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1 Introduction

The purpose of this talk is to give a simple, necessary and sufficient condition for the
Hill equation with a three-step potential to admit two linearly independent, periodic
solutions.
Given a subdivision
O=ti<ti <ty <t3=2m

of the interval [0, 27}, we put
t=(t;,t;) and s;=t;—¢t;_; for i=1,2,3
For a = (a1,a2,a3) € R3, let Q(a,t,-) : R — R be a 2m-periodic step function such that
Qa,t,")=a; on [ti_1,t;) for i=1,2,3.
We are concerned with the Hill equation of the form
—(2) + Q(a,t,2)y(@) = dy(z) om R, 9,9 € ACk(R), (1)

where A is a real parameter. .

In order to formulate our claims, we recall from [5] some fundamental results and
terminologies in the general theory of Hill’s equations. Let y;(a,t, ), z) and y2(a,t, A, 7)
be the solutions of the equation (1) subject to the initial conditions

yi(a,t,2,0) — 1 =1y(a,t,A,0)=0

y(a,t, A, 0) = y5(a,t, A\, 0) —1=0,
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respectively. We introduce the discriminant of the equation (1):
D(a,t,2) := y1(a,t, A, 2m) + yh(a, t, A, 2m),

which is analytic in X. Denoting by \;(a, t) the jth root of the equation D(a,t,-)*~4 =0
counted with multiplicity for each j € N = {1,2,3,...}, we have by the Liapounoff
oscillation theorem (see [5, Theorem 2.1])

/\1(0,, t) < )\2(0,, t) < )\3(0, t) <...< Azk(a, t) < )\2k+1(a, t) <. (2)

This sequence also gives all the eigenvalues of (1) with the 4m-periodicity condition
y(- + 4m) = y(-) on R repeated according to multiplicity, while the subsequence

Al(a,t) < /\4(a,t) < /\5(a,t) <...< )\4k(a,t) < )\4k+1(a,t) <...

provides all the eigenvalues of (1) with the 27-periodicity condition repeated according
to mulsiplicity. If the equation (1) admits two linearly independent, periodic solutions of
period 27 or 4, we say that two such solutions coexist. Such coexistence is equivalent
to the condition

A = Ag(a,t) = Aok+1(a,t) for some k€ N.

The sequence (2) also characterizes the stability of the solutions of (1). Whenever
all solutions of (1) are bounded on R we say that they are stable; otherwise we say that
they are unstable. By the Liapounoff theorem, we see that the solutions of (1) are stable
if and only if {\} is an interior point of the set

U Pak-1(a, ), Aax(a, ))-
k=1
We call (Agk(a,t), Aak+1(a,t)) the kth instability interval for k € N. So the coexistence

is also equivalent to the absence of the instability interval.
We define

pi = pi(ai, A) = VA —ai, argp; € {0, g} for i=1,2,3.

Our main result is the following claim.

Theorem 1.1. Let k € N. Assume that a., # a, for m # n. Then the statements (i)
. and (ii) below are equivalent.
(l) A= /\gk(a,t) = )‘2k+1 (a, t). .
(i) s1p1(a1, A) + s2pa(aa, A) + saps(as, A) = km and s;p;(a;, A) € 7N fori=1,2,3.

As a byproduct of Theorem 1.1, we have the following assertions.

Corollary 1.2. Assume that an, # an for m # n. Then the following statements (a),
(b), and (c) are equivalent for k € N.

(a) The kth instability interval is absent.

(b) There exists A € R satisfying the statement (ii).

(c) There ezists (ni,nq,n3) € N® for which

2 2 2

T s 72,
—ni=ay+5ns=as+—n; and ny+ng+ng=~k.
s 82 s2

a, +
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Corollary 1.3. The first instability interval and the second instability interval are al-
ways present, provided G, # an for m # n.

The coexistence problems for Hill’s equations with 2-step potentials have been studied
in [2], [3], [4], and [6]. In order to review those results, we introduce needed notations.
Given 0 < k < 2w and b = (b1, bs) € R? with by # by, let W(b,k,-) : R — R be a 27-
periodic function such that W (b, k,-) = b; on [0, «) and that W(b, x,-) = by on [k, 2).
Meissner [6] was the first to study the characteristic value problem

—2"(z) = W (b, k,z)2(z) on R, v>0,

where by, b, > 0. He solved the coexistence problem for this equation in the case when
k = m. Furthermore, Hochstadt [2] investigated this problem for general k. He proved
that two linearly independent, periodic solutions to this equation can coexist for some v if
and only if 4/by/b; (2m—k)/k is arational number. His method is based on a factorization
of the discriminant. Recently, Gan and Zhang [3], [4] studied the eigenvalue problem

-2"(z) + W(b,k,z)2(z) =vz(z) on R, veR,

where b;,b; € R. They obtained a necessary and sufficient condition for the coexis-
tence (see Theorem 2.3 in [3] and Proposition 3.1 in [4]). Their method is based on a
characterization of the eigenvalue by the rotation number of the Priifer transform of the
solution.

Our idea to prove Theorem 1.1 is entirely different from the ones in [2], (3], [4], and
[6]; we make effective use of the full components of the monodromy matrix. This enables
us to reduce the problem to a simple arithmetic.

2 Proof of theorem

By M(a,t,\) we denote the monodromy matrix of (1):

(W (a, t; )‘a 27‘(’) y2(a” t’ A’ 271')
M(a,t,\) = <yr1(a, t,\2m) yhla,t, A 2m))

Using -9} (z) = (A—a:)y;(z) on (t;_1,t;) fori = 1,2,3 and j = 1, 2, we have the following
formulae in the case when p; (a3, A)pa(az, A)ps(as, A) # 0.

D1 . .
n(a,t, A\, 21) = COS 8P COS SoPg COS S3P3 — o sin 81p; sin P2 COS S3P3
' 2

P . . D2 . .
— 2= 5in 81y COS oo Sin S3P3 — — €OS 81P; Sin SgPa sin saps.  (3)
P3 P3

y1(a,t,A,2m) = —p;sins;p; cos 3Pz COS S3P3 — Pa COS $1P1 SiN S7P2 COS S3P3

—Ps3 COS S1P1 COS 833 Sin 83ps + %£§ sin s1p; sin sgp2 sinszps.  (4)
2
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1 .
ya(a,t, A\, 2m) = Z—)— sin $1p; COS SaP2 COS S3P3 + p—— €OS 81 Sin S9Ps COS S3D3
1 2

: P2 . . .
+-— COS 811 COS SaPg SiN S3p3 — —— sin s1p; Sin Sopa sinszps.  (5)
P3 D1p3

’ - D2 . .
yh(a,t, A\, 2m) = COS S1p1 COS 832 COS 83P3 — — SiN §1P1 SiN S92 COS S3P3
e n

pP3 . . p3 . .
—=2 §in 8,p; COS 8P Sin s3p3 — — COS 811 Sin SpP2 8in 83p3.  (6)
Y4 : P2

Notice that the statement (i) in Theorem 1.1 is equivalent to the condition

M@t =(-0* (g 1) md AePa@d dun@t) O
(see the proof of Lemma 2.4 in [5]). Let us demonstrate Theorem 1.1.

Proof of Theorem 1.1. It suffices to show that (ii) in Theorem 1.1 and (7) are
equivalent.

Let us prove that (7) yields (ii). Assume that (7) holds. Our first task is to deduce
that sin s1p; sin sops sin s3p3 = 0 by contradiction. Suppose sin s1p; sin s2ps sin s3ps # 0.
We put z; = cot s;p; for i = 1,2, 3. Inserting (3) ~ (6) into three equalities

vi(a,t,\,21) =0, wa(a,t,),2m) =0, w5(a,t, A 2m) —wn(a,t, A 2m) =0,

and dividing those by sin s1p; sin sqp; sin szps, we obtain

P1p3

Y — P1Z2%3 — P2Z1Z3 — P3T1T2 = 0, (8)
1 1 1

_ P2 + —ZoZ3 + —T123 + —T172 = 0, (9)
pPips © D2 D3

(p? — p3)p2 (P2 — P3);
Lo = — - To — . 10
ST T =D 0 i -phps (10)

We deduce from (8) and (9) that

2,2
(—p1p2 + p1p3) T2z + (—P5 + %I:—a)xlxs + (—psp? + pips)T122 = 0. (11)

Plugging (10) into (11), we have

p1(p2p2 — p3) (03 — p3) 22 =0
2 _
D2

(2 — p2)(p? — P3)p1p273 + 293 (03 — P3)*z12 —

and hence

p1 (P2 —p3) | p3(p? —p3) }
— —_ :i: . 12
{ @ —p2)  ppi—pd)f (12)
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This together with (10) implies that
T3 = F1. (13)
Combining (8) with (12) and (13), we conclude that
=1
This violates the fact that cot z # £+/—1 for z € C. Thus we obtain
sin s1p; sin sgpq sin sgps = 0.

Next we shall show that pypaps # 0. Let us first prove that p; # 0 by contradiction.
Suppose that p; = 0. Noting yj(z) = 0 on (to, t1) for j = 1,2, we have

v1(a,t, A, 2m) = 08 Sapa COS S3P3 — g—g sin syp; sin 83p3, (14)
3

{

yo(a,t, A, 2m) COS 593 COS S3P3 — ? sin sop sin $3p3
2

—51(pa sin 8P, COS S3P3 + P3 COS SaP2 Sin S3P3), (15)
yi(a,t,A,2m) = —p;sins;p; cos s3ps — P3 COS S3P2 Sin 83P3, (16)

si1pP2 .

yg(a, t, )\, 2’/’1’) = 8§1CO0S 8P COS §3P3 — T 81N S99 SIN S3P3
3

1 . 1 )

+— sin $apg COS §3p3 + — COS S2P2 sin S3ps. (17)
D2 D3

Inserting (14) and (15) into yi(a,t, ), 2m) — y5(a, t, A, 27) = 0, and combining that with
| (16) and ¥/(a,t, A, 2m) = 0, we obtain ’
P — 3
P2Ds3

sin s9pg sin sgps = 0

and hence sin sypysinssps = 0. This together with y;(a,t, A, 27) = (—1)* and (14)
implies that cos syps cos s3ps = (—1)* and thus sin syp; = sinsgps = 0. Therefore, we
infer by (17) that yo(a,t, A, 2m) = s1(—1)* # 0 which is a contradiction. Hence we have
p1 # 0. Similarly we get p; # 0 and p; # 0.

Our next task is to demonstrate that sins;p; = sinssp; = sinssps = 0. Because
sin s1p; sin syp; sin s3ps = 0, we have sin s1p; = 0 or sin syp; = 0 or sinszpz = 0. We first
consider the case that sin s;p; = 0. By (3), (6), and y1(a,t, A, 27) = y5(a, t, A, 27) = £1,
we obtain

b2 . .
+1 = OSSPy COS S3p3 — — SiN SgPo SIN S3P3
P3

b3 . .
= COS 82Dy COS S3P3 — — SIN S92 SIN S3P3.
D2

Thus we have sins;p; = sinsyp, = sinssps = 0. This conclusion also follows from
sin 89p; = 0 or sin s3p; = 0 in a similar manner.
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Because sins;p; = sins;py = sinsaps = 0 and p1pps # 0, we have s;p; € 7N for
1=1,2,3. So we get

COS I, for z €[0,t1),
y1(a,t, A, z) = ¢ cos(z — t1)p2 cOS 81p1 for =z € [t1,t2),
cos(T — t3)p3 cos Sapacos 1p1 for =z € [ta, 2m).

Therefore we see that the number of zeros of y;(a, t, A, -) inside [0, 27) is equal to

(s1p1 + S2p2 + s3p3) /.

Since Lo
— (_—_1\k
Mt =0t (5 9).

we infer that y:(a,t, )\, z) is a periodic solution of (1) of period 27 or 4w. Because
A € {\ax(a,t), Azks1(a,t)}, the Haupt Theorem (see Theorem 3.1 in Chapter 8 of [1])
implies that y;(a,t, A, +) has exactly & zeros in {0, 27). Thus it follows that

(s1p1 + S2p2 + s3p3)/m = k.

Hence we obtain (ii).
Finally we shall prove that (ii) implies (7). We assume (ii). By (3) ~ (6) we have

M(a,t,\) = (=1)* ((1) 2) .

As in the above observation, we see that y;(a,t, ), z) is a periodic solution of (1) of
period 27 or 4w and that the number of zeros of y1(a,t, ,-) inside [0, 27) is k. Thus the
Haupt theorem again implies A € {Ag(a,t), Ask+1(a,?)}. O

Remark 2.1. We consider the case that the potential Q@ is complez-valued, namely,
(a1,a9,a3) € C®. Suppose that a, # an for m # n. We claim that the following
statements (d) and (e) are equivalent.

(d) The equation (1) admits two linearly independent, periodic solution of period 2m
or 4m.

(e) s2(A —a;) € {m?j%| jeN} fori=1,2,3.
In particular, if there exist p and q for which Ima, # Imay, then all the eigenvalues of
(1) are simple.

Remark 2.2. For the Hill equation with 4-step potential, there is no analogy to Theorem
1.1. To see this we give a counterezample. We put

— /17 11 — /17
to =0, t1=1, t2=9—-———7r, g = ————m, l4=2m,
2 8 8
§; = tj —tj._1, a; = —5 fO’l” ] = 1,2,3,4.
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Let V :R — R be a 2n-periodic function such that
V()=a; on [tj-1,t;) for j=1,234

Then the equation
—-y"(z) +V(z)y(z) =0 on R

admits two linearly independent, periodic solutions of period 2w, because the monodromy
matriz of this equation equals the identity matriz. However, we have

s,-\/ch=g¢7rN for j=1,2,3,4.
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