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We review some recent results about “leaky graph” models, in partic-
ular, those describing asymptotic behavior of the discrete spectrum in
the strong-coupling regime.

This talk, presented at the Kyoto conference on October 27, 2003, is a survey
of recent results obtained in collaboration with Sylwia Kondej and Kazushi
Yoshitomi, and to lesser extent Francois Bentosela, Pierre Duclos, and Milo§
Tater. Its topic is a model often dubbed “leaky quantum graph” which at-
tracted attention in recent 2-3 years. The following items will be covered:

Why tunneling is important in quantum graphs?

Schrédinger operators to be considered, Hyr = —A — ad(z —T)
Geometrically induced discrete spectrum

Punctured manifolds: a perturbation theory

Strong-coupling asymptotics for a compact T’

Proof technique: bracketing plus coordinate transformation
Extension: infinite manifolds

Extensions: periodic case, magnetic field, absolute continuity
Some open questions
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1 Motivation: why leaky graphs?

Graph models are very useful in many fields. In quantum mechanics they
are used to describe in the last decade or two to describe numerous nanos-
tructures made of semiconductor materials. Most commonly used quantum
graph models employ Schrodinger operators supported by the graph itself,
i.e. the Hamiltonian acts as 'ai:f; + v(z;) on graph edges, with the wave-
functions coupled by appropriate Jbounda,ry conditions at the vertices — for a
bibliography see [KS99, Ku02, Ku04].

In the same spirit one can treat also generalized graphs in which some
“edges” may be manifolds of a higher dimension. Such systems are not just a
mathematical whiff, they can be used to describe physical effects like scanning
microscopy, structures composed of nanotubes and fullerene molecules, etc.
The Hamiltonian acts in this case as —App + v(z) on the manifolds and the
boundary condition involve generalized boundary values - see [Ki97, ETVO01,
BGO3| and references therein.

Spectral and scattering problems in systems with such “decomposable”
configuration spaces are solved using standard ODE and/or PDE techniques
together with matching the solutions using boundary conditions. While being
extremely useful, these models have drawbacks, in the first place:

(a) Presence of ad hoc parameters in the boundary conditions. A possible
remedy would be to use a zero-width limit in a more realistic descrip-

tion, schematically :
= - <<

Unfortunately, the answer is known for Neumann boundary [KuZ01,
RSch01, Sa01] and for more general situations which involves manifolds
without a boundary [EP03], however, the physically most important
Dirichlet case remains open (and difficult).

(b) Neglection of tunnel effect: a true quantum-wire boundary is a finite
potential jump so the Dirichlet boundary conditions is only an approx-
imation, even if a good one in many situations. In general, quantum
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tunneling between different parts of a graph is possible and there are
situations when it cannot be neglected.

2 Leaky graph» Hamiltonians

This motivates us to look for a model without the said drawbacks. We shall
thus consider “leaky” graphs the configuration space of which will be the
whole Euclidean space; the geometry will be contained in the attractive graph-
shaped interaction. In other words, the Hamiltonian is formally given by

Hyr=-A-ad(z-T), a>0,

where T is a smooth manifold in R”, or a (locally finite) union of such man-
ifolds. We have in mind three types. In the most part of this talk, we will
have is mind I's consisting of a simple manifold; they will be thus trivial as
graphs but they will have a nontrivial geometry. In particular, we have in
mind three situations: curves in R2, surfaces in R3, and finally, curves in R3.
In the first two cases we have codim I’ = 1 and the operator can be defined
by means of quadratic form,

¥ [V ags) — @ /P (z)[2de,

which is closed and below bounded in W21(R?); the second term makes sense
in view of Sobolev embedding. Since I is regular here, we can also use an
alternative definition by boundary conditions: H,r acts —A on functions
from W2!(R?\ T'), which are continuous and exhibit a normal-derivative

loc
jump,
o oY
on z) + B 57;@)

The situation changes if codimI' = 2. Boundary conditions can be again used
but they are more complicated. Moreover, for an infinite I' corresponding
to v : R — R3 we have to assume in addition to that there is a tubular
neighborhood of I' which does not intersect itself. Then one employs Frenet’s
frame (t(s),b(s),n(s)) for I'. Given §,n € R we denote 7 = (€2+n*)'/? and
define the set the “shifted” curves

T, = T¥ = {71:(s) = %7(s) = (s) + €b(s) + nm(s) }.

= —ay(z).




By Sobolev argument the restriction of f € W22(R3\T') to I, is well defined
for r small enough. We say that f € W22(R3 \ I') N L?(R®) belongs to T if
the limits

=()(s) = ~lim—fIr,(5),

Af)(s) = lim [£Ir,(s) +E(F)(s)Inr] |

exist a.e. in R, are independent of the direction %(5 ,7), and define functions
from L?(R). Then it is straighforward to chech [EK02] that the operator H,
has the domain

{g€T: 2maZ(g)(s) = Qg)(s) }
and acts as follows,

—H,rf=—-Af for ze€R¥\T.

Remarks 2.1 (i) If I has components of codimension one and two, one com-
bines the above boundary conditions.

(ii) The boundary conditions are natural way to describe point interaction in
the normal plane to I'. Thus there is no way (within standard QM) to define
H,r in the case codimI’ > 4

(iii) Strong coupling considered below is closely related to semiclassical be-
haviour of the operator
H,r(h) = —-h*A —-ad(z-T), a>0,

which can be regarded as h2Hy),r, where the effective coupling constant is
a(h) := ah™? for codimT" = 1, and

alh) =a+ Elglnh if codimT =2

Recall simple facts about the spectrum [BT92, BEKS94, EI01, EK02, Ex04}:

(6) Oess(Har) = [0,00) if T' is compact

(b) Oess(Har) = [—30% o0) if codimT = 1 and T" has finite number of semi-
infinite edges, which are straight and non-parallel, or at least asymp-
totically straight in a suitable sense

(c) for higher codimensions —3o? is replaced by the appropriate point-
interaction eigenvalue, e.g., by €, = —4 e*(~272+¥(1)) when codimT" = 2
(recall that strong coupling here means a2 — —00)
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3 Geometrically induced discrete spectrum

Nontrivial geometry, bending etc., may give rise to isolated eigenvalues of
Hy r. For simplicity, consider a planar curve I' : R — R? parameterized by
its arc length, and assume:

(i) T is piecewise C'-smooth
(i) |[T(s) — ['(s")| = ¢|s — §'| holds for some ¢ € (0, 1)
(ii3) T is asymptotically straight: there are d > 0, 4 > 3 and w € (0, 1) such

that P(s) = ()

1
|s = &

<d [1+ |S+SI!2‘;]-’1/2
in the sector S, := {(3,8): w< & < w™! }.

(iv) straight line is excluded, |T'(s) — I'(s’)| < |s — &'| for some 3,5’ € R

Theorem 3.1 [EI01]: Under the stated assumptions, the operator H,r has
at least one (isolated) eigenvalue in (—oo, ~1a?).

Before sketching the proof, let us mention several possible extensions:

(a) A similar result holds for a curve in R3 under stronger regularity re-
quirements: global C'-smoothness and piecewise C? — cf. [EK02]

(b) for a C? smooth curve the asymptotic straightness condition holds if its
curvature decays fast enough, |k(s)| < C(s)~%/%~¢ — which is probably
not optimal, one conjectures that < C'(s)~'~¢ would be natural

(c) For a curved surface I' C R3 such a result is proved in the strong coupling
asymptotic regime, @ — oo, see below and [EK03a]. Existence of a
discrete spectrum without this assumption is an open problem

(d) these results can be used to prove bound-state existence for more com-
plicated (generalized) graphs. Suppose that ' > T holds in the set
sense, then we have

Ha’f‘ < Ha,l" .

If the essential spectrum threshold is the same for both graphs and
T fits the above assumptions, we infer that oaisc(Har) # @ holds by
minimax principle

(e) similar results hold for non-straight equidistant arrays of point interac-
tions and more complicated graph-shaped sets — cf. [Ex01] and [ENO03]
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Let us describe briefly the main steps in the demonstration of Theorem 3.1:
1. The classical Birman-Schwinger principle based on the identity

(Ho—V —2)7" = (Ho— 2)™" + (Ho = 2V
x {I = [V|"2(Ho — 2)"'V2} 7 |V |Y3(Ho — 2)7*

can be extended to generalized Schrédinger operators H,r — see [BEKS94]
— the multiplication by (Hp — 2z)~'V'/2 etc. is replaced by suitable trace
maps. In this way we find that —x? is an eigenvalue of Hyr iff the integral
operator R - on L%*(R) with the kernel (s,s') — =Ko (5|T'(s)—T(s")]) has
an eigenvalue equal to one.

2. We treat R} as a perturbation of R ., referring to a straight line. The
spectrum of the latter is found easily: it is purely ac and equal to [0, o/2k)
3. The curvature-induced perturbation is sign-definite, specifically we have
(Rer—REr,) (s,¢) > 0, and the inequality is sharp somewhere unless T’
is a straight line. Using a variational argument with a suitable trial function
we check that supo(Rir) > 5=

4. Due to the asymptotic straightness of I the perturbation R} — R, is
Hilbert-Schmidt, hence the spectrum of Rf - in (a/2k, 00) is discrete

5. To conclude we use continuity and the fact that lim, .o ||R5 || = 0. The
whole argument can be pictorially expressed as follows:

o (RZ,I‘)

(T

a/2 K

Hl
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4 Perturbation theory for punctured manifolds

A natural question is what happens with o4isc(Ho,r) if I' has a small “hole”.
We will give the answer for a compact, (n—1)-dimensional, C*+("/4-smooth
manifold. Consider a family {S; }o<e<y Of subsets of I" such that

(i) each S, is measurable w.r.t. (n—1)-dimensional
Lebesgue measure on I',

(i) they shrink to origin, sup,¢g, || = O(¢) as € — 0,

(iii) 0gisc(Ha,r) # 0, nontrivial for n > 3.

Call H, := Hyr\s.. For small enough ¢ these operators have the same fi-
nite number of eigenvalues, naturally ordered, which satisfy A;(e) — A;(0)
as € — 0. Let ¢, be the eigenfunctions of Hy. By Sobolev trace theorem
¢;(0) makes sense. Put s; := |;(0)|? if A;(0) is simple, otherwise they are

eigenvalues of C := (go,-(O)cpj(O)) corresponding to a degenerate eigenvalue

Theorem 4.1 |[EY03]: With the stated assumptions, we have

Aj(E) = /\J(O) + asjmp(Se) + O(En_l) as €—0.

Remarks 4.2 (a) Formally a small-hole perturbation acts as a repulsive §
interaction with the coupling constant equal to amp(S;).

(b) Notice that no self-similarity of S, is required

(c) If n = 2, i.e. T is a curve, mp(S,) is the length of the hiatus; then the
same asymptotic formula holds for bound states of an infinite curved T

(d) Asymptotic perturbation theory for quadratic forms does not apply in
this situation, because C*(R™) 3 u — |u(0)|> € R does not extend to a
bounded form in H!(R"™).

" Let us now describe briefly the scheme of the proof:

1. Take an eigenvalue u = A;(0) of multiplicity m. It splits in general under
influence of the perturbation, for small enough € one has m eigenvalues inside

C:={z: |z — p| < 2k}, where & := jdist ({1}, o(Ho) \ {u}).
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Aiz1(0) @c
2. Set wi(¢,€) := (He — () lox — (Ho — {)" 1 for ¢ € C and k = j,

j+1,...,7+m— 1. Using the choice of C and Sobolev imbedding theorem,
one proves the asymptotic relation

we(S, €)ll a2 (mmy = O™ Y/2) as ¢ —0.

3. Next, H}(R") o f — f|r € L?(T") is compact, using a factorization and
an abstract result from [LM]. It implies

sup (¢, )lmqany = o(e" /%) a5 ¢ 0.
€

4. Let P. be spectral projection to these eigenvalues, then

1 _
Ps‘pk — Pk = 57;'1: iwk(c’e) d( = O(E(n 1)/2)

holds in H'(R") as ¢ — 0. Take m x m matrices L(g) := ((HePei, P:x))
and M (e) := ((P.pi, Per)). We find that

((HePei, Pepr)) — i — cpi(0)ipr(0)mr(Se)
is 0(e™1) and (P.p;, P.gr) = 8 + o(¢™1). The above result then gives
L(e)M(e)™! = uI + aCmp(S:) + o(e™1)

and the claim of the theorem follows.

5 Strong coupling asymptotics for a compact I
Suppose that I" has a single component, which is smooth and compact.

Theorem 5.1 [EY02a, EK02, EK03a]: (i) Let T' be a C* smooth manifold.
In the strong-coupling limit, (—1)°4™I-1g — oo, we have
_ |Tle

#O'disc(Ha,I‘) = on + O(ln a)
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for dimI'=1, codimT =1,

#0dgisc(Ha,r(h)) =

for dimT = 2, codimT' = 1, and

e \1/2
Hose(Har) = TN 4 ooy

for dimT = 1, codimI" = 2. Here |T'| is the curve length or surface area,
respectively, and e, = —4e?(~2ma+v(),

(i) In addition, suppose that T' has no boundary. Then the j-th eigenvalue
of H,r behaves as

a2

Ajle) = ==

+p;+ O ' Ina)
for codimT' =1 and
Ai(a) = € + pj + O(e™)
for codimT = 2, where p; is the j-th eigenvalue of the following comparison

operator:

—_ d 1 2
Sr = d32 4 k(S)

on L2((0,|T])) for dimT =1, where k is the curvature of I, and
Sr=-Ar+ K — M?

on L*(T",dl") for dimTI' = 2, where —Ar is the Laplace-Beltrami operator on
T and K, M, respectively, are the corresponding Gauss and mean curvatures.

Remark 5.2 We have mentioned that this also determines the semiclassical
asymptotics of the operator —h?A — ad(z —I'), however, in case codimI’ = 2
the choice of the effective coupling a(h) is arbitrary to some extent.

6 Proof technique

Let us sketch the proof of the theorem in the 1+ 1 case. Take a closed curve
T and call L = |T|. We start from a tubular neighbourhood of T'.
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Lemma 6.1 [EY02a]: The map ®, : [0, L) X (—a,a) — R? defined by
(s,u) = (m(s) — ura(s), v2(s) + wi(s)).
18 a diffeomorphism for all a > 0 small enough.

The idea is to apply to the operator H, = Hy)r(1) Dirichlet-Neumann
bracketing at the boundary of %, := &([0, L) x (—a, a)). This yields

(-AR,)® L;, < Ho < (-AR) @ LY,

where A, = A" UAJ™ is the exterior domain, and LE, are self-adjoint oper-
ators associated with the forms

Galf) = 192y — @ [ 1?48

where f € W2'(Z,) and W2'(Z,) for +, respectively.

It is important to notice that the exterior part does not contribute to the
negative spectrum. In the interior we use the curvilinear coordinates passing
from Lia to unitarily equivalent operators corresponding to quadratic forms

alfl= [ v w2 |2
o LI
o /0 (s, 0 ds

with f € W21((0,1) x (—a, a)) satisfying periodic boundary conditions in the
variable s and Dirichlet b.c. at u = +a, and

L L)
bralf) =¥alfl = 3 | 1o (o) de

1 [F k(s)
+-2-/0 ———1_ak(s)|f(s,——a)|2ds

with periodic boundary conditions in the longitudinal variable. Here V is the

curvature induced potential,

_ k(s)? uk’(s)  5uPkK(s)?
4(1+uk(s))? * 2(14uk(s))® 4(1+uk(s))*

2
duds

2 L pa
duds+/ V(s,u)|f|?dsdu
0

—a

V(s,u) =



10

In the next step we use estimate with separated variables, squeezing the
operator between 3
H, =Uf®1+107T%,.

Here UZ are s-a operators on L#(0,1)

_o d?
U = —(1Fallkllw) 2@+Vi(5)

with periodic boundary conditions, where V_(s) < V(s,u) < V,(s) with an
O(a) error, and the transverse operators are associated with the forms

e lfl= [ 1F@Pdu—alfO)F

-a

and
tealf] = taalfl = klloo(If (@) + | f(=a)?)

with f € W*(—a,a) and W'?(—a, a), respectively. They can be estimated
as follows: '

Lemma 6.2 [EY02a]: There are positive c, cy such that T, has a single
negative eigenvalue nia satisfying the inequalities

2

2 2
—94— (1+cne™@?) < kg, < —% <Kkt,< —% (1 - 8e7%/%)

for a large enough.

To finish the proof, we observe that the eigenvalues of UF differ by O(a)
from those of the comparison operator. Then we choose a = 6o ! In« as the
neighborhood width; putting the estimates together we get

a2

Aj(a) =-7

+p; + O(a ' Ina),

which is by the above lemma equivalent to the claim (ii) for planar loops.If
[ is not closed, the same can be done with the comparison operators SIP N
having appropriate b.c. at the endpoints of I'. This yields the claim (i).
Notice that the argument naturally extends to I' consisting of a finite number
of connected components.



Let us comment on the other dimensions. For a curve in R3 the argument
is similar: we take a tubular neighborhood and employ D-N bracketing. The
“straightening” transformation @, is defined by

®a(s,7,0) := 7(s) — r(n(s) cos(6 — B(s)) + b(s) sin(6 — 5(s))]-

To separate the longitudinal and transverse variables, we choose (3 so that
(B(s) equals the torsion 7(s) of I'. The effective potential is then

k? + hes 5h?
4h? " 2h3  4hY
where h := 1+ rkcos(6 — 3). It is important that the leading term is ——%k"
again, the torsion part being O(a). Up to this error, we get an upper and

lower bound by operators with separated variables. The transverse estimate
is replaced by

V=-

Lemma 6.3 [EKO03b]: There are c;, ca > 0 such that TE has for large enough
negative o a single negative eigenvalue nai,a which satisfies

€a — S(Q) < kg, < &a < KL, <&a+ S(a)

as @ — —oo, where S(a) = cie~"* exp(—cpe™™®).
The rest of the argument is the same as above. It again extends to I" consisting
of a finite number of connected components.

For a surface in R3 the argument modifies easily; £, is now a layer neigh-
borhood. However, the intrinsic geometry of I' can no longer be neglected.
Let I' C R3 be a C* smooth compact Riemann surface of a finite genus g.
The metric tensor given in the local coordinates by g., = p,, - p,, defines the
invariant surface area element dI" := g'/2d%s, where g := det(gy).

The Weingarten tensor is then obtained by raising the index in the second
fundamental form, h,” = —n, - p,g°"; the eigenvalues ki of (h,”) are
the principal curvatures. They determine the Gauss curvature K and mean
curvature M by

K = det(h,") = kyk, M = %’I& (h,*) = %(k++ k).

The bracketing argument proceeds as before,

—AN @ Hyp < Hor < —AR @ Hip, A =R\ L,

11



12

the interior only contributing to the negative spectrum. Next we use again
the curvilinear coordinates: for small enough a we have the “straightening”
diffeomorphism

Li(z,u) =z +un(z), (z,u) €N,:=T x(—a,a).
Then we transform H,f,r by the unitary operator
fj"/} =9ol,: L2(Qa) - L2(Na, d<2).

Denote the pull-back metric tensor by Gjj,

G v 0 (- (4
Gij = ( ( 6 ) 1 ) ’ G#U = (6;1. _Uh‘# )(6g'—Uho‘p)ng’

so dX := GY2d?s du with G := det(G;;) given by
| G =g[(1 — uky)(1 — uk_)]* = g(1 — 2Mu + Ku?)?.

Let (-,-)g denote the inner product in L%(N;, d2?). Then ﬂ:r =0 H:PU -1
in L2(N,,dY) are associated with the forms

w07 = (0, G¥0)a - a [ 10(s, O T,
r
with the domains W2 (N, d) and W?'(N,, d) for the + sign, respectively.

Next we remove 1 —2Mu+ Ku? from the weight G'/2 in the inner product of
L*(N,, dQ) by the unitary transformation U : L?(N,,dQ2) — L%(N,, dTl'du),

Ut := (1 — 2Mu + Ku?)/%p.

Denote the inner product in L?(N,,dT'du) by (-,-),. The operators Bip :=
UHZL.U! are associated with the forms

eld] = (0G0, + (0, (G + Vi), + 10015 — & [ Iw(s,0)Far,

brely] = biolyl+ / My (s)[t(s,a)PdT / M_o(8)b(s, ~a) PdT



for ¢ from W2 (Q,,dldu) and W21(Q,, dl'du), respectively. Here M, :=
(M — Ku)(1 — 2Mu + Ku?)~! is the mean curvature of the parallel surface
to I and

Vl - —1/2(91/2G“VJU)}1. pG;me
K — M?

Vi = (1 - 2Mu + Ku?)?

with J := 1 ;In(1-2Mu+K u?). We employ a rougher estimate with separated

variables squeezmg 1—-2Mu+ Ku? between Ci(a) := (1£ao™1)?, where p:=

max({||k+/lo s ||k l}) ! Consequently, the matrix inequality C_(a)gu <
G < Cy(a)gp is valid. We observe that V; behaves as O(a) for a — 0, while
V, can be squeezed between the functions Cz%(a ( )(K — M?), both uniformly
in the surface variables. Hence we estimate Bxy. by

B, =5:®I+I®T,,

with

8% := —Cyi(a)Ar + Ci%(a)(K — M?) tva
in L*(T",dT") ® Lz(—a, a) for a v > 0, where T, are the same as in the 1 +1
case (the same Lemma 6.2 applies).

As above the eigenvalues of the operators S coincide up to an O(a) error
with those of Sr, and therefore choosing a := 6a~! Ina, we find

Ai(a) = —%az +u; + 0@ ' na) (6.1)

as a — 0 which is equivalent to the claim (i). To get (ii) we employ the Weyl
asymptotics for Sr. The extension to I" having a finite number of connected
components is straightforward.

7 Infinite manifolds

Bound states may exist also if I' is noncompact as we have already mentioned
[EI01]. The present discussion shows another aspect of the problem: the com-
parison operator Sr has an attractive potential, so non-empty ad,sc(Ha [‘) can
be expected in the strong coupling regime.

It is needed, of course, that ges does not feel the curvature, not only for
H,r but for the estimating operators as well. This is ensured, e.g., if

13
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(i) k(s), k'(s) and k" (s)'/? are O(|s|~27¢) as |s| — oo for a planar curve
(i) in addition, the torsion bounded for a curve in R3

(iii) a surface T' admits a global normal parametrization with a uniformly
elliptic metric, K, M — 0 as the geodesic radius r — oo

In addition, we have also to assume that there is a tubular neighborhood X,
without self-intersections for small a, thus avoiding the situation where there
is a sequence of pair points, far from each other in the manifold metric, with
distances tending to zero.

Theorem 7.1 [EY02a, EK02, EK03a): With the above assumption, the asymp-
totic expansions derived in the compact case hold again.

8 Periodic manifolds

In this case one combines the described technique with Floquet expansion. It
is important to choose the periodic cells C of the space and I'¢ of the manifold
consistently, ¢ =T'NC.

Lemma 8.1 [EY01, Ex04, EK03b]: There is a unitary map U : L*(R?) —
f[(?iz,,)r L?*(C) d@ such that

@

UH, U~ = / Hopdf and o(Hor)= | o(Hae).
[0,2m) [0,.2m)"

The fibre comparison operators are

d 1,
So-— _F_ Zk(s)

on L3(T'¢) parameterized by arc length for dimI" = 1, with Floquet b.c., and
Sp = g~V/2(=i), + 6,)g"%g" (~id, +6,) + K — M?

with periodic boundary conditions for dimT" = 2.
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Theorem 8.2 [EY01, Ex04, EK03b]: Let I be a C*-smooth r-periodic man-
ifold without boundary, then the strong coupling asymptotic behavior of the
j-th Floquet eigenvalue is

Aj(e, 8) = —%az +u;i(0)+O(e ' lna) a8 a—

for codimT =1 and
Xi(0,0) = e+ 15(6) + O(™) 83 @ — 00
for codimT' = 2. The error terms are uniform w.r.t. 6.

Corollary 8.3 IfdimT = 1 and coupling is strong enough, the operator H,r
has open spectral gaps.

Remarks 8.4 (a) Large gaps for disconnected manifolds: if I' is not con-
nected and each connected component is contained in a translate of I'c, the
comparison operator is independent of § and asymptotic formula reads

Ai(a,8) = —i—az +u; +0O(a'lna) as a-— oo

for codimI" = 1 and similarly for for codim I’ = 2. Moreover, the assumptions
can be weakened to include chain-like disconnected manifolds, etc.

(b) Soft graphs with magnetic field: let I' be a planar loop and the system is
placed into a magnetic field. Thus formally the Hamiltonian has the form

Har(B) = (—iV — A)2 — ad(z - T).

In the asymptotic regime of large o the eigenvalues behave as in Theorem 3.1,
however, the comparison operator Sr now refers to Floquet boundary con-
dition: circling once around the curve I' the function acquires the phase
(2m)~'BXr, where Zr is the region inside I' — see [EY02b]. In particular,
the eigenvalues p; depend on a parameter — as in Theorem 8.2 — which is
now the magnetic field B. A consequence is that for large enough o the eigen-
values Aj(a, B) of H,r(B) are non-constant as functions of B. In physical
terms it means that such a system exhibits persistent currents.

(c) Absolute continuity: An analogous argument combined with the analytic-
ity of the functions \;(a,-) in Theorem 8.2 shows that for in a fixed interval
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and for a large enough the spectrum of H,r(B) with a periodic T is ab-
solutely continuous — see [BDEQ3|. Recall that while for T' periodic in two
directions the absolute continuity is proved in [BSS00] and the result is ex-
tended to higher dimensions in [SS01], the global absolute continuity for a
single periodic curve remains an open problem.

9 Open questions

1) Strong coupling, manifolds with boundary: If I' has a boundary,
we have a strong-coupling asymptotics for the bound state number given in
Theorems 3.1 and 7.1 but not for eigenvalues themselves. We conjecture that
the latter is given again by

2
o'
Aj(a) = Y +ui +O(@ ' na),
etc., where y; refer to operator with the same symbol and Dirichlet boundary
condltlons (with natural modifications in other dimensions).

2) Strong coupling, less regularity: Examples show that the above re-
lation is not valid for a non-smooth I', rather u; can be replaced by a term
proportional to a2, for instance if I' has an angle. How does the asymptotic
expansion look in this case and how it depends on dimension and codimen-
sion of I'? The analogous question can be asked more generally for graphs
with branching points and generalized graphs

8) Scattering theory on non-compact “leaky” curves, manifolds, graphs,
and generalized graphs is absent. Some open questions:

e existence and completeness w.r.t. motion in asymptotic geometry of T,
including absolute continuity of the spectrum in (—3a?,0)

e asymptotics of the S-matrix in the strong-coupling regime, including
relations between S-matrices of the leaky and “ideal” graphs

e to prove existence of resonances, at least within particular models. So
far the result is known in a very simple situations only [EK03c]

4) Periodic I': one conjectures that the whole spectrum is absolutely con-
tinuous, independently of ¢, but it remains to be proved. Also strong-couphng
asymptotic properties of spectral gaps are not known.

5) Random graphs, either by their shape or by a random couphng a:I'—>



R,. Is it true that the whole negative part of oess(Hor) is always pure point
once a disorder is present?

6) Adding magnetic field: Will the curvature-induced discrete spectrum
survive under any magnetic field? On the other hand, will (at least a part of)
the absolutely spectrum of (—iV — A)? — ad(z —I') survive a randomization
of a straight I'?
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