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Propagation, dispersion, and creation of singularities
of solutions for Schrodinger equations
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Department of Mathematics, Graduate School of Science, Osaka University

1. Introduction

Aim. This note is concerned with the singularities of solutions for Schrodinger equa-
tions, especially for those associated with perturbed harmonic oscillators. Our aim is to
clarify how the potential of lower order, or the “subprincipal symbol,” affects the singu-
larities of solutions at resonant times.

Symbol spaces. Set (z) = (1 + |z|?)"/2, z € R™. The symbol space S™(R") (resp.
ST(R™)), m € R, is the set of all a € C*°(R") such that for every a € N§ = (N U {0})"

|6%a(2)] < Cofz)™ 1, zeR™
(resp. [B2a(2)| < Calz)™mHh, 2 e R.)

Function spaces. For s € R, set (D) = (1 — A)2 and H* = {f € S'(R?); (D)*f €
L%(R9)}. The space B*(R?) is the completion of S(R) with respect to the norm ||A®- ||,
where A= (1 - A+ |z|?>)/2 and || - || = || - || s3(me). The operator A* is known to have the
Weyl symbol o(A?) satisfying o(A?) — (1 + |z|* + |€]2)*/? € S*~2(R?).

Hamilton flow. The Hamiton vector field of f € C®°(T*R?) is denoted by H;: H; =
> (%5‘% - a%%a%)' The Hamilton flow of f is the H; flow, which is denoted by e*fr;
(z(t,y,m), &(t,y,m)) = eHs(y,n) is the solution of the canonical equations

T;(t) = O, f(z(£),£(t)),  =;(0) = yj,
§it) = =0, f(z(t),£t)), &(0)=m (1 <j<d).

Related works. We recall some related results. Let H = —3A +V/(z) be a Schrodinger
operator on R? with V € C®(R4 R). Under some condition, H lcge(me) is essentially
self-adjoint. Let H denote its closure by abuse of notation. The propagator e~ de-
fined first by the spectral theorem, can be extended to various continuous operators;
if V € S2(R9), then the mapping X > ¢ — e “H¢p € C(R,X), is continuous for
X = B*(R%), S(RY), S'(R?). Let K(t,z,y) be the distribution kernel of e *.

(i) If V € S2(R?), then there exists T > 0 such that K(t,z,y) is C* in t,z,y when
0 < |t| < T (Fujiwara [6]). If in addition lim,j,e [V2V(z)| = O, then K(¢,z,y) is C*
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in t,z,y when t # 0 (Yajima [12]; cf. Kapitanski and Rodianski [7]). Forgetting the
condition V € S2(R?) now, assume d = 1, V(z) > C(1 + |z[)**® near infinity for some
£ > 0 as well as other technical conditions. Then K(t,z,y) is nowhere C' in t,z,y ([12]).
See also [2].

(ii) Let V(z) = 3w?|z|* + W(z) with w > 0 and W € S3(R?) such that |V*W(z)| =
o(1) as |z| = co. Then K (t,z,y) is C* int,x,y when t ¢ (7/w)Z (Kapitanski, Rodianski
and Yajima [8]). If in addition W € S*(R?) for some A < 1, then

WF u(kn/w) = {(-1)*(y,n); (v,n) € WFw}, keZ,

for every ug € S'(R%) (cf. Weinstein [10], Zelditch [14]; [8]; Okaji [9]). In these cases, no
influence of W appears. See also Wunsch [11].
(iii) Let V(z) = jw?|z|? + W(z) with w > 0 and W € S}(R?) for some 1 < A < 2,
and assume |
Ci{x)*2I; < VW (z) < Ca{z)* I,
near infinity for some C;,C; > 0. Then K (k7 /w,z,y) is C*® in z,y for every k € Z\ {0}

(Yajima [12]). In my knowledge, this is the only result that shows the influence of W.
(iv) For other results, see Craig, Kappeler, and Strauss [1] and the references therein.

2. Dispersion of Singularities (cf. [4])

In Sections 2 and 3, we consider a Schrédinger operator in the following form:

H= -—-;—A-i- (Qz,z) + W(z), z€R%

Here Q is a d x d real symmetric matrix, and W € C®(R%, R) satisfies W (z) = o(|z|?)
as |z| = oco. Let ho(z,€&) = 3¢ + HQz,z) and h(z,£) = ho(z,£) + W(z), and set

efn(y,n) = (z(t,y,n),€(t, v, ).
In this section we consider the case where Q = w?I with some w > 0 for simplicity

(see [4] for further results). We consider the following conditions on W'.
(W1) W € S (RY) for some 0 < 8 < 1; |V2W(z)| = o(1) as |z| = oo.

(W2) There exist Fi,...,F; € C(R?\ {0}, R), homogeneous of degree & (where g is the
constant in (W1)), such that with F = (Fy,..., Fy),

dim VW (z) - F(=)/ |=I° = 0.
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Under (W1) and (W2), define 8, € C(R?\ {0}, R¢) by

6u(n) = 4 CownF(M) = F(=m)) if k=2n, n€Z;
M) = Cou (n(Flm) - F(-m) + Fn) ik =2n+1, neZ

Here Cs., = [y |sin t|**%dt/w?+®. This function 6y is closely related to the asymptotic
behavior of e»(y,n) as |p| — co. More precisely we have

Proposition 1. Letk € Z\ {0} and I = [** — ¢, 5 1 ¢] for 0 < e < 1. Then

z(~t,y,m) = (=1)*(0_e(n) — (¢ — kn/w) n) + r1(t,n) + (¢ — k7 /w)ra(t,n) + r3(t, ¥, M)

fort € I, y,n € R%. Here |ri(t,n)| = o(|n|®) as |n| — oo uniformly int € I; |ra(t,n)| <
C((m® + |t — km/w|(n)) and r3(t,y,n) < C(y) with some C > 0.

The next lemmas give a sufficient condition for 6i(n) to be nonzero.
Lemma 2. Assume (W1) and (W2). Assume that for some cg > 0 and Cy > 0,
VIW(z) 2 coll’™ i |a| 2 Co.
Then 0,(n) # 0 for every k € Z\ {0} and n € R*\ {0}.
To state our microlocal disj)ersion theorems, we need

Definition 3. For a € S°(R%), denote by Chara the set of all n € R?%\ {0} such that
lim inf; o |a(tn)| = 0.

We state our microlocal dispersion theorem at resonant times.

Theorem 4. Assume (W1) and (W2). Let k € Z and no € R4\ {0} such that 6_x(m0) #
0. Let up € B*(RY) and u(t) = e"*Huy € C(R;, B*(RY)), and let r > 0. Assume
(z)ra(x)uo € B*(R?) for some a € S°(R?) satisfying Chara F (—1)¥0_r(no). Then there
ezists b € S°(R?), Charb # 19, such that

(z)~"(D)Y"b(D)u(kn/w) € B*(R?).

We consider a uniform estimate of the solution near resonant times.
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Theorem 5. Assume (W1) and (W2). Let k € Z and np € R?\ {0} such that 0_x(no) ¢
{tno;t > 0}. Let T be the minimal closed, convez cone of R?*\ {0} containig (o) and
—no. Let ug € B*(R?) and u(t) = e *Huy € C(R¢, B (R?)), and let r > 0. Assume that
(z) a(z)ug € B*(R?) for some a € S°(R?) satisfying Chara N (—1)¥T' = 0. Then there
ezists b € S°(R?), Charb F no, such that

(z)™"((D)® + |t — km/w|(D))"b(D)u(t) € C([km/w, km/w + €], B*(R%).
Remark. The relation between the direction and order of the decay of the initial data 1,
and those of the regularity of the solution u(t) is sharp. O

For comparison we state the microlocal dispersion theorem at nonresonant times.

Theorem 6. Assume that W € S2(R%) and that |[VW(z)| = of|z|) as |z[ — oo. Let
m € R4\ {0}, k € Z, and r > 0. Let up € B*(R?) and u(t) = e~ *Huy € C(R;, B*(R?)).
Assume that (z)"a(z)uo € B®(R?) for some a € S°(R?) satisfying Chara F (—1)1r.
Then there ezists b € S°(R?), Charb # nq, such that

(z)""(D)"o(D)u(t) € C((kr/w, (k + 1)7/w), B*(RY)).

3. Propagation and creation of Singularities (cf. [3, 5])

Let H be the Schrodinger operator in Section 2. In this section we consider the case

where (Qz,z) = Z?=1 w?z? for some wy, ..., wq > 0. Set A(t) = diag(coswt, - - - , coswat)
and B(t) = diag(22«t,... ,=2%) Then we have
1 wq

e (y,m) = (A(t)y + B(t)n, A'(t)y + B'(t)n).
We consider the following conditions on W.
(W3) W € SY(R?).

(W4) There exist Fi,...,Fy; € C(R*\ {0},R), homogeneous of degree 0, such that with
F=(FR,...,F),
Illigl VW (z) — F(z)| = 0.

Under (W3) and (W4), define

By, 1) = (E(t, 8,4, 1), €, 8,4,7)),  Pea(y, ) = b0 0 el=Hn o o (3, 7).

st,sm =y + [ BOFBEmdn, fsym=n- [ " A(r)F(B(r)n) dr;
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Proposition 7. For every compact set K C R® and every compact interval I C R,

lim sup |@24(y,m) — Pealy,m)| = 0.

[n|—00 g telye

In particular,

lm sup |a(t,y,n) - A)F(E0,y,1) - B(t)é(t,0,y,n)| = 0;

Inj—oo terye
i Sup |(t,y,m) — A'(£)E(t,0,y,m) — B'(t)(¢,0,9,m)| = 0.
3.1. Isotropic case. Consider the case where w; = -+ = wg = w > 0. Define
6, € C(R%\ {0},R?) by
() {(2/w2) -n(F(n) — F(-n)) if k=2n, n €2
(2/w?) - (n(F(n) — F(-n))+ F(n)) ifk=2n+1, neZ

As a corollary of Proposition 7, we have
Corollary 8. For every compact set K C R? and every k € Z,
a(k/w, 4,7m) = (=1)H(y + 8e(m) + o(1) as || = o0 uniformly in y € K;
E(km/w,y,n) = (=1)*n + O(1) as |n| = oo uniformly iny € K.
We recall the the definition of H* wave front set.

Definition 9. Let U be an open set in R%, and f € D'(U). For (z0,&) € U x (R%\ {0}) 2
T*U \ 0, we say that f € H*® at (zo,&) if there are a function a € C§°(U) satisfying
a = 1 in a neighborhood of zy, and a conic neighborhood I of & in R?\ {0} such that
xr(D)(af) = Fxr(-)F(af)(-)] € H*. Here xr(¢) = 1if € € T, and xr(§) = 0 otherwise;
and F denotes the Fourier transformation. The H* wave front set of f, WFy.f, is the
set of all (zg,&) € T*U \ 0 such that f € H® at (z9,&). WFy-~ = WF is the usual wave
front set.

Theorem 10. Assume (W3) and (W4). Letug € S'(R?) and u(t) = e *#uy € C(R, S'(R)).
Then for every s € R and k € Z,

W Fpau(kr jw) = {(=1)¥(y + 6k(n), n); (v,1) € WFnouo} .
In particular, if limz) e (VW (z)| = 0 in addition, then for every s € R and k € Z,

W Fou(kr/w) = {(=1)*(y,n); (v, n) € W Fpouo}.
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3.2. Anisotropic case. Consider the case where w;/wy € Q for every j, k. Then we can

write T
T —, m eN(j=1,...,d), gcd{mj;1<j<d}=1.
wj My

Here, for a subset S of N, we denote by g.c.d. S the greatest common divisor of S. Then
A(KT) = diag((—1)*™,...,(—1)¥me) (k € Z). As a corollary of Proposition 7, we have

Corollary 11. For every compact set K C R® and every k € Z,

z(kT,y,n) = A(KT)Z(kT,0,y,n) + o(1) as |n| = oo uniformly in y € K;
E(kT,y,n) = A(KT)n+ O(1) as |n| = oo uniformly in y € K.

For k € Z, define a homeomorphism x; : T*R?¢\ 0 — T*R?\ 0 by
Xk (y,n) = T (E(KT, 0,y,m), ) = (A(KT)Z(KT,0,y,n), A(kT)n).

Then we have x;+x = Xj o xx for every j,k € Z. This discrete flow describes the propa-
gation of strong singularities for ¢t € TZ.

Theorem 12. Assume (W3) and (W4). Letug € S'(R?) and u(t) = e *Hyy € C(R, S'(RY)).
Assume {(z)"Nug € H* for some sy € R and N > 1. Then for every sy < s < sg + 1,

WFH:‘U(ICT) = Xk( WFH:UQ ), kel
In particular, if limpy|e0 |VW ()| = 0 in addition, then for every so < s < sp+1,
W Fgou(kT) = e*THro( W Faug ), k € Z.

The restriction on s can be removed if the singularities in the special directions deter-
mined from ) are concerned.

Theorem 13. Assume (W3) and (W4). Letu, € S'(R?) and u(t) = e *Hyy € C(R, S'(RY)).
Let ) € R?\ {0} and set I; = {j € {1,2,...,d};%; # 0}. Assume that g.c.d. {mj;j €
I;} = 1. Then for every s € R and k € Z, the following two conditions on y € R® are
equivalent:

(1) xx(y, %) € WFg.u(kT);
(ﬂ) (ys fl) € WF}{!U().
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Remark. (1) If7j; #0forall j=1,...,d, then g.cd. {m;;j € I;} = 1.
(2) In the isotropic case, we have m; = --- = mq = 1; hence g.c.d. {m;;j € [;} = 1.

3.3. Creation of weaker singularities. We preserve the assumption and notation in
Section 3.2 and consider the case where W € C°(R?). If ug € H*, then Theorem 12
implies that

W Fiyu(kT) = T Hho W Fyaug

for every s < s < sp+1and k € Z. For s > so + 1, WFg.u(kT) (k € Z) are not stable
in general; there exist some cases where new singularities of order s > sy + 1 can appear

along a hypersurface even if W € C°(R9).

Proposition 14. Let 7 = (1,0,...,0) or (-1,0,...,0). Assume that m; # 1 and that
gcd. {my,m;} =1 for every j =2,...,d. Let z = (z;,7') € R x R%"}, and letvuo(a:) =
¢1(z1)$2(2'), where ¢ € HO(R), ¢, ¢ H*T(R) for every € > 0, and ¢, € C*(R*?),
not identically zero. Let u(t) = e *Huy € C(R, S'(R?)). Assume that

/ V(.’El, ')d.’E]_ € Cgo(Rd-—l)

-0

i8 nonnegative (or nonpositive) and not identically zero. Then for every sp+1 < 8 < sg+2
and k € Z \ {0}, the following two conditions on y € R® are equivalent:

(i) e*THro(y, ) € W Fgou(kT);
(i) (y, 1) € WFaug U (WFgs1y x (R x {0})) € T*R x T*R42,
Here the identification T*R? 3 (z,€) +— ((z1,&1), (2, &) € T*R x T*R%! is used.

Remark. In the proposition above, W Fy.uy = W Fgs¢y x (supp ¢ x {0}). So weaker
singularities in W Fg.-1¢; X (R%! x {0}) are created when sy +1 <s<sp+2. O

Remark. If m; = 1, then g.c.d. {m;;j € I;} = m; = 1. Hence the conditions on y € R4,
(i) and (ii), are equivalent for every s € R and k € Z by Theorem 13. O

References

[1] W. Craig, T. Kappeler and W. Strauss, Microlocal dispersive smoothing for the
Schrédinger equation, Comm. Pure Appl. Math. 48 (1995), 769-860.



96

[2] S. Doi, Smoothness of solutions for Schrodinger equations with unbounded potentials,
to appear in Publ. RIMS.

[3] S. Doi, Singularities of solutions of Schrodinger equations for perturbed harmonic
oscillators. Hyperbolic Problems and Related Topics, 185-199, Internatinal Press,
Somerville, MA, 2003.

[4] S. Doi, Dispersion of singularities of solutions for Schrodinger equations, to appear
in Comm. Math. Phys.

[5] S. Doi, Propagation and creation of singularities of solutions for Schrodinger equa-
tions, in preparation.

[6] D. Fujiwara, Remarks on the convergence of the Feynman path integrals, Duke Math.
J. 47 (1980), 559-600.

[7] L. Kapitanski and I. Rodianski, Regulated smoothing for Schrédinger evolution,
Internat. Math. Res. Notices 2 (1996), 41-54.

[8] L. Kapitanski, I. Rodianski, and K. Yajima, On the fundamental solution of a
perturbed harmonic oscillator, Topol. Methods in Nonlinear Anal. 9 (1997), 77-106.

[9] T. Okaji, Propagation of wave packets and smoothing properties of soluitons to
Schrodinger equations with unbounded potential, preprint (version 8.4), 2000.

[10] A. Weinstein, A symbol class for some Schrodinger equations on R", Amer. J. Math.
107 (1985), 1-21.

[11] J. Wunsch, The trace of the generalized harmonic oscillator, Ann. Inst. Fourier,
Grenoble 49 (1999), 351-373.

[12] K. Yajima, Smoothness and non-smoothness of the fundamental solution of time
dependent Schrédinger equations, Comm. Math. Phys. 181 (1996), 605-629.

[13] K. Yajima, On fundamental solution of time dependent Schrdinger equations, Con-
temp. Math. 217 (1998), 49-68.

[14] S. Zelditch, Reconstruction of singularities for solutions of Schridinger’s equation,
Comm. Math. Phys. 90 (1983), 1-26.



