mi. For each i, all of

ψi,r’s are simultaneously either fermionic or bosonic, and the corresponding φi,r’s follow the

opposite statistics. We have introduced
∑m

i=1 |Ci| PV pairs in total. We take the sign of an

integer Ci positive when ψi,r’s are fermionic. The PV pairs yield the same form of contributions

to the vacuum polarization as the original pair, changing Π
(DW )
µν as

ΠDW
µν =

m∑
i=0

Ci

∑
n≥1

anM
2n
i Tr[An] +

∑
n≥1

bnM
2n−1
i Tr[Bn]

 (15)

with M0 = M and C0 = 1. Therefore, the conditions to regularize ΠDW
µν are summarized as
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follows:

m∑
i=0

CiMi = M +

m∑
i=1

CiMi = 0,

m∑
i=0

CiM
2
i = M2 +

m∑
i=1

CiM
2
i = 0,

m∑
i=0

CiM
3
i = M3 +

m∑
i=1

CiM
3
i = 0,

... (16)

Note that the zeroth-order condition
∑m

i=0Ci = 0 is not necessary because it corresponds

to elimination of the leading divergence, which have been removed automatically in Eq.(10).

Rather, in order to prevent the PV pairs from generating extra massless modes, we require

m∑
i=1

Ci = 0. (17)

Eqs.(16) and Eq.(17) can be solved with respect to Ci and Mi when we introduce a sufficiently

number of the PV pairs. The most important point of the above analysis is that the parity-odd

part has a non-locally deformed chiral operator, and that it enables us to regularize that part

in the same manner as the ordinary PV regularization. Therefore, we have obtained the way

to regularize the vacuum polarization even in the two-dimensional theory is anomalous. Note

that it works even for the two-dimensional theory with anomaly. The general loop diagrams

are also regularized by Eq.(14).

Finally, we briefly comment on why the present regularization yields the gauge-invariant

result in the anomaly-free case, as mentioned in [140]. If we take the limit M → ∞, Eq.(10)

takes the form of

ΠDW
µν →

1

2
Tr

[
i/p

p2
γµ
i/p′

p′ 2
γν

]
+

1

4
Tr

[
i/p

p2
γ5 γµ

i/p′

p′ 2
γν

]
+

1

4
Tr

[
i/p

p2
γµ
i/p′

p′ 2
γ5 γν

]
=

1

2

(
Tr

[
i/p

p2

1 + γ5

2
γµ
i/p′

p′ 2
γν

]
+ Tr

[
i/p

p2
γµ
i/p′

p′ 2
1 + γ5

2
γν

])
. (18)

Note that if one regularizes Eq.(18), it is regarded as a covariant regularization, a prescription

where one regularizes one-loop diagrams with only one projection operator inserted at some

vertex. Then it is natural that the regularized theory Eq.(14) gives the gauge-invariant parity-

even part. Note that Eq.(18) includes the average over the points where the projection operator

is inserted. The bose symmetry is thus automatically maintained. These facts imply that the

theory has no fake anomaly.3 However, as is mentioned above, the form of Eq.(10) has been

3The present regularization is specifically interesting because it regularizes the parity-even part by PV regu-
larization, while it deforms non-locally the parity-odd part with the same PV mass.
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obtained as the result of all the relevant calculation (integration over s-direction, combination

and cancellation of the terms). Although the DW fermion indeed realizes a good regularization,

the relationship to the covariant regularizations still remains to be figured out.

A.3 Chiral anomaly

As is well known, chiral gauge theory has the abelian anomaly (fermion number anomaly). In

this section, we derive the anomaly in our regularization. We find that the gauge invariant

fermion number current is defined as

Jµ(x) ≡
∫
ds
[
ψ̄(x, s)γµψ(x, s) + φ̄(x, s)γµφ(x, s)

+

m∑
i=1

|Ci|∑
r=1

[
ψ̄i,r(x, s)γµψi,r(x, s) + φ̄i,r(x, s)γµφi,r(x, s)

] ]
, (19)

which is the Noether current for the U(1) rotation of the DW fermion, subtracting field, and

all the regulator fields. We will show that this current reproduces the correct anomaly.

Evaluation of anomaly

In the following, we evaluate the expectation value of the current Eq.(19) in the presence of

the background gauge field Aµ. We focus on the case of the two-dimensional Abelian chiral

gauge theory. In this case, we need not introduce the PV pairs because the only divergent part

in the fermion loop is already subtracted with φ.

The Feynman diagram corresponding to the current is shown in Fig.2. This expectation

value can be expressed in terms of the vacuum polarization Eq.(6) as follows:

〈Jµ(k)〉A =

∫
d2p

(2π)2

∫
ds

∫
ds′ ΠµνAν(k) (20)

=

∫
d2p

(2π)2
ΠDW
µν Aν(k). (21)

Recall that Πblk
µν vanishes as stated in the previous section. Using the fact that the parity-even

part of ΠDW
µν is transverse, the divergence of the current is expressed as

kµ 〈Jµ〉A =

∫
d2p

(2π)2
kµΠDW

µν Aν (22)

=
1

4
Aν

∫
d2p

(2π)2
Tr

[
1

i/p
γ̂5/k

1

i/p′
γν +

1

i/p
/k

1

i/p′
γ̂5
′γν

]
(23)

=
−1

4
Aν

∫
d2p

(2π)2
(f(p, p′) + f(p′, p))Tr

[(
1

/p
− 1

/p′

)
γ5γν

]
, (24)
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γµ Aν

Figure 2: A diagram representing the anomalous current

where

f(p1, p2) ≡ 2

1−
√

(p1)2 +M2
(√

(p1)2 +M2
√

(p2)2 +M2 +M2
)

√
(p2)2 +M2

(√
(p1)2 +M2 +

√
(p2)2 +M2

)2

 M√
(p1)2 +M2

. (25)

By expanding f as

f(p, p′) ∼ f(p′, p) ∼ 2

(
3

4
− M2

4(p2 +M2)

)
M√

p2 +M2
+O(k2/M2) (26)

and taking the limit k2/M2 → 0, we obtain∫
d2p

(2π)2
kµΠDW

µν → −
∫

d2p

(2π)2

(
3

4
− M2

4(p2 +M2)

)
M√

p2 +M2
Tr

[(
1

/p
− 1

/p′

)
γ5γν

]
(27)

=

∫
d2p

(2π)2

(
3

4
− M2

4(p2 +M2)

)
M√

p2 +M2
Tr

[
/p′

p′2
γ5γν

]
. (28)

Here the term propotional to 1//p has vanished in the last line because it is odd in p.

By using the Feynman parametrization

1

[p2 +M2]n
1

p′2
= n

∫ 1

0
dx

(1− x)n−1

[(1− x)(p2 +M2) + x(p− k)2]1+n (29)

for n = 1
2 and 3

2 , Eq.(28) can be rewritten as the following expression:

3M

8

∫
d2q

(2π)2

∫ 1

0
dx

(
(1− x)−

1
2

[q2 + ∆]3/2
− M2(1− x)

1
2

[q2 + ∆]5/2

)
Tr
[
/p
′γ5γν

]
(30)

with

q ≡ p− xk, ∆ ≡ x(1− x)k2 + (1− x)M2. (31)

Its integration over q leads to the following form:

3M

16π
Tr [/kγ5γν ]

∫ 1

0
dx

[(
1− x

∆

) 1
2

− M2

3

(
1− x

∆

) 3
2

]
(32)

→ − 1

4π

M

|M |kµεµν (as k/M → 0). (33)
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The resulting expression for the divergence of the current is

〈kµJµ〉A =
−1

4π

M

|M |εµνkµAν(k). (34)

Thus, we have obtained the gauge invariant form of the fermion number anomaly with the

correct normalization.4 From Eq.(34), it can be seen that the signature of M corresponds to

the chirality of the chiral fermion.

Comments on Eq.(34)

We give three comments on the anomaly Eq.(34). Firstly, because we have considered the

Abelian case, the fermion number current takes the same form as the gauge current does. In

non-Abelian cases, the former is defined also by Eq.(19). On the other hand, the latter would

be defined as

Jaµ(x) ≡
∫
ds
[
ψ̄(x, s)γµt

aψ(x, s) + φ̄(x, s)γµt
aφ(x, s)

+
m∑
i=1

|Ci|∑
r=1

[
ψ̄i,r(x, s)γµt

aψi,r(x, s) + φ̄i,r(x, s)γµt
aφi,r(x, s)

] ]
. (35)

Here ta is the hermitian generator in the representation of the fermion multiplet. This would

reproduce the consistent gauge anomaly in general dimensions.

Secondly, let us consider why the correct fermion number anomaly has been derived in our

regularization. Because the regularized Lagrangian Eq.(14) is invariant under the U(1) rotation,

the corresponding current Jµ seems to be conserved even at the quantum level. However, it is

not the case. In order to see this, let the gauge field evolve slowly in the s-direction. It can be

realized by, for example, the gradient flow:

∂sAµ = −ξ ε(s)
M

δS[A]

δAµ
, (36)

where ξ is a flow parameter and ξ = 0 corresponds to switching off the flow. In this situation

(ξ 6= 0), the parity-odd part of Πblk
µν in Eq.(21) does not vanish but contributes as the parity

anomaly. Thus Eq.(34) must be replaced by

〈kµJµ〉A =
−1

4π

M

|M |εµνkµAν(k, s = 0) +
2M

|M |

∫ ∞
0

ds kµ
δSCS

δAµ(k, s)
, (37)

where SCS is the three-dimensional Chern-Simons action. The second term in Eq.(37) can be

4The coefficient 1
4π

shows that it is the consistent anomaly. It would be replaced with 1
2π

if it were the
covariant one. It is interesting that the result is consistent one although our regularization is related to the
covariant regularization as in Eq.(18).
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rewritten as a surface term:

2M

|M |

∫ ∞
0

ds kµ
δSCS

δAµ(k, s)
=

[−1

4π

M

|M |εµνkµAν(k, s)

]s=∞
s=0

. (38)

The contribution at s = 0 is canceled by the first term in Eq.(37) (See Ref. [143].) and thus

we obtain

〈kµJµ〉A =
−1

4π

M

|M |εµνkµAν(k, s =∞). (39)

Because the gauge field becomes pure gauge at s = ∞, this quantity vanishes and then the

current is conserved. In our case (ξ → 0), however, Aµ does not evolve: Aµ(k, s =∞) = Aµ(k).

Thus Eq.(39) does not vanish and is equal to the previous result Eq.(34), which has been

obtained by setting Πblk
µν = 0 from the beginning. Consequently, we can understand the origin

of the anomaly as follows. In the three-dimensional region except for the boundary, the current

is conserved as seen from the regularized Lagrangian. However, this system is not closed under

the condition Aµ(x, s) = Aµ(x), and thus the current flows out to the infinity in s-direction.

In the view point of the chiral mode on the domain-wall, this current non-conservation is seen

as the anomaly.5

Finally, let us consider another definition of the fermion number current. Naively, in the

ordinary 2n-dimensional system consisting of one chiral fermion, the U(1) current

ψ̄LγµPLψL (40)

seems to be equal to the chiral U(1) current

ψ̄Lγ5γµPLψL. (41)

Therefore, it appears that in our regularization we can define the fermion number current

alternatively as

J5
µ(x) ≡

∫
ds
[
ψ̄(x, s)γ5γµψ(x, s) + φ̄(x, s)γ5γµφ(x, s)

+

m∑
i=1

|Ci|∑
r=1

[
ψ̄i,r(x, s)γ5γµψi,r(x, s) + φ̄i,r(x, s)γ5γµφi,r(x, s)

] ]
. (42)

However, this is not the case, since the regularized Lagrangian is not invariant under the

transformation ψ → eiαγ5ψ. Indeed one can check that the divergence of this current differs

from Eq.(34) by both parity-odd and even terms.

5When one considers a finite size system (−L < s < L) and imposes the periodic boundary condition, the
current is conserved because another chiral fermion will be induced on the anti-domain wall s = L that absorbs
the flowing-out current .
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A.4 Partially dimensional regularization –Example–

In this section, we propose the PDR as a novel useful regularization and demonstrate how it

works. Let us consider the 4D Yukawa theory as an example. Here we assume that the fermion

is regularized by the ordinary PV fields. The PDR changes the spacetime dimension of the

scalar field from 4 to (4 + ε) while keeping the fermion in the 4-dimensional space. We will

show that the two parameters, the PV mass and ε, play the roles of the ultraviolet (UV) cutoffs

and regularize all the UV divergences in the theory. In Sec.A.5, we will apply the PDR to the

gauge sector in chiral gauge theory.

Yukawa theory

The regularized action is given by6

S =

∫
d4+εx

[
1

2
(∂µφ(x, xε))

2 +
µ2

2
(φ(x, xε))

2 +
λ

4!
(φ(x, xε))

4

]
+

∫
d4x ψ̄(x)

[
/∂ −m+ gφ(x, 0)

]
ψ(x), (43)

where xε denotes the ε-dimensional coordinate. Note that we have omitted the PV fields for

the fermion. In this system, the fermion ψ(x) lives on the 4-dimensional brane embedded in

the (4 + ε)-dimensional space, xε = 0, while the scalar lives in the (4 + ε)-dimensional space.

From the Lagrangian Eq.(43), we obtain the Feynman rules as follows:

ψ(x)ψ̄(y) =

∫
d4p

(2π)4
eip·(x−y) 1

i/p−m
, (44)

φ(x, xε)φ(y, yε) =

∫
d4+εk

(2π)4+ε
eik·(x−y)+ikε(xε−yε) 1

k2 + (kε)2 + µ2
, (45)

k̂(1) k̂(2)

k̂(3) k̂(4)
= −λ δ(4+ε)(k̂(1) + k̂(2) + k̂(3) + k̂(4)), (46)

p(1) p(2)

(k, kε)

= −g δ(4)(p(1) − p(2) + k). (47)

6We denote the Dirac fermion and scalar field by ψ(x) and φ(x, xε), respectively, only in this section. The
reader should not confuse them with the DW fermion and the subtracting field.
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(k, kε)

p(1)

p(2) p(4)

p(3)

Figure 3: A diagram including a scalar internal line with the Yukwa vertices at the ends

Here k̂ denotes the (4 + ε)-dimensional momentum, i.e. k̂ = (k, kε), and we have written

explicitly the δ-functions enforcing the conservation of momentum. Note that at the Yukawa

vertex, Eq. (47), the δ-function is only for the 4-dimensions, and hence the ε-dimensional

momentum kε of the scalar φ(k̂) is not conserved.

Under the above rules, we have to pay a special attention when dealing with a diagram

including an internal scalar line with the Yukawa vertices at the ends. As an example, let us

consider a diagram shown in Fig.3. The ε-dimensional momentum kε flows along the scalar

line but does not along the fermion ones. In the Fourier space, the internal line gives∫
dεkε
(2π)ε

1

k2 + (kε)2 + µ2
. (48)

The integral over kε appears because it is not constrained by any δ-functions. Carrying out

the integral, we obtain
Γ(1− ε/2)

(4π)ε/2
1

[k2 + µ2]1−ε/2
. (49)

The exponent (1− ε/2) in the denominator plays a role of regularization for loop diagrams, as

will be seen in the next subsubsection.

One-loop calculation

We show that how our method can regularize the divergences in the one-loop diagrams. Clearly,

diagrams consisting of only the scalar lines, which are shown in Fig.4, are regularized in the

same manner as in the ordinary dimensional regularization. On the other hand, a fermion loop,

shown in Fig.5, is regularized by the PV fields 7. Therefore, what we are interested in is ones

involving both the scalar and fermion internal lines. (See Fig.6.)

Let us consider the fermion self-energy diagram Fig.6(a), which we denote by Σ(p). Using

7Note that the ε-dimensional momentum in the external φ lines is not conserved, that is kε 6= k′ε, because
the Yukawa vertex conserves momentum only in the 4-dimensions. However, this does not affect the unitarity
as the cutoff is removed (ε→ 0).
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Figure 4: One-loop diagrams consisting of only the scalar lines

p

p′ = p− k

(k, kε) (k, k′ε)

Figure 5: A fermion loop diagram

p p− k

(k, kε)

(a) Fermion self-energy Σ(p)

(k, kε)

(l, lε)p p+ k

(b) Yukawa vertex correction Γ(p, k)

Figure 6: One-loop diagrams including both of the scalar and fermion internal lines
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Eq.(49), we have

Σ(p) = g2

∫
d4k

(2π)4

1

i(/p− /k)−m
Γ(1− ε/2)

(4π)ε/2
1

[k2 + µ2]1−ε/2
(50)

= −g2 Γ(1− ε/2)

(4π)ε/2

∫
d4k

(2π)4

i(/p− /k) +m

(p− k)2 +m2

1

[k2 + µ2]1−ε/2
. (51)

Its integration over k leads to the following expression:

Σ(p) = −g2 Γ(−ε/2)

(4π)2+ε/2

∫ 1

0
dx x−ε/2

[
i(1− x)/p+m

]
(∆′)ε/2 (52)

with

∆′ ≡ x(1− x)p2 + xm2 + (1− x)µ2. (53)

Here x is the Feynman parameter. This expression Eq.(52) is finite as long as 0 < ε < 2,

and thus the UV divergence is regularized in our model. Furthermore, one can check that its

difference from the result in the ordinary dimensional scheme is finite constants.

Next, we investigate the other diagram (Fig.6(b)), which is the one-loop vertex correction

Γ(p, k). Using Eqs.(44)–(47) and (49), we have

Γ(p, k) = g3

∫
d4l

(2π)4

1

i(/p− /l + /k)−m
1

i(/p− /l)−m
Γ(1− ε/2)

(4π)ε/2
1

[l2 + µ2]1−ε/2
. (54)

After some calculation, we obtain the following result:

Γ(p, k) =
g3

16π2

∫
xyz

(
−2

(4zπ)ε/2
Γ(−ε/2)(∆′′)ε/2 +

[
i(z/p+ (1− x)/k) +m

] [
i(z/p− x/k) +m

]
∆′′

)
(55)

with ∫
xyz
≡
∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz δ(x+ y + z − 1), (56)

∆′′ ≡ x(1− x)(p+ k)2 + y(1− y)p2 − 2xy(p+ k) · p+ (x+ y)m2 + zµ2. (57)

Also in this case, the UV divergence is controlled thanks to ε.

Thus, the combination of the PDR and the PV regularization can regularize all the one-loop

divergences. It is obvious that this is also true about higher-order loop diagrams. Note that

the PDR is essentially as a sort of the analytic regularization [144–146], since the integration

over kε gives k of the fractional power.

A.5 PDR for chiral gauge theory

In Sec.A.2 and A.3, we have regularized the fermion sector only. For practical calculations,

however, we must also regularize the gauge sector. In this section, we apply the PDR to the
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gauge sector while keeping the DW fermion on the 5-dimensional space. After that, we will

show that all the one-loop UV divergences are regularized by the combination of the PDR

and the PV regularization, and that they can be renormalized by local counter terms. For

simplicity, we consider the case where the resulting physical theory is 4-dimensional.

The regularized model

Firstly, we replace the 4-dimensional gauge field Aµ(x) in Eq.(14) with the (4 + ε)-dimensional

one AM (x, xε). Here x and xε are the coordinates of the 4-dimensional and ε-dimensional space,

respectively, and the lower index M runs from 1 to 4 + ε. Next, we extend the gauge field in

the s-direction, and thus the gauge field lives in the (4 + ε + 1)-dimensional space. Note that

it is independent of s, that is AM (x, xε, s) = AM (x, xε). Furthermore, we set the (4 + ε+ 1)th

component of the field to 0: A4+ε+1 = 0. On the other hand, the DW fermion (and all the

regulator fields) live on the 5-dimensional brane xε = 0 embedded in the (4+ε+1)-dimensional

space. Therefore, the regularized action of this system is given by the following equation:

Sreg =

∫
d4xds ψ̄

[
/D + γ5∂s −Mε(s)

]
ψ +

∫
d4xds φ̄

[
/D + γ5∂s +M

]
φ

+

m∑
i=1

|Ci|∑
r=1

∫
d4xds ψ̄i,r

[
/D + γ5∂s −Mε(s)

]
ψi,r

+

m∑
i=1

|Ci|∑
r=1

∫
d4xds φ̄i,r

[
/D + γ5∂s +M

]
φi,r

+
1

4g2

∫
d4+εx tr(FMN (x, xε))

2, (58)

with

Dµ = ∂µ − iAµ(x, 0) (µ = 1, · · · , 4). (59)

Fig.7 shows this model in the coordinate space.

In terms of Gψ and Gφ that have been defined by Eqs.(2)-(5), the Feynman rules are

expressed as follows:

ψ(x, s)ψ̄(y, s′) =

∫
d4p

(2π)4
eip·(x−y) Gψ(p, s, s′) (60)

φ(x, s)φ̄(y, s′) =

∫
d4p

(2π)4
eip·(x−y) Gφ(p, s, s′) (61)

Aaµ(x, xε)A
b
ν(y, yε) =

∫
d4+ε

(2π)4+ε
eik·(x−y)+ikε·(xε−yε) δabδµν

k2 + k2
ε

(Feynman gauge) (62)
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s

xε

ψ, φ,

AM

ψi,r, φi,r

DW

Figure 7: The set up of our model Eq.(58) in the coordinate space. ψ’s and φ’s live on the (4 + 1)-
dimensional brane xε = 0 (solid brane). Their massless modes are localized on the 4-dimensional
domain-wall (the thick line). On the other hand, AM is defined as the gauge field on the (4 + ε)
dimensional brane s = 0 (the dotted brane), and it is duplicated along the s-direction.

p(1) p(2)

(k, kε)

a, µ

= −igtaγµδ(4)(p(1) + p(2) + k), (63)

Here we have written explicitly the delta-functions enforcing momentum conservation. We also

have the gauge boson’s three- and four-point vertices which are the same form as in the ordinary

dimensional regularization. Note that the ε-dimensional momentum is not conserved at the

gauge-fermion coupling. This situation is similar to the the Yukawa theory in the previous

section.

Before calculating the one-loop diagrams, let us consider a diagram containing an internal

line of Aµ with the gauge-fermion vertices at the ends. Similarly to the previous section, the

internal line gives ∫
dεkε
(2π)ε

δµνδ
ab

k2 + (kε)2
=

Γ(1− ε/2)

(4π)ε/2
δµνδ

ab

(k2)1−ε/2 . (64)

The exponent (1− ε/2) plays a role of regularization as in Sec.A.4.

One-loop calculation

Firstly, we consider the gauge boson loop diagrams and the fermion loop diagram (See Fig.8 and

Fig.9). It is obvious that the UV divergences of the former are regularized and renormalized to

the (4 + ε)-dimensional gauge kinetic term as in the ordinary dimensional scheme. The latter

are regularized by the subtracting field and the PV pairs as in Sec.A.2. Here note that the ε-
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Figure 8: The gauge boson one-loop diagrams

p

p′ = p− k

(k, kε) (k, kε)

Figure 9: The vacuum polarization diagram

dimensional momenta in the external gauge boson lines are not conserved: kε 6= k′ε because only

4-dimensional momentum is conserved at the fremion-fermion-gauge boson vertex. Therefore

the UV divergence is renormalized by the 4-dimensional local counter term

δg

∫
d4x tr(Fµν)2. (65)

This term has the (4 + ε)-dimensional gauge-invariance even when ε is finite, and does not

cause any problem in the limit ε→ 0.

Next, we consider the DW fermion’s self-energy diagram (Fig.10). This diagram induces

radiative corrections to the massless and the bulk propagators because the external lines contain

the both modes. Obviously, it is not easy to investigate what counter terms are necessary.

Therefore, we adopt the following strategy. We start with analyzing the self-energy in the

region far from the domain wall, i.e. s � M−1, where the massless mode is suppressed and

only the bulk modes remain in the diagram. Furthermore, the argument of renormalization is

parallel to the ordinary 4-dimensional Dirac fermion because the gauge field does not vary in

the s-direction. After that, we consider the case that M is large compared with the external

momentum. This limit is equivalent to focusing on the correction to the massless propagator.

As will see below, the counter terms that are necessary for the bulk modes in the region

s�M−1 are sufficient to renormalize the massless mode.

For s � M−1, we can evaluate the diagram in the 5-dimensional Fourier space because

the propagator of the bulk modes are translation invariant. Noting that the momentum of the
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p p

s t

(k, kε)

p′ = p− k

Figure 10: The fermion self-energy diagram

gauge field does not have the 5-th component, we have∫
d4k

(2π)4
(iγµt

a)
1

i(/p− /k) + iγ5p5 −M
(iγνt

b)
Γ(1− ε/2)

(4π)ε/2
δµνδ

ab

(k2)1−ε/2 (66)

= (ig)2tata
Γ(1− ε/2)

(4π)ε/2

∫
d4k

(2π)4

2i(/p− /k)− 4M ′

(p− k)2 + |M ′|2
1

(k2)1−ε/2 (67)

with

M ′ ≡ −iγ5p5 +M. (68)

Here we have denoted the 5-th component of momentum of the fermion by p5 . Note that

the expression (67) seems to be the self-energy in the 4-dimensional theory with the effective

mass M ′. Therefore it is obvious that the UV divergences can be renormalized by the ordinary

procedure in the 4-dimensions. In order to obtain the counter terms that eliminate the UV

divergences, we expand Eq.(67) by p:

(ig)2tata
Γ(1− ε/2)

(4π)ε/2

∫
d4k

(2π)4

2

(k2)1−ε/2×[−i/k − 2M ′

k2 + |M ′|2 +
i/p

k2 + |M ′|2 +
−2i/k − 4M ′

(k2 + |M ′|2)2
p · k +O(p2)

]
. (69)

We concentrate on the UV divergent terms and obtain

(ig)2tata
Γ(1− ε/2)

(4π)ε/2

∫
d4k

(2π)4

1

(k2)1−ε/2

[ −4M ′

k2 + |M ′|2 + i/p
k2

(k2 + |M ′|2)2

]
. (70)

After some calculation, we obtain the following expression:

(ig)2tata Γ(−ε/2)

[
−M ′
4π2

∫ 1

0
dx

(
x|M ′|2

4π(1− x)

)ε/2
+

i/p

8π2

∫ 1

0
dx x

(
x|M ′|2

4π(1− x)

)ε/2]
(71)

→ (ig)2tata Γ(−ε/2)

[−M ′
4π2

+
i/p

16π2

]
(as ε→ 0). (72)

It can be seen that the UV divergences are regularized by ε as in Sec.A.4. Consequently, the
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s′ t′p p

s t

(k, kε)

p′ = p− k

Figure 11: The fermion self-energy diagram with external legs

necessary counter terms are found to be 8

∫
d4x

∫
s>0

ds ψ̄
[
δZ /∂ − δMM ′

]
ψ, (73)

where

δZ =
(ig)2tata

8π2

1

ε
, (74)

δM =
(ig)2tata

2π2

1

ε
. (75)

Note that Eqs.(74) and (75) are mass-independent renormalizations. In particular, the mass

is renormalized multiplicatively. Therefore, we expect that Eqs.(74) and (75) hold even if the

mass M depends on s: ∫
d4x

∫
ds ψ̄

[
δZ /∂ + δM (γ5∂s −Mε(s))

]
ψ. (76)

In other words, these counter terms would also be sufficient to renormalize the UV divergences

of the massless mode.

Let us check this point. In order to focus on the self-energy of the massless mode, we attach

the external legs to it (See Fig.11) and take the limit M � p. In this situation, the external

propagators Gψ(p, s, s′) and Gψ(p, t′, t) reduce to

Gψ(p, t′, t)→ − i/pM
p2

PR e−(|t|+|t′|)|M | (77)

Gψ(p, s, s′)→ − i/pM
p2

PR e−(|s|+|s′|)|M | = −PL
i/pM

p2
e−(|s|+|s′|)|M |, (78)

where we have assumed M > 0. (For M < 0, the chirality projection should be replaced with

PL.) Eqs.(77) and (78) are nothing but the propagators of the chiral fermion localized on the

domain wall. Because the self-energy is put between PR and PL, we can drop the terms except

8The difference between the coefficients of /∂ and γ5∂s reflects the lack of the 5-dimensional Lorentz invariance.
On the other hand, γ5∂s and M share the same coefficient because they are regarded as the effective mass in
the 4-dimensions.



A. A Note on Proposal for Gauge-invariant Regularization

of Chiral Gauge Theory 113

for those proportional to /p − /k. This means that no additional mass counter terms for the

massless mode are needed, and hence we can focus on the wave function renomalization. We

evaluate the self-energy part keeping the 5-th coordinate in the real space as follows:

Γ(1− ε/2)

(4π)ε/2

∫
d4k

(2π)4

∫
dsdt (ig)2tata

1

(k2)1−ε/2γµGψ(p− k, t, s)γµ e−(|s|+|t|)M . (79)

Substituting Eqs.(2)-(5) into the internal propagator Gψ(p− k, t, s)9 and using the symmetry

under the reflection s↔ −s, t↔ −t, we obtain the following expression:

(ig)2tata
2Γ(1− ε/2)

(4π)ε/2

∫
d4k

(2π)4

1

(k2)1−ε/2[∫ ∞
0

ds

∫ ∞
0

dt
i/p′M(

√
p′2 +M2 +M)

p′2(
√
p′2 +M2)

e−(s+t)(
√
p′2+M2+M)

+

∫ ∞
0

ds

∫ ∞
s

dt
i/p′√

p′2 +M2
e−t(
√
p′2+M2+M)−s(M−

√
p′2+M2)

+

∫ ∞
0

dt

∫ ∞
t

ds
i/p′√

p′2 +M2
e−s(
√
p′2+M2+M)−t(M−

√
p′2+M2)

+

∫ ∞
0

ds

∫ 0

−∞
dt
i/p′(
√
p′2 +M2 −M)

p′2
e−(s−t)(

√
p′2+M2+M)

]
. (80)

Here, the first and fourth terms come from the massless mode in Gψ(p−k, t, s) while the second

and third ones from the bulk modes. Note that the latter also contribute to the wave function

renormalization of the massless mode. Carrying out the integrals over s and t, we obtain a

simple result:

−2g2

M
tata

Γ(1− ε/2)

(4π)ε/2

∫
d4k

(2π)4

1

(k2)1−ε/2
i/p′

p′2

=
−g2

8π2M
tata i/p

∫ 1

0
dx (1− x)

(
(1− x)p2

4π

)ε/2
Γ(−ε/2). (81)

The divergent term in Eq.(81),

−(ig)2tata

8π2M
i/p

1

ε
, (82)

can be renormalized by the counter term Eq.(76). Indeed, putting the counter term between

the external legs and integrating over s, we obtain∫
ds δZ i/p e

−2|s|M =
(ig)2tata

8π2M
i/p

1

ε
, (83)

which cancels the UV divergent term Eq.(82).

Thus, we conclude that the UV divergences in the DW fermion self-energy can be renor-

9Note that one cannot take the same limit as Eqs.(77) and (78) for the internal propagator because the
momentum in the internal line should be integrated.
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malized by the counter term Eq.(76). It is easy to check that the vertex correction diagram

would be renormalized in the same manner:∫
d4x

∫
ds δ′Zψ̄(x, s) /A(x, xε = 0)ψ(x, s). (84)

A.6 Summarizing remarks

In this appendix we have proposed a regularization that incorporates with the DW fermion. It

regulates fermion loops by introducing the PV pairs, and regulates the other loops by applying

the PDR. By considering three-dimensional theory, we have explicitly shown that the regular-

ization works both in parity-even and odd parts, and obtained the correct Abelian anomaly in

the two dimensional chiral gauge theory. It is a good regularization of chiral gauge theory on

the DW since it produces no fake anomaly. A significant point of this formulation is that it is

given at the Lagrangian level, that is, the theory is well-defined from the starting point, and

we need not introduce counter terms to recover the gauge symmetry. Furthermore, our regu-

larization might provide a rather easy method for the explicit calculation of loop corrections.

We also have investigated the renormalization of the DW fermion. There we have checked that

once we add the counter terms to the full theory, then the renormalization of the massless

mode is automatically achieved.

Although we expect that the method keeps gauge invariance to all-order, it should be

rigorously proved. We will study the Ward identity in the regularized theory.

Unfortunately, the above study seems to tell us few clues to revealing the connection between

field theory and the matrix model. However, it is remarkable that we have found out an extra

dimension serves a sophisticated structure to regulate chiral gauge theory. The existence of

extra dimension is also predicted in the preceding work on the IIB matrix model [41]. Therefore,

by investigating the regularization of chiral gauge theory in this direction, it will be possible

to clarify that connection.

We are going to report the progress in these studies elsewhere.
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B Change of effective action and amplitude by diffeomorphism

One might take seriously the discrepancy between the two actions, Eqs. (3.14) and (3.15). If

some procedure makes the one-loop effective action identical to Eq.(3.15), then one can regard

the propagation of the NC U(1) gauge field as that of the metric fluctuation at the action

level. For example, let us consider the diffeomorphism transformation (3.17). Then the metric

fluctuation hµν transforms as

δhµν = ∂µξν + ∂νξµ, (85)

ξµ = θµαAα, (86)

although the diffeomorphism transformation is not actually realized in the NC U(1) gauge

theory. Assuming that the above change of hµν is verified, we obtain

hµν =Λ−2
NC ×

(
θµαF ν

α + θναF µ
α +

1

2
δµνθαβFαβ

)
+ Λ−4

NC ×O(A2). (87)

In the viewpoint of the NC U(1) gauge theory, such a transformation produces additional

interaction terms to the action. If we take this new action as the tree-level action, one-loop

effective action of Aµ is given by

Γ
(y)
Φ ∼ − 1

32π2g2

∫
d4y

[
Λ4

4Λ4
NC

θµνFµνθ
λρFλρ +

Λ2

24Λ4
NC

Fµν∂ ◦ ∂Fµν
]
, (88)

where we extract the quadratic parts in Aµ and drop higher-order terms in Λ2/Λ2
NC. This

coincides with the expanded EH action Eq.(3.15). This can be understood as follows. In the

coordinates yielding Eq.(87), the leading term in Aµ vanishes in the trace of hµν . Therefore

the diffeomorphism-invariant measure in the functional space approximately agree with the flat

measure:

||δΦ||2 =

∫
d4x
√
GδΦ(x)2 '

∫
d4xδΦ(x)2, (89)

As a result, the path integral over Φ in the NC U(1) gauge theory gives the diffeomorphism-

invariant effective action Eq.(3.15), as far as we keep track of the lowest-order in Aµ.

Once we adopts the second term in Eq.(88) as the kinetic term of Aµ, we can do similar

calculation to that in section 3. By considering the interaction corresponding to Eq.(87), the

scattering amplitude is given by

M(y)
A =

6

Λ2

1

k2k̃2
(p · k̃)(q · k̃)(4p · q + k2) + (s channel) + (u channel). (90)

This result shows that the amplitude does not match Eq.(3.29) even if the effective action

agrees with the action obtained from the EH action after the substitution (87). It is mainly

because of the lack of the degrees of freedom. However, if we assume the average leading to
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the average (3.32), we can obtain the result identical to the gravitational one:

M(y)
A =

2

Λ2

[
2

{
1

k2
2(p · q)2 + p · q

}
+

1

4
k2

]
+ (s↔ t) + (t↔ u) = − 2

Λ2

(
su

t
+
tu

s
+
ts

u

)
.

(91)
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C Multi-local action from the matrix model with loop correc-

tions

In Chapter 5, we have calculated the mass terms in the one-loop effective action. In the

calculation, we treat the classical field as infinite-order derivative operators Aa(x, p, g, t). On

the other hand, matrices are understood for the beginning as integral kernels or bi-local fields

Aa(x, y). They are related by Eq.(4.2). Therefore, in principle, We can calculate the effective

action in terms of the bi-local fields directly. In this appendix, we show such an analysis and

present the extraordinary form of the effective action.

In the calculation of loop corrections, we write the matrix as the following form:

A(a)(x, g; y, h) = A0
(a)(x, g; y;h) + φ(a)(x, g; y, h). (92)

Since the matrices is regarded as operators acting on C∞(Eprin), they are represented as bi-local

fields on Eprin. We expand the classical field A0
(a) around the flat spacetime:

A0
(a)(x, g; y;h) =

[
i∂(a) +B(a)(x, g) +

i

2
{h b

(a)(x, g), ∂b}

+
i

2
{ω̄bc(a),Obc}+ · · ·

]
δ(x− y)δgh, (93)

where δgh is defined as the delta function on the group manifold:∫
dhf(h)δgh = f(g). (94)

In the expansion, we have written explicitly lower spin modes B(a), h
b

(a), ω̄
bc
(a). By using them

we will take the background field method. On the other hand, the field to be integrated

φ(a)(x, g; y, h) is treated as the bi-local field. This treatment enables us to deal with numerous

local DoF by packing them into a single bi-local field. It is another method than the calculation

in Chapter 5.

We substitute Eq.(92) to Eq.(4.28) and expand it. In particular, we focus on the typical

quadratic term of the fluctuation: 10

Sφ2 = −1

2
Tr
(

[A0
(a), φ(b)]

2
)
. (95)

For convenience, we introduce the coordinate systems with indices in parentheses:

ξ(a) = R
(a)
b(g
−1)xb, η(a) = R

(a)
b(g
−1)yb. (96)

Here, R
(a)
b is the matrix elements of the vector representation of Spin(d). By expanding

10We suppose that the other quadratic term Tr([A0(a), φ(a)]
2) is removed by some gauge transformation.



118 Chapter 8 Summary and Conclusion of the Thesis

Eq.(95) around the classical field, we obtain

Sφ2 =
1

2

∫
ddxddydgdh

[(
∂

∂ξ(a)
+

∂

∂η(a)
− iA(a)(y, h;x, g)

)
φ(a)(y, h;x, g)

+

(
∂

∂ξ(a)
+

∂

∂η(a)
− iA(a)(;x, g; y, h)

)
φ(a)(x, g; y, h)

]
, (97)

where

A(a)(x, g; y, h) = B(a)(x, g)−B(a)(y, h)

+
i

2
{h b

(a)(x, g),
∂

∂xb
}+

i

2
{h b

(a)(y, h),
∂

∂yb
}

+
i

2
{ω̄bc(a)(x, g),O(g)

bc }+
i

2
{ω̄bc(a)(y, h),O(y)

bc }+ · · · . (98)

Noting that φ(y, h;x, g) = φ∗(x, g; y, h) due to its hermicity, and that φ(ξ; η) = φ(ξ; ξ− (ξ−η))

in terms of relative coordinates ξ − η, the propagator for the fluctuation is given by

G(x1, g1; y1, h1|x2, g2; y2, h2) ≡ 〈φ(x1, g1; y1, h1)φ∗(x2, g2; y2, h2)〉

= G(ξ1 − ξ2)δ((ξ1 − η1)− (ξ2 − η2))δg1g2δh1h2

= G(x1 − x2)δ
(
R

(a)
b(g
−1
1 )(x1 − x2)b −R(a)

b(h
−1
1 )(y1 − y2)b)

)
δg1g2δh1h2 .

(99)

Here, G(x1 − x2) is the propagator for an ordinary massless salar field, which is of course

Lorentz invariant. The propagator eq.(99) is expressed as a double line in Feynman diagrams.

It should be paid attention that the propagator is invariant under the translations in x and y

separately.

Let us analyze loop corrections. An one-loop n-point function is understood as the loop of

the propagator with n external fields inserted. We should take into account which of the single

line loops (written by (x, g) and (y, h), respectively) we insert the external field into. A general

n-point loop diagram is composed of n propagators with n vertices:

(n-pt. loop) =

∫
ddx1 · · · ddxnddy1 · · · ddyndg1 · · · dgndh1 · · · dhn

n∏
i=1

Pi, (100)

Pi = FiF ′iG(xi, gi; yi, hi|xi+1, gi+1; yi+1, hi+1). (101)

Here, we have made cyclicity in the index as xn+1 ≡ x1 and so on. Fi and F ′i are background

operators and written as

Fi = ciIJKT
I
i ({xj})SJi ({gj})DK

i ({∂/∂xj}, {O(gj)
ab }),

F ′i = c′iIJKT
′I
i ({yj})S′Ji ({hj})D′Ki ({∂/∂yj}, {O(hj)

ab }). (102)



C. Multi-local action from the matrix model with loop corrections 119

We have used reduced notation I, J and K for indices without parentheses. On the other hand,

we have truncated ones in parentheses because they do not mix under Lorentz transformation.

T Ii and T ′Ii are composite factors of fields which depend only on the spacetime coordinates:

A
{1}
I (x1), · · · , A{n}I (xn) (103)

Formally, they are polynomials of local composite fields. SJi and S′Ji are some functions on the

Lorentz group. DK
i and D′Ki are polynomials of derivative operators. In particular, when one

takes into account the decomposition Eq.(4.46), The dependence on the spacetime and group

coordinates can be factorized. ciIJK and c′iIJK are Lorentz invariant tensors. This invariance

are guaranteed by the fact that the indices in Eq.(93) are contracted so that the entire operator

is Lorentz invariant.

In fact, the dependence on one of the n coordinates can be factorized due to translation

invariance of the propagator. We denote such a coordinate as (x, y) = (xn, yn). Then the

relative coordinates are naturally introduced:

x̃i = xi − x, ỹi = yi − y (i = 1, · · · , n− 1). (104)

The propagator is written as

G(xi, gi; yi, hi|xi+1, gi+1; yi+1, hi+1)

= G(x̃i − x̃i+1)δ
(
R

(a)
b(g
−1
i )(x̃i − x̃i+1)b −R(a)

b(h
−1
i )(ỹi − ỹi+1)b)

)
δgigi+1δhihi+1

.

(105)

It is independent of (x, y). The factor dependent on the coordinates are expanded around (x, y)

to turn into the following form:

A
{i}
I (xi) =

∞∑
s=0

1

s!
A
{i}
I,a1···as(x)x̃a1

i · · · x̃asi ,

A
′{i}
I (yi) =

∞∑
s=0

1

s!
A
′{i}
I,a1···as(y)ỹa1

i · · · ỹasi , (106)

where A
{i}
I,a1···as = ∂a1 · · · ∂asA

{i}
I . We can also rewrite the derivatives as

∂

∂xai
=

∂

∂x̃ai
(i = 1, · · · , n− 1),

∂

∂xan
=

∂

∂xa
−
n−1∑
i=1

∂

∂x̃ai
,

∂

∂yai
=

∂

∂ỹai
(i = 1, · · · , n− 1),

∂

∂yan
=

∂

∂ya
−
n−1∑
i=1

∂

∂ỹai
. (107)

Since they act on the propagator, ∂/∂xa and ∂/∂ya yield no contribution. Therefore n-point
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diagram Eq.(101) takes the following form:

CI1···InI C ′J1···Jn
J

∫
ddxddy

(
Â(x) · · · Â(x)

)I (
Â(y) · · · Â(y)

)J
×
∫
ddx̃1 · · · ddx̃n−1d

dỹ1 · · · ddỹn−1dg1 · · · dgndh1 · · · dhn

×
n∏
i=1

F̃iIiF̃ ′iJiG(x̃i, gi; ỹi, hi|x̃i+1, gi+1; ỹi+1, hi+1) (108)

Here CI1···InI and C ′J1···Jn
J are Lorentz invariant tensors, and

F̃iIi = ciJKLf̃
J
iIi({x̃j})S̃Ki ({gj})D̃L

i ({∂/∂x̃j}, {O{gj}ab }),

F̃ ′iJi = c′iJKLf̃
′J
iJi({ỹj})S̃′Ki ({hj})D̃′Li ({∂/∂ỹj}, {O{hj}ab }). (109)

ciJKL and c′iJKL are also invariant tensors. f̃JiIi and f̃ ′JiJi are polynomials of x̃j and ỹj , respectively.

S̃Ki and S̃′Ki are functions on Lorentz group. D̃L
i and D̃′Li are polynomials of derivatives. We

can consider the independent Lorentz transformation on {x̃i} and {ỹi}: x̃ai −→ Rab(u)x̃bi , gi −→ ugi,

ỹai −→ Rab(v)ỹbi , hi −→ vhi.
(110)

They result in the transformations of indices I1, · · · , In and J1, · · · , Jn, respectively. However,

the integral measure of spacetime coordinates and the propagator in Eq.(108) are Lorentz

invariant. By integrating it over {x̃i}, {gi}, {ỹi} and {hi}, it yields Lorentz invariant constants.

In other words, I1, · · · , In and J1, · · · , Jn on CI1···InI and C ′J1···Jn
J are, after the integration,

contracted to form Lorentz invariant quantity individually. Therefore, the rest set of indices I

and J are contracted within them, respectively. As a result, the n-point loop diagram takes

the form of

(n-pt. loop) =

∫
ddxddy

(
Â(x) · · · Â(x)

)(
Â(y) · · · Â(y)

)
=

∫
ddx

(
Â(x) · · · Â(x)

)∫
ddy

(
Â(y) · · · Â(y)

)
. (111)

It implies that one-loop correction terms in the effective action is written by products of two

integrals of local quantities.

Generalization of the above discussion to multi-loops corrections is qualitatively observed.

we can conclude that loops of k single lines result in products of k integral of local quantities.

The effective action should keep the original unitary symmetry, and hence each factor is in-

variant under local Lorentz transformation and diffeomorphism. To summarize, the effective
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action is given by the following form:

Γ = ĉisi + ĉijsisj + ĉijksisjsk + · · · , (112)

si =

∫
ddx
√
gOi(x), (113)

where Oi(x) is some scalar and i is a mere label. ĉi, ĉij and so on are constants, which is

suppressed according to the number of indices. It is because a constant with more indices

comes from more loops. Eq.(113) seems to violate locality. However, it is not the case. In the

path integral, the integrand exp(iΓ) can be formally Fourier transformed with respect to {si},
and make the form of the path integral as

Z =

∫
Dφ eiΓ =

∫ (∏
i

dλi

)∫
DφF (λ)eiλisi , (114)

where the repeated indices are summed over, and φ represents all of dynamical fields symbol-

ically. F (λ) is some function whose Fourier transformation is exp(iΓ). The effective action

Γ describes the theory with multiverse or wormholes [117, 118]. From the viewpoint of local

field theory, Eq.(114) is interpreted as a theory with its coupling constants averaged by some

weight function. Therefore, it is expected that observed coupling constants are actually the

averaged values. It can provide the resolution to fine-tuning problems in particle physics and

cosmology [119]. The type of the above path integral is, however, very difficult to study by

analytic calculation. On the other hand, we can discuss the resolution of several fine-tuning

problem by adopting the viable approximation [33]. Among those discussion, it is suggested

that such a theory naturally gives the theoretical origin of MPP. Let us have a brief review of

this mechanism in the following.

Once we set initial and final conditions at t = 0 and ∞, the path integral is rewritten as

Z =

∫ φ|t=∞=φf

φ|t=0=φi

Dφ eiΓ

=

∫ (∏
i

dλi

)∫ φ|t=∞=φf

φ|t=0=φi

DφF (λ)eiλisi

=

∫ (∏
i

dλi

)
F (λ) 〈f | e−i

∫∞
0 dtĤ(λ;t) |i〉 . (115)

|i〉 and 〈f | is the initial and final states corresponding to the configuration φi and φf , respec-

tively. Note that our universe has been at a state with very low energy density in the most

part of its history. We can approximate the energy density to that of the ground state ε(λ).

Suppose that t0 denotes the time the universe was relaxed to the state where the approximation
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is valid. By defining the relaxed state

|ψ(t0;λ)〉 ≡ e−i
∫ t0
0 dtĤ(λ;t) |i〉 , (116)

Eq.(115) is estimated as follows:

Z ∼
∫ (∏

i

dλi

)
F (λ)e

−iε(λ)
∫∞
t0
dtVol3(t) 〈f |ψ(t0;λ)〉

∼
∫ (∏

i

dλi

)
F (λ)e−iε(λ)Vol4 〈f |ψ(t0;λ)〉 , (117)

where Vol3(t) is the space volume at t, and Vol4 is the spacetime volume of our universe.

We can further approximate Eq.(117) with the fact that Vol4 is very large, as is explained

below. For simplicity, we will treat the case with a single parameter for λ. Consider a system

including the scalar potential with two local minima. SM is probably such a system, according

to the experimental restriction on the form of Higgs effective potential. Let us represent the

minimal points as φ1(λ) and φ2(λ). Without loss of generality, we can assume that the energy

density corresponding to one of the minima ε(φ1(λ)) monotonically increases as λ increases,

and that of the other ε(φ2(λ)) monotonically decreases. If both of the locally minimal energy

coincide to each other at λ = λ0, then the global minimum point jumps from φ1 to φ2.

Accordingly, the vacuum energy density changes from ε(φ1) to ε(φ2). Unless φ1(λ0) 6= φ2(λ0),

the vacuum energy has a cusp at λ = λ0; ε′(λ0 − 0) 6= ε′(λ0 + 0). In this case, the integral

over λ in Eq.(117) picks up the configuration with λ = λ0 as the dominant contribution. It is

proved by evaluating the integral explicitly. Assuming the quantity

F̄ (λ) ≡ F (λ) 〈f |ψ(t0;λ)〉 . (118)

has finite support, the integral over λ in the partition function is approximated as the following:

Z ∼
∫ ∞
−∞

dλF̄ (λ)e−iε(λ)Vol4

=

∫ λ0

−∞
dλF̄ (λ)e−iε(λ)Vol4 +

∫ ∞
λ0

dλF̄ (λ)e−iε(λ)Vol4

=

∫ ε(λ0)

−∞
dε

(
dε

dλ

)−1

F̄ (λ(ε))e−iε(λ)Vol4 +

∫ ∞
ε(λ0)

dε

(
dε

dλ

)−1

F̄ (λ(ε))e−iε(λ)Vol4

=

[
i

Vol4

(
dε

dλ

)−1

F̄ (λ(ε))e−iε(λ)Vol4

]ε(λ0)

−∞

+

[
i

Vol4

(
dε

dλ

)−1

F̄ (λ(ε))e−iε(λ)Vol4

]∞
ε(λ0)

+O

(
1

Vol24

)
∼ i

Vol4

[(
dε

dλ

)−1

λ0−0

−
(
dε

dλ

)−1

λ0+0

]
F̄ (λ0)e−iε(λ0)Vol4
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=
i

Vol4

[(
dε

dλ

)−1

λ0−0

−
(
dε

dλ

)−1

λ0+0

]
F (λ0)e−iε(λ0)Vol4 〈f |ψ(t0;λ0)〉 . (119)

Note that, at λ = λ0, the vacuum of the system is degenerated by the two configuration φ1(λ0)

and φ2(λ0). Therefore, Eq.(119) shows the theoretical origin of MPP in the context of the

multi-local action Eq.(113), in the sense that the coupling “constant” λ in Eq.(114) has been

fixed to λ0.

The essential points of the above analysis were the two assumption. First, the energy

density of the universe is sufficiently close to that of the ground state during most part of its

history. Second, the ground state energy has a cusp at some value of the parameter. As for

the latter in particular, similar analysis is applicable to systems with ε(λ) which shows more

general behavior. In other words, if ε(λ) has special points (non-analytic point like cusps, or

stationary points), then the dominant contributions to the integration over λ in Eq.(117) come

from those values. This provides a mechanism of fixing coupling constants to specific values,

and may lead to a resolution of fine-tuning problem. It is remarkable that the mechanism

involve the whole of the history of our universe through Vol4.



Bibliography
[1] N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, Nucl. Phys. B 498, 467 (1997)

doi:10.1016/S0550-3213(97)00290-3 [hep-th/9612115].

[2] H. Aoki, S. Iso, H. Kawai, Y. Kitazawa, A. Tsuchiya and T. Tada, Prog. Theor. Phys.

Suppl. 134, 47 (1999) doi:10.1143/PTPS.134.47 [hep-th/9908038].

[3] M. Fukuma, H. Kawai, Y. Kitazawa and A. Tsuchiya, Nucl. Phys. B 510, 158 (1998)

doi:10.1016/S0550-3213(98)81008-0, 10.1016/S0550-3213(97)00584-1 [hep-th/9705128].

[4] S. W. Kim, J. Nishimura and A. Tsuchiya, Phys. Rev. Lett. 108, 011601 (2012)

doi:10.1103/PhysRevLett.108.011601 [arXiv:1108.1540 [hep-th]].

[5] H. Steinacker, Nucl. Phys. B 810, 1 (2009) doi:10.1016/j.nuclphysb.2008.10.014

[arXiv:0806.2032 [hep-th]].

[6] K. j. Hamada, Phys. Rev. D 56, R7503 (1997) doi:10.1103/PhysRevD.56.R7503 [hep-

th/9706187].

[7] H. Aoki, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, Prog. Theor. Phys. 99, 713 (1998)

doi:10.1143/PTP.99.713 [hep-th/9802085].

[8] S. Iso and H. Kawai, Int. J. Mod. Phys. A 15, 651 (2000)

doi:10.1142/S0217751X0000032X [hep-th/9903217].

[9] K. N. Anagnostopoulos and J. Nishimura, Phys. Rev. D 66, 106008 (2002)

doi:10.1103/PhysRevD.66.106008 [hep-th/0108041].

[10] S. W. Kim, J. Nishimura and A. Tsuchiya, Phys. Rev. D 86, 027901 (2012)

doi:10.1103/PhysRevD.86.027901 [arXiv:1110.4803 [hep-th]].

[11] S. W. Kim, J. Nishimura and A. Tsuchiya, JHEP 1210, 147 (2012)

doi:10.1007/JHEP10(2012)147 [arXiv:1208.0711 [hep-th]].

[12] Y. Ito, S. W. Kim, J. Nishimura and A. Tsuchiya, PoS LATTICE 2013, 341 (2014)

[arXiv:1311.5579 [hep-lat]].

[13] H. Aoki, J. Nishimura and A. Tsuchiya, JHEP 1405, 131 (2014)

doi:10.1007/JHEP05(2014)131 [arXiv:1401.7848 [hep-th]].



Bibliography 125

[14] Y. Ito, J. Nishimura and A. Tsuchiya, JHEP 1511, 070 (2015)

doi:10.1007/JHEP11(2015)070 [arXiv:1506.04795 [hep-th]].

[15] Y. Ito, J. Nishimura and A. Tsuchiya, PoS LATTICE 2015, 243 (2016) [arXiv:1512.01923

[hep-lat]].

[16] Y. Ito, J. Nishimura and A. Tsuchiya, JHEP 1703, 143 (2017)

doi:10.1007/JHEP03(2017)143 [arXiv:1701.07783 [hep-th]].

[17] K. N. Anagnostopoulos, T. Azuma, Y. Ito, J. Nishimura and S. K. Papadoudis, PoS

CORFU 2018, 065 (2019) doi:10.22323/1.347.0065

[18] G. Parisi, Phys. Lett. 112B, 463 (1982). doi:10.1016/0370-2693(82)90849-8

[19] D. J. Gross and Y. Kitazawa, Nucl. Phys. B 206, 440 (1982). doi:10.1016/0550-

3213(82)90278-4

[20] G. Bhanot, U. M. Heller and H. Neuberger, Phys. Lett. 113B, 47 (1982).

doi:10.1016/0370-2693(82)90106-X

[21] S. R. Das and S. R. Wadia, Phys. Lett. 117B, 228 (1982) Erratum: [Phys. Lett. 121B,

456 (1983)]. doi:10.1016/0370-2693(82)90552-4

[22] T. Imai, Y. Kitazawa, Y. Takayama and D. Tomino, Nucl. Phys. B 679, 143 (2004)

doi:10.1016/j.nuclphysb.2003.11.038 [hep-th/0307007].

[23] H. Grosse, H. Steinacker and M. Wohlgenannt, JHEP 0804, 023 (2008) doi:10.1088/1126-

6708/2008/04/023 [arXiv:0802.0973 [hep-th]].

[24] H. Steinacker, PoS QGQGS 2011, 004 (2011) doi:10.22323/1.140.0004 [arXiv:1109.5521

[hep-th]].

[25] D. Jurman and H. Steinacker, JHEP 1401, 100 (2014) doi:10.1007/JHEP01(2014)100

[arXiv:1309.1598 [hep-th]].

[26] H. C. Steinacker, JHEP 1802, 033 (2018) doi:10.1007/JHEP02(2018)033

[arXiv:1709.10480 [hep-th]].

[27] M. Hanada, H. Kawai and Y. Kimura, Prog. Theor. Phys. 114, 1295 (2006)

doi:10.1143/PTP.114.1295 [hep-th/0508211].

[28] K. Furuta, M. Hanada, H. Kawai and Y. Kimura, Nucl. Phys. B 767, 82 (2007)

doi:10.1016/j.nuclphysb.2007.01.003 [hep-th/0611093].

[29] H. Kawai, Prog. Theor. Phys. Suppl. 171, 99 (2007). doi:10.1143/PTPS.171.99



126 BIBLIOGRAPHY

[30] T. Matsuo, D. Tomino, W. Y. Wen and S. Zeze, JHEP 0811, 088 (2008)

doi:10.1088/1126-6708/2008/11/088 [arXiv:0807.1186 [hep-th]].

[31] Y. Asano, H. Kawai and A. Tsuchiya, Int. J. Mod. Phys. A 27, 1250089 (2012)

doi:10.1142/S0217751X12500893 [arXiv:1205.1468 [hep-th]].

[32] H. Kawai, Int. J. Mod. Phys. A 28, 1340001 (2013). doi:10.1142/S0217751X13400010

[33] Y. Hamada, H. Kawai and K. Kawana, PTEP 2015, no. 12, 123B03 (2015)

doi:10.1093/ptep/ptv168 [arXiv:1509.05955 [hep-th]].

[34] C. D. Froggatt and H. B. Nielsen, Phys. Lett. B 368, 96 (1996) doi:10.1016/0370-

2693(95)01480-2 [hep-ph/9511371].

[35] R. Jinno and K. Kaneta, Phys. Rev. D 96, no. 4, 043518 (2017)

doi:10.1103/PhysRevD.96.043518 [arXiv:1703.09020 [hep-ph]].

[36] R. Jinno, K. Kaneta and K. y. Oda, arXiv:1705.03696 [hep-ph].

[37] F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659, 703 (2008)

doi:10.1016/j.physletb.2007.11.072 [arXiv:0710.3755 [hep-th]].

[38] L. P. S. Singh and C. R. Hagen, Phys. Rev. D 9, 898 (1974).

[39] L. P. S. Singh and C. R. Hagen, Phys. Rev. D 9, 910 (1974).

[40] J. Nishimura and A. Tsuchiya, JHEP 1312, 002 (2013) doi:10.1007/JHEP12(2013)002

[arXiv:1305.5547 [hep-th]].

[41] K. Hatakeyama, A. Matsumoto, J. Nishimura, A. Tsuchiya and A. Yosprakob,

arXiv:1911.08132 [hep-th].

[42] D. B. Kaplan, Phys. Lett. B 288, 342 (1992) doi:10.1016/0370-2693(92)91112-M [hep-

lat/9206013].

[43] H. Kawai, K. Kawana and K. Sakai, PTEP 2017, no. 4, 043B06 (2017)

doi:10.1093/ptep/ptx036 [arXiv:1610.09844 [hep-th]].

[44] K. Sakai, Nucl. Phys. B 925, 195 (2017) doi:10.1016/j.nuclphysb.2017.10.011

[arXiv:1709.02588 [hep-th]].

[45] K. Sakai, Nucl. Phys. B 949, 114801 (2019) doi:10.1016/j.nuclphysb.2019.114801

[arXiv:1905.10067 [hep-th]].

[46] K. Kawana and K. Sakai, Phys. Lett. B 778, 60 (2018) doi:10.1016/j.physletb.2018.01.007

[arXiv:1712.00729 [hep-ph]].



Bibliography 127

[47] M. Fukuma, H. Kawai, K. Sakai and J. Yamamoto, PTEP 2016, no. 7, 073B02 (2016)

doi:10.1093/ptep/ptw080 [arXiv:1605.03363 [hep-th]].

[48] Y. Hamada, H. Kawai and K. Sakai, not submitted [arXiv:1806.00349 [hep-th]];

H. Kawai and K. Sakai, in progress

[49] T. Eguchi and H. Kawai, Phys. Rev. Lett. 48, 1063 (1982).

doi:10.1103/PhysRevLett.48.1063

[50] T. Imai, Y. Kitazawa, Y. Takayama and D. Tomino, Nucl. Phys. B 665, 520 (2003)

doi:10.1016/S0550-3213(03)00491-7 [hep-th/0303120].

[51] H. Kaneko, Y. Kitazawa and D. Tomino, Nucl. Phys. B 725, 93 (2005)

doi:10.1016/j.nuclphysb.2005.07.009 [hep-th/0506033].

[52] H. Aoki, N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, Nucl. Phys. B 565,

176 (2000) doi:10.1016/S0550-3213(99)00633-1 [hep-th/9908141].

[53] N. Ishibashi, S. Iso, H. Kawai and Y. Kitazawa, Nucl. Phys. B 573, 573 (2000)

doi:10.1016/S0550-3213(99)00708-7 [hep-th/9910004].

[54] S. Iso, H. Kawai and Y. Kitazawa, Nucl. Phys. B 576, 375 (2000) doi:10.1016/S0550-

3213(00)00092-4 [hep-th/0001027].

[55] V. O. Rivelles, Phys. Lett. B 558, 191 (2003) doi:10.1016/S0370-2693(03)00271-5 [hep-

th/0212262].

[56] H. S. Yang, Mod. Phys. Lett. A 21, 2637 (2006) doi:10.1142/S0217732306021682 [hep-

th/0402002].

[57] H. S. Yang, Mod. Phys. Lett. A 22, 1119 (2007) doi:10.1142/S0217732307023675 [hep-

th/0612231].

[58] H. Steinacker, JHEP 0712, 049 (2007) doi:10.1088/1126-6708/2007/12/049

[arXiv:0708.2426 [hep-th]].

[59] N. Kuntner and H. Steinacker, J. Geom. Phys. 62, 1760 (2012)

doi:10.1016/j.geomphys.2012.04.002 [arXiv:1111.2732 [math-ph]].

[60] H. Steinacker, JHEP 1301, 112 (2013) doi:10.1007/JHEP01(2013)112 [arXiv:1210.8364

[hep-th]].

[61] H. C. Steinacker, arXiv:1606.00769 [hep-th].

[62] H. Steinacker, Class. Quant. Grav. 27, 133001 (2010) doi:10.1088/0264-

9381/27/13/133001 [arXiv:1003.4134 [hep-th]].



128 BIBLIOGRAPHY

[63] J. J. van der Bij, H. van Dam and Y. J. Ng, Physica 116A, 307 (1982). doi:10.1016/0378-

4371(82)90247-3

[64] M. Sperling and H. C. Steinacker, Nucl. Phys. B 941, 680 (2019)

doi:10.1016/j.nuclphysb.2019.02.027 [arXiv:1806.05907 [hep-th]].

[65] M. Sperling and H. C. Steinacker, arXiv:1901.03522 [hep-th].

[66] C. Fronsdal, Phys. Rev. D 18, 3624 (1978).

[67] M. A. Vasiliev, Yad. Fiz. 32, 855 (1980) [Sov. J. Nucl. Phys. 32, 439 (1980)].

[68] V. E. Didenko and E. D. Skvortsov, arXiv:1401.2975 [hep-th].

[69] J. Engquist and O. Hohm, JHEP 0804, 101 (2008) [arXiv:0708.1391 [hep-th]].

[70] B. de Wit and D. Z. Freedman, Phys. Rev. D 21, 358 (1980).

[71] M. Holthausen, K. S. Lim and M. Lindner, JHEP 1202, 037 (2012)

doi:10.1007/JHEP02(2012)037 [arXiv:1112.2415 [hep-ph]].

[72] F. Bezrukov, M. Y. Kalmykov, B. A. Kniehl and M. Shaposhnikov, JHEP 1210, 140

(2012) doi:10.1007/JHEP10(2012)140 [arXiv:1205.2893 [hep-ph]].

[73] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori and

A. Strumia, JHEP 1208, 098 (2012) doi:10.1007/JHEP08(2012)098 [arXiv:1205.6497

[hep-ph]].

[74] H. B. Nielsen, Bled Workshops Phys. 13, no. 2, 94 (2012) [arXiv:1212.5716 [hep-ph]].

[75] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio and A. Stru-

mia, JHEP 1312, 089 (2013) doi:10.1007/JHEP12(2013)089 [arXiv:1307.3536 [hep-ph]].

[76] Y. Hamada, H. Kawai, K. y. Oda and S. C. Park, Phys. Rev. D 91, 053008 (2015)

doi:10.1103/PhysRevD.91.053008 [arXiv:1408.4864 [hep-ph]].

[77] Y. Hamada, H. Kawai and K. Kawana, Int. J. Mod. Phys. A 29, 1450099 (2014)

doi:10.1142/S0217751X14500997 [arXiv:1405.1310 [hep-ph]].

[78] Y. Hamada, H. Kawai and K. Kawana, PTEP 2015, 033B06 (2015)

doi:10.1093/ptep/ptv011 [arXiv:1409.6508 [hep-ph]].

[79] K. Kawana, Int. J. Mod. Phys. A 32, no. 10, 1750048 (2017)

doi:10.1142/S0217751X17500488 [arXiv:1609.00513 [hep-th]].

[80] M. Galante, R. Kallosh, A. Linde and D. Roest, Phys. Rev. Lett. 114, no. 14, 141302

(2015) doi:10.1103/PhysRevLett.114.141302 [arXiv:1412.3797 [hep-th]].



Bibliography 129

[81] R. Kallosh, A. Linde and D. Roest, JHEP 1311, 198 (2013)

doi:10.1007/JHEP11(2013)198 [arXiv:1311.0472 [hep-th]].

[82] R. Kallosh, A. Linde and D. Roest, JHEP 1408, 052 (2014)

doi:10.1007/JHEP08(2014)052 [arXiv:1405.3646 [hep-th]].

[83] M. Fierz, Helv. Phys. Acta 12, 3 (1939).

[84] M. Fierz and W. Pauli, Proc. Roy. Soc. Lond. A 173, 211 (1939).

doi:10.1098/rspa.1939.0140

[85] P. Van Nieuwenhuizen, Nucl. Phys. B 60, 478 (1973). doi:10.1016/0550-3213(73)90194-6

f

[86] J. Fang and C. Fronsdal, Phys. Rev. D 18, 3630 (1978). doi:10.1103/PhysRevD.18.3630

[87] E. S. Fradkin and M. A. Vasiliev, Annals Phys. 177, 63 (1987). doi:10.1016/S0003-

4916(87)80025-8

[88] E. S. Fradkin and M. A. Vasiliev, Nucl. Phys. B 291, 141 (1987). doi:10.1016/0550-

3213(87)90469-X

[89] E. S. Fradkin and M. A. Vasiliev, Phys. Lett. B 189, 89 (1987). doi:10.1016/0370-

2693(87)91275-5

[90] M. A. Vasiliev, Phys. Lett. B 243, 378 (1990). doi:10.1016/0370-2693(90)91400-6

[91] Y. M. Zinoviev, Phys. Part. Nucl. Lett. 11, no. 7, 859 (2014).

doi:10.1134/S1547477114070498

[92] I. Cortese, R. Rahman and M. Sivakumar, Nucl. Phys. B 879, 143 (2014)

doi:10.1016/j.nuclphysb.2013.12.005 [arXiv:1307.7710 [hep-th]].

[93] I. L. Buchbinder, V. A. Krykhtin and P. M. Lavrov, Mod. Phys. Lett. A 26, 1183 (2011)

doi:10.1142/S0217732311035535 [arXiv:1101.4860].

[94] L. Bernard, C. Deffayet and M. von Strauss, JCAP 1506, 038 (2015) doi:10.1088/1475-

7516/2015/06/038 [arXiv:1504.04382 [hep-th]].

[95] L. Bernard, C. Deffayet, A. Schmidt-May and M. von Strauss, Phys. Rev. D 93, no. 8,

084020 (2016) doi:10.1103/PhysRevD.93.084020 [arXiv:1512.03620 [hep-th]].

[96] S. F. Hassan, A. Schmidt-May and M. von Strauss, JHEP 1305, 086 (2013)

doi:10.1007/JHEP05(2013)086 [arXiv:1208.1515 [hep-th]].

[97] D. Francia, Nucl. Phys. B 796, 77 (2008) doi:10.1016/j.nuclphysb.2007.12.002

[arXiv:0710.5378[hep-th]].



130 BIBLIOGRAPHY

[98] D. Francia, Fortsch. Phys. 56, 800 (2008) doi:10.1002/prop.200810547 [arXiv:0804.2857

[hep-th]].

[99] D. Francia, J. Phys. Conf. Ser. 222, 012002 (2010) doi:10.1088/1742-6596/222/1/012002

[arXiv:1001.3854 [hep-th]].

[100] T. P. Hack and M. Makedonski, Phys. Lett. B 718, 1465 (2013)

doi:10.1016/j.physletb.2012.11.033 [arXiv:1106.6327 [hep-th]].

[101] L. Heisenberg, JCAP 1405, 015 (2014) doi:10.1088/1475-7516/2014/05/015

[arXiv:1402.7026 [hep-th]].

[102] J. Beltran Jimenez and L. Heisenberg, Phys. Lett. B 757, 405 (2016)

doi:10.1016/j.physletb.2016.04.017 [arXiv:1602.03410 [hep-th]].

[103] A. Cucchieri, M. Porrati and S. Deser, Phys. Rev. D 51, 4543 (1995)

doi:10.1103/PhysRevD.51.4543 [hep-th/9408073].

[104] A. A. Deriglazov and W. G. Ramı́rez, [arXiv:1509.05357 [gr-qc]].

[105] A. A. Deriglazov and W. G. Ramı́rez, [arXiv:1511.00645 [gr-qc]].

[106] C. Germani and A. Kehagias, Nucl. Phys. B 725, 15 (2005)

doi:10.1016/j.nuclphysb.2005.07.027 [hep-th/0411269].

[107] C. Germani and A. Schelpe, Phys. Rev. D 78, 036010 (2008)

doi:10.1103/PhysRevD.78.036010 [arXiv:0712.2243 [hep-th]].

[108] I. L. Buchbinder, V. A. Krykhtin and V. D. Pershin, Phys. Lett. B 466, 216 (1999)

doi:10.1016/S0370-2693(99)01143-0 [hep-th/9908028].

[109] I. L. Buchbinder, D. M. Gitman, V. A. Krykhtin and V. D. Pershin, Nucl. Phys. B 584,

615 (2000) doi:10.1016/S0550-3213(00)00389-8 [hep-th/9910188].

[110] C. de Rham and G. Gabadadze, Phys. Rev. D 82, 044020 (2010)

doi:10.1103/PhysRevD.82.044020 [arXiv:1007.0443 [hep-th]].

[111] C. de Rham, G. Gabadadze and A. J. Tolley, Phys. Rev. Lett. 106, 231101 (2011)

doi:10.1103/PhysRevLett.106.231101 [arXiv:1011.1232 [hep-th]].

[112] S. F. Hassan and R. A. Rosen, JHEP 1107, 009 (2011) doi:10.1007/JHEP07(2011)009

[arXiv:1103.6055 [hep-th]].

[113] S. F. Hassan, R. A. Rosen and A. Schmidt-May, JHEP 1202, 026 (2012)

doi:10.1007/JHEP02(2012)026 [arXiv:1109.3230 [hep-th]].



Bibliography 131

[114] C. de Rham, Living Rev. Rel. 17 (2014), 7 doi:10.12942/lrr-2014-7 [arXiv:1401.4173

[hep-th]].

[115] K. Hinterbichler, Rev. Mod. Phys. 84, 671 (2012) doi:10.1103/RevModPhys.84.671

[arXiv:1105.3735 [hep-th]].

[116] S. F. Hassan and R. A. Rosen, JHEP 1202, 126 (2012) doi:10.1007/JHEP02(2012)126

[arXiv:1109.3515 [hep-th]].

[117] S. R. Coleman, Nucl. Phys. B 310, 643 (1988). doi:10.1016/0550-3213(88)90097-1

[118] H. Kawai and T. Okada, Int. J. Mod. Phys. A 26, 3107 (2011)

doi:10.1142/S0217751X11053730

[119] H. Kawai and T. Okada, Prog. Theor. Phys. 127, 689 (2012) doi:10.1143/PTP.127.689

[arXiv:1110.2303 [hep-th]].

[120] K. Fujikawa, Phys. Rev. Lett. 42, 1195 (1979). doi:10.1103/PhysRevLett.42.1195

[121] W. A. Bardeen and B. Zumino, Nucl. Phys. B 244, 421 (1984)

[122] S. A. Frolov and A. A. Slavnov, Phys. Lett. B 309, 344 (1993). doi:10.1016/0370-

2693(93)90943-C

[123] S. Aoki and Y. Kikukawa, Mod. Phys. Lett. A 8, 3517 (1993)

doi:10.1142/S0217732393002257 [hep-th/9306067].

[124] K. Fujikawa, Nucl. Phys. B 428, 169 (1994) doi:10.1016/0550-3213(94)90197-X [hep-

th/9405166].

[125] R. Narayanan and H. Neuberger, Phys. Lett. B 302, 62 (1993) doi:10.1016/0370-

2693(93)90636-V [hep-lat/9212019].

[126] R. Narayanan and H. Neuberger, Nucl. Phys. B 412, 574 (1994) doi:10.1016/0550-

3213(94)90393-X [hep-lat/9307006].

[127] R. Narayanan and H. Neuberger, Phys. Rev. Lett. 71, no. 20, 3251 (1993)

doi:10.1103/PhysRevLett.71.3251 [hep-lat/9308011].

[128] S. Aoki and H. Hirose, Phys. Rev. D 49, 2604 (1994) doi:10.1103/PhysRevD.49.2604

[hep-lat/9309014].

[129] A. A. Slavnov, Phys. Lett. B 319, 231 (1993) doi:10.1016/0370-2693(93)90807-T [hep-

lat/9308016].

[130] V. Furman and Y. Shamir, Nucl. Phys. B 439, 54 (1995) doi:10.1016/0550-3213(95)00031-

M [hep-lat/9405004].



132 BIBLIOGRAPHY

[131] Y. Shamir, Nucl. Phys. B 406, 90 (1993) doi:10.1016/0550-3213(93)90162-I [hep-

lat/9303005].

[132] M. F. L. Golterman, K. Jansen, D. N. Petcher and J. C. Vink, Phys. Rev. D 49, 1606

(1994) doi:10.1103/PhysRevD.49.1606 [hep-lat/9309015].

[133] Y. Kikukawa, Phys. Rev. D 65, 074504 (2002) doi:10.1103/PhysRevD.65.074504 [hep-

lat/0105032].

[134] H. Fukaya, T. Onogi, S. Yamamoto and R. Yamamura, PTEP 2017, no. 3, 033B06 (2017)

doi:10.1093/ptep/ptx017 [arXiv:1607.06174 [hep-th]].

[135] D. M. Grabowska and D. B. Kaplan, Phys. Rev. Lett. 116, no. 21, 211602 (2016)

doi:10.1103/PhysRevLett.116.211602 [arXiv:1511.03649 [hep-lat]].

[136] D. M. Grabowska and D. B. Kaplan, Phys. Rev. D 94, no. 11, 114504 (2016)

doi:10.1103/PhysRevD.94.114504 [arXiv:1610.02151 [hep-lat]].

[137] H. Makino and O. Morikawa, PTEP 2016 (2016) no.12, 123B06

doi:10.1093/ptep/ptW183 [arXiv:1609.08376 [hep-lat]].

[138] H. Makino, O. Morikawa and H. Suzuki, PTEP 2017 (2017) no.6, 063B08

doi:10.1093/ptep/ptx085 [arXiv:1704.04862 [hep-lat]].

[139] K.-I. Okumura and H. Suzuki, PTEP 2016 (2016) no.12, 123B07

doi:10.1093/ptep/ptW167 [arXiv:1608.02217 [hep-lat]].

[140] Y. Hamada and H. Kawai, PTEP 2017, no. 6, 063B09 (2017) doi:10.1093/ptep/ptx086

[arXiv:1705.01317 [hep-lat]].
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