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Abstract

Sediment bypass tunnels are a leading technique to mitigate reservoir sedimentation.
The method reduces incoming sediment to reservoirs by diverting sediment laden flood
to a tunnel and draining directly to the downstream reaches. A major issue that
induces their high maintenance cost is the tunnel invert hydro-abrasion caused by a
combination of high sediment transport rate and high flow velocity. This study is
dedicated to observe bedload transport in the tunnel to unveil the relation between
abrasion and bedload transport distribution.

For the observation, we exploited impact plates, one of bedload surrogate monitoring
systems, used in the field of erosion control. Impact plates consist of a steel plate
embedded on river bed and a microphone and accelerometer backside of the plate. The
impact induced by gravel collision to the plate is registered as signals from which we
extract bedload information, i.e., grain size and bedload bedload transport rate. The
device is already installed at the Koshibu Dam sediment bypass tunnel in Japan and
monitoring operations. This study analyzes signals obtained from the operations on
the basis of flume and on-site calibration experiments.

The signal analyses followed general signal processing approach composed of three
steps: signal cleaning, feature extraction, and modeling. Signal cleaning was done
with using Discrete Wavelet Transform by considering the properties of the signals
obtained from impact plates, i.e., non-periodicity and abrupt change appearance.
Then, a conventional feature quantity called impulses count was employed for feature
extraction. For the modeling, we used non-parametric Gaussian process regression,
which has both high expressive power and high interpretability by designing kernels
that determines regression functions. Essentially, application of models based on flume
experiments to field sites involves extrapolation. In order to cope with the weak
point, our models were created only using flume experiment data with incorporating
background knowledge into kernels. Then, the models were evaluated by the prediction
accuracy to on-site experiment data where the prediction also presents extrapolation.
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Finally, the best model was utilized for estimating spatiotemporal transition of
grain size and bedload transport rate during the Koshibu Dam sediment bypass tunnel
operations.
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Chapter 1

Introduction

Today, many dams on which our civilization relies are suffering from reservoir sedi-
mentation. Among a number of measures to meet the situation, the technology of
Sediment Bypass Tunnels (SBTs) have been earning attention because of its advantages
over others with respect to their efficiency and ecofriendliness. Although SBTs are
already operated mainly in Japan, Switzerland, and Taiwan for years, the application
worldwide is few. One reason for that is there is no clear guidance to use SBTs safely
and sustainably, in particular, the lack of measures to mitigate tunnel invert abrasion
cause by a combination of high flow velocity and high sediment flux. We believe that
in order to address the abrasion problem, bedload transport monitoring in SBTs is
inevitable to see the relation of sediment transport and consequent invert abrasion.

This chapter shortly introduces the reservoir sedimentation problem and SBTs.
Then, we argue that, in order to make guidance to use SBTs, the mechanism of tunnel
invert abrasion needs to be unveiled and for that, bedload monitoring in SBTs is the
important first step. Finally, the chapter provides an outline of the thesis.

1.1 Reservoir sedimentation

The history of dam is incredibly long, it is said that the first dam in the world was
built more than 5000 years ago (TATA & HOWARD, 2019, accessed November 2019).
Although, at that time, the purposes of dams are only irrigation or flood control, today,
dams are built worldwide for a wide range of purposes including irrigation, hydropower,
water supply for drinking and industrial use, inland navigation, and flood control
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(ICOLD, 2019b, accessed November 2019). Still irrigation accounts for the largest ratio
of the global dam use, but the hydropower does the second largest ratio today. ICOLD
(2019a) reports that the current gross reservoir storage reaches 6,000 km3 with 45,000
large dams, dams with a height of 15 metres or greater, and 3,687 dams built after
2000 or under construction. And yet, more dams need to be constructed due to the
increase in demand for water. Given their wide range of roles and the tremendous
volume, it would be evident that dams contribute to great deal to human beings. Dams
are important our resource, therefore we need to keep sustainable use of dams and
reservoirs. Then, the question is what is a crucial obstacle for making it possible? The
answer is the reservoir sedimentation problem.

With the nature of reservoirs, they store not only water but also sediment coming
from upstream reaches. One example in Japan is shown in fig. 1.1. The photos clearly
exhibit the progress of reservoir sedimentation in 36 years after dam completion. The
current worldwide storage loss and annual sedimentation rate are estimated to be 570
km3 (12%) and 31 km3/year(0.52%/year) respectively (Sumi and Kantoush, 2011).
This fact implies that without additional measures against the sedimentation problem,
the total capacity of reservoirs would be decreased to less than half by 2100. Since a
dam becomes useless when the reservoir is filled with sediment completely, stopping or
mitigating sedimentation in reservoirs is a major task for long-term use of them.

Beside the storage loss noted above, sedimentation can cause other problems.

1. Damages to turbines and loss of hydropower production

Water with the high sediment or suspended load concentration results in sediment
blockage of dam outlet structures, that might impede appropriate dam operation.
In addition, sediment makes hydropower turbines damaged (Auel, 2014; Cesare
et al., 2001).

2. Downstream impacts

Due to the trap of sediment at reservoirs, downstream reaches suffer from sediment
shortage that causes channel erosion and ecosystem deterioration, well known as
hungry water (Grams et al., 2007; Kondolf, 1997; Kondolf et al., 2014; Ma et al.,
2012; Schmidt and Wilcock, 2008; Singer, 2010). Furthermore, the reduction in
sediment volume transported to coastal areas lose the balance of sediment budget
with coastline recessed (Gaillot and Piegay, 1999).

Japan is one of the countries where is suffering from a severe sedimentation prob-
lem. There are roughly 3,000 large dams in Japan, the forth greatest number in the
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Dam completion

↓

23 years later

↓

36 years later

Fig. 1.1 Progress of sedimentation.

world. Due to a high sediment yield associated with the topographical, geological and
hydrological conditions, the progress of sedimentation in Japan is severe. Generally,
dams in Japan are allocated extra storage for catching sediment for 100 years without
limiting their functions. The examination for 974 dams carried out in 2004 by the
Japanese Ministry of Land, Infrastructure and Transport (MLIT), reports that the
sedimentation rate in average is 8%, and the rate is as expected (Hakoishi and Sakurai,
2013). Even though the rate is expected value, considering the fact that around 50
dams experience their allocated storage for sediment filled (MLIT) and large part of
dams were constructed approximately between 1950 and 1960 (period of high economic
growth), we are required to take some measures urgently (Sumi et al., 2004).

1.2 Objective and motivation

Sediment bypass tunnels (SBTs) is a leading technique to mitigate reservoir sedimen-
tation. This system connects the upstream and downstream of a dam and bypasses
sediment-laden flood to downstream. SBTs are operated mainly in Japan, Switzerland,
and Taiwan and regarded as a promising measure in the aspect of sedimentation
mitigation efficiency and good impact on the downstream reaches. However, a topical
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problem on operating SBTs is severe invert abrasion caused by a combination of high
flow velocity and sediment transport rate.

This study aims at revealing bedload transport movement inside of SBTs by
conducting bedload monitoring. Understanding bedload transport must contribute on
elucidation of the relation between bedload transport rate and the consequent invert
abrasion. This is useful to predict abrasion depth under the given conditions, i.e.,
tunnel dimensions, bypass discharge, and invert lining material, and thus to think the
better SBTs design, operation, and maintenance.

We used an indirect bedload monitoring system called an impact plate in this
study. This is because direct monitoring in SBTs is impossible due to the intensive flow
condition there. Impact plates register the acoustic and acceleration signal induced by
sediment particles impact as a proxy of bedload transport rate. A large part of the
study was dedicated to make a statistical model converting the signals to sediment
transport information, i.e., grain size and bedload transport rate.

In this study, for the systematic modeling, I separated the analysis into three phases:
signal cleaning, feature extraction, and modeling. This classification makes it easier
to chose appropriate methods for analysis. In this process, I used data obtained from
several laboratory experiments and on-site experiments at the Koshibu Dam SBT in
Japan. Finally, sediment transport movement during the Koshibu Dam SBT operation
is unveiled by using the model obtained here.

1.3 Outline of this thesis

The goal of this thesis is to provide guidance for designing, maintaining, and operating
SBT appropriately with regard to reduction in the volume of invert abrasion with
keeping the bypassing efficiency. For that, we improved existing bedload monitoring
systems and output data analyzing methods so that the system works in SBT where
sediment flux is extremely high. Then, the relation between spatiotemporal appearance
of sediment flow and the consequence abrasion is investigated with actual observation.

Chapter 2 demonstrates the standpoint of SBTs in many measures against the
reservoir sedimentation problem. Then, the structure of SBTs and related tasks that
should be studies are listed up. I pick up an abrasion problem and explain the
importance of bedload monitoring during SBTs operation. Finally, the Koshibu Dam
SBT, our study field, is introduced.

Chapter 3 explains the general principle of surrogate bedload monitoring and see
the existing systems with literature revews. Also, published methods for analyzing
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obtained data by the systems are discussed. Then, we introduce the novel device called
Impact Plate, which is developed for making high sensitivity and toughness possible.
Finally, the direction of our approach of data analyses is stated; making a model that
has both high expressivity and interpretability through systematic process.

Chapter 4 consists of two part. The former illustrates measurement setup with
impact plates. Laboratory and on-site experimental condition and the data obtained
are illustrated.

The latter describes the signal analysis approach in this study. Here, the chapter
emphasizes the importance of regarding analyses for surrogate bedload monitoring as
not only in Sedimentology but also in Signal Processing. It enables us to use various
techniques created in the field of Signal Processing. In particular, at least, we should
aware of and keep a systematic process of signal processing, namely, signal denoising,
feature extraction, and then, analysis.

Chapter 5 investigates the data obtained from impact plates for better denoising
methods and feature extraction than that currently exploited. Given such characteristics
of the signals as non-periodicity and possession of abrupt changes, we applied the
Discrete Wavelet Transform to denoise signals. For feature extraction, we inherited a
conventional one used in Japan called the Pulse Count method. The data used in the
section was obtained through flume and field experiments.

Chapter 6 models to convert the extracted features to sediment transport rate and
grain sizes. In order to make a model that has general applicability including SBTs and
various natural rivers, the statistical approach called Gaussian Processes (GPs) was
chosen. Pronounced advantages of GPs are their high expressivity and interpretability.
The section shows models using GPs yield much better performance than that with a
conventional simple approach, i.e., linear regression. Additionally, we demonstrate that
the high interpretability of GPs makes extrapolation from data of flume experiments
to that of actual SBTs operation possible.

In chapter 7, firstly the Koshibu Dam SBT operations in 2016 - 2019 are shown.
Then, the model developed in the preceding two chapters is applied to some of the
observed data. Results illustrate the temporal change of grain size and bedload transport
rate during the SBT operation with the estimate uncertainty. These observation and
analysis firstly enabled us to know spatiotemporal movement of sediment transport
inside of an SBT.

Chapter 8 discusses two topics: surrogate bedload monitoring and the abrasion
problem. About the first topic, we again highlights the advantages of using methods
having high expressivity, and improvement to be done in future work. In addition,
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the expected problems for applying the model to data obtained in natural rivers and
required experiments for dealing with that are noted. On the second topic, on the basis
of our findings in the last two chapters, we suggest several things for better designing,
maintenance, and operation of SBTs.



Chapter 2

Sediment Bypass Tunnels

There are many measures against the reservoir sedimentation problem. In general,
the measures are classified into three on the basis of their approaches: sediment
yield reduction, sediment routing, and sediment removal. This chapter clarifies the
standpoint of SBTs in the classification. Even though SBTs have advantages over others
in the aspect of favorable impact to downstream environment and semi-permanent
sedimentation mitigation, still there are many unknown issues on them. Among them,
the invert abrasion problem is picked up and the importance of bedload monitoring
inside of SBTs is argued. At last, the Koshibu Dam SBT in Japan, my study field, is
introduced.

2.1 Measures against reservoir sedimentation

There are many techniques for addressing the sedimentation problem for reservoirs
(Morris and Fan, 1998, e.g.). In general, those are classified into three groups, also as
in fig. 2.1 (Okano, 2005; Sumi et al., 2004).

1. Sediment yield reduction

Measures in this group reduce incoming sediment from upstream reaches to a
reservoir. Although nothing is better than reducing sediment yield from the
upstream mountains by forestry conservation, this is not easy with regard to
economic and technical aspects. Instead of the approach, one standard way is
building a check dam at the upstream end of a reservoir. Recently, sediment
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replenishment with sediment stored in the check dams has been attracting
attentions (e.g. Kantoush et al., 2010).

2. Sediment routing

The next approach is routing sediment coming from upstream to downstream areas
without letting sediment enter reservoirs. In this group, three major methodologies
exist: bypassing sediment coming from upstream to downstream reaches directly
with diverting and tunnel structures (sediment bypassing); flushing sediment
from dam outlets by decreasing reservoir water level during flood events using
the consequent increase of the dragging force (sluicing); flushing flood water with
sediment from dam outlets without decreasing the reservoir water level but owing
to their high density (venting of turbidity currents).

3. Sediment removal

The last option, in the case that the precede two approaches do not work,
is removing sediment from reservoirs. Excavating, dredging, and flushing are
possible ways. Excavating and dredging remove sediment from a reservoir with
heavy machinery so they are similar, but the target location in a reservoir is
different; the former focuses on upstream region of a reservoir where is partially
dried up artificially, to the contrary, the latter does middle to downstream area
with pump-up apparatus. Flushing, less common than others but effective, output
sediment with the same principle as that of sluicing. The difference is attempting
to flush not only newly incoming sediment by a flood but also pre-deposited
sediment in the reservoir, thus normally complete drawdown is required.

2.2 Sediment bypass tunnels

Although every technology has certain pros and cons and suitable reservoir properties
(Sumi, 2013), sediment bypassing using Sediment Bypass Tunnels (SBTs) is a promising
choice (Auel and Boes, 2012; Kashiwai et al., 1997; Sumi et al., 2004; Vischer et al.,
1997). In general, an SBT consists of a tunnel, inlet gate, outlet, and weirs located at
the upstream of a dam to divert flood into the tunnel as shown in fig. 2.2 (Auel and
Boes, 2011a). The terminology of SBTs is still not clearly defined, it is understood that
SBTs are mainly operated in Japan, Switzerland and Taiwan, as listed in table 2.1.
Note that the first SBT in the world would be at the Nunobiki reservoir. Just eight
years after the dam was completed the SBT was constructed, and this still works
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Fig. 2.1 Reservoir sedimentation countermeasures (adapted from Sumi et al. (2004)
and Boes et al. (2014)).

effectively. It is estimated that without the SBT, the reservoir would have been filled
with sediment by 1925. Another case, the Asahi SBT in Japan reported by Fukuroi
(2012), is shown in fig. 2.3. Obviously, a large part of incoming sediment was bypassed
by Asahi SBT, hence the accumulated sedimentation volume is lowered. The use of
SBT would redistribute approximately 77 to 94% of incoming sediment (Auel et al.,
2016).
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Fig. 2.2 A sketch of a sediment bypass tunnel.

Fig. 2.3 Effect on the reduction of reservoir sedimentation by the use of bypass tunnel
(adapted from Kataoka (2003)).

There are technical and ecological benefits in using SBTs over other methods.
Technically, we can use SBTs without drawdown thus the economic loss of water users
is limited. Although the high initial cost can not be ignored, the technology might
be regarded as semi-permanent mitigation of the sedimentation. Furthermore, if a
new dam is designed with an SBT from the stage of planning, economic efficiency and
equability would be better (Auel et al., 2017b; Facchini et al., 2015; Martín et al., 2015).
SBTs are also favorable to downstream ecology because they do not incur sudden
change in sediment concentration unlike that by flushing; the downstream reaches
receive flood water that presents more natural characteristics. For promoting SBTs and
sharing the exiting problems with dam owners and researchers, International Workshop
on Sediment Bypass Tunnels is held every two years since 2015 (e.g. Boes, 2015).
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Nevertheless the advantages of SBTs over other measures, there are still few appli-
cations in the world. The primal reason for that is a lack of knowledge for designing,
operating, and maintaining SBTs properly, so is cost effectiveness. Kubota (2017)
summarized the research topics and problems related with SBTs as in table 2.2.

Table 2.2 Research topics and problems related with SBTs.

Target Research topics or problems

Tunnel

Selection of an optimal bypass tunnel route
Determination of bypass discharge
Design of tunnel the cross section shape
Invert abrasion problem

Diversion weir

Determination of diversion rule
Necessity of check dams in the immediate upstream reaches
Design of the diversion weir
Diversion weir abrasion problem

Inlet Design of inlet structures
Inlet abrasion problem

Outlet Design of outlet structures
Outlet abrasion problem

Upstream reaches
Determination of inflow discharge to the reservoir
Estimation of inflow sediment volume to the reservoir
Grain size distribution of the inflow sediment

Downstream reaches Monitoring grain size distribution and environmental effect
Prediction of impact on downstream environment

2.3 Invert abrasion problem

As in the table, abrasion is severe problem related to most parts of an SBT. In particular,
hydro-abrasion on the tunnel invert caused by a combination of high sediment transport
rate and high flow velocity is a serious problem on which maintenance cost depend.
Figure 2.4 shows severely damaged invert in the Asahi Dam SBT. The owner, Kansai
Electric Power Co., Inc., is required annual rehabilitation works to fix it (Nakajima
et al., 2015). However, countermeasures are not well established because the relation
between sediment transport distribution and the consequent abrasion is not clear.

It is reported that most existing SBTs are affected by invert abrasion. Indeed, in
the 2nd International Workshop on SBT held in Kyoto, Japan, the three tasks which
should be elucidated for addressing the abrasion problem were identifie:

task1 How bedload is transported in SBTs.
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Abrasion in Asahi 
SBT, Japan

Fig. 2.4 Invert damages at Asahi dam SBT in 2011.

task2 How bedload gives an impact on inverts.

task3 What kind of countermeasures are effective.

To elucidate them, first of all, bedload monitoring in SBTs is important because
the volume of abrasion is highly related with the invert strength and bedload transport
rate (Auel et al., 2018). Therefore, primary, this thesis is devoted to clarify task1 by
developing a bedlod transport monitoring system and apply this for the Koshibu dam
SBTs in Japan. Then, I investigate the relation between the bedload observation and
measured invert abrasion to know task2. On the basis of above works, finally, I give
suggestion to improve SBTs design, operation and maintenance for reducing abrasion
with keeping the bypass efficiency. This might contribute to task3).

2.4 The Koshibu Dam sediment bypass tunnel

The Koshibu dam is located at the Koshibu river catchment in Nagano prefecture,
Japan, and is operated by the Ministry of Land, Infrastructure, Transport and Tourism
(MLIT) for flood prevention, water supply and hydropower generation. The dam was
built on 1969, and is 105 m high with a crest length of 293.3 m. The catchment area
is 288 km2 and mostly covered by forest and sediment supply prone area. Moreover,
the reservoir received enormous severe floods and thus rapid sedimentation rate has
been an issue for the dam management. Indeed, on 2015, the sedimentation volume
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exceeds 15.6 Million m3almost reaching to 20.0 MCM of original designed sedimentation
capacity.

Considering the proceeding Koshibu reservoir sedimentation, MLIT initiated the
construction of the Koshibu dam SBT and the first operation was successfully achieved
between 21st and 23rd of September 2016. The length of the SBT is 3,982 m with
a cross section of circular shape and a plain invert with a slope of 2 %. The width
and height are 5.5 m and 7.9 m, respectively. Most of the parts are rectilinear tunnel
but the last approximately 600 m from the outlet is curved on the orographic right
direction (Radius = 1000 m). Most of the tunnel invert is paved with the high strength
concrete (50 N/mm2), particularly in the first 20 m where is in the inlet facility and
the next 30 m where the tunnel inclination is relatively high for accelerating incoming
flow are reinforced with rubber-steel and steel-lining material respectively. Figure 2.5
shows the plan view of the Koshibu Dam SBT with location relation of the SBT inlet,
outlet, tunnel, diversion weirs, and the Koshibu Dam body. A view from immediately
downstream place to the SBT inlet and dam body is shown in fig. 2.6.

Koshibu 
Dam

Sediment bypass tunnel (4000 m)

SBT Outlet

SBT Inlet

Diversion 
weirs

Fig. 2.5 The plan view of the Koshibu Dam SBT.
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Fig. 2.6 The Koshibu dam and the SBT outlet.





Chapter 3

Surrogate Bedload Transport
Monitoring

In the precede chapter, I highlighted the importance of bedload monitoring in SBTs.
For doing that, however, I face a problem, too high sediment flux to monitor them
directory. In such a situation, surrogate bedload monitoring is very attractive because
they monitor bedload indirectly: via acoustic energy, vibrations caused by sediment
impact on the river bed. In this chapter, the newly developed device called the Impact
Plate is introduced followed by the introduction of existing surrogate monitoring
systems. In addition, I roughly describe the history of Japanese techniques, because
despite of the number of studies for decades, few study has published in English.

3.1 Surrogate monitoring

The study on bedload monitoring has been done for more than 100 years for disaster
prevention. For the monitoring, the most simple and reliable is direct measurement. As
a direct bedload transport rate (hereafter, BTR) measuring system, sediment samplers
have been used for decades (Bunte et al., 2004; Helley and Smith, 1971; Reid et al., 1980).
Nevertheless, despite the high reliability of the sampling systems, their disadvantages
include their time-consuming and laborious nature and their ineffectiveness under
conditions of high flow velocity and transportation of coarse sediment. Needless to say,
SBTs are one of such places, where the maximum water velocity reaches 10 m/s and
a wide diameter range of transported gravel prevails (Auel, 2014). To overcome the
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inconvenience of samplers, recent studies have attempted to collect indirect bedload
transport observations by developing different bedload surrogate monitoring techniques
(Gray et al., 2010; Mizuyama et al., 2010a; Rickenmann and McArdell, 2007).

Surrogate monitoring techniques record naturally generated signals caused by
moving bedload particles, e.g., acoustic energy and vibration. These techniques
generally consist of such sensors as microphones, hydrophone, accelerometer, and
geophones placed on a steel box or pipe. Subsequently, they record acoustic or
acceleration data generated by particles as they collide with each other, which are used
to measure the bedload transportation properties by our analyses. These surrogate
monitoring systems yield continuous bedload monitoring, and previous applications
have covered a wide range of riverbed conditions. Further advantages include the
relatively low maintenance cost and low interference with the water flow or bedload
transportation (Rickenmann, 2017b).

Number of studies have been devoted for the improve of surrogate bedload monitor-
ing systems. To know the history and proposed systems, Gray et al. (2010); Rickenmann
(2017b) are comprehensive and detailed references. Among the number systems, in
the next section, I pick up two, namely Swiss Plate Geophone and Japanese Pipe
Microphone because these already apply to many rivers not only for academic but also
for practical purposes.

3.2 Existing surrogate monitoring

3.2.1 Swiss Plate Geophone

The Swiss impact plate geophone (hereafter termed SPG) was developed in the early
1980s by a Swiss research group at the Swiss Federal Institute for Forest, Snow
and Landscape Research (WSL) and the Laboratory of Hydraulics, Hydrology and
Glaciology, Swiss Federal Institute of Technology (VAW). The SPG consists of a 50 cm
by 36 cm steel plate with a geophone sensor (Geospace GS-20DX, manufactured by
Geospace Technologies, Houston, TX) mounted underneath. The sensor is embedded
in a steel frame and installed directly in a riverbed. A similar impact sensor, consisting
of a metal plate with an accelerometer, has also been demonstrated to work effectively
(Reid et al., 2007; Tsakiris et al., 2014). It is also recommended to make observations
using two or more sensors to gain detailed information on bedload transport (Beylich
and Laute, 2014; Mao et al., 2016). Recently, validation studies of bedload surrogate
monitoring systems in flume experiments have been done, suggesting their usefulness
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for field observations in natural rivers. Numerous studies have been summarized in
several recent reviews (Gray et al., 2010; Rickenmann, 2017a).

In particular, the SPG has been extensively used in European countries, especially
in the mountainous areas of Switzerland, Austria, and Italy (Rickenmann, 2017b;
Rickenmann et al., 2014). The SPG estimates the BTRs based on the plate vibration
caused by passing sediment and recorded by the geophone sensor. At the Erlenbach
Stream in Switzerland, field observations were done, and a high correlation between long-
term BTRs and the SPG output was confirmed (Rickenmann et al., 2012). Furthermore,
the SPG is resistant to the impact of sediment; therefore, installation of an SPG on
the invert of an SBT is feasible. An SPG system was installed in an SBT for the first
time at the Solis dam and has been in operation since 2012 (Auel and Boes, 2011b;
Hagmann et al., 2015). However, it has also been found that the SPG cannot detect
fine sediments with diameters smaller than 1 to 2 cm (Rickenmann et al., 2012, 2014;
Wyss et al., 2016a,b). To clarify the effects of abrasion on the SBT invert, the grain
size of the particles making contact is important, as the amount of abrasion on the
invert not only depends on the sediment flux but also on the grain size (Auel, 2014).

3.2.2 Japanese Pipe microphone

In addition to the SPGs in Switzerland, another similar indirect BTR measuring system
was developed and is widely used in Japan, namely, the Japanese pipe microphone
(hereafter termed JPM) (Mizuyama et al., 2010a,b). The JPM consists of a metal pipe
installed directly in a riverbed. When gravel and sand particles pass over the pipe,
the number of colliding particles is counted based on the number of impulses in the
sound pressure over time. The JPM system is already installed in some rivers in Japan,
e.g., the Yodagiri and Koshibu rivers, and bedload transport observation is done at
the Hodaka Sedimentation Observatory, DPRI, Kyoto University (Tsutsumi et al.,
2010). The studies at the observatory reveal that the JPM can detect sediment with a
diameter larger than 2 mm. However, the JPM often underestimates the bedload when
particle impacts are successive and overlap. Moreover, the pipe has a small dimension
in the flow direction (pipe diameter of 48.6 mm), resulting in particles jumping over the
pipe. Additionally, the JPM deforms easily when hit by large stones, which negatively
affects the sound collection



20 Surrogate Bedload Transport Monitoring

Fig. 3.1 Japanese Pipe Microphone (JPM). Left: a cross section of JPM installation.
Right: A JPM installed on river bed.

3.2.3 The history of surrogate monitoring in Japan

Since the concept of surrogate monitoring was proposed by Taniguchi et al. (1992),
many studies have been published in the field of erosion control (Sabo works) headed
by JPM (called just hydrophone in japan) . In addition, JPMs already apply more than
300 sites for practical purposes. Even though the active studies of surrogate monitoring
in Japan, few study has published in English, for example, Goto et al. (2014); Koshiba
et al. (2018); Mizuyama et al. (2010a,b); Uchida et al. (2013) and Tsutsumi et al.
(2018). In particular, there is no information of the sound pressure integration method
in English, which is a de facto standard method in Japan to convert obtained signals to
BTR. Therefore, I briefly go over the history and development of surrogate monitoring
in Japan in this section.

The first application of a surrogate bedload monitoring system was reported by
Kurihara and Miyamoto (1992). Considering several surrogate media of bedload
transport, e.g., infrared light, and dielectric constant, they finally decided to use a
microphone set in a steel pipe. The signal processing used in the study was already
almost same as the current one using impulses with five levels of amplification factors
(see section 5.2.1). The study experimentally found that the momentum of sediment
and the recorded signal in magnitude has positive correlation. Following the study,
JPMs have installed several sites for a long-term continuous observation for example in
Mt. Rokko (Mizuyama et al., 1996), and the Joganji River (Mizuyama et al., 2002).
They reported JPMs were promising because the temporal variation of relative sediment
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transport magnitude can be visualized by the inexpensive system. At the same time,
however, they faced several difficulties for example in determining the appropriate
number of amplification factors and a threshold with regard to water noise removal and
finding the best pipe length. In particular, addressing reduction in impulses caused by
dense signals in high sediment transport rate, Mizuyama et al. (2008) proposed the
use of acoustic pressure. In the study, it was confirmed that the integrated acoustic
pressure, the mean of acoustic pressure in a second registered every 200 ms, mitigates
the problem.

Since the end of 2000s, some studies tried to quantify sediment transport rate.
Nakatani (2009) made a regression model to estimate bedload transport rate with
impulses with an amplification factor 16 and flow velocity. One method exploited in
Japan widely is the integrated acoustic pressure method developed by Suzuki et al.
(2010, 2013). This method is rather a phenomenological than a statistical approach
and this has become a de facto standard to convert impulses by JPMs to sediment
transport rate.

Finally, I argue several problems in present circumstances in Japan. Although
there are many studies above, the fundamental part, impulse counting, depends on
an analog signal processing that is in a black box. Therefore, it does not enable us to
reproduce the process on computers and compare with other studies overseas. Also, the
process has not improved significantly since the idea was firstly suggested in Kurihara
and Miyamoto (1992) notwithstanding the improvement of speed and capability of
our computers over the past decade. Another problem is few information on real
observation in practical applications. Many sediment transport rates in rivers are
reported but the computation processes are unclear.

3.3 Impact plate

For BTR monitoring in SBTs, the grain size distribution of the transported sediment
is important because grain size and the number of particles are required elements for
calculating the amount of abrasion using Ishibashi’s formula, which is widely used
in Japan (Auel et al., 2018; Ishibashi, 1983). Moreover, the installation costs should
be limited for a surrogate bedload measurement system because the combination of
multiple systems can realize a wide spatial bedload distribution in SBT, e.g., the cross-
sectional bedload transport distribution. Therefore, an impact plate with a microphone
has been selected for this study, considering both the robustness of plate-type systems
and the JPM’s ability to detect particles of Ds > 2 mm. Moreover, an acceleration
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sensor was mounted to the plate to compare the sensitivity with that of the microphone.
The acceleration sensor is different from the traditional geophone sensor mounted on
the SPG.

The Impact Plate (IP), manufactured by Hydrotech Co., Ltd. (Japan), was devel-
oped as an alternate surrogate BTR measurement system to overcome the disadvantages
of the Japanese pipe microphone (Koshiba et al., 2018). The impact plate consists
of a steel plate with the same dimensions as for the SPG system, a microphone, and
an acceleration sensor. The same microphone model as for the JPM is mounted to
the plate, and it registers microphone signals produced by the impact of sediment
particles on the plate. The impact plate is expected to record the impact of small
gravel particles with diameters of approximately 2 mm, which the JPM can detect, to
ensure resistance to the impacts of coarse sediment.

Fig. 3.2 An Impact Plate. Left: top view of an IP. Right: the back side of an IP with
a microphone and accelerometer.

fs = 50 kHz

Fig. 3.3 A signal obtained recorded by an IP when a 10 mm gravel hit on the plate.

Another sensor is the acceleration sensor, which has already been used for bedload
monitoring in several studies (Beylich and Laute, 2014; Møen et al., 2010; Reid et al.,
2007; Rickenmann, 2017b; Rickenmann et al., 2017; Tsakiris et al., 2014). The impact
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plate also includes an acceleration sensor (GH-313A, which serves as a sensor, and
GA-223, which functions as a converter; manufactured by KEYENCE, Japan), which
improves the measurement by recording data simultaneously with the microphone.
This concept originated from an attempt to replace the SPG ’s geophone sensor with a
sensor with a higher response frequency. It is likely that a sensor with a higher response
frequency is more suitable for use on a rigid steel plate for detecting smaller grains
than are detectable by a geophone sensor, which was designed for the observation of
low-frequency seismic signals. The geophone sensor (20DX geophones) has a natural
frequency of 10 Hz and flat response frequencies in the range of approximately 20 to
500 Hz, which are classified as ultralow frequencies (Roth et al., 2016; Wyss et al.,
2016a). The frequency response of the replaced acceleration sensor is much higher, i.e.,
0.1 to 80 kHz. Due to this difference, it might be expected that the acceleration sensor
is more suitable than the geophone, especially for small bedload sediment fractions,
because it has been reported that the dominant frequency of raw data of the signals
produced by sediment impact increases as the sediment grain size decreases (Møen
et al., 2010; Wyss et al., 2016a).

The impact plate consists of four parts: a steel plate, a microphone, an acceleration
sensor, and a data logger. The steel plate is 49.2 cm in width, covering the whole flume
width to allow all the test particles to pass over the plate, 35.8 cm in length in the flow
direction and 1.5 cm in depth, being identical to the SPG(Rickenmann et al., 2014).





Chapter 4

Methodology

Impact plates are working for bedload monitoring at the Koshibu SBT since 2016. My
goal is quantifying bedload transport rate and grain size during the SBT operations.
For making a model to accomplish the goal, I carried out several laboratory and on-site
experiments. Modeling introduced in the following chapters was done through the data
collected in the experiments. This chapter illustrates the detail on the experiments
and general findings on the raw data collected .

4.1 Measurement setup

Experimental data were collected by two set of flume experiments and one on-site
experiment at the Koshibu dam SBT (about the Koshibu dam SBT, see section 2.4). A
series of experiments was done to collect signals produced by various particles colliding
with the plate under various flow conditions.

4.1.1 Laboratory flume experiments

Flume experiments were done in a flume facility at the Laboratory of Hydraulics,
Hydrology and Glaciology (VAW) of ETH Zurich, Switzerland (Koshiba et al., 2018),
and Public Works Research Institute (PWRI), Tsukuba, Japan. On the both tests, an
IP was placed at the outlet of a fixed bed flume. In every experiment, gravel particles
were transported along a flume, detected by the IP and captured using a basket. Both
IPs were the one introduced in section 3.3, having a microphone and an accelerometer.
A computer records the signals detected by the acceleration sensor and microphone
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sensor of the steel plate during each test with a sampling frequency fs of 50 kHz. The
plate was affixed to the flume using four screws and acoustically isolated using a rubber
material to minimize the detection of vibrations from the flume structure. Figure 4.1
shows the downward facing side of the plate, where the smaller sensor represents the
acceleration sensor and the microphone is connected to the steel pipe by a 90° angle
pipe piece.

Fig. 4.1 Impact plate mounted below the steel plate in the test flume at ETH.

The experimental conditions conducted at ETH and PWRI are listed in table 4.1
and table 4.2 respectively.

All gravel particles used in the experiments were sampled from natural rivers, and,
thus, had various shapes, including round, irregular, and angular shapes. The sediment
was sieved in the laboratory to five uniform grain size fractions. According to the
average weight and grain size , the sediment particle density can be calculated as ρs =
2700 kg/m3. The number of particles for each release, Pn, in the tables was calculated
on the basis of these parameters. A predefined sediment weight, W , was used for two
small grain sizes, i.e., Ds = 2 mm and 5 mm. For Ds = 10 mm, 20 mm, 50 mm, and
100 mm, a fixed number of stones was added manually to the flow every five seconds.

Experimental flume at ETH

The experimental setup consisted of an elevated water supply tank that discharges
water through a jetbox (Schwalt and Hager, 1992) to a rectangular glass-sided flume
with inner width, height, and length dimensions of 0.50, 0.60, and 7.56 m, respectively
fig. 4.2. The jetbox enables regulation of the flow depth by vertically moving the
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Table 4.1 ETH Experimental conditions (conducted at ETH.

Flow Sediment
Case Q V h Fr Ds W Pn Repeat
No. [m3/s] [m/s] [cm] [-] [mm] [g] [-] [times]
E1 0.10 2.5 8.0 2.82 2 50* 3100 50
E2 0.10 2.5 8.0 2.82 5 50* 350 50
E3 0.10 2.5 8.0 2.82 10 40 20* 50
E4 0.10 2.5 8.0 2.82 50 620 20* 50
E5 0.10 2.5 8.0 2.82 100 29376 20* 43
E6 0.18 4.5 8.0 5.08 2 50* 3100 49
E7 0.18 4.5 8.0 5.08 5 50* 350 49
E8 0.18 4.5 8.0 5.08 10 40 20* 50
E9 0.18 4.5 8.0 5.08 50 620 20* 50
E10 0.18 4.5 8.0 5.08 100 29376 20* 48
E11*** 0.10 2.5 8.0 2.82 50, 100 1516, 7344 10*, 5* 10
E12*** 0.18 4.5 8.0 5.08 50, 100 1516, 7344 10*, 5* 10
E13*** 0.10 2.5 8.0 2.82 5, 10 25*, 25* 175, 12.9 10
E14*** 0.18 4.5 8.0 5.08 5, 10 25*, 25* 175, 12.9 10
E15*** 0.10 2.5 8.0 2.82 5, 10, 50 25*, 25*, 416** 175, 12.9, 3* 10
E16*** 0.18 4.5 8.0 5.08 5, 10, 50 25*, 25*, 416** 175, 12.9, 3* 10

* W and Pn with the symbol are accurate measured values, others were calculated.
** Mean weight.
*** Mixed grain size test.

opening. The discharge was controlled using a gate valve, and a magnetic discharge
meter was mounted inside the piping unit of the water supply pump. The flow depth,
h, was kept constant at 0.08 m, with the jetbox located at the entrance of the flume,
whereas the water velocity was varied between two levels by controlling the flow
discharge.

Experimental flume at PWRI

A special flume was prepared for conducting experiments with high flow velocities up
to 10 m/s. The flume measures 10 m in length and 0.5 m in width and height with an
inclination 1/50. Water was supplied from a nozzle with 0.2 m in width and 0.5 m in
height.
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Table 4.2 Experimental conditions (conducted at PWRI).

Flow Sediment
Case Q V h Fr Ds W Pn Repeat
No. [m3/s] [m/s] [cm] [-] [mm] [g] [-] [times]
P1 1.0 8.7 23 18.3 2 100* 5300 5
P2 1.0 8.7 23 18.3 2 200* 10600 5
P3 1.0 8.7 23 18.3 2 300* 15900 5
P4 1.0 8.7 23 18.3 2 400* 21200 5
P5 1.0 8.7 23 18.3 10 56.7** 20* 50
P6 1.0 8.7 23 18.3 20 360.1** 20* 50
P7 1.0 8.7 23 18.3 50 2529.5** 10* 50

P8*** 0.5 4.8 23 10.5 2, 5, 10
20 , 50

100*, 100*,
100*, 100*, 503

5300, 380,
36, 6, 2* 3

P9*** 1.0 8.7 23 18.3 2, 5, 10
20 , 50

100*, 100*,
100*, 100*, 503

5300, 380,
36, 6, 2* 3

P10*** 0.5 4.8 23 10.5 20, 50,
100

124.8, 1006,
3340.8 8*, 4*, 2* 3

P11*** 1.0 8.7 23 18.3 20, 50,
100

124.8, 1006,
3340.8 8*, 4*, 2* 3

* W and Pn with the symbol are accurate measured values, others were calculated.
** Mean weight.
*** Mixed grain size test.

Fig. 4.2 Schematic view of the laboratory test flume at ETH.
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4.1.2 Observation at the Koshibu SBT

Figure 4.3 shows the arrangement of measurement devices at the outlet. Five IPs named
t15 are mounted in order to measure the cross sectional distribution of transported
sediment. Moreover two additional IPs are mounted, t12 and t15 inclined. Original IPs
(t15) have the thickness of 15 mm, while t12 stands for that with the thickness of 12
mm. The IPs named t15 inclined has the same dimensions as original one, while the
plate is inclined with 10 degree. These were employed for comparative study with the
original impact plates to investigate the difference of detection efficiency due to the
different thickness and inclination respectively. In particular, the increase of sensitivity
by inclining a plate is confirmed in Auel and Boes (2011b). I chose the inclination
angle of 10 degree according to the study where the value showed the highest detection
rate. In addition, to compare the experimental results with existing studies on JPMs
were also employed for the observation. As in fig. 4.3, two JPMs were installed both
left and right sides and the geophone sensors were mounted underneath the plate 3, 6,
and 7 in addition to the microphone and the acceleration sensor.

Hereafter, IPs numbered one to five, t12, t15 inclined, JPMs numbered one and two
are referred as IP1 to IP7, JPM1, and JPM2 respectively.

Fig. 4.3 Plan view of the bedload measurement apparatuses on the Koshibu dam SBT.
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4.1.3 On-site experiment at the Koshibu SBT

For calibrating the impact plates, a series of field experiments were conducted at the
Koshibu SBT by artificially flush sediment over the impact plates. Figure 4.4(a) is a
photo taken at the outlet where five impact plates are installed (see also section 2.4).
As in table 4.3, 10 cases of experimental conditions were tested varying grain size,
sediment volume, and water discharge, fig. 4.4(b) exemplifies sediment placed in the
tunnel. At Case K8 and Case K10, sediment consists of mixed grain sizes were tested
so that all grain sizes are included with a 3 m3of volume for each. The grain sizes
were determined on the basis of the Koshibu SBT’s design that only sediment smaller
than 100 mm in diameter was planned to be bypassed by collecting larger sediment
particles at a divert equipment nearby the inlet. The test sediment was derived from
the quarrying area in the immediate downstream of the inlet and carried by a dump
truck into the tunnel just before every runs.

1 2 3 4 5

Fig. 4.4 Photos taken during the on-site experiment at the Koshibu SBT. a) Koshibu
SBT outlet. White arrows show the impact plates, b) Input sediment (Ds = 10 mm,
V = 5 m3/s).

For observing uneven flow induced by the tunnel curvature, the 600 m from the
outlet, sediment was placed 800 m upstream from the outlet. The natural riverine
water stored in a pool impounded by diversion equipment was used for the experiment.
In order not to allow sediment in the pool pass into the tunnel during the experiment,
previous gate open operation was conducted for flushing the deposited sediment. Since
the data volume of signals is extremely high and difficult to be stored continuously
with the sampling frequency of 50 kHz, raw waveforms were recorded with the cycle of
five seconds of recording and ten seconds of interval. Several cameras were also placed
at the tunnel inside where sediment was placed and the outlet of the tunnel, flow depth
at the outlet was estimated from the video recorded by the camera.



4.1 Measurement setup 31

Table 4.3 Experimental conditions (conducted at the Koshibu dam SBT).

Case Q Vmean Ds Vs

No. [m3/s] [m/s] [mm] [m3]
K1 10 2.60 10 1
K2 5 1.98 10 3
K3 5 1.85 50 3
K4 5 1.67 5 3
K5 5 2.03 10 5
K6 5 1.87 10 9
K7 20 3.66 10 9
K8* 5 1.89 5, 10, 50 3, 3, 3
K9 20 3.34 10 9
K10* 20 3.98 5, 10, 50 3, 3, 3

The value Vmean is mean flow velocity calculated from measured flow depths
in every second estimated from recorded videos.

* Mixed grain size test.

4.1.4 Examples of raw waveforms obtained

It is important step to see signals obtained prior to analysis for understanding their
visual properties. Figure 4.5 shows signals obtained by the impact plate at the flume
experiment conducted at ETH. Signals registered by a microphone and accelerometer
are shown with five grain sizes. Apparently, the amplitude has an positive correlation
with the grain size of impacted gravels. A microphone tends to output signals with
longer attenuation time than that by an accelerometer. In addition, microphone signals
are affected by water noise especially for small grain sizes. For instance, it is not easy
to separate signal with a grain size 2 mm gravel into water noise and sediment impact
visually.

Overall, signals obtained from an accelerometer look better to analyze grain size
and bedload transport rate. However, this should be evaluated quantitatively through
signal processing techniques and analysis. I continue these analyses with using raw
signals obtained because it might be reasonable to judge that these signals have a lot
of information about sediment transport.
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Fig. 4.5 Raw waveform signals obtained by an impact plate with a microphone and
accelerometer. Signals were obtained from the flume experiment at ETH with a flow
velocity 2.5 m/s.
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4.2 Signal analysis approach

4.2.1 General signal analysis approach

This study aims at estimating bedload transport rate and grain size from signals
obtained from IPs. Figure 4.6 depicts the general flow for signal processing, which
consists of three steps. The first step is signal cleaning to get rid of noise riding on
raw signals. For surrogate bedload monitoring, the noise is often produced from flow
turbulence, hydrostatic pressure fluctuations, and bed-load noise Rickenmann (2017b).
The second step is feature extraction. Here, denoised signals are converted to quantities
presenting an analyzable data size, at the same time, the essence of the data. Impulses
can be regarded as one of feature quantities from sediment signals. Finally, in the
third step, some models are developed to estimate target information from the feature
quantity. Statistical model is major technique for the step including simple linear
regression and machine learning also often called AI (artificial intelligence). Although
this procedure is common to all kinds of data science (e.g. Bishop, 2006; Zheng and
Casari, 2018), studies in surrogate monitoring does not seem to follow that explicitly.

Raw signal Signal cleaning Feature extraction Analysis Grain size 
Sediment volume

23, 45, 12, 155 function

Fig. 4.6 The flow of signal processing.

4.2.2 Literature reviews from the view of signal analysis

I summarized some of existing surrogate bedload monitoring studies from the view of
the above three steps table 4.4. I picked up several studies which were performed with
calibration. This means that I excluded studies which use surrogate monitoring system
without quantifying bedload transport rate and grain size. In the table, cleaning,
feature quantity, and reported correlation are corresponding to the process in fig. 4.6.

For cleaning, band-pass filtering (BPF) and low-pass filtering (LPF) were major
approach. These are methods to remove high frequency region in signals which are
generally regarded as noise. Both filtering are performed using the Fourier Transform
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essentially. This should be noted that close to half the number of studies in the table
did not process signal cleaning. Signal cleaning is an important step for effective signal
processing. In fact recent studies on surrogate monitoring emphasize the possibility
that this step would improve the bedload transport estimate accuracy (Geay et al.,
2017; Krein et al., 2008; Mao et al., 2016; Wyss et al., 2016a). However, this step is
often omitted or carried out with simple methods in the field of surrogate monitoring
due to difficulty in recording raw signals continuously.

For feature extraction, mainly information on spikes, amplitude, and frequency are
used. In table 4.4, I stands for features counting the number of spikes being over a
prefixed threshold allowing for some differences. Some of the studies used I with several
levels of threshold values to obtain information on amplitude distribution. The symbol
A means methods computing mean, max, or integrated amplitude. These might be
represent the energy of a signal caused by impacted gravels. Some representative values
on frequency spectrum F have also used for estimating grain size recently. Generally,
F and grain size present a negative correlation, and this is theoretically supported
by Hertz’s contact theory (Buttle and Scruby, 1990; Tsunoda et al., 1986; Uher and
Beneš, 2012).

For analysis, in general, linear or power law regressions was employed to connect
bedload transport rate or grain size and feature quantities. These were based on physical
knowledge, and thus, highly understandable. A problem is that these regressions are
not generally applicable and require calibrations at each field to estimate site-dependent
parameters. In addition, the number of feature quantities used in the analyses were
also few. It is reported that the bedload transport rate and grain size depend on many
elements, e.g., bedload transport mode (saltation, rolling, sliding), bedload material,
and transmission process of gravel impact through the material enclosing the sensor.
These highly uncertain environment in estimation might cause the low accuracy if the
analysis is done with few parameters or simple regression alone.
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4.2.3 Signal analysis in this study

Notice that it is unfeasible to choose analyzing techniques from the tremendous number
of combinations. Therefore I attempted to narrow them with some criteria. In this
study, I attempted to improve mainly signal cleaning and analysis parts to estimate
bedload transport rate and grain size. As in table 4.4, I used Discrete Wavelet Transform
(DWT) for cleaning signals considering the characteristics of signals provided by gravel
impact. This will be introduced in chapter 5. In feature extraction, the number of
impulses (one of I in the table) was inherited from studies in Japan. For analysis
(modelling), Gaussian Process Regression (GPR) was chosen. For explaining the reason
to select (GPR), the inductive and deductive approaches in analysis should be noted
here.

As demonstrated in fig. 4.7, every data analyses approach has inductive and
deductive aspects (Higuchi, 2012). For long time, it has been regarded that science is
supposed to be deductive, in other words, data analysis should be done on the basis
of a combination of fundamental equations. Indeed, in the field of erosion control in
Japan, proposed methods were strongly based on physics of particle movement and
hydraulic. For instance, impulses were assumed to have proportional relation with
the energy induced by particle collision. Regardless of the high interpretability of
the approach, the adherence to deduction limited the generality and expressiveness
of models particularly in surrogate monitoring on which a great deal of uncertainty
involved.

In contrast, inductive approaches have been booming recently as the increase of
data volume. The representative ones are machine leaning and deep learning which
have high expression power thus we can extract complicated structure in data to predict
information from new data. However, the structure tends to be a black box that is
beyond our understanding. Accordingly, this study attempted to mix both approaches.
Considering some extend of mechanism on sediment movement and hydraulics are
known, I tried to incorporate them into a model. Akaike (1997, chap. 2) and Akaike
et al. (2007) give more detailed and deep insight on modelling, prediction and knowledge
discovery. They highlights the importance in using sufficiently flexible model to capture
the data structure and regarding a priori background knowledge on the data as a part
of the data.

In the following two chapters, I developed a model to estimate sediment transport
rate and grain size with following fig. 4.6. Chapter 5 focuses on signal cleaning and
feature extraction. Then, chapter 6 works on modelling with considering both flexible
expression and interpretability.
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Fig. 4.7 The deductive and inductive approaches in the interpretation of phenomena.
Adapted and modified from Higuchi (2012).

4.3 Data use

Note that signals obtained at real SBT operations in magnitude are often much greater
than that from flume experiments. It implies that application of a model based on
the experiments to real operations might involve extrapolation with much uncertainty
presented. Furthermore, not having accurate sediment volume transported in real
operations, I cannot verify the accuracy of a model. Accordingly, considering that
signals in flume experiments were generally smaller than that in on-site experiments, I
made a model using flume experimental data alone. In this step, an important thing is
adding some a priori knowledge into a model in order to make it possible to use the
model even if extrapolation needed. Then, the ability for extrapolation was verified by
applying the model to data from on-site experiments.





Chapter 5

Signal Denoising and Feature
Extraction

In the preceding chapter, the process of signal analysis was separated into three steps,
namely, signal cleaning, feature extraction, and analyses. This chapter focuses on the
signal cleaning and feature extraction. Regardless of few studies on signal cleaning, this
is an important step to reveal signals’ potential information. According to a particular
feature of signals induced by gravel collision, I employed Discrete Wavelet Transform
for denoising. Finally, I visually check the effect of denoising by drawing denoised
signals and applying dimension reduction with principal component analysis. The
procedure developed in this and the next chapters was applied for data obtained during
the Koshibu dam SBT operations in chapter 7.

5.1 Signal Denoising

5.1.1 Conventional denoising

Signal denoising for surrogate monitoring needs to be concerned with the several kinds
of noise as listed below.

• Water noise

Signals produced by water noise sometimes hinder that by small particle impact,
e.g., (Rickenmann, 2017b). Figure 5.1(a) shows a signal obtained by 50 g of
gravels with a grain size of 2 mm under the flow of 4.5 m/s. Although signal
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increase in magnitude can be slightly seen in the middle part, signals are largely
drown out by water noise.

• Long echo

It is reported that signal overlapping due to long echo (reverberation) time causes
the underestimation of transported sediment (Mizuyama et al., 2010b). Signals
in fig. 5.1(b), induced by several gravels with a grain size of 100 mm under
the flow of 4.5 m/s, markedly provide overlapping. This phenomenon is more
pronounced in microphone signals than in accelerometer signals (Koshiba et al.,
2018). Signal denoising should reduce the echo signals for enabling us to separate
them precisely.

• Signal saturation

When a large gravel hit on a plate, the consequent signal often saturates as in
the first signal in fig. 5.1(b). Evidently, it causes the difficulty of distinguishing
large sediment in grain size. In the use of IPs, Koshiba et al. (2018) found that
gravels having grain sizes of larger than 50 mm are difficult to be distinguished
due to saturation.

Fig. 5.1 Signals with noise. Left: Signals hindered by water noise, Ds = 2 mm, W =
50 g, and V = 4.5 m/s. Right: Signals with overlapping and saturation. Ds = 100
mm, and V = 4.5 m/s.

The most common denoising approach might be the use of filtering with Fourier
Transform (FT). This is the case even in surrogate monitoring, the use of low-
/band- pass filtering are popular. For instance in Japan, an analog data converter
loading a band-pass filter is used to extract signals around 4.5 kHz in the frequency
domain. Recent technology has allowed us to apply more advanced signal processing
techniques. Nevertheless, the filter has been used for more than 20 years without
modifications. Furthermore, essentially, FT is especially suitable for periodical signals
such as cardiogram.
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In this study, I suggest the use of Wavelet transform (WT) istead of FT. The
operation WT was developed for overcoming disadvantages of the FT. The noteworthy
feature of WTs is the congeniality with signals containing non-periodical, noisy, and
transient features. Therefore, with the advantage, WT is often used for anomaly
detection and non-destructive test (Baydar and Ball, 2003; Figlus et al., 2014; Lin,
2001; Markalous et al., 2008). Given the signals by IPs contain the aforementioned
features, WT seems to be a suitable choice to improve denoising.

5.1.2 Wavelet transform

In this section the principle of WT is briefly introduced. Firstly, the continuous wavelet
transform (CWT) is presented with contrasting short-time Fourier transform (STFT).,
then the discrete wavelet transform (DWT), used in the present study, is explained.
The most standard and comprehensive textbook on WT is Daubechies (1992). Kim
and Aggarwal (2000) is one of the easiest but practical tutorial for WT based on the
comparison with FT. Suzuki et al. (1996) gives clear compare of WT and STFT with
focusing on their role as a window function. Depczynski et al. (1997) demonstrates
rather complicated and fundamental theories than others, but helpful due to it’s
practical information.

The operation STFT is a technique to overcome a disadvantage of the Fourier
transform (FT) that the time information is lost in the frequency domain (frequency
spectrum). STFT of function x(t), x = x0 is defined as :

f (t0, ω) =
∫ ∞

−∞
e−iωtw (t− t0)x(t)dt (5.1)

where ω is a frequency and w(t− t0) is a window function. This equation means that
the signal x(t) is split by the window function defined by t0 and the splitted signal is
Fourier transformed. Therefore, STFT can give the frequency spectrum of x(t) around
at t = t0.

Although STFT makes it possible to analyze time variation of frequency spectrum,
it does not allow to obtain both good time and frequency resolutions. This causes, for
example, setting the window short for observing time variation in detail inevitably
invites the reduction of the frequency resolution. This trade-off relationship between
time and frequency resolutions is known as Heisenberg uncertainty principle.
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WT is a technique developed based on the idea to expand and contract the window
function for avoiding the problem in STFT. The CWT is defined as:

CWT(a, b) =
∫ ∞

−∞
ψa,b(t)x(t)dt (5.2)

ψa,b(t) = 1√
a
ψ

(
t− b

a

)
(5.3)

where continuous parameters a and b are dilation and translation factors, respectively,
and ψa,b defined as eq. (5.3) is a function called the mother wavelet. Comparing with
eq. (5.1), STFT can be interpreted as a method to express a signal with the superposition
of sine and cosine curves, whereas CWT expresses that with the superposition of ψa,b.
The mother wavelet, dilated by a and shifted by b, is corresponding to e−iωw(t− t0) in
STFT. The dilation and shift of ψa,b make it possible to apply long time resolution to
low frequency components of the signal and vice versa, hence CWT realizes both good
time and frequency resolutions.

For the preparation of ψa,b, many functions have been suggested and all of them
have different pros and cons, convenient list of wavelets in Rucka and Wilde (2006).
In this study, Daubechies wavelet, one of the most widely used mother wavelets, was
selected to analyze IP signals.

In DWT, the dilation and translation factors (a and b) have discrete values. The
discrete wavelet is defined by discretizing a = 2j and b = 2jk in Eq. 5.1 as :

ψj,k(t) = 2−j/2ψ
(
2−jt− k

)
(5.4)

here, j is a parameter called level which scales the wavelet by every 2 times and k plays
a role of shifting. A remarkable benefit of DWT is the availability of multiresolution
analysis when ψj,k is an orthogonal wavelet (Addison, 2017; Daubechies, 1992). In this
instance, a signal can be expanded in terms of discrete wavelets. This expansion is
equivalent to the decomposition of a signal as :

x(t) =
j=J∑
j=1

dj(t) + aJ(t) (5.5)

here, dj is called detail at level j and aj is approximation at level j. Equation 5.5
illustrates a signal is decomposed into d1 + a1, then the a1 is decomposed into d2 + a2,
and this process is repeated until j = J . Literally, aj provides an approximative
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component of x(t) and the approximation becomes coarser as j increases. Therefore,
respective dj and aj are corresponding to high-pass and low-pass filters. The detailed
information of the multiresolution analysis is introduced in e.g., Addison (2017).

5.1.3 Denoising with DWT

For finding well denoised raw signals, each raw signal was once decomposed using DWT
with Daubechies 6 wavelet at level 5. The original signal was decomposed into five
levels of details and one approximation (residual). Then, each detail coefficient was
shrinked, so called soft-thresholding (Donoho and Johnstone, 1994). The threshold
was the maximum value of detail coefficients at each level, that appeared in a signal
produced by water flow of V = 4.5 m/s without any sediment. This procedure meant
to reduce noise caused by water flow. Finally, each coefficient was reconstructed to
the time domain signal. Figure 5.2 exemplifies the DWT decomposing procedure. The
original signal (s) is decomposed into five levels of high-passed signals dj after soft
thresholding, here dj illustrates level j reconstructed signals (j = 1, . . . , 5). The signal
a5 is a residual of the decomposition and corresponding to the most approximative
(low-passed) composition of the original signal. In contrast, d1 shows the most detailed
(high frequency) component of the original signal.

Fig. 5.2 A schematic chart illustrating the signal decomposition process, the original
signal (s) is decomposed with DWT into high-pass filtered signals (d1-d5) and the
residual (a5).
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5.2 Feature Extraction

5.2.1 The number of impulses

Since the recording raw signals requires a huge volume of storage and electricity, a
data compression method called the number of impulses (Ips) has been widely used
for sediment monitoring with JPM (Mizuyama et al., 2010a). Impulses are counted
simultaneously with the raw signal recording through analog signal processing in a
data logger (fig. 5.3). Firstly, the raw signal (fig. 5.3a) is sent through a band-path
filter to extract a frequency of around 4.6 kHz, which was previously computed as the
most effective frequency by the manufacturer (fig. 5.3b). Subsequently, the filtered raw
signal is transformed into absolute values hence all the negative values are changed
to positive ones (fig. 5.3c). Then, an envelope curve is generated and the enveloped
signal is exported to 6 different channels in which the wave is amplified by factors of 2,
4, 16, 64, 256, and 1024 times.
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Fig. 5.3 Process to count the number of impulses. (a) A recorded raw signal, (b) The
band-pass filtered signal, (c) Transformation into absolute value and enveloping, (d)
Amplification and impulse count.
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5.2.2 Denoising with DWT

From one original signal, totally 31 patterns of signals were generated as a combination
of five signals (d1-d5). Then, impulses were counted from the generated denoised signals
in the same manner as the conventional impulse count (fig. 5.3cd). Here, 11 levels of
amplification factors (Amp), Amp = 20, . . . , 210, were employed. The threshold was
set to 0.5 V, which is equivalent to threshold for a non amplified signal (Amp = 20),
through try and error.

5.3 Evaluation of the denoising

The goodness of denoising and feature extraction should be evaluated quantitatively
by applying models. However, we are worth visually checking denoised signals to know
whether the process was done as expected or not. In this section, some of the denoised
signals are picked up to see the effect of denoising using DWTs. In addition, principal
component analysis (PCA) was exploited to reduce the dimension of impulses from 11
to 2 and see their potential to distinguish grain sizes.

5.3.1 Comparison of denoised signals denoised by FT and WT

The denoised signals by DWT and a band-pass filter around 4.6 kHz using FT of
noised signals in fig. 5.1 are shown in fig. 5.4. The signals in the last row are the sum
of decomposed singnals d2 + d3 + d4 + d5 and d1 + d5 respectively given in fig. 5.2.
Apparently, in both waveforms, water noise was removed well by using DWT. Also for
echo and saturation, DWT seemed to mitigate them. However, it is also possible that
DWT weakened signals too much. Suitable combination of d1-d5 is decided according
to model precision in the next chapter.
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Signal 1 with water noise Signal 2 with echo and saturation

Signal 1 denoised with FT Signal 2 denoised with FT

Signal 1 denoised with WT Signal 2 denoised with WT

Fig. 5.4 First column and Second column are denoised results of signals shown in
fig. 5.1(a) and fig. 5.1(b) respectively. First row: Original signals. Middle row: Denoised
by a band-pass filter around 4.6 kHz. Last row: Denoised by DWT, d2 + d3 + d4 + d5
and d1 + d5.

5.3.2 Visualize the number of impulses with PCA

The dimension of the number of impulses at Case E1 - E10 were reduced from eleven
to three by using PCA. By this technique, the data is converted to be able to visualized
in three dimension space as in fig. 5.5. Overall, the DWT makes it easier to group them
by grain size, composing clearer clusters for each grain size than that data denoised by
FT. In particular, focusing on data with grain sizes of 50 mm and 100 mm, impulses
from denoised signals by FT is mixed and hard to distinguish. It might be resulted
from the insufficient reduction of signal saturation. In contrast, denoising with DWT
significantly solved the problem.



5.4 Notation 47

Fig. 5.5 The dimension of the number of impulses for test Case E1 - E10 after denoised
by FT and FT are reduced to three by PCA. The top row and bottom row are under the
V = 2.5 and 4.5 m/s respectively. The left column and right column are denoised results
by FT and WT respectively. Each axis is corresponding to ith principal component
with the contribution ratio. The value on the top of each plot is the sum of contribution
ratios.

5.4 Notation

Hereafter, feature quantities are denoted by following notation. Note that accelerometer
signals were not denoised because no denoising method changed the original signal
significantly.
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Symbol Feature quantity
VP Impulses Ips (= (I2

ps, I4
ps, · · · , I1024

ps )) obtained from an ac-
celerometer without denoising.

LF Impulses Ips obtained from a microphone denoised with
conventional band-pass filter around 4.6 kHz.

WT***** Impulses Ips obtained from a microphone denoised with
DWT. The combination of decomposed signals are expressed
in binary. For example, WT10101 = d1 + d3 + d5.



Chapter 6

Regression Model

I obtained candidates of feature quantities in the preceding chapter. In this chapter,
I make a model to convert the feature quantities to my target information, namely,
bedload transport rate and grain size. Considering the interpretability and enough
expressive power as a desired condition of the model, I chose the use of Gaussian
Process Regression (GPR) in this step. At first, I selected several promising feature
quantities on the basis of their prediction accuracy with a naïve model for the flume
experiments. Then, the model was improved to have the ability of extrapolation to
real observation data with applying the on-site experiment data.

6.1 Introduction of Gaussian Process

For converting feature quantities to some real numbers such as bedload transport rate
and grain size, I need to make regression models. Many models use linear, exponential,
and polynomial regression or their combinations. However, their assumption, linearity,
exponential, and polynomial, are often too strong, and thus, they restrict the expressive
power of the models. For improving the expressiveness, many recent studies have
exploited techniques having advanced methods such as Support Vector Machines,
(Deep) Neural Networks, but they tend to be a black box and lose their interpretation.

The Gaussian Process (GP) allows us to make a model with a more light assumption
resulting in having high expressive power and interpretability. The intractability is
attributed kernel functions that specify the form of regression function. We can
incorporate a priori knowledge into a kernel to reflect them on the model. In addition,
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since the GP is Bayesian approach, the predicted value is provided as a distribution.
This feature allows us to know the uncertainty of the prediction.

Intuitive and simple example of GPs application is presented in fig. 6.1. Figure 6.1(a)
shows four sample functions from a GP by a predefined kernel and the mean function
zero with the doubled standard deviation depicted as the shaded region. After two data
are given, the mean function is modified and the shaded area is restrained according
to the data as in fig. 6.1(b). Four sample functions from the posterior are given as
dashed lines. The posterior can be interpreted as predictions for next new data. The
shaded area gives the uncertainty of the prediction, closer width is higher confidence,
and vice versa.

Fig. 6.1 An intuitive example of GPR. (a) shows the samples before data are given. (b)
shows the samples after two data points are given. The solid line indicates the mean
values and shaded region denotes the double standard deviation (±2σ). (adapted from
Rasmussen and Williams (2006))

In Duvenaud (2014), advantages of using GPs for regression are summarized as
follows:

Analytic inference.
Given a kernel function and some observations, the predictive posterior
distribution can be computed exactly in closed form. This is a rare property
for nonparametric models to have.
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Expressivity.
Through the choice of covariance function, we can express a wide range of
modeling assumptions.

Integration over hypotheses.
The fact that a GP posterior, given a fixed kernel, lets us integrate exactly
over a wide range of hypotheses means that overfitting is less of an issue than
in comparable model classes. For example, compared to neural networks,
relatively few parameters need to be estimated, which lessens the need for
the complex optimization or regularization schemes.

Model selection.
A side benefit of being able to integrate over all hypotheses is that we can
compute the marginal likelihood of the data given a model. This gives us a
principled way of comparing different models.

Closed-form predictive distribution.
The predictive distribution of a GP at a set of test points is simply a
multivariate Gaussian distribution. This means that GPs can easily be
composed with other models or decision procedures.

Easy to analyze.
It may seem unsatisfying to restrict ourselves to a limited model class, as
opposed to trying to do inference in the set of all computable functions.
However, simple models can be used as well-understood building blocks for
constructing more interesting models.

6.2 Gaussian Process Regression

In this section, the theory of GPR is demonstrated started from linear regression with
which we are familiar.
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6.2.1 Preliminary information

The multivariate Gaussian distribution

When a D-dimensional vector x follows a multivariate Gaussian distribution, the
probability density function is given by

Pr(x|µ,Σ) = 1
(2π)n

2 |Σ| 1
2

exp
(

−1
2(x − µ)T Σ−1(x − µ)

)
, (6.1)

where µ and Σ are the mean vector and covariance matrix. Note that the covariance
is calculated as

Σ = E[xxT] − E[x]E[x]T. (6.2)

Marginalization of a multivariate Gaussian distribution

Suppose a D-dimensional x follows a multivariate Gaussian distribution

x ∼ N (µ,Σ). (6.3)

Let the first L dimensions of x and the other D−L dimension be x1 and x2 respectively,
x can be denoted by

x =
 x1

x2

 (6.4)

here, x1 and x2 are a L-dimensional and (D − L)-dimensional vectors respectively.
Parameters µ and Σ are segmented as the same manner, and eq. (6.3) is denoted by

x =
 x1

x2

 ∼ N

 µ1

µ2

 ,
 Σ11 Σ12

Σ21 Σ22

 . (6.5)

Now, the distribution of x1 obtained from marginalizing p(x) = p(x1,x2) over x2 is
given as

Pr(x1) =
∫

Pr(x1,x2)dx2 = N (µ1,Σ11). (6.6)
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Conditional multivariate Gaussian distribution

Assume that a vector x follows eq. (6.5). If x1 is given, the conditional random variable
x2|x1 also follows the following multivariate Gaussian distribution:

x2|x1 ∼ N (µ2 + Σ21Σ−1
11 (x1 − µ2) ,Σ22 − Σ21Σ−1

11 Σ12) . (6.7)

Linear transformation of a multivariate Gaussian distribution

Let x be a vector following a multivariate Gaussian distribution with a mean vector 0
and a covariance function Σ

x ∼ N (0,Σ). (6.8)

If x is transformed by a matrix A as

y = Ax (6.9)

y also follows a multivariate Gaussian distribution

y ∼ N (0,Λ−1). (6.10)

Here, Λ = (A−1)TΣ−1A−1.

6.2.2 Linear regression

Regression is to predict an output y when the input x is given. If we assume linear
relation between the input and output, the regression is called linear regression. Here I
explain linear regression when the input x is D-dimensional data, so called multiple
regression. For example, if xT = {I2

ps, · · · , I1024
ps }, the input is 11-dimensional data.

When we have N data D = {(y1,x1), (y2,x2), · · · , (yN ,xN)}, by selecting a good
weight parameter vector w, a predicted output ŷ is expressed by

ŷ = wTx. (6.11)

Then, expressing ŷT = (ŷ1, ŷ2, · · · , ŷN), X = (xT
1 ,xT

2 , · · · ,xT
N)T, we can obtain

ŷ = Xw. (6.12)
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Next, we optimize the weight vector w by minimizing the error

E =
N∑

n=1
(yn − ŷn)2 =

N∑
n=1

(yn − wTxn)2 = (y − Xw)T(y − Xw). (6.13)

For that, solving ∂E/∂w = 0, we can obtain, if XTX has the inverse,

w = (XTX)−1XTy. (6.14)

This is the solution of a multiple regression, and eq. (6.14) is called normal equation.
The expressive power of linear regression model can be improved by introducing

a function ϕ(x) which converts the data to higher dimension. Now, eq. (6.12) has
changed to

ŷ = wTϕ(x). (6.15)

Therefore, as the same derivation above, the minimum square solution of w is given as

w = (ΦTΦ)−1ΦTy. (6.16)

Here, Φ = (ϕT
1 ,ϕ

T
2 , · · · ,ϕT

N)T.

6.2.3 Linear regression to Gaussian process

Suppose w is generated by a Gaussian with a mean 0 and a covariance λ2I

w ∼ N (0, λ2I). (6.17)

which implies y = Φw, and y also follows a Gaussian as in eq. (6.9). The mean is
E[y] = E[Φw] = ΦE[w] = 0, the covariance is

Σ = E[yyT] − E[y]E[y]T = E[(Φw)(Φw)T] = ΦE[wwT]ΦT = λ2ΦΦT, (6.18)

and thus, the distribution of y is a multivariate Gaussian distribution

y ∼ N (0, λ2ΦΦT) (6.19)
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Notice that y is no more governed by w, but just done by the covariance λ2ΦΦT.
Hereafter, λ2ΦΦT is referred as K, and then

Knn′ = λ2ϕ(xn)Tϕ(x′
n). (6.20)

As Knn′ is an element of the covariance, larger Knn′ means the higher correlation
between yn and yn′ . Also, as ϕ(xn)Tϕ(xn′) is the inner product of xn and xn′ , eq. (6.19)
means that the similar input x involves the similar output y.

GP is the case when the covariance can express for any input x, in other words,
infinite-dimensional multivariate Gaussian distribution. At that time, the out put y is
a function and the covariance determines the property of the function.

Definition 1. Gaussian Process If for any natural number N , the output vector to
the inputs x1,x2, · · · ,xN ∈ X

f = (f(x1), f(x2), · · · , f(xN)) (6.21)

follows a Gaussian distribution N (µ,K) with the mean µ = (µ(x1), µ(x2), · · · , µ(xN)),
and the covariance K with every element is denoted by Knn′ = k(xn,xn′), f can be
said to follow a Gaussian process. Here, this is written as

f ∼ GP(µ(x), k(x,x′)). (6.22)

In this study, I set µ as 0 by assuming the mean is subtracted in advance.

6.2.4 Kernel trick

According to eq. (6.19), the distribution of y is determined only by the elements of
covariance K

Knn′ = ϕ(xn)Tϕ(xn′) (6.23)

Kernel trick is obtaining Knn′ without calculating ϕ(xn)Tϕ(xn′) explicitly but using
kernel function k which satisfies

k(xn,xn′) = ϕ(xn)Tϕ(xn′) (6.24)

According to section 6.2.3, it can be said that the kernel function k gives the closeness
of data xn and xn′ .
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One of the most popular kernel functions is a radial basis function (RBF) kernel

RBF(xn,xn′) = θ1 exp
(

−|xn − xn′|2

θ2

)
(6.25)

here, θ1 and θ2 are hyper-parameters that govern the kernel feature. This kernel
outputs 1 when |xn − xn′ | = 0, hence xn = xn′ , and the output decreases as |xn − xn′ |
increases. It implies that for the closer pair of inputs, the covariance of y also becomes
higher, hence the output is also close value.

Samples from GPs with a RBF kernel are shown in fig. 6.2 with varying the
hyperparameters θ1 and θ2. As in the figure, the outputs from GPs with RBF kernel
are smooth functions. The variance is governed by θ1 and the smoothness is done by
θ2. The advantage of GPs are the ability to express complicated regression functions
by selecting suitable kernels.
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Fig. 6.2 Samples from GPs with a RBF kernel (eq. (6.25)) with varying the hyper-
parameters θ1 and θ2.

Four other kernels used in this study are shown here. Many kernels, not only real
number inputs but also non-numeric inputs, are proposed (e.g., Lodhi et al., 2002;
Rasmussen and Williams, 2006).
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Linear kernel

LIN(xn,xn′) = xT
nxn′ (6.26)

GPa with this kernel are equivalent to multiple linear regression since the kernel implies
the feature vector is identity

ϕ(x) = x. (6.27)

Automatic Relevance Determination (ARD) kernel

ARD(xn,xn′ |θ) = exp
−

D∑
d+1

ηd(xid − xjd)2

 (6.28)

Here, I suppose an observation is D-dimensional vector xi = (xi1, · · · , xiD), and the
kernel hyperparameters θ = (η1, · · · , ηD). Therefore, optimizing hyperparameter θ

means selecting efficient vector components in x. Simultaneously, we can know the
relevance of each vector element to the output by the optimized θ.

Observation noise

WN(xn,xn′ |θ) = σ2δ(n, n′) (6.29)

This kernel allows a model to involve observation noise. GPs using a kernel function k
for a model

yn = f(xn) + ϵn, ϵn ∼ N (0, σ2) (n = 1, · · · , N) (6.30)

is equivalent to using the following kernel k′.

k′(xn,xn′) = k(xn,xn′) + σ2δ(n, n′). (6.31)

A powerful advantage in using GPs come from the following properties of kernels.
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Kernel combination

Let k1(x,x′) and k2(x,x′) be kernel functions, then the sum and product of them
k(x,x′) are also kernel functions.

k(x,x′) = k1(x,x′) + k2(x,x′) (6.32)
k(x,x′) = k1(x,x′) × k2(x,x′) (6.33)

For instance, the sum of a RBF kernel, a linear kernel, and a noise kernel

RBF + LIN + WN = θ1 exp
(

−|xn − xn′ |2

θ2

)
+ xT

nxn′ + σ2δ(n, n′) (6.34)

can provide a regression to “a function with smooth connection of data and trend having
observation noise”. Therefore, the kernel design based on feature and background of
the data is important to make an effective model.

6.2.5 Gaussian process regression and prediction

Here we think of solving regression problem with GPs. Suppose we have N observations,
pairs of inputs x ∈ X and outputs y ∈ R

D = {(y1,x1), (y2,x2), · · · , (yN ,xN)}. (6.35)

Then, we design some kernel function k(x,x′) and assume y follows a GP

y ∼ GP(0, k(x,x′)). (6.36)

Note that the mean of y is subtracted in advance for simplicity. Denoting y =
(y1, y2, · · · , yN)T, y follows a Gassian distribution

y ∼ N (0,K) (6.37)

here, an element of K is expressed by Knn′ = k(xn,xn′).
Next we calculate an output y⋆ when a new input x⋆ is given, y′ = (y1, · · · , yN , y

⋆)
also follow a Gaussian distribution (Definition 1).

y′ =
 y
y⋆

 ∼ N

0,

 K k⋆

kT
⋆ k⋆⋆

 . (6.38)
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Here,

k⋆ = (k(x⋆,x1), k(x⋆,x2), · · · , k(x⋆,xN))T (6.39)
k⋆⋆ = k(x⋆,x⋆) (6.40)

Finally, to get the distribution of y⋆, Pr(y⋆|x⋆,D), we can use the formula of conditional
multivariate Gaussian distribution (eq. (6.7)).

Pr(y⋆|x⋆,D) = N (kT
⋆ K−1y, k⋆⋆ − kT

⋆ K−1k⋆) (6.41)

To compute eq. (6.41), K−1 must be known. The calculation of matrix inverse takes
O(N3) time, which limits the application when N is larger than several thousands.
Although, for addressing this barrier many approximate schemes are proposed (Hensman
et al., 2013; Quiñonero-Candela and Rasmussen, 2005; Wilson and Nickisch, 2015), I
was able to obtain exact distribution since the number of datapoints was less than
1000 in this study.

6.2.6 Hyperparameter optimization

Hyperparameters θ are optimized by maximizing marginal likelihood Pr(y|X,θ). In
this study, GP parameter optimization was performed by using the GPML toolbox
(Rasmussen and Nickisch, 2010). Note that the optimization is not a convex optimiza-
tion problem. Therefore, I ran the toolbox for changing initial hyperparameters several
times randomly.

6.3 Notation

In the analysis, I assume observation noise for all cases, therefore I omit writing
WN explicitly. The data I used for the analysis is the number of impulses Ips =
(I2

ps, I
4
ps, · · · , I1024

ps ), flow velocity V , Froude number Fr, and water depth h. For
specifying kernels used in model, I use the following notation. A kernel k(xn,xn′) for
data D is denoted by

Ker(k(xn,xn′); D) (6.42)
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For example, Ker(RBF × LIN; Fr, Ips) means the following kernel

k(xn,xn′) = θ1 exp
(

−|xn − xn′|2

θ2

)
︸ ︷︷ ︸

RBF

× xT
nxn′︸ ︷︷ ︸

LIN
(6.43)

where, xn = (Frn, I
2
ps,n, I

4
ps,n, · · · , I1024

ps,n ).

6.4 Feature selection

In this section, I select several feature quantities from those prepared in the preceing
chapter. Each feature is evaluated for their ability to predict grain size and bedload
transport rate per a second for laboratory flume experiments data (E1 - E16, and P1
- P11) with K-Fold cross validation (K = 5 in this study). For regression, GPR and
linear regression are carried out. The kernel used for the GPR is Ker(RBF; V, Ips).
Impulses Ips were normalized by I1024

ps and signal duration ([sec]) for grain size and
sediment transport rate models respectively. Their performance were evaluated by
MSE (mean square error).

The top 10 feature quantities are listed in table 6.1 and table 6.2. Evidently, GPR
provided much better performance than linear regression overall. In the results if
GPR, feature quantities that appears in both tables are in boldface. It connotates
that feature quantities WT10110, WT11111, WT11011, and VP are promising. Following
studies use WT10110, which gave high performance both for grain size and sediment
transport rate prediction.

Table 6.1 Regression mean squared error for D50

GPR LR
Rank order Feature name MSE Feature name MSE

1 WT11010 0.0465 WT01011 0.2681
2 WT00110 0.0568 WT11010 0.2731
3 WT01010 0.0593 WT11001 0.2814
4 WT11110 0.0613 WT01001 0.2835
5 WT01110 0.0666 WT01010 0.2857
6 WT10110 0.0686 WT11011 0.2886
7 VP 0.0718 WT00101 0.2919
8 WT11111 0.0740 VP 0.2921
9 WT10111 0.0760 WT10101 0.3137
10 WT11011 0.0770 WT10111 0.3279
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Table 6.2 Regression mean squared error for sediment transport rate

GPR LR
Rank order Feature name MSE Feature name MSE

1 VP 0.0801 VP 0.1538
2 WT10011 0.1814 WT11011 0.2311
3 WT10110 0.1966 WT01011 0.2322
4 WT11011 0.2019 WT00010 0.2334
5 WT00111 0.2065 WT10010 0.2373
6 WT11111 0.2120 WT10011 0.2377
7 WT01111 0.2185 WT00011 0.2411
8 WT00010 0.2186 WT01010 0.2512
9 WT01001 0.2186 WT11010 0.2555
10 WT10001 0.2187 WT10001 0.2610

6.5 Model construction

This section makes models with GPR to predict grain size and sediment transport.
Models were optimized using flume experimental data and then, evaluated by applica-
bility to the on-site experiment data. Assume that estimation of grain size is easier
than that of bedload transport rate, I first made grain size prediction model then
bedload transport model. This is because that the grain sizes employed in the on-site
experiments are as in the same order as that used in flume experiments.

6.5.1 Grain size prediction

Naïve GPR

I call GPR using RBF kernel alone as naïve GPR because this is the simplest application.
This approach simply finds a regression function which connects among data smoothly,
in other words, tries to find structure only from data itself. Two kernels were tested,
Ker(RBF; Ips) and Ker(RBF; Ips, V ). The results are in fig. 6.3 and fig. 6.4 respectively.
Although predictions in fig. 6.3 overestimated grain size, it is mitigated in fig. 6.4. This
fact implicates that not only impulses but also flow velocity should be accounted for.
This is consistent with other studies stating that the signal magnitude increases as
particle motion velocity increases (Taniguchi et al., 1992).
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Kernel = Ker(RBF; Ips)
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Fig. 6.3 True and estimated D50 at the on-site experiment with Ker(RBF; Ips).

Kernel = Ker(RBF; Ips, V )
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Fig. 6.4 True and estimated D50 at the on-site experiment with Ker(RBF; Ips, V ).

Advanced GPR

According to the discussion above, I explicitly added V −1 into the kernel. In addition, I
introduced linear kernel by assuming that the impulses increase as D50 increases. The
result (fig. 6.5) exhibits that the overestimation is mitigated. Although the estimate
variance increased comparing with fig. 6.4, I decided to uses this kernel for D50 estimate
because the mean value is accurate.
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Kernel = Ker(RBF + LIN; Ips, V
−1)
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Fig. 6.5 True and estimated D50 at the on-site experiment with Ker(RBF +
LIN; Ips, V

−1).

6.5.2 Bedload transport rate prediction

Naïve GPR

In the same as D50 estimate, RBF kernel is used with Ips. The results in fig. 6.6 are
highly under estimated. This tendency is significant for K7, K9, and K10 where flow
discharge is 20 m3/s. This implicates that the reduction in the number of hitting
gravels on the plate due to high flow velocities. Also it is possible that much higher
water depth than that of flume experiments caused the same phenomenon.

For comparing estimated value to tested sediment volume in m3, all the estimated
value in gram were firstly summed and converted into volume with sediment density
ρs = 2700 kg/m3. Then, the summed value was multiplied by duration that sediment
was recorded by IPs and the reciprocal of the ratio of the total plates width to the
tunnel width rp (rp = 2.7 at the Koshibu Dam SBT). Finally, the computed volume
was converted the fed volume with assuming a porosity 0.7.
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Kernel = Ker(RBF; Ips)
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Fig. 6.6 True and estimated total sediment volume Vs at the on-site experiment with
Ker(RBF; Ips).

Advanced GPR I

In order to cope with the problem above, I added data of flow velocity V and h

with them converted to the reciprocal. Further more, same as fig. 6.5, I employed
linear kernel with RBF kernel. It is also expected that using all elements of Ips is
redundant for sediment transport rate estimate because not the distribution but the
scale of signal magnitude is enough. Therefore, I introduced ARD kernel instead of a
simple RBF kernel for Ips. This mitigated the underestimation as in fig. 6.7, but still
underestimated.

Kernel = Ker(ARD + LIN; Ips) + Ker(RBF + LIN; V, h)
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Fig. 6.7 True and estimated total sediment volume Vs at the on-site experiment with
Ker(ARD + LIN; Ips) + Ker(RBF + LIN; V, h).
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Advanced GPR II

In order to include gravel hop length, the following formula was introduced with
estimated D50, D̂50 (Auel et al., 2017a):

Lp

D̂50
= 2.3

(
θ

θc

− 1
)0.8

(6.44)

where Lp = saltation length, θ = Shields’ parameter, and θc = critical Shields’ parameter
(in this study, θc = 0.005 was chosen, in accordance with the study conducted by Auel
et al. (2017a)).

Figure 6.8 shows that the mean gets closer to the truth values. In particular, K7 is
improved significantly. Test K7 is with a grain size Ds = 10 mm and discharge Q =
20 m3/s which might be rather easier to be underestimated due to a combination of
high flow velocity and small grain size. This improve seems to be attributed to the
introduction of Lp.

Kernel = Ker(ARD + LIN; Ips) + Ker(RBF + LIN; V, h, Lp)
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Fig. 6.8 True and estimated total sediment volume Vs at the on-site experiment with
Ker(ARD + LIN; Ips) + Ker(RBF + LIN; V, h, Lp).

Advanced GPR III

Finally, through several try and errors, I selected the kernel in fig. 6.9. Still some
underestimation is found, all truth data are in a range of ±2σ and the estimate bias
are acceptable in terms of bypass tunnel management.
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Kernel = Ker(ARD + LIN; Ips) + Ker(RBF + LIN; V, Lp) + Ker(RBF + LIN; V, Lp)
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Fig. 6.9 True and estimated total sediment volume Vs at the on-site experiment with
Ker(ARD + LIN; Ips) + Ker(RBF + LIN; V, Lp) + Ker(RBF + LIN; V, Lp).



Chapter 7

Application to the Koshibu Dam
SBT Operation

In this chapter, the Koshibu Dam SBT and the history of the operations are introduced.
Then the signal cleaning, feature extraction, and GPR model introduce and developed
in chapter 5 and chapter 6 are applied for four operations.

7.1 The Koshibu SBT operations in 2016 - 2019

Since the first operation in September 2016, the Koshibu SBT was operated for eight
times as a testing period. Table 7.1 shows the list of operations with the period,
operation duration, maximum inflow discharge, and maximum bypass discharge. The
consequent maximum flow velocity and water depth were given assuming uniform flow
and a roughness length of 0.013 m1/3s−1. As of present, the SBT was operated 2-3 times
in a year. Also, the inflow discharge in this three years and the bypass discharge are
shown in fig. 7.1. First several operations were relatively small scale because their main
purpose was to evaluate the SBT for the downstream and structural impacts. Contrary,
recent bypassed discharges were as large as inflow discharges, thus the sediment might
have been effectively bypassed. In particular, Op5, Op7, and Op8 completely include
the flood peak periods. Overall, bypass operations did not last until the end of a flood
event in order to mitigate sediment deposition inside the tunnel and to start storing
water in the reservoir.
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Table 7.1 The Koshibu SBT operations in 2016 - 2018.

Operation Date Duration Qbypass,max Vmax hmax

No. [-] [hours] [m3/s] [m/s] [m]
Op1 21-22/09/2016 16 80 9.14 1.28
Op2 23/09/2016 5.8 60 8.31 1.06
Op3 04-05/07/2017 3.1 120 10.39 1.67
Op4 22-23/10/2017 9.7 180 11.75 2.18
Op5 29-30/10/2017 48.8 90 9.49 1.83
Op6 04-05/07/2018 10.7 150 11.13 1.93
Op7 04-05/09/2018 44.2 175 11.65 2.14
Op8 01-02/10/2018 69.5 200 12.11 2.34

Some of the sediment monitoring apparatuses were damaged or not able to record
data well. Table 7.2 summarizes the condition of all sediment monitoring devises.
JPMs were completely destroyed during the second operation. In general, JPMs are
not robust against strong impacts, having high sensitivity though, because the half of
the pipe is out of bed surface. According to the fact that three IPs are still working
after experiencing large bypass operations such as 6, 7, and 8, IPs might be much more
robust than JPMs.

Table 7.2 Condition of bedload monitoring apparatuses at the Koshibu SBT.

Operation IP1 IP2 IP3 IP4 IP5 IP6 IP7 JPM1 JPM2
Op1 ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓
Op2 ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓* ✓✓*

Op3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ×
Op4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ×
Op5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ×
Op6 ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓ ✓ × ×
Op7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ×
Op8 ✓✓ ✓✓ ✓✓* ✓✓ ✓✓ × × × ×

✓✓ Both impulses and raw signals were recorded.
✓ Only impulses were recorded.
× Neither impulses nor raw signals were recorded.
* Broken during the operation.

7.2 Application

The signal cleaning with DWT, feature extraction by impulse count, and GPR were
applied for Op1, Op2, Op6, and Op8, which raw signals were recorded, to obtain spa-
tiotemporal information of grain size and bedload transport rate. As in the preceding
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Fig. 7.1 The inflow discharge into the Koshibu reservoir, and the bypassed discharge
by the Koshibu SBT in 2016 - 2019

chapter, signals were denoised to WT1011 and use kernels for gran size and bedload
transport rate estimation are Ker(RBF + LIN; Ips, V

−1) and Ker(ARD + LIN; Ips) +
Ker(RBF + LIN; V, Lp) + Ker(RBF + LIN; V, Lp) respectively. Their hyperparameters
were also those optimized in the preceding chapter using experimental data.

Results of Op1, Op2, Op6, and Op8 are fig. 7.2, fig. 7.3, fig. 7.4, and fig. 7.5 respectively.
Every figure consists of five plots with time in abscissa:

• Top row
Bypassed discharge Q [m3/s] and accumulated estimated bedload volume Vs,acc

[m3]. The blue shaded area stands for the range of the mean estimate ±1σ(standard
deviation).

• Second row
Estimated D50 [mm]. The blue shaded area stands for the range of the mean
estimate ±1σ.

• Middle row
Mean of estimated D50 [mm] for each plate (IP1 - IP5).

• Forth row
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Bedload transport rate BTR Vs [m3/s]. The blue shaded area stands for the
range of the mean estimate ±1σ.

• Bottom row
Mean of estimated bedload transport rate BTR per a second per a plate width
Vs [m3/s / plate width] for each plate (IP1 - IP5).

Note that in fig. 7.5, IP3 was broken during the operation. Consequently, the grain
size and bedload transport rate are underestimated. Also, IP5 in fig. 7.4 seems to be
broken during the operation.

All operation with impulses are in chapter A.
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Fig. 7.2 Estimated grain size and bedload transport rate in Op1
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Fig. 7.3 Estimated grain size and bedload transport rate in Op2
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Fig. 7.4 Estimated grain size and bedload transport rate in Op6
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Fig. 7.5 Estimated grain size and bedload transport rate in Op8
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7.3 Findings

I give findings in Op2 where a complicated operation was done for a test operation.
The discharge presents bimodal shape. This was to test with frequent gate open and
close to confirm smooth gate open and close during a flood event.

The results were provided with mean and standard deviation. This is one advantage
of using GPR. The method outputs prediction with a probability distribution, thus
we can know the uncertainty of the results. Overall, bedload transport was output
with higher variance than D50. This is because the D50 observed in the field was the
same order as that used in laboratory experiments conducted for making the model. In
contrast, the bedload transport rate observed in the field was sometimes much higher
than that in experiments, thus the variance for bedload transport rate tends to be
relatively large.

Estimated D50 was less than 100 mm. To consider that the maximum designed
sediment grain size to be bypassed at the Koshibu Dam SBT is 100 – 200 mm, this
result is reasonable. Evidently, larger grain sizes were observed when discharge was
not the maximum value. It might be caused by the condition at the SBT inlet. In the
rising limb of the bypass discharge, the inlet gate was opened gradually and flow state
was not in open channel. Contrary, the decreasing part of bypass discharge might be
open channel, hence larger drag force occurred to induce larger grain sizes to flow. For
the aspect of abrasion mitigation, it is reported that saltating gravels damage inverts
much higher than sliding and rolling gravels. Accordingly, it is favorable that larger
grain size sediment flowed under relatively low discharge period where flow velocity
was also low.

Bedload transport was constant in both operations despite of the drastic change of
D50. This might be because large grain size was observed in lower discharge and vice
versa. It should be noted that bedload concentrated on IP1 – IP3 in the first half of
each operation. This is caused by secondary flow (secondary flows of Prandtl’s second
kind) occurred due to the tunnel curvature. Also, this result is consistent with abrasion
observation at the Asahi Dam SBT in Japan (fig. 7.6) where abrasion concentrated
on tunnel curve inner side. However, the concentration was not as significant as that
of abrasion at the Asahi Dam SBT. Even in other operations with the maximum
discharge 200 m3/s recorded, significant concentration was not confirmed. Considering
the secondary flow is proportional to flow velocity/curvature, it might be possible
that the large curvature of the Koshibu Dam SBT would not make severe abrasion
in tunnel curve inner side. Moreover, sediment transport concentrated on the middle
in the tunnel width direction in the latter half of each operation. Considering the
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existence of large grain sizes in these periods, I expect the force caused by secondary
flow was not adequately large to move sediment to the inner side. Therefore, at least
in the Koshibu Dam SBT or larger SBTs, it might be important to carry out abrasion
mitigation measures on the center of tunnels.

Fig. 7.6 Accumulated abrasion depth (1998 to Nov.2011) at the Asahi dam SBT
(adapted from Nakajima et al. (2015)).



Chapter 8

Discussion

This chapter discusses my approaches and results. The discussion consists of two
sections, one is on signal analyses and the other is on SBT based on the results obtained
in chapter 7. The former section is separated into three subsections on signal cleaning,
feature extraction, and modeling.

8.1 Discussion on signal analysis

I systematically conducted signal analysis and statistical modelling for concerting signals
obtained from a surrogate monitoring system to grain size and bedload transport rate.
It was one achievement that I was able to make a model to estimate grain size and
bedload transport rate without giving information on specific observation sites but only
from raw signals. However, still I have questions and ideas to improve the accuracy of
their prediction as in the following sections.

8.1.1 Signal cleaning

Wavelet selection

I confirmed that the use of DWT much improves the signal denoising than conventional
low-pass filtering using FT. The wavelet function (basis function) I used was Daubechies
6 wavelet at level 5, but different from FT, there are many other options available for WT
(Rucka and Wilde, 2006). In general, the ability to detect singular property of signals
and locality are trade-off, hence no wavelet function can satisfy both requirements.
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In other words, different wavelet function gives different balance of the two. In that
context, Daubechies 6 wavelet is intermediate wavelet. In future work, I am worth
applying other wavelet functions to find the best balance of them for signals obtained
from surrogate monitoring systems.

This study used a single combination of decomposed signals. However, it is natural
that the best wavelet differs from the source of impacts, e.g., different grain size, impact
velocity. In fact, it is reported that the centroidal frequency depends on grain sizes
(Barrière et al., 2015; Møen et al., 2010; Thorne, 1986; Wyss et al., 2016a). This
implicates the best combination of decomposed signals are also different by grain sizes.
Additionaly if one needs to observe sediment of limited range of grain sizes, the specific
denoising for the purpose can be designed by using WT.

Singularity detection

One advanced technique using WT is singularity detection using Lipschitz exponent
(Stephane and Hwang, 1992). Lipschitz exponent computed from CWT can be an
indicator of singularity occurrence in a signal. Using this convenient property, Lipschitz
exponent is used for anomaly detection such as damage detection (Błaszczuk and
Pozorsk, 2007; Hong et al., 2002). Because my interest in signals is at the timing when
a gravel hits on the plate, it is possible that Lipschitz exponent directly gives the
information on sediment impact.

8.1.2 Feature extraction

Frequency domain

The feature extraction used in this study was impulse count developed in Japan.
Originally, the method was developed for greatly decreasing the data volume to be
able to store data even in poor computers. Therefore studies that can use raw signals
should use more detailed features for improving model precision. Although my study
employed 11-dimensional impulses being greater than the conventional one by five
dimensions, one important feature I did not use was frequency domain. As noted
in the preceding section, grain size depends on frequency spectrum and that is both
experimentally and theoretically confirmed. In particular, as long as I use GP, the
increase of feature quantity is not a big problem since the computational time of GP is
depending on the sample size (Rasmussen and Williams, 2006). However, it should
be reminded that the increase of feature quantity can reduce the interpretability of
models.



8.1 Discussion on signal analysis 79

8.1.3 Modeling

Model improvement

This study enabled us to quantify bedload transport information by introducing GPR,
which has high expressive power. Even though this approach is rather deductive than
existing studies on surrogate monitoring, both approaches do not conflict. I employed
some a priori knowledge to kernels, but they are still fundamental relationships: linear
relation between impulses and bedload transport rate, underestimation with increasing
flow velocity and water depth. Further improvement of the kernels can be achieved by
more sophisticated findings proposed by existing studies. In addition, since the GP is
non-parametric method, more data may increase the applicability and precision for
other applications.

Similar to other statistical models, more data improve GPR more. In particular,
my data used were only derived from artificial channel, experimental flumes and SBT.
Therefore, I believe that incorporating signals from various natural rivers into the
model must improve the model’s applicability for any monitoring environment.

One advantage using GPR is that the degree of prediction confidence is explicitly
given as ±1σ depicted in fig. 7.2. By checking the range of variance with various
inputs, we can know the data that are far from that the model has experienced. This
advantage supports us to plan the next experiments efficiently.

Grain size distribution

The study presented D50 prediction, and the next step is grain size distribution.
Unfortunately, GPR can not directly applied for multi-output cases. As a solution, the
simplest way to compute grain size distribution is making GPR for every grain size
fractions. Also, extension of GP for multi outputs cases are proposed by Bonilla et al.
(2008).

Phenomena interpretation

My research focused on the better prediction of grain size and bedload transport
rate. However, considering GP has high interpretability, we can understand natural
phenomena from good kernels found heuristically in GP.

Several approaches to search appropriate kernels from a number of kernel combina-
tions are proposed (e.g. Bach, 2009; Duvenaud et al., 2011). These techniques search
the best combination of kernels through and through by certain efficient approach.
Then by seeing the kernels used in the model and the selected features, we can infer
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the structure of data. Interestingly, the attempt to describe the model structure with
natural language is proposed by Lloyd et al. (2014). We can say that ARD kernel used
in this study is attributed to a similar idea. Optimizing the kernel is equivalent to
evaluate the importance of each feature to estimate the target.

8.2 Discussion on sediment bypass tunnels

Spatiotemporal transient of grain size and bedload transport in the Koshibu Dam SBT
operations were revealed section 7.2. A particular point of the results is that the values
are given as distribution hence mean and ±1σ are depicted. Because other popular
techniques including linear regression, multiple linear regression, Neural Networks do
not provide the information, it is hard to know how much certain the results is. This
advantage might be valuable particularly in the field of civil engineering that involves
high cost and human safe and secure.

According to figures in section 7.2, the standard deviation of D50 is generally
small. In contrast, that of bedload transport rate is relatively high, thus involves
higher uncertainty. It might be attributed to the water depth which used for bedload
transport rate estimate but did not for grain size. The flow velocity and impulses, used
both for bedload transport rate and grain size, observed in SBT operations were mostly
in the range of that observed in flume experiments. While, water depth, used only for
bedload transport rate estimate, observed in the operations was generally much higher
than that in flume experiments. I expect that great deal of extrapolation with regard
to water depth caused the increase of uncertainty in bedload transport estimate. In
order to reduce the uncertainty, it is needed to conduct experiments with higher water
depths or give some additional physical relationships to the model.

Spatial distribution

Observation with five IPs along the tunnel width direction enables us to know the
spatial distribution of bedload transport. Overall, the middle three IPs, IP2, IP3,
and IP4, observed the most. Comparing IP1 and IP5,I see bedload transport rate on
IP1 is slightly higher than that on IP5. This is natural if secondary flow (secondary
flows of Prandtl’s second kind) occurred due to the tunnel curvature. Also, this result
is consistent with abrasion observation at the Asahi Dam SBT in Japan (Nakajima
et al., 2015). It is also reported that the volume of abrasion is proportional to bedload
transport rate (Auel et al., 2018). To consider the study and the abrasion observation
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in the Asahi Dam SBT, the difference of bedload transport rate at IP1 and IP5 are
too small.

For answering the question, in the future work, two things should be investigated:
to confirm the linear relation between estimated bedload transport rate and measured
abrasion volume at the Koshibu Dam SBT; bedload monitoring operations with higher
bypass discharge because the degree of secondary flow is proportional to flow velocity.

8.3 Summary of signal processing and modelling in
this study

Finally, I summarize the process of signal analysis for surrogate monitoring system.
I hope this would help surrogate monitoring system users in applying the method
proposed in this study. In the following algorithm,
X = {x1,x2, · · · ,xN} : raw signals obtained from experiments,
y = {y1, y2, · · · , yN} : targets, grain size or bedload transport rate,
x⋆: new raw signal to be analyzed,
y⋆: predicted target corresponding to x⋆,
Ij

n: the number of impulses with jth threshold,
I = {I1, I2, · · · , IN},
thi

dwt: threshold for Discrete Wavelet Transform (threshold for ith level),
thj

ips: threshold for pulse counting (jth threshold),
k: kernel function with the hyperparameters θ.

In this study, Discrete Wavelet Transform was processed with MALTAB Wavelet
Toolbox. The Gaussian Process Regression was processed with GPML software
package (Rasmussen and Nickisch, 2010).
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Algorithm 1
Input: X, y, x⋆, thi

dwt, th
j
ips, k

Output: Pr(y⋆|x⋆,y,X)

step:1 Signal Cleaning
1: for n = 1 to N do
2: Remove DC components xn = xn − mean(xn)
3: Decompose xn with Discrete Wavelet Transform as xn = d1 + · · · + d5 + a5
4: Thresholding as di(di < th) = 0 and di(di > th) = di(di > th) − th (= d′

i)
5: Reconstruct the signal as xdenoised

n = d′
1 + · · · + d′

5
6: end for

step:2 Feature Extraction
7: for n = 1 to N do
8: xabs

n = abs(xdenoised
n )

9: xenv
n = envelope(xabs

n )
10: Ij

n = the number of times that xenv
n being over thj

ips

11: end for

step:3 Model Optimization
12: Optimizing θ by maximizing marginal likelihood Pr(y|X,θ))

step4 Prediction
13: Process step:1 and step:2 for x⋆ to obtain I⋆

14: K = k(In, In′)
k⋆ = (k(I⋆, I1), k(I⋆, I2), · · · , k(I⋆, IN))T

k⋆⋆ = k(I⋆, I⋆)
15: Pr(y⋆|I⋆,y, I) = N (kT

⋆ K−1y, k⋆⋆ − kT
⋆ K−1k⋆)

16: return Pr(y⋆|x⋆,y,X) = Pr(y⋆|I⋆,y, I)



Chapter 9

Conclusion

I made a model to quantify grain size and bedload transport rate in sediment bypass
tunnels with surrogate bedload monitoring. The model was systematically constructed
through signal cleaning, feature extraction, and statistical modeling. My primal
contribution is employment of Gaussian process regression for modeling which gives
us high intractability and expressive power, quantification of grain size and bedload
transport rate in high accuracy with the uncertainty provided. Although this model
was made for sediment bypass tunnels monitoring, this is applicable for any natural
rivers without giving specific field information, but purely from obtained signals and
several fundamental information such as flow velocity and water depth.

Our achievement and findings are following:

• I highlighted the importance of bedload monitoring during SBTs to make appro-
priate measures against invert abrasion. For that, a surrogate bedload monitoring
system called an impact plate was employed. This system presented enough
robustness and sensitivity for bedload monitoring in SBTs. The Koshibu Dam
SBT in Japan was selected as the study field and impact plates were installed.

• Data used for making a model to predict bedload transport rate and grain size
were collected through laboratory flume and on-site experiments.

• I segmented the process of signal analysis into three steps, namely, signal cleaning,
feature extraction, and modeling. Then, existing studies on surrogate bedload
monitoring was summarized on the basis of the methods used in the each step.
Considering the fact that the studies do not focus on signal cleaning well, and
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use highly deductive approaches, I attempted to use advanced signal processing
method for signal cleaning and a relatively inductive (data driven) approach for
modeling.

• To consider particular properties of signals obtained from impact plates, i.e.,
non-periodicity and abrupt change appearance, Discrete Wavelet Transform
was exploited for denoising. As the result, it was confirmed that noise was
removed better than that done with conventional low-pass filter, consequently
the distinguishability of grain size improved.

• For modeling, a non-parametric Gaussian process regression, which has both high
expressive power and high interpretability was employed. In addition, because
application of models based on flume experiments to real field data involves
extrapolation, my models were created only using flume experiment data with
integrating background knowledge. Then, the models were evaluated in terms
of their prediction accuracy (RMSE) for on-site experiment data where the
application also presents extrapolation. At last, I was able to make a model
which provides good prediction accuracy for on-site experimental data albeit the
model was optimized only from flume experimental data.

• The best model was utilized for estimating spatiotemporal transition of grain
size and bedload transport rate during the Koshibu Dam sediment bypass tunnel
operations. In addition, I found consistency between the observed bedload and
abrasion distribution measured in another sediment bypass tunnel.

I hope this study accelerate not only sediment bypass tunnel design, operation, and
maintenance, but also the studies of surrogate bedload monitoring.
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Appendix A

Analysis with conventional
impulses

This appendix gives the number of impulses observed at the Koshibu SBT operations.
Except for Op8, IP1 to IP5 output impulses successfully for all operations.

In addition, the transported sediment volume at each operation is also exhibited
here. These volumes were computed from the number of impulses on the basis of
data obtained by the on-site experiment section 4.1.3. Here, we briefly explain the
obtained formula to convert impulses to transported sediment volume at the Koshibu
SBT. Considering the following findings, we made eq. (A.1) with water discharge Q
and impulses I1024

ps chosen as the explanatory variables: impulses I1024
ps increases as

bedload transport rate increases Mizuyama et al. (2010a); Rickenmann et al. (2012);
impulses I1024

ps decreases as discharge Q increases as the probability that gravels jump
over the plate increases Koshiba et al. (2018); Wyss et al. (2016a).

I1024
ps

Vs

= 6.4 × 104 ·Q−0.98. (A.1)

Hence, the sediment volume transported in a unit time goes as follows:

Vs = rp

∑
Plate

I1024
ps

6.4 × 104 ·Q-0.98 , (A.2)

where rp is the reciprocal of the ratio of the total plates width to the tunnel width, rp

= 2.7 at the Koshibu Dam SBT, the sum total is for five IPs.
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The relation between accurate sediment volume and the predicted one with using
eq. (A.2) is shown in fig. A.1.

Fig. A.1 The accurate and predicted sediment volume using conventional impulses in
the on-site experiments. Each point data is plotted with discharge Q and grain size
Ds .

Information on every operation consists of three figures. The top one is temporal
I1024

ps for IP1 to IP5. The numbers depicted on the left side are corresponding with the
IP numbers (see, fig. 4.4(a)). These figures exhibit, aside the temporal information,
the spacial sediment distribution along the width direction. The middle figure shows
the number of impulses with five amplification factors I4

ps, I16
ps , I64

ps , I256
ps , I1024

ps obtained
from IP3, and the bypassed discharge Qbypass. The predicted accumulated bedload
transport rate by eq. (A.2) is given in the bottom figure.
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