ON POSITIVITY OF TAYLOR COEFFICIENTS OF
CONFORMAL MAPS (Study on Applications for Fractional
Calculus Operators in Univalent Function Theory)

Author(s)
Sugawa, Toshiyuki

Citation
数理解析研究所講究録 (2004), 1363: 126-130

Issue Date
2004-04

URL
http://hdl.handle.net/2433/25312

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
ON POSITIVITY OF TAYLOR COEFFICIENTS OF CONFORMAL MAPS

TOSHIYUKI SUGAWA
HIROSHIMA UNIVERSITY

ABSTRACT. We provide an approach to the proof of positivity of the Taylor coefficients for a given conformal map of the unit disk onto a plane domain. This short note is a summary of the joint work [2] with Stanislawa Kanas.

1. INTRODUCTION

If a univalent function $f(z) = a_0 + a_1 z + a_2 z^2 + \cdots$ in the unit disk $D = \{z \in \mathbb{C}; |z| < 1\}$ has non-negative Taylor coefficients about the origin, namely, $a_k \geq 0$ for all $k \geq 0$, various sharp estimates can easily be deduced. For example, one can show the sharp inequalities

$$|f(z) - a_0 - a_1 z - \cdots - a_k z^k| \leq f(|z|) - a_0 - a_1 |z| - \cdots - a_k |z|^k$$

and

$$|f^{(k)}(z)| \leq f^{(k)}(|z|)$$

for $k = 0, 1, 2, \ldots$. Note that this sort of inequalities are, in general, not easy to establish.

As one immediately sees, a necessary condition for a univalent function f to have non-negative Taylor coefficients is that the image domain $\Omega = f(D)$ is symmetric in the real axis. Under the assumption of this symmetric property, however, it seems to be difficult to give a sufficient condition for non-negativity of the coefficients in terms of the shape of Ω. For instance, the convexity of Ω is not sufficient. In fact, for a constant $0 < c < 1$, the function

$$f(z) = \frac{z}{1 + cz} = z - cz^2 + c^2 z^3 - c^3 z^4 + \cdots$$

maps D univalently onto a disk but has a negative coefficient. (In general, when $f(z)$ has non-negative Taylor coefficients, the function $\hat{f}(z) = -f(-z)$ has a negative coefficient unless f is an odd function.)

In this note, we will explain one approach to show positivity of the Taylor coefficients of a specific conformal map of the interior of a conic section.

2. CONFORMAL MAPPINGS ONTO DOMAINS BOUNDED BY CONIC SECTIONS

For $k \in [0, \infty)$, we set

$$\Omega_k = \{u + iv \in \mathbb{C}; u^2 > k^2(u - 1)^2 + k^2 v^2, u > 0\}.$$
TOSHIYUKI SUGAWA

Note that $1 \in \Omega_k$ for all k. Ω_0 is nothing but the right half plane. When $0 < k < 1$, Ω_k is the unbounded domain enclosed by the right half of the hyperbola

$$\left(\frac{u + k^2/(1 - k^2)}{k/(1 - k^2)} \right)^2 - \frac{v^2}{1/(1 - k^2)} = 1$$

with focus at 1. Ω_1 becomes the unbounded domain enclosed by the parabola

$$v^2 = 2u - 1$$

with focus at 1. When $k > 1$, the domain Ω_k is the interior of the ellipse

$$\left(\frac{u - k^2/(k^2 - 1)}{k/(k^2 - 1)} \right)^2 + \frac{v^2}{1/(k^2 - 1)} = 1$$

with focus at 1. For every k, the domain Ω_k is convex and symmetric in the real axis. Note also that $\Omega_{k_1} \supset \Omega_{k_2}$ if $0 \leq k_1 \leq k_2$.

Kanas and Wiśniowska [3] treated the family Ω_k in their study of k-uniformly convex functions and gave the explicit formulae for the conformal homeomorphisms $p_k : \mathbb{D} \to \Omega_k$ determined by $p_k(0) = 1$ and $p_k'(0) > 0$. Here, an analytic function $f(z)$ in the unit disk with $f(0) = 0, f'(0) = 1$ is called k-uniformly convex if the function $1 + zf''(z)/f'(z)$ maps the unit disk analytically into Ω_k. A function is 1-uniformly convex precisely when it is uniformly convex (see [4]).

In order to state their result, we prepare some notation. Let $\mathcal{K}(z, t)$ and $\mathcal{K}(t)$ be the normal and complete elliptic integrals, respectively, i.e.,

$$\mathcal{K}(z, t) = \int_0^z \frac{dx}{\sqrt{(1 - x^2)(1 - t^2x^2)}}$$

and $\mathcal{K}(t) = \mathcal{K}(1, t)$. The quantity

$$\mu(t) = \frac{\pi \mathcal{K}(\sqrt{1 - t^2})}{2\mathcal{K}(t)}$$

is known as the modulus of the Groetsch ring $\mathbb{D} \setminus [0, t]$ for $0 < t < 1$. Note that $\mu(t)$ is a strictly decreasing smooth function. For details, see [1].

Proposition 1 (Kanas-Wiśniowska [3]). The conformal map $p_k : \mathbb{D} \to \Omega_k$ with $p_k(0) = 1$ and $p_k'(0) > 0$ is given by

$$p_k(z) = \begin{cases}
(1 + z)/(1 - z) & \text{if } k = 0, \\
(1 - k^2)^{-1} \cosh[C_k \log(1 + \sqrt{z})/(1 - \sqrt{z})] - k^2/(1 - k^2) & \text{if } 0 < k < 1, \\
1 + (2/\pi^2) \log(1 + \sqrt{z})/(1 - \sqrt{z})^2 & \text{if } k = 1, \\
(k^2 - 1)^{-1} \sin[C_k \mathcal{K}((z/\sqrt{t} - 1)/(1 - \sqrt{t}z), t)] + k^2/(k^2 - 1) & \text{if } 1 < k,
\end{cases}$$

where $C_k = (2/\pi) \arccos k$ for $0 < k < 1$ and $C_k = \pi/2\mathcal{K}(t)$ and $t \in (0, 1)$ is chosen so that $k = \cosh(\mu(t)/2)$ for $k > 1$.

ON POSITIVITY OF TAYLOR COEFFICIENTS OF CONFORMAL MAPS

3. Main Results

For each $k \in [0, \infty)$, we write

$$p_k(z) = 1 + A_1(k)z + A_2(k)z^2 + \cdots$$

for the conformal mapping p_k of \mathbb{D} onto Ω_k with $p_k(0) = 1$ and $p'_k(0) > 0$. Since Ω_k lies in the right half-plane, Carathéodory's theorem yields that $|A_n(k)| \leq 2$ holds for each $n \geq 1$ and $k \in [0, \infty)$. Our main result is the following.

Theorem 2. $A_n(k) > 0$ for all $n \geq 1$ and $k \in [0, +\infty)$.

Since $p_0(z) = 1 + 2z + 2z^2 + 2z^3 + \cdots$ and

$$p_1(z) = 1 + \frac{2}{\pi^2} \left(z + \frac{z^2}{3} + \frac{z^3}{5} + \cdots \right)^2,$$

the assertion of the theorem is trivial for $k = 0$ and $k = 1$. When $0 < k < 1$, the assertion is also trivial because the function \cosh has the non-negative Taylor coefficients.

In what follows, we consider the cases when $k > 1$. Due to complexity of the representation of p_k given above for $k > 1$, we try to simplify it.

We now consider the conformal mapping J of \mathbb{D} onto $\mathbb{C} \setminus [-1, 1]$ defined by $f(z) = (z + z^{-1})^{12}$. Since $J(e^{-s+it}) = \cosh s \cos t - i \sinh s \sin t$, the circle $|z| = e^{-s}$ is mapped by J onto the ellipse E_s given by

$$\left(\frac{u}{\cosh s} \right)^2 + \left(\frac{v}{\sinh s} \right)^2 = 1$$

for $s > 0$ and the radial segment $(0, e^{it})$ is mapped by J into the component H_t of the hyperbola given by

$$\left(\frac{u}{\cosh t} \right)^2 - \left(\frac{v}{\sinh t} \right)^2 = 1, \quad u \cos t > 0,$$

for $t \in \mathbb{R}$ with $(2/\pi)t \notin \mathbb{Z}$.

Let T_n be the Chebyshev polynomial of degree n, i.e., $T_n(\cos \theta) = \cos(n\theta)$. Then it is well known that the n-fold mapping $z \mapsto z^n$ is conjugate under J to T_n, in other words,

$$J(z^n) = T_n(J(z))$$

holds in $|z| < 1$. In particular, one can see that the ellipse E_s is mapped by T_n onto E_{ns} and that the hyperbola H_t is mapped by T_n onto H_{nt}.

Applying the above argument to $T_2(w) = 2w^2 - 1$, we obtain the following.

Lemma 3. The Chebyshev polynomial $T_2(w) = 2w^2 - 1$ maps the domain bounded by H_t and $H_{\pi-t}$ onto the connected component of $\mathbb{C} \setminus H_{2t}$ containing -1. Also, T_2 maps the domain bounded by the ellipse E_s onto the domain bounded by E_{2s}.

On the basis of the above lemma, we can obtain another representation of p_k.

Theorem 4. For $k > 0$, the function p_k is written by $p_k(z) = 1 + Q_k(\sqrt{z})^2$, where

$$Q_k(z) = \begin{cases} \sqrt{\frac{1}{1-k^2}} \sinh(C_k \text{arctanh}z) & \text{if } 0 < k < 1, \\ \frac{1}{2\pi} \text{arctanh}z & \text{if } k = 1, \\ \sqrt{\frac{2}{k^2-1}} \sin(C_k'(\mathcal{K}(z/\sqrt{s}, s))) & \text{if } 1 < k. \end{cases}$$

Here, $C_k = (2/\pi) \arccos k$ when $0 < k < 1$, and $s \in (0,1)$ is chosen so that $k = \cosh \mu(s)$ and $C_k' = (\pi/2)/\mathcal{K}(s)$ when $k > 1$.

Furthermore, the function Q_k is odd and maps the unit disk conformally onto the domain $D_k = \{x+iy : (k-1)x^2 + (k+1)y^2 < 1\}$.

Note that D_k is the inside of a hyperbola when $k < 1$ and D_k is the interior of an ellipse when $k > 1$. When $k = 1$, the domain D_k becomes the parallel strip $-1/\sqrt{2} < \text{Im} z < 1/\sqrt{2}$. Also note that D_k is invariant under the involution $z \mapsto -z$.

4. ROUGH IDEA OF THE PROOF

We indicate here how to deduce Theorem 2. A detailed exposition will appear in [2].

In order to prove positivity of the Taylor coefficients of p_k, it is enough to show that of Q_k thanks to Theorem 4. Though the assertion is trivial in the case when $0 < k < 1$, we first treat this case in order to highlight an idea of the present method. When $0 < k < 1$, one can check that $w = Q_k(z)$ satisfies the linear differential equation

$$ (1-z^2)^2 w'' - 2z(1-z^2)w' - C_k^2 w = 0 \tag{1} $$

in D.

Lemma 5. Let $Q(z)$ be an analytic solution of (1) in D with $Q(0) = 0$ and $Q'(0) > 0$. Then Q has Taylor expansion in the form $Q(z) = \sum_{n=0}^{\infty} B_n z^{2n+1}$ and the coefficients satisfy the inequalities

$$ (2) \quad (2n+1)B_n - (2n-1)B_{n-1} > 0 \quad \text{and} \quad B_n > 0 $$

for each $n \geq 1$.

Proof. By the linear differential equation (1), one obtains the recursive formula for coefficients

$$ (2n+2)(2n+3)B_{n+1} - \{2(2n+1)^2 + C_k^2\} B_n + 2n(2n-1)B_{n-1} = 0 $$

for $n \geq 0$, here we have set $B_{-1} = 0$. We now suppose that the assertion is true up to n. Then, by the above formula, we get

$$ (3) \quad (2n+2)\{(2n+3)B_{n+1} - (2n+1)B_n\} $$

for $n \geq 0$, where we have set $B_{-1} = 0$. We now suppose that the assertion is true up to n. Then, by the above formula, we get

$$ (3) \geq \{2(2n+1)^2 - (2n+2)(2n+1) + C_k^2\} B_n - 2n(2n-1)B_{n-1} = 0 $$

Therefore, the assertion is also true for $n+1$. By induction, the proof is done. □
ON POSITIVITY OF TAYLOR COEFFICIENTS OF CONFORMAL MAPS

In the case when $k > 1$, the function $w = Q_k(z)$ satisfies the similar differential equation

$$(1-sz^2)(1-z^2/s)w'' - 2z((s+s^{-1})/2 - z^2)w' + \frac{C_k^2}{s}w = 0$$

in D, where $s \in (0,1)$ is chosen so that $k = \cosh \mu(s)$ and $C_k' = \pi/2\mathcal{K}(s)$. Note that $Q_k(z)$ satisfies $Q_k(0) = 0$ and $Q_k'(0) > 0$.

The above two differential equations can also be unified into the form

$$(1 - 2Mz^2 + z^4)w'' - 2z(M - z^2)w' - cw = 0,$$

where $M = 1$ and $c = C_k^2$ for $0 < k < 1$ and $M = (s + s^{-1})/2 \geq 1$ and $c = -C_k^2/s = -\pi^2/4s\mathcal{K}(s)^2$ for $k > 1$. Let $w = Q(z)$ be the solution of the equation with the initial condition $Q(0) = 0$ and $Q'(0) = 1$. In the same way as above, one obtains the relations for the coefficients of $Q(z) = \sum_{n=0}^{\infty} B_n z^{2n+1}$:

$$(2n+2)(2n+3)B_{n+1} - \{2M(2n+1)^2 + c\}B_n + 2n(2n-1)B_{n-1} = 0$$

for $n \geq 0$, where we also have set $B_{-1} = 0$.

In the case when $k > 1$, however, the above argument breaks down at the inequality (3) because now $c < 0$. In fact, the coefficients B_n tend rapidly to 0 as $n \to \infty$, therefore, some renormalization techniques are required in this case. See [2] for the details.

REFERENCES

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HIROSHIMA UNIVERSITY, HIGASHI-HIROSHIMA, 839-8526 JAPAN

E-mail address: sugawa@math.sci.hiroshima-u.ac.jp