Scapular kinematic alterations during arm elevation with decrease in pectoralis minor stiffness after stretching in healthy individuals.
Scapular kinematic alterations during arm elevation with decrease in pectoralis minor stiffness after stretching in healthy individuals

Jun Umehara, MS, PTa,*, Masatoshi Nakamura, PhD, PTb, Satoru Nishishita, MS, PTa, Hiroki Tanaka, MS, PTc, Ken Kusano, MS, PTd, Noriaki Ichihashi, PhD, PTa

aHuman Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
bInstitute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
cRehabilitation Unit, Kyoto University Hospital, Kyoto, Japan
dInstitute of Sports Science, ASICS Corporation, Kobe, Japan

Background: Pectoralis minor tightness may be seen in individuals with scapular dyskinesis, and stretching is used for the treatment of altered scapular motion in sports and clinical fields. However, few researchers have reported on the effects of pectoralis minor stiffness on scapular motion during arm elevation. This study investigated whether an acute decrease of pectoralis minor stiffness after stretching changes the scapular motion during arm elevation.

Methods: The study allocated 15 dominant and 15 nondominant upper limbs in healthy men as control and interventional limbs, respectively. In the intervention limb group, the shoulder was passively and horizontally abducted at 150° of elevation for 5 minutes to stretch the pectoralis minor muscle. Before and after stretching, an electromagnetic sensor was used to examine 3-dimensional scapular motion during abduction and scaption. Ultrasonic shear wave elastography was used to measure pectoralis minor stiffness before and immediately after stretching and after arm elevation.

Results: In the interventional limb, pectoralis minor stiffness decreased by 3.2 kPa immediately after stretching and by 2.5 kPa after arm elevation. The maximal changes in scapular kinematics after stretching were 4.8° of external rotation and 3.3° of posterior tilt in abduction, and 4.5° of external rotation and 3.7° of posterior tilt in scaption. Upward rotation in abduction or scaption did not change.

Conclusions: Stretching for the pectoralis minor muscle increases external rotation and posterior tilt of the scapula during arm elevation.

Level of evidence: Basic Science Study; Kinesiology
© 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. All rights reserved.

Keywords: Shoulder; physical therapy; biomechanics; stretching; muscle stiffness; elastography; pectoralis minor muscle

The shoulder joint consists of the scapula, humerus, and clavicle and is one of the largest and most complex joints in humans. The coordinated movement of these bones is important for optimal shoulder motion. Early authors investigating scapula motion in healthy individuals defined scapulohumeral...
rhythm,10 and it has been established that the scapula rotates upward, externally, and tilts posteriorly during arm elevation in healthy individuals.11,12,22 Additional researchers reported that scapular motion of patients with impingement syndrome or glenohumeral instability was decreased in external and upward rotation and posterior tilt compared with that of healthy individuals.4,17,21 Scapular dyskinesis has been defined as the set of abnormal motions and positions of the scapula,13 and the evaluation and treatment for scapular dyskinesis may be essential for shoulder rehabilitation.

Studies have shown that the onset of scapular dyskinesis is related to the tightness of soft tissue surrounding the scapula.7,14 The tightness of the pectoralis minor muscle (PMi),7,14 the short head of the biceps brachii,15 the levator scapula,7 or the rhomboid7 has been speculated to cause scapular dyskinesis. Of these shoulder muscles, the PMi is the only muscle whose relationship between tightness and scapular dyskinesis has been verified by experimental study. Borstad et al3 examined 3-dimensional (3D) scapular motion during elevation in healthy individuals with and without a shortened PMi and showed that a decrease in external rotation and posterior tilt are seen in individuals with a shortened PMi. The altered scapular kinematics, which is found in individuals with shortened PMi, seen in this previous study3 was similar to that observed in many patients with shoulder disease.15,17 PMi tension may therefore be an important factor in scapular dyskinesis.

Stretching is applied as an approach to scapular dyskinesis caused by the PMi tightness. Borstad et al3 recommended a unilateral corner stretch as one self-stretch method for the PMi. Umehara et al31 also showed that shoulder horizontal abduction at an elevation of 150° was the most effective stretching technique for the PMi. Considering that there is a correlation between PMi stiffness and scapular dyskinesis, investigating not only the stretching maneuver but also the change in PMi stiffness and scapular motion after stretching is obviously important. However, few studies have examined this relationship.

The present study investigated whether the acute decrease in PMi stiffness after stretching alters the 3D scapular motion during arm elevation. Borstad et al3 reported a decrease in external rotation and posterior tilt of scapula in individuals with a shortened PMi compared with healthy individuals. We therefore hypothesized that the decrease in PMi stiffness after stretching augments the external rotation and posterior tilt of the scapula during arm elevation.

Materials and methods

Participants

This study was a controlled experimental study with 20 men (age, 25.4±3.1 years; height, 171.5±5.3 cm; weight, 67.6±8.5 kg) as participants. Dominant and nondominant upper limbs were allocated as control and interventional limbs, respectively. The volunteers were randomly recruited from the students at our institution. Upon selection, the participants orally confirmed that they did not meet the exclusion criteria, which included female gender, designation as an athlete, performance of any extensive exercise, or a history of orthopedic or nervous system disease in the upper limb. Considering that the low body mass index minimized skin motion artifacts in the measurement of scapular motion during arm elevation, we also excluded those with a body mass index >25 kg/m\(^2\), calculated using the height and weight. Before the experiment, 4 men—1 with a daily extensive exercise regimen, 1 with a history of shoulder pain, and 2 with a high body mass index—were excluded. The aim and procedures of the study were explained to all volunteers, and informed consent was obtained.

Experimental procedures

The participants, while sitting on a wooden stool, performed shoulder abduction (elevation in the coronal plane) and scaption (elevation in the scapular plane) before and after the PMi stretching. The stretching procedure of the PMi is described in detail in our previous study (Fig. 1).13 The participants underwent stretching to the point of discomfort (but not pain) for 5 minutes (30 seconds, 10 repetitions, 10-second intervals). Each elevation plane was marked on the floor using sections of elastic tape. In the starting posture, keeping the upper limb aside the body with the elbow fully extended, the palm facing the body, and the eyes looking straight forward on the target at eye height, the participant was asked to raise his arm to full elevation in 4 seconds and then lower it to starting position in 4 seconds 3 times consecutively to the rhythm of a metronome with 60 beats/
min. The participant underwent sufficient familiarization to the abduction and scaption before the assessment.

Instrumentation

Scapular kinematics
The 3D motion of the shoulder complex during arm elevation before and after stretching was measured using a Liberty electromagnetic tracking device (Polhemus, Colchester, VT, USA) at 120 Hz. This system consists of a transmitter, 5 sensors, and a digitizing stylus operated by an electronic unit. The transmitter was fixed on a rigid wooden board at a height of 40 cm from the floor and 30 cm behind the participants. An electromagnetic field generated by the transmitter was sensed by these sensors and the stylus. This electromagnetic field represented the global coordinate system, with the x-axis pointing forward, the y-axis pointing upward, the z-axis pointing to the right, and the origin located at the transmitter.

Next, the sensors were attached to the bony landmarks of the participants with adhesive tape. The thoracic sensor was placed on the sternum just inferior to the jugular notch, the humeral sensor was placed on the middle point of the humerus with a thermoplastic cuff, and the scapular sensor was placed on the flat surface of the acromion. The placement of these sensors was used to establish the local coordinate system of the thorax, humerus, and scapula by digitizing each bony landmark. All definitions of the local coordinate system were in accordance with the shoulder standardization proposal of the International Society of Biomechanics, and the glenohumeral rotation center in the humeral segment was defined with reference to the previous study.

The rotation of the distal coordinate system was described with respect to the proximal coordinate system, according to the Euler angles of the International Society of Biomechanics. To describe the joint motion in correspondence with human kinesiology, the motion of the scapula around the y-axis was defined as internal rotation (positive) and external rotation (negative), the motion around the x-axis was defined as downward rotation (positive) and upward rotation (negative), the motion around the s-axis was defined as posterior tilt (positive) and anterior tilt (negative), and the motion of the humerus around the h-axis was defined as elevation (positive; Fig. 2). These motions were calculated using MATLAB software (The Math Works, Natick, MA, USA).

The scapular rotation was measured in every 10° of humeral elevation relative to the thorax, from 30° to 120° of humeral elevation. These angles were selected because the previous study reported that there was little influence of the artifact of soft tissue on measuring the scapular motion in humeral elevations of less than 120° using a surface method. The elevation was examined 3 times, and the mean value was used for analysis.

Muscle stiffness
PMi stiffness was measured before stretching, immediately after stretching, and after arm elevation using ultrasonic shear wave elastography (Aixplorer; SuperSonic Imagine, Aix-en-Provence, France) with an ultrasound transducer (SL15-4: 4 to 15 MHz linear probe; Fig. 3). The ultrasonic shear wave elastography uses acoustic radiation forces to monitor the propagation of shear waves generated in tissue and is able to evaluate the tissue elasticity of individual muscles. The shear elastic modulus of the muscle represents muscle stiffness and has been used as a quantitative indicator of the stretching effect in many previous studies. The shear elastic modulus (G) was calculated from the shear wave propagation speed (V) generated by the transducer using the formula of \(G = \rho V^2 \), in which \(\rho \) is the muscle density (1000 kg/m³). The validity of applying the shear wave elastography to evaluate the skeletal muscle was reported in a previous study. The stiffness was measured 3 times in each session, and the mean value was used for analysis. Calculation of the stiffness was blinded by anonymizing the ultrasound image, and a region of interest of the shear modulus was carefully chosen as large as possible with exclusion of subcutaneous adipose tissues and aponeuroses.

For the reliability study, PMi stiffness was measured in 10 healthy men (age, 24.9 ± 1.5 years; height, 171.7 ± 6.5 cm; weight, 70.4 ± 7.8 kg) before this study. After the above-mentioned measurement method was completed, stiffness was measured 3 times with a sufficient rest interval. The intraobserver reliability of the ultrasound measurement was confirmed using the intraclass correlation coefficient (1,3) (ICC1,3) with the 95% confidence interval (95% CI). ICC1,3 was 0.99 (95% CI, 0.97-0.99). A previous study investigating the reliability coefficient reported that a range from 0.81 to 1.00 was “almost perfect” reproducibility. The measurement of PMi stiffness in our study, therefore, was considered to be reproducible.

Data analysis
Only those participants whose decrease in muscle stiffness remained until after arm elevation were analyzed in this study. We focused on the effect of the decrease in PMi stiffness on the scapular motion but not PMi stretching so that we could examine the direct relationship between PMi stiffness and scapular motion.
Results

In the dominant limb, the decrease in the PMi stiffness immediately after stretching and after arm elevation occurred in 15 men (age, 24.9 ± 3.3 years; height, 171.9 ± 5.9 cm; weight, 67.2 ± 8.4 kg); therefore, the results of these 15 men (30 shoulders) are shown below.

The paired t test showed no significant differences between the interventional limb and the control limb in stiffness before stretching (95% CI, −0.24 to 7.98; \(P = .063 \)). For the amount of change in the stiffness, a 2-way ANOVA indicated a significant main effect of the limb but not the time, with no significant interaction between the limb and the time (Table 1).

The raw value and the amount of change in scapular motion for abduction are reported in Table S1. For the amount of change in the internal/external rotation of scapula, a 2-way ANOVA showed a significant interaction between the limb and the angle (\(F = 4.519, P = .029 \)). Then, a post hoc test indicated that the change in the interventional limb was significantly greater than that in the control limb from 40° to 120° abduction (\(P = .001 - .014 \)), and an increase in external rotation in the interventional limb was found after stretching. For the amount of change in the downward/upward rotation of the scapula, there were no significant interactions between the limb and the angle (\(F = 0.345, P = .726 \)) and no significant main effect in the limb (\(F = 0.129, P = .725 \)). For the amount of change in the posterior/anterior tilt of scapula, a 2-way ANOVA showed no significant interaction between the limb and the angle (\(F = 0.891, P = .378 \)), but a significant main effect in the limb was seen (\(F = 4.966, P = .043 \)). A post hoc test indicated that the change in the interventional limb was significantly greater than that in the control limb (\(P = .043 \)) and that the posterior tilt in the interventional limb increased after stretching throughout the full evaluated range.

The raw value and the amount of change in scapular motion for scaption are reported in Table S2. For the amount of change in the internal/external rotation of scapula, a 2-way ANOVA showed a significant interaction between the limb and the angle (\(F = 6.655, P = .004 \)). Then, a post hoc test...
Table 1 Pectoralis minor muscle stiffness before and after the assessment

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pectoralis minor stiffness (kPa)</th>
<th>Statistical significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intervional limb</td>
<td>Control limb</td>
</tr>
<tr>
<td>Before stretching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw value</td>
<td>12.7 ± 3.6</td>
<td>11.4 ± 3.8</td>
</tr>
<tr>
<td>Change</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Effect size (d)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Immediately after stretching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw value</td>
<td>9.4 ± 2.2</td>
<td>11.0 ± 3.4</td>
</tr>
<tr>
<td>Change</td>
<td>–3.2 ± 2.0</td>
<td>–0.4 ± 2.4</td>
</tr>
<tr>
<td>Effect size (d)</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>After arm elevation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw value</td>
<td>10.2 ± 2.5</td>
<td>10.8 ± 3.6</td>
</tr>
<tr>
<td>Change</td>
<td>–2.5 ± 1.9</td>
<td>–0.6 ± 2.0</td>
</tr>
<tr>
<td>Effect size (d)</td>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>

Change, amount of change between before and after stretching, and before and after arm elevation. Data are shown as the mean ± standard deviation.

Discussion

The present study investigated the effects of PMi stiffness on 3D scapular motion during arm elevation and found a decrease in PMi stiffness and an increase in external rotation and posterior tilt of the scapula after stretching. These results indicate that the alteration in scapular motion in combination with decrease in PMi stiffness occurred after stretching and accorded with our hypothesis. To the best of our knowledge, this is the first study to demonstrate that an acute decrease in PMi stiffness after stretching changes the 3D scapular motion during arm elevation.

The decrease in the PMi stiffness occurred immediately after stretching and lasted until after arm elevation. The previous study showed a positive correlation between the rate of change in the shear elastic modulus and the rate of change in muscle stiffness, and therefore, the decrease seen in the shear elastic modulus after stretching indicates a decrease in muscle stiffness (a so-called increase in the muscle flexibility). Therefore, the decrease in PMi stiffness immediately after stretching and after arm elevation confirmed that the stretching used in the current study was sufficient in decreasing PMi stiffness until the end of the evaluation.

To the best of our knowledge, only 1 study has investigated the relationship between the acute change in the flexibility of the PMi and 3D scapular motion. Williams et al. measured PMi length (coracoid process to fourth rib) and scapular kinematics before and after 2 types of stretching, focused stretch or gross stretch, for 1 minute (30 seconds, 2 repetitions, 30-second intervals). They concluded that no changes occurred in the scapular kinematics after either form of stretching, which was inconsistent with our results, which noted that a change in scapular motion occurred after PMi stretching. This discrepancy between the previous study and our results could be attributed to the duration time and the index of stretching effect.

Among various studies on stretching duration, a study by Nakamura et al. examined the minimum time required for stretching to change the passive property. They concluded that stretching for more than 2 minutes was recommended to decrease the passive property of the gastrocnemius muscle. Therefore, although it is necessary to consider the difference in the muscles studied, the stretching duration of the PMi was possibly insufficient to elicit a change in scapular kinematics in the study by Williams et al. Furthermore, there is also a possibility the length of the PMi may not be sufficient to represent PMi flexibility due to the bias of skin, soft tissues, or posture. In contrast, we measured the PMi stiffness quantitatively using the shear elastic modulus measured by ultrasonic shear wave elastography. Our study might therefore be more valid than their study in investigating the relation of PMi stiffness and scapular motion.

These results mean that the decrease in PMi stiffness after stretching induced the external rotation and posterior tilt of the scapula. The scapula generally rotates upward and externally

indicated that the amount of change from 40° to 120° in the interventional limb was significantly greater than that in the control limb (P = .001-.034) and that the external rotation in the interventional limb increased after stretching. For the amount of change in the downward/upward rotation of the scapula, there were no significant interactions between the limb and the angle (F = 0.295, P = .750) and no significant main effect in the limb (F = 0.006, P = .940). For the amount of change in the posterior/anterior tilt of the scapula, a 2-way ANOVA showed a significant interaction between the limb and the angle (F = 4.397, P = .032). Then, a post hoc test indicated that the amount of change from 50° to 120° in the interventional limb was significantly greater than that in the control limb (P = .006-.035) and that the posterior tilt in the interventional limb increased after stretching.
and tilts posteriorly during arm elevation in healthy individuals. PMi tightness might cause the internal and downward rotation and anterior tilt of scapula from an anatomic perspective. Borstad et al showed that external rotation and posterior tilt in individuals with shortened PMi muscles were decreased compared with individuals with a long PMi during arm elevation. Therefore, considering these studies, our results suggested that the scapular external rotation and posterior tilt increased in abduction and scaption with a decrease in PMi stiffness. For the posterior tilt in the intervention limb group after stretching, there were differences in the amount of change between abduction and scaption. These differences in behavior, in which the increase in posterior tilt occurred from 30° to 120° in abduction and from 50° to 120° in scaption, might depend on the difference in the plane of elevation. Compared with scaption, abduction needs a slightly greater posterior tilt of the scapula, due to the difference of the plane, although there are no significant differences. Therefore, it is rational that the posterior tilt of the scapula may arise from the early phase of abduction by the decrease in PMi stiffness.

The maximum amount of change in external rotation and the posterior tilt were 4.8° and 3.3° in abduction and 4.5° and 3.7° in scaption. Ludewig and Cook reported that individuals with shoulder impingement had increased internal rotation, decreased upward rotation, and decreased posterior tilt during arm elevation. Their previous study suggested that 4° to 6° of change in scapular motion is important in narrowing of the subacromial space and the occurrence of impingement, because individuals with impingement syndrome showed increased internal rotation of 5.2°, decreased upward rotation of 4.1°, and increased anterior tilt of 5.8° compared with healthy individuals.

We believe our findings are of clinical relevance because the change in scapular motion after stretching shown in the present study approximately corresponded with the range of changes seen in scapular motion between healthy individuals and those with impingement syndrome indicated in Ludewig and Cook’s study. The change in the scapular motion after the stretching observed in the current study may be of clinical significance; however, further research is warranted to validate these theories within individuals with shoulder pathology.

However, one should note some limitations when interpreting our findings. First, the participants were all healthy men, as prescribed by the exclusion criteria. Therefore, whether the findings can be generalized to individuals with impingement syndrome is unclear.

Second, the stiffness of only the PMi was measured among the shoulder girdle muscles. Therefore, this study does not exactly promise that only a decrease in the PMi stiffness changed the scapular kinematics, and it is possible that other muscles, such as the pectoralis major muscle, the subscapularis muscle, or glenohumeral ligaments and capsules, were also stretched and thus had an effect. This is the limitation of an in vivo study.

Third, the current study investigated only the acute effect of PMi stretching on scapular motion, so its long-term effect is unknown. The recent study examining the effects of self-stretching of the PMi for 6 weeks on scapular kinematics concluded that stretching did not change PMi length and scapular kinematics in individuals with and without shoulder pain. Therefore, future study should evaluate the long-term effects of the therapist-applied PMi stretching on muscle stiffness and scapular motion.

Conclusion

We investigated the effects of PMi stiffness after stretching on the change in scapular motion during arm elevation. Our results indicated a decrease in PMi stiffness, increased external rotation, and posterior tilt of the scapula occurred during arm elevation after stretching. These findings might be relevant knowledge for the approach to scapular dyskinesis and in further studies.

Disclaimer

This study was supported by the Grant-in-Aid for Scientific Research (B) 15H03043.

The authors, their immediate families, and any research foundations with which they are affiliated have not received any financial payments or other benefits from any commercial entity related to the subject of this article.

Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jse.2018.02.037.

References

7. Cools AM, Struyf F, De Mey K, Maenhout A, Castelein B, Cagnie B. Rehabilitation of scapular dyskinesis: from the office worker to the elite

