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On the spectrum of magnetic Schréodinger operator
on the hyperbolic plane

AR - BORMYTHFZERT B # — (Shin-ichi SHIRAI)
Research Institute for Mathematical Sciences,
Kyoto University

1 Introduction and Result

Let H = {z = (z,y)|z € R, y > 0} be the hyperbolic plane. The Riemannian measure on
H is given by dzdy/y? and the hyperbolic distance dg(z, z0) on H is given by cosh (d(z, %)) =
(lz — zol? + y® + ¥8)/(2yyo) for any 2 = (z,y), 20 = (0, %0) € H.

We consider the Schrédinger operator

2 2
L) H(aV) =g (\/—1_—;5%-@1@)) P (%T%_az(z)) +V(2)

acting in L2(H), where a = a1dz +aady is magnetic vector potential and V is scalar potential on
H. Note that, when @ = 0 and V = 0, the operator H(0;0) coincides with the Laplace-Beltrami
operator on H.

We recall some results concerning the spectral property of H(a;V). The essential self-
adjointness of H(a;V) obeys under rather weaker conditions on a and V; For example, it is
sufficient if a is a smooth, R2-valued function and V is real-valued, locally bounded, measurable
and bounded from below. (See, [Shu] and the references therein).

Inahama and the author [I-S] studied the essential spectrum of the Schrodinger operator
H(a;0) with magnetic field da(z) = B(z)dzx A dy/y?, where B is real-valued, smooth function
on H, and B — By tends to zero at infinity for some real constant Bg. In that case, the essential
spectrum of H(a;0) coincides with that of the operator H(ag;0). Here, the vector potential
ag = (Bo/y)dz gives the ‘constant’ magnetic field dag = Bgdz A dy/y?. (We give a precise
description of the essential spectrum of H(ayp;0) below.) Similar results hold for the Dirac and
Pauli operators on (the trivial bundle over) H ([I-S2]).

In the case where V diverges (e.g., like C exp (ed(z, v/—1))) at infinity and the magnetic field
is absent, H(0; V') has compact resolvent. Under some additional conditions on V, Inahama and
the author [I-S3] studied the large eigenvalue asymptotics for the Schrédinger operator H(0; V):

N(H(0;V) < A) = (2m)7*|{(2,€) € T*H| y*¢[* + V() < AH(1 +0(1))

as A — oo ([I-S3]). Here, N(H(0;V) < )) stands for the number of eigenvalues of H(0;V)
(counting multiplicity) less than ), and |-| is the four dimensional Lebesgue measure (the Liou-
ville measure). Similar results hold for the case of the real, complex and quaternion hyperbolic
spaces ([I-S4], Inahama, Kuwada and the author [IKS]). In the magnetic field case, we can
derive the same kind of asymptotic relations as above for H (a; V) if the growth of the magnetic
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field B is weaker than that of the scalar potential V in an appropriate sense ({I-S5]). To the
author’s knowledge, there is no result for the large eigenvalue asymptotics in the case of general
electro-magnetic fields a, V.

In this article we consider the Maass Hamiltonian H(ao; V), where ag = (By/y)dz as above,
and study the eigenvalue asymptotics near the essential spectrum when V' decays at infinity, i.e.,
for any € > 0 there exists a compact subset K of H such that [V (z,y)| < € outside K. In what
follows, for notational simplicity, we denote H(ao;V) and By by H(V') and B, respectively.

The spectral properties of the Maass Hamiltonian has been investigated by many authors
([Roe], [Els], [Fay], [Gro], [C-H], [Com], [A-P] and references therein). We recall some basic
results. The Maass Hamiltonian H(0) is essentially self-adjoint on C§°(H), the set of all complex-
valued, smooth functions with compact support on H ([Roe], Satz 3.2). (In what follows we
use the same notation for an operator and its operator closure if there is no fear of confusion.)
The spectrum of H(0) consists of the absolutely continuous part [B2+1/4, co) and the discrete
Landau levels {E,,}fz"(f"*” 2 where E, = (2n+1)|B| — n(n +1) and N(z) denotes the largest
integer less than z. In case |B| < 1/2, the set of discrete Landau levels is empty. If |B| > 1/2,
each of E,’s is an eigenvalue of infinite multiplicity. In what follows, we may restrict ourselves
to the case B > 1/2, provided we are concerned with the discrete Landau levels, since the
Maass Hamiltonian H(0) with B is unitarily equivalent to the one with —B via the transform
(z,y) = (—2,y).

Any bounded, measurable function V' decaying at infinity is relatively compact with respect
to H(0) ([I-S], Lemma 3.10), so the operator

H(V)=H(0)+V

is a well-defined self-adjoint operator when V is real-valued, and the essential spectrum of H (V')
coincides with that of H(0) ([R-S], Vol. IV). (Note that, examining the proof, one can easily
find that Lemma 3.10 in [I-S] is still valid if we drop the continuity condition of V'.) Then the
perturbed operator H(V) may have the discrete spectrum (i.e., discrete eigenvalues of finite
multiplicity) in the spectral gaps.

The purpose of this paper is to obtain the asymptotic distribution of the number of the discrete
spectrum near E,'s.

To formulate our results, we make the following condition on the perturbation V:

(V), The perturbation V is a real-valued, bounded, measurable and non-negative function on
H. Moreover, there exist zg € H and positive constants € and Cy such that the asymptotic
relation

(1.2) d(ziigl_)w exp (ed(z, %))V (z) =

holds, where d is the hyperbolic distance introduced at the beginning of this section.

Let n be any non-negative integer n satisfying 0 < n < N(B —1/2) and let € > 0. We
introduce the notations »

Bn=2B-2n—1(>0)
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and ‘
I'(Bn +€)0(Brn+n+1)
= n y =Ny =N On 1,05n 1;1711
Ol = FBT(n + DIE, 1) 2 &7 it Lo+ L)
Here, ['(2) = [;° e *t*~dt is the gamma function and

t+m (D) (V )m Y™
i )m  Tml!

bbcc - — (a)
Fa(a;b,b'5¢e,c'sz,y) = Z
l,m=0

is the Appell hypergeometric series (See [G-R], Section 9.18, [Slaj], Section 8) and (z)o = 1 and
(@)m = z(z+1)---(x+m—1) if m > 1. We note that, because of the parameter —n, the Appell
series in the expressions of ©,(¢) terminates and it turns out that ©,(¢) is positive (See Lemma
2.2 below). '

For any real numbers a, b and for any self-adjoint operator T acting in a Hilbert space, we set

N@<T<b) = dim ran(Pr((a,b))),

where Pr(I) denotes the the spectral projection for T' on an open interval I.
The main results of this paper are the following two theorems:

Theorem 1.1 Assume that |B| > 1/2. Let E' be any point between E, and E, 1, where we set
Epy1 = B%+1/4 forn= N(B —1/2). Then the condition (V). implies that

(1.3) N(E.+E<H(V)<E)= %(en(s))l/fvmu{z € H|V(z) > E}(1 + o(1))

as E \, 0, where Voly is the Riemannian volume on H.

For any zp € H, we denote by Fr,,, the characteristic function on the set {z € H|t <
d(z,2) < T}.

Theorem 1.2 Assume that |B| > 1/2 and V is bounded, measurable, non-negative on H and
decays at infinity. Let E' be any point between Ey, and En11, where we set Enyy = B2 +1/4 for
n=N(B—-1/2). Let zo € H and 0 <t < T. Then the following assertions hold:

(i) If there exists a positive constant ¢ such that 0 < V(2) < cFr,(2) holds for all z € H,
then we have

|log tanh? (T'/2)| imsup N(E, + E < H(V) < E')/|log E| < 1.
ENO

(ii) If there exists a positive constant ¢ such that cFry »,(2) < V(z) holds for all z € H. then
we have

| log tanh? (T'/2)| lim \i‘ng(En +E< H(V)<E')/|logE| > 1.

(i4i) In particular, if there ewist positive constants c,c’ such that cFr, »,(2) < V(2) < ¢ Frt.5(2)
holds for all z € H, then we have ’

| log tanh? (T'/2)| g{nﬁN(E,. +E < H(V) < E')/|log E| = 1.



24

Let SL(2, R) be the special linear group of 2 x 2 real matrices, which acts on H transitively and

isometrically as the linear fractional transform z — vz = (az + b)/(cz + d) for v = ( a Z )
c

Fixzo=.z'o+yg\/—_leHandset,\=\/y_o,a=a:o/yoand'y: 3 ;\_al
observe that v € SL(2,R) and vv/—=1 = Ma + X2/=1 = z¢ + yovV/—1 = 2. If we define
the unitary operator S acting on on L2(H) by (Sf)(2) = f(vz) = f(\%(z + a),\?y), we can
find that (S71f)(2) = f(z/A? — a,y/A?), §7'&S = N&, 51£S = A& hold and the
multiplication operator g transforms as §~1gS = (S~1g) = g(7~!:) on C§°(H), from which we
can deduce that the operator H(0) commutes with §. Then we have the unitary equivalence
S-1H(V)S = H(0) + V(y~1-) = H(V(y~!.)). Hence it is enough to prove Theorem 1.1 and
Theorem 1.2 in the case of z = v/—1.

We canonically identify any point z = (z,y) € H with z = z + +/—1y in the upper-half
complex plane. Let D be the Poincaré disk {w = re?|0 < r < 1, 0 < 6 < 27} equipped with the
standard measure 4r(1 — r2)~2drdf. The Cayley transform A is defined by Az = (z —)/(z + i)
for each z € H, and A defines an isometric diffeomorphism between H and D, so it induces the
unitary transform A, from L2(H) to L?(D) by f(2) — f(A~'w). For any w = reV~1 € D, the
distance dp(w,0) on D is given by log[(1 + r)/(1 — r)], which coincides with d(A~w, /=1) on
H. In the sequel, we shall idenfity H and D via A.

We note that, in the case of zg = +/—1, the asymptotic relation (1.2) is equivalent t6 the
condition that

)‘ One can

-1
lim (A~

—————— T —€
r 1 (1 —r2)e 40

holds on D, because of the relation 1 — r2 = cosh™2 (dp(w, 0)/2) for any w = revV—1¢ € D.

Remark 1.3 Let V satisfy (V). for some € > 0 and let Fry ,, be the function as in Theorem
1.2. Then a simple calculation shows that

éi{x}oEllevOlH {zeH|V(z) >E} = =CY,

El‘i{n,oVOlH {2 €H| Fri,(z) > E} = 4n(cosh?T — cosh?t).

Remark 1.4 Our results are concerned with the asymptotic distribution of the discrete spectrum
accumulating to each discrete Landau level E, from the right. Analogous results hold if we
consider the eigenvalues of H(—V') accumulating to E, from the left.

Unfortunately, the author have not obtained the result at the lower edge of the continuous
spectrum of H(0).

In the Euclidean case, Raikov ([Rai], [Rai2]) has obtained the asymptotic distribution of the
number of the discrete spectrum near the boundary of the essential spectrum of the Schrédinger
operators with constant magnetic fields and power-like decreasing electric potentials. In the two
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dimensional case, the leading asymptotics are independent of the level-number n, and behaves
quasi-classically, i.e., behaves like (B/2m)Volg2 {x € R%|V(z) > E} as E \, 0 (See, e.g., [R-W],
Remark 2.5). Here B is the strength of the constant magnetic field and B/(27) is the density
of states for the n-th Landau level of the Landau Hamiltonian.

Recently, several authors ([R-W], [M-R]) investigated the asymptotics for the case where the
decay of the electric potentials V is Gaussian or faster. They showed that the asymptotics are
non-classical if the decay of V is faster than Gaussian (in an appropriate sense) or support of V
is compact. The leading asymptotics are independent of n, and in the case of compact support,
it does not depend on V.

On the other hand, our results shows that the asymptotic behaviour of N(E, + E < H(V) <
E’) has the form (1.3) as E \( 0. The density of states of the Maass Hamiltonian can be found
in [Com], Eq.(5.14)-(5.16), Eq.(B.19). In particular the density of states for the n-th discrete
Landau level is given by 3,/(47), which depends on n. The quantity 3,/(4n) does not coincide
with the leading coefficient ©,,(¢)/¢/(4r) in (1.3). So this is different from the flat case.

Remark 1.5 The asymptotic coefficient (8,(€))Y/¢ in (1.3) depends on both n and . For
ezample, we calculate

Bo(e) = ﬂo——‘———ggg _—::i;,
_ T(6 +¢) ele—-1)
@ = Ay ()
L (Ba+e) ele—1) ele—-1) e?(e —1)2
) = g, ) (” eSO +2(ﬁ2+1)(ﬂz+2))’

etc. An integral representation of ©,(c), from which the positivity of ©,(€) obeys, is given in
Lemma 2.2 in Section 2. By using some hypergeometric identities (See, e.g, [A-A-R], [Sla]), we
can also express O, (€) as

F(ﬁn) :311 + 17 1

where 3F, is the (generalized) Gauss hypergeometric function (See Section 2 below). However,
the last expression is not used in this paper.

5@2"”_5)3}12( —n,1-¢,€ ;1),

The organization of this paper is as follows: In Section 2, we recall some elementary results
for the gamma function and the hypergeometric functions. In Section 3, we derive an integral
representation of ©y,(¢), from which the positivity of 8,(¢) obeys. In Section 4, following [R-W],
we reduce the problem for H(V) to the one for the associated compact operator P,V F,. Here
P, denotes the spectral projection of H(0) corresponding to E,. In Section 5 and Section 6,
we obtain the asymptotic distribution of the eigenvalues of P,V P, when V is functions as in
Theorems 1.1 and 1.2, respectively. In Section 7 and Section 8, we give proofs for Theorem 1.1
and Theorem 1.2, respectively.
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2 Preliminaries

For later use, we prepare some elementary formulae for special functions. However, all results
in this section are well-known in special function theory (See, e.g., [A-A-R], [Sla], [Leb] and
[G-R]). We also show the positivity of the coefficient ©,(¢).

The hypergeometric function ,Fj is given by

Ty T2 ... Tp _\ _ had (z1)m(z2)m - - - (= )"'.ZZ
2D qu(m Bl "’)‘,;:o(yl)mM)m...(yf)m il

Lemma 2.1 Let I'(2) be the gamma function and let (a)m as in Section 1. Then we have the
following assertions:

(i) For any real numbers o, B, we have limg_,00 k°~°T'(k + a)/T'(k + 8) = 1.

(#) If z is not a non-positive integer, we have ()m = I'(z+m)/T'(z) and (—x)m = (—1)™I'(z+
1)/T(z —m + 1). For any non-negative integer n, we have

() = { (-1)"T(n+1)/T(n —m+1) f0<m<n,

0 fm>n+1.

(iii) Let Ry > RB > 0 and |arg(l — z)| < 7. Then we have

2Fy ( ";Yﬂ ;z) =(1-2)"%R ( "’"’7"ﬁ z—f—l)

Here, R and arg stand for the real part and the argument of a éomplem number, respectively.

Proof. The assertion (i) follows from the Stirling asymptotic formula (e.g., [Leb], Section 1.2,
Eq. 1.2.2 and Section 1.4, Eq. 1.4.23). The assertion (ii) is obvious by definition. and the
assertion (iii) is well-known (See, e.g., [Leb], Section 9.5, Eq.9.5.1). 1

In the rest of this section we show the positivity of the asymptotic coefficient O,(c) as we
stated in Section 1.
The Laguerre polynomial is given by

(2.2) @) = oo (%)"(e%mnﬂ)
= m| n+ta ™
- gor(in)s

n+o -n

(See [G-R], Section 8.97).
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Lemma 2.2 Let n be a non-negative integer and let € > 0. Then we have
I(Bn+e)l'(Bn+n+1)

2. n = n y =N, =N, On 1) n y 4y

(2.3) On(€) I‘(ﬂn)l‘(n+1)F(ﬂn+1)F2(ﬂ +é&-n,—n; B+ 1,6, + 1;1,1)

Bul'(n+1) [ 5 te1 —t180/p2
Pn2inT D) . LB~ (t)%dt.
TG tnt Dy ° e Ly (8)dt

In particular, the integral ensures the positivity of O, ().

Proof. We show the equality (2.3) in the same way as in the proof of Lemma 1 in [S-H]. We
note that the Appell series in (2.3) converges because of the parameter —n. It follows from (2.2)
that

' /0 > tPntele=t [Pn (£)24s
- n+ fn ’ % Bnte—1 -t -n o, ’
= ( )/Ot elFl(ﬁn ,t) dt
( n+ B )
!
_ ( n+ On )
!

"+ﬂn (=n)t(=1)m(Bn + €)im
) Ffnt+2) z (ﬂvlz + 1)1(Bn + 1),:,+ 'm!

(Eri(—n)m $Bntetltm—1 —t
o B+ Di(Br + Vm Uim! / dt

(‘n)l( N)m 1

o T DB+ Dy Tt Pt EF ™)

%M=?P’J=’

l,m=0
n + Dn
= ( nﬁ ) F(ﬂn+E)F2(ﬂn+5$_n1_n;ﬂn+1aﬂn+1;1’1);

where we used Lemma 2.1 in the fourth equality. Then the result follows since I'(B, + 1) =
ﬂnr(ﬂn) and

2
n+ b _ F(ﬂn+5)r(ﬂn+n+1)2
( n ) PBa+e) = I'(n+1)2T(B, +1)2

3 Reduction to a single Landau-level eigenspace

In this section, following the argument as in [R-W], Section 3, we reduce the eigenvalue
asymptotics for H(V) near E, to that for the compact operator P,V P, near 0. Here P,
denotes the spectral projection of H(0) corresponding to E,.



28

For any real numbers a, b and for any selfadjoint operator T', we denote

N(a<T) = dim ran(Pr((a,00))),
N(T <b) = dim ran(Pp((—o0,b))).

Here Pr is the spectral projection for T'.
The following result can be found in Chapter 11 in [B-S]:

Lemma 3.1 Let Ty and T, be compact operators acting on a Hilbert space. Then for any s >0
‘and for any § > 0 with 0 < § < 1, we have

3.1) . N(&Ty > s(1+8)) - N(FTz > 86)
< NE&E(T,+Ts) > )
< NET: > s(1 - 8)) + N(&T; > s6),

respectively.

Lemma 3.2 Let T be a self-adjoint operator acting in a Hilbert space and assume that the
resolvent set of T contains an interval [, B]. Assume that V is non-negative, bounded and
relatively compact with respect to T. Then we have

Na<T+V<p) = NVYa-T)"'V¥/2>1)
~-N(VY3(B - T)~VvY2 > 1) — dim ker(T + V - B).

Proof. This is an easy consequence of the (generalized) Birman-Schwinger principle (e.g.,
[A-D-H|, Theorem 1.3, [Bir], Proposition 1.5), however we give a proof for the sake of com-
pleteness.

Let E € [a, 8). The Birman-Schwinger kernel is given by X(E) = VV/2(E — T)"'V"/2. Then
the B-S principle says that an eigenvalue E of T + AV (A > 0) of multiplicity m corresponds to
an eigenvalue 1/ of X (F) of multiplicity m. Thus we have

(3.2) > dimker(T+AV-E) = 3 dimker(X(E)~-1/})
0<A<1 0<A<1
= N(X(E)>1).

On the other hand, we can deduce that each eigenvalue of X(E) is monotonically decreasing
in E, since the non-negativity of V implies that

9 1/2 —1y71/2 1/2 —2v71/2
174 74 V74 <0.
3E VY4(E-T) (E-T) 0
Then it follows from the B-S principle and the analytic perturbation the(‘)vry (eg, [R-S], vol. IV)

that each eigenvalue of T'+ AV is monotonically increasing in A (See [A-D-H], Theorem 1.5, and
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see also the argument after Proposition 1.5 in [Bir]). Then we have

33) N@<T+V<p) = Y dimker(T+AV-a)
<A<l
— 3" dim ker(T + AV — B) — dim ker(T + V - ).
0<A<«1

Then the result follows from (3.3) and (3.2) with £ = o, 3. |

Lemma 3.3 The operator P,V P, is compact and, for any 6 > 0 small enough, we have, as
E\0,

N((1-8)P,VP, > E)+O0(1) < N(En. + E< H(V) < E')
< N((1+6)P,VP, > E) + O(1).

Proof. The proof is similar to the one of Proposition 4.2 in [R-W], however, we give a proof for
the sake of completeness.

The compactness of P,V P, follows easily from the fact that V(H(0) — z)~! is compact ([I-S],
Lemma 3.10). By Lemma 3.2, we have

(3.4) N(E,+E<H(V)<E)
N(VY*(E, + E — H(0))"'VY? > 1) - N(VY*(E' - H(0))"'VY/2 > 1)
—dim ker(H(V) — E')
N(VVYE, +E - H(0)"'VY2> 1)+ 0(1)

as E\, 0. Let Q, = I — P,,. We apply Lemma 3.1 with T} = VY/2(E, + E — H(0))"'P,V'/2,
Ty = VV2(E, + E — H(0))"'Q.V'/? and s = 1. Then (3.1) with upper sign yields

(3.5) N(VY%(E, + E — H(0))"'P, VY2 > 1 +4)
—N(VY3E, + E— H(0))'Q,VV/? < -4)

N(VY¥E, + E- H(0))"'VY/2 > 1)

N(VY*(E, + E - H0)) 'R, VY% > 1-4)
+N(VY*(E, + E — H(0))'Qn VY2 > §).

IA A

Since H(0) > 1/2 and the distance between the point E, and the rest of the spectrum of H(0)
is positive, we have, for small E > 0,

inf{|(En + E) — z|/z | = € o(H(0))\ {En}} = Cn >0
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for some constant C,, where o(-) stands for the spectrum. Hence, we have

o o}
|En+E~H©O)|Qn = Y |E.+E-E;|"'P;+ / |En + E = A" dPp()(})
ign B241/4

< C, (ZE;:LPJ"F/

jon B241/4
< C.H(0)™.

oo

A—ldPH(o)()\))

Then, for each § > 0 small enough, we have, as E \, 0,

(3.6) | N(£VY2(E, + E - H(0))"2Q.VY? > §)
N(VV2|E, + E - H(0)|"'Q.VY? > 8)
N(VY2C,H(0)"Vv1/2 > §)

o(1).

IA A

The result follows from (3.4)—(3.6). 1

We now introduce the angular-momentum eigenfunctions (i.e., eigenfunctions of the form
e*9Gy(r)) for H(V) and show that the eigenvalues of P,V P, can be described in terms of these
eigenfunctions.

Let A be the Cayley transform. We define a unitary operator Ug from L?(H) to L*(D) by
_\B
(Usf)(w) = (}—:%) f(A™1w) for any f € L?(H), where 18 = 1. Then we have
1 2 10 1 6 i)
-1_ _Y  2pfO 10 107 Y9 i 2vp2 2

UsH(0)Ug" = 4(1 %) (6’!‘2 + - +r2392) +i(l—r )69 (1-r)B*+ B
([Els], Satz 2.1 and see also [Fay], Theorem 1.1). Moreover, a complete set of orthogonal angular-
momentum eigenfunctions {pnk}gS_,, corresponding to the eigenvalue E, is known (See Satz
3.2 in [Els], Theorem 1.4 in [Fay], Eq.13 in [Gro2] and see also Eq.4.47 in [K-L]). Especially, the
eigenfunctin is given by

in the case of k > 0, where

_ Bul(k+Brn+n+1)(k+n+1)
T 4T+ DT(k+ 1)2T(Bn +n+ 1)

(3.8) C,

Note that, because of the parameter —n, the hypergeometric function above is a polynomial
with respect to r2, in fact, we can find that

+k —nk+ B +n+1
P(kaﬂn)l_ 2 — n F s n . 2
n ( 'I') n 2471 k+1 T ’
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where the Jacobi polynomial P,(La’ﬁ ) is given by

Péa,ﬁ)( ) = (2n1)' (1-—z)"%(1+ x)—ﬁ (%)" ((1 —z)>t"(1 +a:)ﬂ+")

and we set :; r‘(n—rﬂg,-‘;)-rl‘)(m +1y ([Leb], Section 4, p.96, and for the relation between the

Jacobi polynomials and the hypergeometric function, see also [G-R], Section 8.96, p.1059).
In what follows we identify the operator Ug H (O)UEI, the associated spectral projections and
the function A,V = V(A~!.) with H(0), P, and V, respectively.

Lemma 3.4 Let V be any bounded, measurable and spherically symmetric function on D. The
set of eigenvalues of the compact operator P,V P, (acting on the range of P,) is given by
{(Prks Veork)} s where oui is the eigenfunction of H(0) as in (3.7) and (-, -) denotes the
inner product on L?(D).

Proof. Because of the orthogonality with respect to the angular momentum and the symmetry
of V, we have (¢nk, Vo) = 0 if k # k'. Then it follows that P,V Pno@nk = (Onk, VPnk)Pnk-
The result follows from the completeness of {¢nk}$2 _, in the range of P,. |

4 Eigenvalue asymptotics for P,V_P,
In what follows we set V. (w) = (1 — |w|?)¢ for any ¢ > 0, and we set
(4.1) Yk(V) = (@nk, Vionk)

for any function V on D and for k > —n. In the sequel, we investigate the asymptotic behaviour
of the eigenvalues nx(V;) as k — 00, so we may assume that k > 0 and @pj is of the form (3.7).

Lemma 4.1

kE+1

- ,,;;-w(’:)(z)x

[(Bn +n + 1)°T'(k + 1)2
*TBn+n—1+)l(Bn+n— m+1)I‘(k+1+l)I‘(k+1+m)
X ( - 2)2n—l—m 2(l+m)

2
2F1( -n k+,3n+n+1;r2>
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Proof. By Lemma 2.1 (ii) with 8=k + B, +n+1,7y=k+1,7y— 8= ~(Bn+n) and z = r?,

we have
-n B a2\ _q_ 2 —n  —(Ba+mn) 1
2F1( y ,7‘)—(1 r)2F1(k+1 w1 )

Then the result follows from the series expression (2.1) and Lemma 2.1 (i). 1

Lemma 4.2 Let V = V(r) be bounded, continuous and spherically symmetric. Then we have

o - e £m(2) 1)

m,l=0
D(Bn +n+1)*T(k+1)2
“T(Batn-— m+l)I‘(ﬂn+n-l+1)1"(k+1+m)I‘(k+1+l)

X/ tk+m+l(1—t)ﬂ”+2"—m—l_1V(\/£)dt.
0

In particular, with V = V., we have

(42) (Vi) = 4nCax Y (-1)™" ( :1, ) ( 7 )

m,l=0
[(Bn +n+1)*T(k + 1)2
I‘(,B,.+n m+ 1B +n—-1+1)Ik+1+m)I'(k+1+1)
><I‘(k+m+l-§-1)I‘(ﬁ,.+2'n. m-—1+e¢)
I'(Bn+k+2n+e+1)

Proof. By (3.7) and Lerhma 4.1, we have

7nk(V)

27 1 rdr
4 / @0 [ TV () O (1 — )25 x
0 o (1—r2)?

2
szl( —n k+,3n+’n+1;r2)

]

k+1
— - _yymH | T n F(:Bn+n+1)2
= chf‘kmzl.;g( 1) (m) ( ) T(Batn-m+ DIBatn—1+1) "
p) 1
T(k+1) pAktmAD+L(] _ p2yBatdnoml-ly (r)gy,

*Tk+1+mIk+1+0) J

where we used 3, = 2B —2n—1 in the last equality. Then the first assertion follows by changing
the variable t = r? in the last integral.
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The second assertion follows from

1 1
/ tlr,+m+l(1 _ t)ﬂu+2n—m-l~lvs(ﬁ)dt = / tk+m+l(1 - t)ﬂn+2n—m—l—1+cdt
0 0

= Blk+m+1+1,0,+2n—m—1l+e¢)
_ Tlk+m+1+1)(Bat+2n—m—-1l+e¢)
- D(k+Bn+2n+e+1) ’

where B(p,q) = fol tP~1(1 — t)9714t is the beta function. |

Lemma 4.3 For any € > 0, we have

P(ﬂn + E) ‘P(ﬁn +n+ 1)
I'(Ba) T(n+1)I(6n+1)

Jim k*yax(Ve) = Fy(Bn + € —n,—n;0n + 1,0, + 1;1,1).

Proof. By (4.2) and (3.8), we have

= m hT(Bn +n+1
(4.3) welVe) = 3 (1) “(:1)(7)6 ;ﬁ(n;;) )

m,i=0

[(Bn+2n—m—1+e)
L'(Bn+n— m+1)1"(ﬁ,,+'n.—l+1)
Tk+Bp+n+1)Ik+n+DI(k+m+1+1)
Tk+m+1D)Ik+1+1)(k+0n+2n+e+1)

Using Lemma 2.1 (iii}, we have

T(k+Pn+n+1)l(k+n+)I(k+m+1+1)
Tk+m+1T(k+i+1)T(k+fn+2n+e+1)

since (Bp+n+1)+m+1)+m+Ii+1)—(m+1)—(+1)—(Bn+2n+e+1)=—¢. Thenit
follows from (4.3) and (4.4) that

(4.5) lim ki (V)

_ ﬂnr(ﬁn+n+1) Z( lH_m n F(ﬂn+2n—l-m+e)
- I'(n+1) it m | T(Ba+n—1+1(Bn+n—m+1)
_ Bal(Batn+l) Z( 1)+ n LBntitj+e)

T(n+1) 45 j ) TBa+i+1)T(Bn+ij+1)
_ Bal(Bntn+1) T'(Bn+¢) Z( 1)iT'(n+1) (=1)T(n+1)
- T(n+1) T(Ba+1)2 4= T(n—i+1) T(n-j+1)

(B +it+ij+e) F(ﬂn+1) F(Ba+1) 1

T'(Bn+¢) F(ﬁn+i+1)I‘(ﬂ,.+j+1)i‘j‘

_ Bnl(Bn+n+1) I'(Bn +¢) Z (=n)i(=n);(Bn + €)i+s 1
B F(n + 1) P(ﬁn + 1)2 ﬁn + 1)t(ﬂn + 1)] 74']'

ﬂnr(ﬁn +n+ 1) F(ﬁn +€)
- T(n+1) T(Bn+1)?

X

: €
(4.4) klirgo k

F2(6ﬂ- + & —n,—n; ﬁn + 1a ,Bn + 11 1’ 1)’
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where we set ¢ = n — [, § = n — m in the second equality and used Lemma 2.1 in the fourth
equality. This proves the lemma. |

5 Eigenvalue asymptotics for the potential supported in an an-
nulus

In this section we investigate the asymptotic behaviour of the eigenvalues v, (Wrg) as k — oo.
Here, W;r stands for the characteristic function on the set {w = |w|e® € D|r < jw| < R}.

Lemma 5.1 Let 3 be a real number and let r, R satisfy the relation 0 < r < R < 1. If we define
B.r(K,B) = [RtK-1(1 - t)P~1dt, the estimate

RK ,  RX
Cr,R,ﬁT < BrR(K, ﬂ) < Cr,R,ﬂ—I'(_

holds for any K > 0 large enough. Here the constants C, r g, C;, R, are independent of large K.

Proof. If B > 1, we have

g1 RE —r¥ s-1 B,k
(1-RPF 2 =(1-R) £K-1g¢
BTR(Ks ﬂ)

R
< (1-r)p-! / K14t = (1 = 1)
T

IA

IRK—‘I‘K
K )

since (1 — R)#~1 < (1 —1)#~! < (1 —r)?? holds if r < t < R. Similarly if 3 < 1, we have

K _ K K _ K
- BT < Bk, p) < 1 - RPEZT

Thus we have

min {(1 - RY*1, (1 - Nf-1}(1 - (r/ R)F)
B.r(K, )

< max{(1 - BP, (1 - P11 - (/RS L,

IA

from which the lemma follows since 1/2 <1- (r/R)X < 1 holds for large K. |

Lemma 5.2 Let 0 < r < R < 1 and let W,g be the characteristic function for the set {w =
|w|e? € D|r < |w| < R}. Then we have

. log yk(WrR)
kg R -
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Proof. By Lemma 4.2 with V = W, we have

(5.1) ’)’nk(WrR) — Z le(k)/ tk+m+l l_t)ﬁn+2n -m—l- IW,-R(\/_)dt

I,m=0

= Z Cou(k)Br2g2(k + m+1+ 1,8, +2n—m —1),

l,m=0

where we set

le(k)
_ m n n T(Bn +n+1)2 I(k+1)2
= AmOm™ ( m) ( ! )

IF'Bo+n—m+1)T(Bp+n—-1+1)
1
*Th+1+mIk+1+])

(—1)'"+‘ﬂn( " ) ( " )P(ﬂn+n+ 1)
m l T(k+Bn+n+1)T(k+n+1)
Fn+DIBn+n-—m+ DB, +n—-1+1) Dk+1+mD(k+1+1) °

In the rest of the proof, we denote by S~ the summation over I, m satisfying0 <1< n,0<m <n
and ! +m > 1. It follows from (5.1) that

(5.2) log Ynk(Wrr)
= log [COO (k)Br3R2 (k + 1, Bn + 2n) X
Cni(k)Buagi(k+m+1+1,0,+2n—m—1)
x(1+ Z Coo(k)B,2p2(k + 1, Bn + 2n) )
= logCoo(k) + log B2ga(k + 1, Pn + 2n) +

, Cru(k)Br2ge(k+m+1+ 1,8, +2n—m —1)
+log(14+3 ] Coo(F)Byaga (k + 1, n + 21) )

By Lemma 2.1 (iii), there exists C,, > 0, independent of k, such that

(Bn+2n) P Bnt2n—m—1
(5.3) llm k= Coo(k) = T+ DTGt s D)’ |Crmi (k)| < Cnk

hold for large k. By Lemma 5.1 and (5.3), we have, for large k > 0,

(5.4) lz Cri(k)Baga(k +m+1+1,8, +2n —m —1)
) Coo(k)B,.sz (k +1,8., + 2n)
kBnt+2n—m—l p2k+m+i+l) 4]
)
Crsn D o Frm T 151 BT

Crrp, k™!
" -1
Cr.rp.k

IA

IA

IA
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for some positive constants Cr,r,.: Cr.p g, Crr g, independent of k, where we used the fact
that the sum is finite (I,m < n) in the last inequality. Then it follows from (5.2) and (5.4) that

the rhs of (5.2) = 2klog R + O(log k)
as k — oo, since (5.3) and Lemma 5.1 imply that

log Coo(k) = O(logk),
log Byaga(k +n,08, +2n) = 2klog R+ O(logk)

as k — 0o, respectively. This proves the lemma. |

6 Proof of Theorem 1.1

Let V,(w) = (1 — |w]?)® as in Section 4 and let W, be the function as in the previous
section. To the end of the paper, we identify any objects (e.g., function, point) on H with the
corresponding ones on D, via the Cayley transform A, stated just after Theorem 1.2 and in
Section 3.

As we remarked just after Thoerem 1.2, it is enough to show in the case of z = V-1, and
the condition (V). implies that, for any § > 0 small enough, there exists R > 0 such that

(1= 8)CyVe(w) < V(w) < (14 8)CyVe(w)

holds for any w € D with |w| > R. Here we set C{, = 4°Cy. Thus there exists M > 0 such
that

(6.1) (1 = 8)CyVe(w) — MWor(w) < V(w) < (14 08)CyVe(w) + MWor(w)

holds for all w € D.
By Lemma 3.3, we have

(6.2) N(E,+E < HV) < E)
> N((1-8)P.VP, > E)+0(1)
> N((1-8)Pa((1 - 8§)CyV. — MWor)P, > E) + O(1),

as E \, 0, where we used the lower half of (6.1) in the second inequality. Similarly, we have
(6.3) N(En + E < H(V) < E') < N((1 + 8)Pa((1 + 8)Cy Ve + MWor)Pn > E) + O(1)
as E \, 0. Because of the spherical symmetry of V, and Wyg, using Lemma 3.4, we have

(6.4) N((1F 8)Pa((1 F 8)Cy Ve F MWor) P > E)
= B{k|(1F 8)[((1 F 86)CvYur(Ve) F Mymr(Wor))l > E},
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where Yxn(-) is as in (4.1) and § denotes the cardinality of the set. By Lemmas 4.3 and 5.2 for
any 4 > 0, there exists ks > 0 such that

6.5)  (1-8)[((1 - 8)Cymi(Ve) — Mynk(Wor))] (1 = 26)(1 = 8)CyYnk(Ve)

2>
> (1-36)(1~6)CyOn(e)k™*
for all k > ks, if we take § small enough. Similarly, we have, for any ¢ > 0,

1+ ) + )y vak(Ve) + Myne(Wor))] < (1+28)(1 + 8)Cyvr(Ve)
(6.6) < (1+28)(1+6)CyOn(e)ke.

Then it follows from (6.2)—(6.6) that
(1 - 26)(1 — 8)CyBn(e)/E)/* +0(1) < N(En+E < H(V) < E')
< ((1+38)(1+8)Cy8a(e)/E)Y* +0(1)

as £\, 0. The arbitrariness of § completes the proof.

7 Proof of Theorem 1.2

As we remarked just after Theorem 1.2, it is enough to show in the case of zp = /—1.

Lemma 7.1 Let W,g be as in Lemma 5.2 and let C > 0. Then we have, as E \ 0,

n_ | log E
N(E,+E<H(CW,g) < E') = 3Tog B (1+ o(1)).
Proof. By Lemma 3.3, we have, for any § > 0 small enough,
(7.1) N((1-é8)P,W.gP, > E/C)+0O(1) £ N(E,+E< H(CW,g) < E')

< N((1+8)P.WrrPn > E/C).
By Lemma 3.4 with V = W,.g, we have
(72)  N((1£8)PWrrPo > E/C) = H{k| mc(Wrr) > E/C(1£4)}
= §{k| logYnx(Wrr) > log [E/C(1 + 6)]}.
By Lemma 5.2, we have, for large k > 0,
(1 + ) log R** < logynk(Wrr) < (1 — 8)log R%,
from which we have

(7.3) #{k| (1 + 8)log R* > log[E/C(1 £ 6)]}
< the rhs of (7.2)
< t{k| (1 —&)log R* > log [E/C(1 £ 8)]}.



38

On the other hand, we have

(7.4) t{k| (1% 6)log R?* > log[E/C(1F 0)]}

|log [E/C(1 ¥ d)]|
= Mkl k< Ses R
1

log B
15 + O(1)

log R?

as E \, 0. The result follows from (7.1)—(7.4) since § > 0 is arbitrary. 1

We note that
{weDlr<|w <R} = {weD|log(l+7)/(1-r)<d(0,w)<log(l+R)/(1-R)}

and Wy = Fp, 7 with t = log(1+)/(1 —r), T = log(1 + R)/(1 — R) (equivalently, with
r = tanh (t/2), R = tanh (T'/2)). ‘

Assume that V satisfies 0 < V < ¢Frg /=1, equivalently, 0 < V < cW tanh (1/2)- Then it
follows from Lemma 7.1 and the standard min-max argument for P,V P, and P,(cW,g)P, that

limsup N(E, + E < H(V) < E')/|log E| < 1/|log R?| = 1/|log (tanh? (T'/2)).
ENO

Then the assertion (i) in Theorem 1.2 follows. The assertions (ii) and (iii) in Theorem 1.2 follow
similarly in the case of zg = /—1. This completes the proof.
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