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1 General Introduction

1 General Introduction

1.1 Introductory Remarks

Polymeric materials are widely used in our daily life, from daily necessities to automobiles and

aircraft. Therefore, producing high-performance polymer products is an essential issue in the

polymer industry. To obtain desirable physical properties in polymer products, a variety of

techniques are employed, such as incorporating low molecular additives or blending different

types of polymers. Due to the high frequency of use and usefulness of polymers, the twentieth

century is referred to as the “Polymer Age” by Rubinstein and Colby [1].

The manufacturing process of polymer products typically consists of the following pro-

cedures: flow, shaping, cooling and solidification. Therefore, when manufacturing polymer

products, it is necessary to address polymeric liquids, which are complex fluids. Thus, pre-

dicting and controlling the flow behavior of polymeric liquids is important for the polymer

industry. However, the gap between basic polymer science and the polymer industry is still

quite large, mainly for the following reasons: First, polymeric liquids themselves are complex

fluids, and it is generally difficult to predict their flow properties. Second, many types of

polymeric materials, such as polymer blends, are employed, and the interactions between

different components have not been fully elucidated.

Addressing the flow properties of polymeric liquids can be regarded as a transport phe-

nomenon problem in chemical engineering [2]. The study of transport phenomena involves

the transport of mass, momentum, and energy in the system under consideration. These

three phenomena frequently occur simultaneously in industrial problems. An important as-

pect is the fact that the basic equations that describe the three phenomena are very similar,

which means that the three problems can be solved using similar mathematical tools. As

shown in Fig. 1.1, the fundamental equations can be derived from conservation laws (in other

words, balance equations). For example, from the mass balance equation, the equation of
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Fig. 1.1: Schematic illustration of background of transport phenomena.

continuity can be obtained as
∂ρ

∂t
= −∇ · (ρv) , (1.1)

where ρ is the density, t is time, and v is the velocity. In particular, for a fluid with a constant

density, a so-called incompressible fluid, Eq. (1.1) can be rewritten as

∇ · v = 0. (1.2)

Furthermore, from the momentum balance equation, the equation of motion can be obtained

as
∂

∂t
ρv = −∇ · (ρvv) +∇ · σ −∇ · (PI) + F , (1.3)

where σ is the stress tensor, P is the pressure, and F is an external force. If we combine

Eq. (1.1) with Eq. (1.3), then the equation of motion can be rewritten as

ρ

(
∂v

∂t
+ v ·∇v

)
= ∇ · σ −∇ · (PI) + F . (1.4)

This equation of motion is used to solve transport problems. The remaining problem is

to obtain an expression for the stress tensor σ. Any equation that relates deformation and

stress is called a constitutive equation. In the simplest case, the constitutive equation can

be expressed as

σ = 2ηD, (1.5)
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1 General Introduction 1.1 Introductory Remarks

where η is the viscosity, andD is the deformation rate tensor, defined asD ≡
(
∇v +∇vT

)
/2.

Eq. (1.5) is referred to as Newton’s law of viscosity, and a fluid that follows Eq. (1.5) is a

Newtonian fluid. Here, Eq. (1.5) can be regarded as a simple constitutive equation. By

combining Eqs. (1.2), (1.4), and (1.5) with material constants and appropriate boundary

conditions, we can solve any isothermal flow problem for a Newtonian fluid.

When dealing with flow problems of polymeric liquids, which are a type of viscoelastic

fluid, viscoelastic constitutive equations should be employed. A viscoelastic constitutive

equation is generally written as

σ̇αβ = f(σ,D, t) α, β ∈ {x, y, z} , (1.6)

where σ̇αβ is the time derivative of the stress tensor. As shown in Eq. (1.6), a viscoelastic

constitutive equation may depend on the deformation history. To solve flow problems in-

volving polymeric liquids, we have to know the viscoelastic constitutive relation. Studies on

viscoelastic constitutive equations have actively been performed in the field of “rheology”, a

discipline that relates flow and deformation. In principle, with the help of rheology, we can

solve the transport problems of polymeric liquids.

Since the stress tensor of polymeric liquids is tightly related to the microscopic states of

the polymer chains, in principle, the viscoelastic constitutive equations of polymeric liquids

should be derived from microscopic scale dynamics, with the assistance of statistical the-

ories. However, it is generally very difficult to derive constitutive equations for polymeric

liquids, such as Eq. (1.6), because the stress caused by the polymer chains depends on their

deformation history [3]. While considerable efforts have been made in developing molecular-

based constitutive equations, phenomenological constitutive equations are often employed for

most polymer industry simulations. Here, “phenomenological” constitutive equations refer to

equations that lack a solid molecular basis. Phenomenological constitutive equations, such as

the Kaye-BKZ constitutive equation (for more details, please see Sec. 1.2.5), can give reason-

ably accurate linear and nonlinear viscoelastic predictions for practical flow problems in the
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1 General Introduction 1.2 Entangled Polymer Dynamics

polymer industry. However, as mentioned above, phenomenological constitutive equations

do not allow us to obtain molecular insights into the configuration of the polymer chains.

These microscopic molecular insights are necessary to design polymer products with specific

physical properties.

It is important for transport problems of polymeric liquids to obtain the polymeric stress

without losing microscopic molecular insights. From a simulation point of view, a molecular

dynamics (MD) simulation is the promising technique to obtain the polymeric stress, as

well as microscopic molecular insights. However, MD simulations do not allow us to probe

the large length- and time-scale phenomena of polymeric liquids, which are important for

polymer processing, mainly due to the large computational cost. Thus, designing polymer

products with specific physical properties based on the microscopic states of polymer chains

is still one of the great challenges, not only in chemical engineering but also in the field of

materials science.

1.2 Entangled Polymer Dynamics

Polymeric liquids in an entangled state are important for the polymer industry because many

polymeric liquids are used in the entangled state. In this study, we limit ourselves mainly to

entangled polymer dynamics. The “entangled state” in a polymeric liquid is universal, which

means that the polymer dynamics in the entangled state does not depend on the polymer

species. Here, we explain the entangled state by the molecular weight dependence of the zero

shear viscosity. Experimentally, the zero shear viscosity η0 depends on the molecular weight

M as

η0 ∝ M (M < Mc); η0 ∝ M3.4 (M > Mc), (1.7)

where Mc is the critical molecular weight. The dynamics of polymeric liquids qualitatively

changes when M is larger or smaller than Mc, and the region that corresponds to M > Mc

is called the “entangled state” [4]. Moreover, the dependences of other physical quantities
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Fig. 1.2: Schematic illustration of simulation methods and theories of entangled polymers
under flow from the microscopic level to the macroscopic level.

are experimentally observed to be

⟨τ⟩ ∝ M2 (M < Mc); ⟨τ⟩ ∝ M3.4 (M > Mc), (1.8)

D ∝ M−1 (M < Mc); D ∝ M−2.3 (M > Mc), (1.9)

Je ∝ M (M < M ′
c); Je ∝ M0 (M > M ′

c), (1.10)

where ⟨τ⟩ is the average relaxation time, D is the diffusion constant, Je is the steady-state

shear compliance, and M ′
c is the critical molecular weight for the steady-state shear compli-

ance.

There are several different theoretical and numerical methods for each characteristic scale

because entangled polymer melts have a spatiotemporal hierarchical structure. A schematic

representation of the theoretical and numerical methods for each time and length scale is

shown in Fig. 1.2. In the following, I briefly review previous studies on entangled polymers,

mainly from the theoretical and simulation points of view, from the microscopic level to the

macroscopic level.
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1 General Introduction 1.2 Entangled Polymer Dynamics

1.2.1 Molecular Dynamics Simulations

The most microscopic and detailed method shown in Fig. 1.2 is coarse-grained molecular dy-

namics (CGMD) simulation. Here, the term “coarse-grained” means that several monomers

are represented by one bead in the CGMD simulations. In a pioneering study on CGMD

simulations of entangled polymer melts, Kremer and Grest developed the Kremer-Grest (KG)

model [5]. In the KG model, a polymer chain is expressed by a number of beads connected

by springs, and each bead moves according to an equation of motion. To address the effect

of entanglements, the repulsive Lennard-Jones (LJ) potential is employed. Using the KG

model, static and dynamic properties for unentangled to entangled polymer melts in the

equilibrium state were extensively studied [5].

Linear viscoelastic properties, such as the relaxation modulus G(t), were examined by

Likhtman and coworkers using the KG model [6]. Likhtman and coworkers enabled the

calculation of G(t) from stress-stress autocorrelation functions by using an efficient on-the-fly

calculation method called the multiple tau correlator [7]. The nonlinear rheological properties

of the KG model have also been studied by many researchers [8–13]. One of the important

problems for nonlinear flow predictions using the KG model is how to set an appropriate

boundary condition. When considering shear flows, the Leeds-Edwards boundary condition

can provide a solution to this problem [14]. By employing the Leeds-Edwards boundary

condition, shear rheological properties, including the steady shear viscosity [8], transient

shear viscosity [9], and shear banding [10], for mildly entangled polymer melts were studied.

For the case of uniaxial elongational flows, the uniform extensional flow (UEF) algorithm

was recently developed [15]. The UEF algorithm enables one to investigate the uniaxial

elongational properties of entangled polymer melts until a steady state is reached [11–13].

Since investigations of the uniaxial elongational properties of entangled polymer melts using

the KG model have only been possible recently, further studies are expected. For now, the

nonlinear rheological properties of the KG model have been examined for specific flow types

for which appropriate boundary conditions can be set. However, flows in polymer processing
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1 General Introduction 1.2 Entangled Polymer Dynamics

are generally combinations of the abovementioned flow types. It is still technically difficult

to investigate the rheological properties of general flows using the KG model.

In addition to studies focusing on the rheological properties, there are also various studies

that have examined the microscopic structure obtained from KG simulations, such as topo-

logical constraints in entangled polymer melts [16–19]. The method that extracts topological

constraints from the entangled network formed by KG polymer chains is referred to as prim-

itive path analysis (PPA). Although there are some variations of the PPA method [16–18],

the aims of these methods are almost the same. PPA is important not only as a technique

for examining the microscopic structure of entangled polymers but also as a foundation of

the mesoscale theories mentioned in the next section. Using PPA methods, the statistical

properties of entangled polymer melts in the equilibrium state have been extensively exam-

ined [16–18]. More recently, statistical properties in the nonequilibrium state were examined

using PPA, and further developments are expected [19].

1.2.2 Tube Theory

The most successful mesoscale theory for entangled polymer melts is the tube model, which

was first introduced by de Gennes [20]. The basic idea of the tube model is that a polymer

chain in an entangled polymer melt can be considered to be confined in a tube-like region

formed by other polymer chains. While the lateral motion of the chain confined to the tube

is highly suppressed by other chains, the confined chain can move along the tube. This

curvilinear diffusion along the tube was called “reptation motion” by de Gennes. After

this pioneering work performed by de Gennes, Doi and Edwards developed the famous Doi-

Edwards (DE) model based on the reptation picture [21]. In the DE model, a polymer chain

is confined to a tube of constant length fixed in space. By analyzing the diffusion along the

tube, the longest relaxation time τ (DE)
d , which is called the reptation time, can be evaluated

as τ (DE)
d ∝ M3. This prediction is close to the experimentally observed relaxation time shown

in Eq. (1.8).

10



1 General Introduction 1.2 Entangled Polymer Dynamics

In addition to reptation motion, it is important to consider the following two relaxation

mechanisms when predicting the rheological properties of entangled polymer melts in the

linear region. One mechanism is the contour length fluctuation (CLF), which is the fluctua-

tion of the polymer chain confined in the tube [22, 23]. By combining the CLF with the DE

model, the rheological properties of entangled polymer melts can be better explained. For

example, the molecular weight dependence of the zero shear viscosity is correctly predicted

(η0 ∝ M3.4). The other mechanism is the constraint release (CR), which is caused by the

motion of other chains forming the tube [24, 25]. Most of the current variations of the tube

model include these three relaxation mechanisms (reptation, CLF, and CR).

For linear rheological properties, there are many types of tube models, such as the Milner-

McLeish (MM) model [26], the Likhtman-McLeish (LM) model [27], the time-marching algo-

rithm (TMA) [28], the hierarchical model [29], and the branch-on-branch (BoB) model [30].

Although these models have a common theoretical background, these models differ in some

assumptions, such as the method of introducing the CLF and CR. Specifically, there are

several different methods to introduce the CR. In the LM model, which describes the linear

rheology of entangled linear polymer melts, the CR is modeled as a Rouse-like motion of the

chain with different mobilities [25, 27]. For entangled polymers that have broad relaxation

time distribution, such as entangled star polymer melts, the dynamic tube dilation (DTD)

is effective to model the CR [26,28–30]. In the DTD picture, a tube diameter is dilated with

time by the CR. Therefore, the DTD can be considered as a spatiotemporal coarse-graining

process of the tube. The difference between these tube models has been examined for en-

tangled linear polymer melts [31], symmetric star polymer melts [32], and branched polymer

melts [33].

To predict nonlinear rheological properties, two mechanisms not addressed in the linear

region need to be considered. One mechanism is the convective constraint release (CCR) [34],

which is important mainly for γ̇, ϵ̇ > τ−1
d , where γ̇ is the shear rate, ϵ̇ is the elongation rate,

and τd is the reptation time. In the CCR picture, entangled polymer chains are transiently
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1 General Introduction 1.2 Entangled Polymer Dynamics

stretched under flows, and subsequent retraction of polymer chains induces the CR in the

strain rate region γ̇, ϵ̇ > τ−1
d . The other mechanism is the chain stretch [35, 36], which

becomes significant when γ̇, ϵ̇ > τ−1
R , where τR is the Rouse relaxation time. There are

various tube-model-based constitutive models, and these models are explained in the next

section.

1.2.3 Tube-model-based Constitutive Models

One of the tube-based molecular theories for nonlinear rheological properties is the Mead-

Larson-Doi (MLD) model [37]. The MLD model, which includes the reptation, chain stretch,

and the CCR mechanisms, can explain the nonlinear rheological responses of entangled linear

polymer melts not only for the steady state, but also for transient phenomena at strain rates

γ̇ > τ−1
d [37]. The Graham, Likhtman and Milner, McLeish (GLaMM) model was developed

by Graham and coworkers [38]. In the GLaMM model, the CCR mechanism is considered

local Rouse-like tube motion, and the chain stretch is modeled based on the Rouse motion

of a chain confined in the tube. Using the GLaMM model, nonlinear rheological properties

of monodisperse entangled linear polymer melts can be predicted even under strong flow,

including in the strain rate region γ̇, ϵ̇ > τ−1
R . Based on the GLaMM model, Likhtman and

Graham derived a simple constitutive equation for fast flows of entangled linear polymer

melts, which is called the Rouse linear entangled polymers (Rolie-Poly) constitutive equation

[39]. The Rolie-Poly constitutive equation can capture nonlinear rheological properties of

entangled linear polymer melts with a lower computational cost than that of the GLaMM

model.

The abovementioned nonlinear constitutive models are limited to monodisperse linear

polymer melts. Industrially, sourced polymers generally have a molecular weight distribution

or a branched structure to ensure rheological properties suitable for processing. In the Rolie-

Double-Poly (RDP) model, the double reptation theory [40] is combined with the Rolie-Poly

model [41]. The RDP model can capture nonlinear shear and elongational rheology for
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1 General Introduction 1.2 Entangled Polymer Dynamics

bidisperse and polydisperse entangled linear polymers. However, it should be noted that

the linear viscoelasticity predicted by the RDP model is not perfectly in agreement with

experimental data [41].

For the polymer melts having two branch points and long-chain side branches, McLeish

and Larson developed a molecular-based constitutive equation called the pom-pom con-

stitutive equation [42]. The key idea of the pom-pom constitutive equation is to include

branch point withdrawal, which allows free arms to move into the tube originally occupied

by the backbone. This motion is induced by the backbone stretch relaxation. The pom-pom

model can qualitatively predict nonlinear rheology under both shear and elongational flows

of branched polymer melts. Moreover, the multimode pom-pom model can quantitatively

predict nonlinear rheological properties for commercial polymer melts, such as low density

polyethylene (LDPE) melts [43, 44].

Despite considerable efforts, it is still difficult to develop nonlinear constitutive models

for polymer melts that have a molecular weight distribution or a branched structure from a

molecular point of view. Alternatively, the following molecular-based coarse-grained simula-

tion models are useful for predicting the linear and nonlinear rheology of entangled polymer

melts.

1.2.4 Mesoscale Simulation Models

One of the successful mesoscale simulation models that can describe polymer dynamics in

the entangled state is the slip-link (SL) model, in which entanglements are considered as

“slip links”. A short review on the SL models can be found in Ref. [45]. Here, a more

extensive review on mesoscale simulation models is given. The concept of the SL model was

first introduced by Doi and Edwards [46]. This original SL model only considered a single

chain confined by slip links, and the effect of the motion of other chains, such as the CR, was

not addressed.

Since then, many types of SL models have been developed based on the pioneering work
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1 General Introduction 1.2 Entangled Polymer Dynamics

of Doi and Edwards. Hua and Schieber proposed an SL model that considers the effect

of the CR [47]. In the Hua-Schieber SL model, 1D Rouse chains that can slide along slip

links are considered, and the slip links can be renewed and destroyed by the CR. After

that, Schieber and coworkers developed a more mathematically rigorous SL model called

the discrete SL model (DSM) [48, 49]. In addition to quantitative predictions of the linear

rheology of monodisperse linear melts, the DSM can successfully predict the linear rheology of

bidisperse blends [50], and linear and star blends [51]. Nonlinear rheological properties under

both shear and elongational flows have also been examined using the DSM [52]. For shear

viscosities, predictions obtained by the DSM are in good agreement with experimental results.

However, the DSM shows strain-softening behavior in transient elongational viscosities. This

behavior is not seen in experiments of entangled polystyrene melts [53]. Furthermore, the

DSM was investigated from a thermodynamic point of view. For example, the DSM is

consistent with the nonequilibrium thermodynamics formalism [54] known as the GENERIC

framework [55, 56]. More recently, a more coarse-grained version of the DSM, called the

clustered fixed SL model (CFSM), was developed by clustering several Kuhn steps of the

DSM into a blob [57]. The CFSM can give rheological predictions equivalent to those of the

DSM with a lower computational cost.

Masubuchi and coworkers developed the primitive chain network (PCN) model [58]. The

PCN model can be considered as a real space model since a 3D entangled network of coarse

grained polymer chains is described. Using the PCN model, various properties of entangled

polymer melts and solutions have been examined, such as the linear rheology of monodisperse

entangled polymer melts [59] and bidisperse blends [60], the linear and nonlinear rheology

of branched polymer melts [61, 62], and the nonlinear properties of entangled linear poly-

mers under strong uniaxial elongational flows including chain stretch [63,64]. In addition to

rheological properties, fundamental aspects of the PCN model, such as the detailed balance

condition [65] and entanglement structure [66], have also been examined.

A more coarse-grained SL model than the above SL models was developed by Doi and
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Fig. 1.3: Schematic illustration of modeling entanglements as slip-links. (a) An entangled
polymer melt, and (b-i) the Doi-Takimoto slip-link model and (b-ii) Likhtman’s slip-spring
model.

Takimoto, which is schematically shown in Fig. 1.3 (b-i) [67]. The original Doi-Takimoto

(DT) model can give good predictions for the linear rheology of monodisperse linear, poly-

disperse linear, and symmetric star polymer melt systems and for the nonlinear viscoelastic

properties in the strain rate region τ−1
d < γ̇, ϵ̇ < τ−1

R . Furthermore, nonlinear rheological

properties, including chain stretch (γ̇, ϵ̇ > τ−1
R ), were recently examined [45].

A simple SL model based on the SL model for branched polymers [68, 69] was proposed

by Shanbhag, which is called ecoSLM [70]. Using ecoSLM, the linear rheological properties

of monodisperse and bidisperse linear polymer melts were examined, and the results were in

good agreement with the experimental data. However, the nonlinear viscoelastic properties

under flows have not been investigated using ecoSLM.

Another type of coarse-grained model in which entanglements are modeled a priori is

called the slip-spring (SS) model. Likhtman developed the single-chain SS model [71, 72], in

which a polymer chain is described by a Rouse chain, and entanglements are modeled as addi-

tional springs that impose constraints on the main Rouse chain (Fig. 1.3 (b-ii)). Likhtman’s

SS model can predict experimental neutron scattering, linear rheology and diffusion data

of unentangled and entangled monodisperse linear polymer melts. Furthermore, Likhtman’s

SS model is well defined from a thermodynamic point of view since this model satisfies the

Gaussian statistics on all length scales of main Rouse chains and slip springs. The nonlinear
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rheological responses under steady shear flows were also investigated by the single-chain SS

models similar to Likhtman’s SS model [73, 74].

A multichain SS model was developed by Uneyama and Masubuchi [75]. This multichain

SS model employs the total free energy of polymer chains and slip-springs [49] and satis-

fies the detailed balance condition. Using the multichain SS model, Masubuchi examined

the nonlinear rheological properties of entangled linear polymer melts [76] and the linear

rheological properties of branched polymer melts [77]. Furthermore, the PCN model, the

multichain SS model, and the KG model were compared to develop a multi-scale approach

that connects different length and time scales [78]. Another type of multichain SS model

was developed by Theodorou and coworkers [79,80]. In Theodorou’s multichain SS model, a

free energy is also defined, and the topology of the entanglement network is renewed using a

kinetic Monte Carlo method. Theodorou’s multichain SS model can successfully predict the

linear and nonlinear rheology of monodisperse entangled linear polymer melts.

Recently, a more coarse-grained model than the SL and SS models was developed for

strong elongational flows by Moghadam and coworkers, which is called entangled kink dy-

namics (EKD) [81, 82]. EKD utilizes the notion that entangled polymers become kinked or

folded under strong uniaxial extensional flows. Using EKD, the nonlinear rheological proper-

ties under uniaxial elongational flows for high molecular weight polymers can be successfully

captured, which fail to be captured by the conventional nonlinear tube theory.

1.2.5 Phenomenological Constitutive Equations

Despite the considerable success of the SL and SS models, phenomenological constitutive

equations are frequently employed for industrial simulations mainly for the following two

reasons [3]: First, phenomenological constitutive equations usually have a lower computa-

tional cost than more rigorous molecular-based models. Second, technically, there is less

room for complexity in constitutive equations because industrial processing flow geometries

are too complex.
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Industrially, if the shear-rate-dependence of the viscosity is the most important aspect,

and normal stress or elastic effects are negligible, the generalized Newtonian viscosity mod-

els, such as the power low model and the Carreau-Yasuda model, are employed to calculate

the polymeric stress [83]. When the shear-rate-dependence of the viscosity, as well as nor-

mal stress or elastic effects play an important role in industrial flow problems, viscoelastic

constitutive equations should be employed.

In this section, a brief review of viscoelastic phenomenological constitutive equations is

given. Phenomenological constitutive equations can be roughly divided into the following two

types: integral equations and differential equations. In practical simulations, phenomenolog-

ical constitutive equations that can well describe experimental results are employed. More-

over, to give accurate predictions of nonlinear rheological properties using phenomenological

constitutive equations, there are many parameters that should be determined by comparing

with experiments.

One of the important integral constitutive equations was developed independently by

Kaye [84] and Bernstein, Kearsley, and Zapas [85], which is called the Kaye-BKZ model. The

Kaye-BKZ model is based on rubber elasticity theory, and the stress tensor can be derived

from a free energy that depends on the invariants of the strain tensor. Since the elastic

energy and the stress are allowed to relax in viscoelastic liquids, the elastic energy (and

therefore the stress) can be expressed as a history integral. By comparing the model with

step shear experiments, a specific functional form of the elastic energy for shear flows can

be determined. After determining the elastic energy, the Kaye-BKZ model can be used to

predict the nonlinear rheological properties under shear flows. However, it should be noted

that step uniaxial elongation experiments are needed to determine the elastic energy for

predicting the rheological properties under uniaxial elongational flows [3]. This means that

it is difficult to accurately predict polymer processing flows, which are mixtures of flow types,

using the Kaye-BKZ model.

There are various differential constitutive equations. One of the simplest differential
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constitutive equations for polymeric liquids is the Maxwell equation. The Maxwell equation

is expressed as

λ
δ

δt
σ + σ = 2ηD, (1.11)

where δ/δt is the time derivative, λ is the relaxation time, and η is the viscosity. If we simply

employ Eq. (1.11), then the stress tensor depends on rotation, which means that rotations

induce stresses [3]. There is a basic principle that states constitutive equations should not

depend on rotation, which is called the principle of “frame invariance”. To recover frame

invariance, the time derivative on the left-hand side of Eq. (1.11) should be modified. The

upper convected derivative is one of the candidates for this modification. The model that

the upper convected derivative is incorporated into the Maxwell model is called the upper

convected Maxwell (UCM) model. In addition to the polymeric stress evaluated by the UCM

model, if we consider the solvent stress, then the model is referred to as the Oldroyd-B model,

which is frequently employed in simulations of polymer processing. Although the Oldroyd-

B model is frequently employed as a model for expressing the viscoelasticity of polymeric

liquids, the Oldroyd-B model cannot reproduce some important rheological properties of

polymeric liquids. For example, linear differential equations, such as those in the UCM and

Oldroyd-B models, cannot reproduce the thinning behavior in shear flows.

There are mainly two ways to solve the above problem. One is to consider nonaffine

motion, and the other is to include higher order terms in constitutive equations. A more

realistic rheological constitutive model can be obtained by removing the assumption of affine

deformation, which is used in the UCM and Oldroyd-B models. One of the constitutive

equations that allows nonaffine motion is the Larson model [86]. To address nonaffine motion,

Larson proposed the partially extending convected derivative by introducing a parameter

that represents the extent of strand retraction. The Larson model can capture the nonlinear

rheological properties under shear and elongational flows better than the UCM and Oldroyd-B

models. The Giesekus [87] and Leonov [88] models have a quadratic term in the stress, which

can be interpreted as an accelerated relaxation. Including the quadratic term allows one to

18



1 General Introduction 1.2 Entangled Polymer Dynamics

Extrudate

A
ir 

G
ap

Take-up Roll

(a) Spinning (b) Contraction-Expansion (c) Filling Process

Macroscopic Balance Equations+
Constitutive Equation
Molecular based Polymer Model

Simulations in Polymer Processing

Fig. 1.4: Schematic illustration of simulation studies in polymer industries. (a) Polymer melt
spinning process, (b) flows in a contraction-expansion channel, and (c) filling process.

obtain good rheological predictions under shear flows. However, the Giesekus and Leonov

models give less accurate predictions under elongational flows than temporary network models

[3], such as the PTT model mentioned below.

To present the PTT model, we explain temporary network models. Green and Tobolsky

proposed a constitutive equation based on rubber elasticity theory, which is called the Green-

Tobolsky (GT) model [89]. The GT model can be regarded as a type of temporary network

model, since polymer chains in the GT model are considered to form a transient network

that can break and reform. It should be noted that the GT model is equivalent to the UCM

model. Therefore, the same problems as for the UCM model arise when employing the GT

model. Generalized models based on the GT approach have been proposed. One of these

generalized models is the Phan-Thien/Tanner (PTT) model [90], which allows non-Gaussian

chains and a dependence of the breakage probability on polymer chain extension. The PTT

model can give better predictions under elongational flows than the Giesekus and Leonov

models.

1.2.6 Computer Simulations in Polymer Industry

For industrial purposes, macroscopic flow simulations are performed to predict the flow prop-

erties of polymeric liquids in complex flow geometries. In this section, a review of a polymer
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melt spinning process and an injection molding process, which are typical processes in the

polymer industry, is given.

The polymer melt spinning process schematically shown in Fig. 1.4 (a) is a common

process for manufacturing polymeric fibers. One of the pioneering studies on this process

was performed by Kase and Matsuo [91,92]. They developed a mathematical model for this

process using a Newtonian fluid. After these pioneering studies were performed by Kase and

Matsuo for a Newtonian fluid, constitutive equations, such as those in the Maxwell model [93]

and the PTT model [94], were employed to address viscoelastic properties. Furthermore, mi-

croscopic structures, such as the molecular orientation and crystallization induced by uniaxial

elongational flows, were examined by many researchers. Mathematical models for the spin-

ning process, including thermally and flow-induced crystallization, were developed using the

Giesekus model [95–97], or the multimode PTT model [98].

Since the injection molding process is one of the major production techniques in the

polymer industry, there are many related studies from both experimental and numerical as-

pects. Injection molding is composed of many different process elements such as mixing,

flow, filling, and shaping [99]. For the mixing process, Nakayama and coworkers analyzed

this process using a shear thinning fluid [100,101]. For flow properties, since the contraction-

expansion channel (schematically shown in Fig. 1.4 (b)) can be considered one of the model

geometries in the injection molding process, flows in this geometry have been extensively

examined using phenomenological or molecular-based constitutive equations, including the

Oldroyd-B model [102], the pom-pom model [103–105], and the Rolie-Poly model [106–110].

For the filling process schematically shown in Fig. 1.4 (c), free surface flows should be ad-

dressed. Numerically, using mesh-based methods, such as the finite element method (FEM),

to address free surface flows is generally difficult due to the meshing problem. Lagrangian

fluid particle methods are some of the effective methods for addressing flows including a free

surface [111,112].

The macroscopic flow properties (and the subsequent physical properties of polymer prod-
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ucts) are determined by the microscopic states of polymer chains, including the molecular

orientation and entanglements. Therefore, it is important to investigate the microscopic

states of polymer chains in processing flows. Using tube-model-based constitutive models,

such as the Rolie-Poly model or the pom-pom model, the molecular orientation and stretch

can be obtained. However, when comparing with scattering experiments under flows, in-

formation on the molecular orientation and stretch is not sufficient to calculate structure

factors, and a more detailed model such as the GLaMM model is required [106,108,110]. On

the other hand, using the phenomenological constitutive equations, molecular information

cannot be directly obtained. To obtain both macroscopic flow properties and microscopic

molecular insights, other simulation techniques are needed.

1.3 Multi-Scale Simulation Method

Conventional fluid dynamics approaches with phenomenological viscoelastic constitutive equa-

tions can access length and time scales suitable for polymer processing. However, it is gen-

erally difficult to uniquely choose a proper constitutive equation that can fit experimental

rheological data on a targeting polymer melt. Moreover, phenomenological constitutive equa-

tions are too coarse grained to directly obtain molecular insights that would be useful for

designing polymer products. For these problems, the Multi-Scale Simulation (MSS) approach,

in which a microscopic (or mesoscopic) model is connected to macroscopic balance equations,

is one promising method. Using the MSS technique, both macroscopic flow properties and

microscopic polymer dynamics can be evaluated. A short review on the MSS approaches can

be found in Ref. [113]. Here, a more detailed review on transport problems using the MSS

approaches is given.

A pioneering work on an MSS technique was performed by Laso and Öttinger, which was

known as the Calculation of Non-Newtonian Flow: Finite Element and Stochastic Simulation

Technique (CONNFFESSIT) [114]. In the original CONNFFESSIT approach, instead of em-

ploying phenomenological constitutive equations, the Hookean dumbbell model is employed
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to calculate the polymeric stress. Microscopic systems described by the Hookean dumbbell

model are connected to macroscopic balance equations. These balance equations are solved

by the FEM. The CONNFFESSIT technique was applied to the start-up Couette flow prob-

lem, and validated by comparing with solutions obtained from constitutive equations [114].

After that, various flow problems have been investigated using the CONNFFESSIT approach,

such as flows in an abrupt contraction [115], start-up Couette flows for liquid crystals and

polymer melts [116], time-dependent flows [117], and free surface flows [118]. Although

the CONNFFESSIT is successful as a pioneering work, it has the following two main prob-

lems: the convection of microscopic components and the subsequent remeshing process in the

FEM are calculation heavy, and microscopic information is limited since the simple Hookean

dumbbell model is employed (except for the work of Hua and Schieber [116]). Based on the

CONNFFESSIT approach, many variations of the MSS method have been developed. As

shown in Fig. 1.5, we can roughly classify MSS methods into the following two categories: (1)

MSS methods that combine macroscopic balance equations with an MD simulation, and (2)

MSS methods that employ more coarse-grained models than MD and address the convection

of microscopic systems.

1.3.1 MSS Methods using MD Simulations

As an MSS method using the MD simulation, the heterogeneous multi-scale method (HMM)

proposed by E and coworkers is one of the successful methods [119, 120]. In the HMM,
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macroscopic balance equations are combined with MD simulations for Lennard-Jones (LJ)

and dumbbell fluids. Macroscopic equations are solved using the finite volume method, and

boundary conditions for MD simulations are obtained from macroscopic simulation. Using

the HMM, typical flow problems such as a Poiseuille flow and a cavity flow were exam-

ined [120]. De and coworkers developed a scale-bridging method that combines macroscopic

balance equations with the KG model [121, 122]. In this MSS method, the memory effect

of a weakly entangled linear polymer melt for flows between parallel plates [121] and flows

within a cylinder [122] can be accurately evaluated. Yasuda and Yamamoto proposed a

hybrid simulation method of the macroscopic balance equation and MD simulations for LJ

liquids based on the HMM [123]. In their hybrid simulation method, to properly employ the

Lees-Edwards periodic boundary condition for MD simulations, the strain rate tensor cal-

culated at the macroscopic level is transformed using a rotation matrix. Using their hybrid

simulation method, the pressure-driven channel flow and the cavity flow of the LJ fluid were

examined. Subsequently, the hybrid simulation method was extended to a polymer melt

using the KG model, and various flow problems were examined [124–126]. More recently,

Yasuda and Yamamoto developed the synchronized molecular dynamics (SMD) method that

can address flow problems of complex fluids with temperature changes [127–129]. In the

SMD, the KG simulations of local fluid elements are synchronized to satisfy the macroscopic

momentum and energy equations at a macroscopic time interval. Using the SMD method,

lubrication problems of unentangled [127,128] and weakly entangled [129] polymer melts were

investigated.

In all MSS methods using MD simulations mentioned above, although detailed micro-

scopic information can be obtained, there are mainly two limitations. First, the flow channel

geometries are restricted to simple ones, such as flow between parallel plates, since it is im-

possible to set appropriate boundary conditions in MD simulations for general processing

flows in which various types of flows are mixed, as mentioned in Sec. 1.2.1. Second, the

polymer chains used in these MSS methods are relatively short or have few entanglements
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due to the large computational cost, which are not sufficient for most polymer processing

flows.

1.3.2 MSS Methods using Coarse-grained Models

As an MSS method using a more coarse-grained model than MD, Hulsen and coworkers de-

veloped the Brownian configuration field (BCF) method, which can easily take the convection

of microscopic systems into account [130]. In the BCF method, a time evolution equation

of a configuration field of dumbbells is employed instead of individual polymer molecules,

and the configuration field description is incorporated into the FEM. After confirming the

validity of the BCF method by investigating flows around a cylinder using this method [130],

various problems have been considered, including fibre suspension flows in contraction and

expansion channels [131], free surface flows [132], 3D contraction flows [133], and nonequi-

librium phase transitions of polymer solutions under shear flows [134]. Another variation

of this type of the MSS method was developed by Halin and coworkers, which is called the

Lagrangian particle method (LPM) [135,136]. In the LPM, the FEM for solving macroscopic

balance equations is combined with the dumbbell model through a number of Lagrangian

fluid particles on which the polymeric stress is calculated. Therefore, the deformation history

of the polymers can be correctly addressed in the LPM. Using the LPM, the start-up flow

between slightly eccentric rotating cylinders was examined. In all the MSS methods using

coarse-grained models mentioned above, since the dumbbell model is employed to calculate

the polymeric stress, the effect of entanglements is not addressed.

One of the MSS methods that addresses the effect of entanglements is the deformation

field method [138, 139]. In the deformation field method, the deformation gradient fields

are introduced to calculate the polymeric stress. Another approach was proposed by Ma-

subuchi and coworkers. They developed a parameter-based bridging MSS method using the

PCN model [140]. In their parameter-based bridging MSS method, the parameters of the

viscoelastic constitutive equation (the multimode Leonov equation) were obtained from the
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(a) (b-i)

Fig. 1.6: (a) Schematic illustration of the system considered in the MSS of well-entangled
polymer melts. (b) Schematic illustration of the MSS method proposed by Murashima and
Taniguchi [137]. (c) Results of the MSS for (i) the macroscopic velocity field and (ii) micro-
scopic rheological model predictions.

PCN model, and simulations of the filling process were performed. An MSS method that

employs the smoothed particle hydrodynamics (SPH) method [141] as a macroscopic model

and the dumbbell model was developed by Murashima and Taniguchi [142]. After that,

they extended their MSS method to flows of an entangled linear polymer melt using the DT

model, as schematically shown in Fig. 1.6 (a) and (b) [137,143,144]. Using this MSS method,

both macroscopic (Fig. 1.6 (c-i)) and microscopic (Fig. 1.6 (c-ii)) information of the entan-

gled polymer melt can be obtained without using phenomenological constitutive equations.

Using an approach similar to the LPM, the author developed an MSS method that can cal-

culate flows of a polymer melt spinning process using the dumbbell model [145] and the DT

model [146]. More recently, flows of an entangled polymer melt in a contraction-expansion

channel were examined using the MSS method by the author [113]. Moreover, it is fair to

note that a similar MSS method was developed by Schieber and coworkers by employing the

DSM as a microscopic level model [147].

In the MSS methods using more coarse-grained models than MD, microscopic details are

limited because of coarse-graining. However, this type of MSS methods can access various

processing flow problems of well-entangled polymer melts.
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1.4 Thesis Objectives

Based on the abovementioned background, in this dissertation, the transport phenomena

of entangled polymer melts are computationally investigated at both the macroscopic and

microscopic levels. In particular, we focus on developing a Multi-Scale Simulation (MSS)

method for transport problems of entangled polymer melts. To develop a sophisticated MSS

method that can address polymer processing flow problems, we will focus on the following

two problems:

(1) Microscopic coarse-grained models that describe the entangled polymer dynamics have

not been fully developed. For example, under nonlinear flows frequently seen in polymer

processing, rheological predictions of existing coarse-grained microscopic models, such

as the Doi-Takimoto slip-link model [67], are not in reasonable agreement with the

experimental data.

(2) Macroscopic flows in the polymer industry are quite diverse. There are various pro-

cessing flows to manufacture polymer products. For example, some industrial polymer

processes use complex flow channel geometries. That is, various flow types, such as

shear flows and elongational flows, are mixed. As briefly discussed in Sec. 1.3.1, MD

based MSS approaches cannot address complex flow problems. On the other hand, MSS

approaches using coarse-grained models are effective to tackle complex flow problems.

However, the aims of most of the studies on such MSS methods are to develop the

computational methods themselves, and there are few studies that attempt to connect

basic science and engineering.

Based on these problems, this dissertation is composed of five chapters, which are described

bellow.

In Chapter 2, we focus on the Doi-Takimoto slip-link (DT) model [67] that is employed

in the MSS as a microscopic coarse-grained model. The issue in this chapter is related to

problem (1). First, the viscoelastic and statistical properties of the DT model are extensively
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examined. For the viscoelastic properties, we have confirmed that the original DT model can

give good rheological predictions for the linear viscoelasticity of monodisperse linear, and

symmetric star polymer melt systems, and the nonlinear rheological properties in a moderate

strain rate region, where polymer chains are oriented without significant stretching. These

results are consistent with the findings in the literature [67]. Furthermore, the nonlinear

rheological properties under strong flows, with significant polymer chain stretching, which

are important in polymer processing flows, are examined. For the statistical properties, we

have investigated the validity of the entanglement structure obtained from the DT model

by comparing with other coarse-grained models. This chapter describes the same results as

those in Ref. [45].

The issues in Chapter 3 and Chapter 4 are related to problem (2). In these chapters,

two typical flow problems in polymer processing are examined using the MSS method; one

is a flow problem in an entangled polymer melt spinning process (Chapter 3), and the

other is a flow problem in a contraction-expansion channel (Chapter 4). At the microscopic

level of the MSS, we employ the DT model to address the entangled polymer dynamics. At

the macroscopic level of the MSS, a Lagrangian fluid particle method appropriate for each

process is employed, in order to address the effect of the flow history coming from the slow

relaxation of entangled polymer chains.

In Chapter 3, the focus is on the entangled polymer melt spinning process. As described

in Sec. 1.2.6, this is a common process for manufacturing polymeric fibers. At the macroscopic

level, an Eulerian grid-based method and a Lagrangian fluid particle method are combined.

The Eulerian grid-based method is employed to calculate macroscopic variables, such as the

velocity. The polymeric stress is calculated on Lagrangian fluid particles that convect with

the macroscopically obtained velocity. Using the developed MSS technique, both macroscopic

and microscopic aspects of the entangled polymer melt spinning process are examined. To the

best of our knowledge, the MSS approach for the entangled polymer melt spinning process

is presented for the first time in our work. This chapter describes the same results as those
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in Ref. [146].

In Chapter 4, the focus is on flows in the contraction-expansion channel, which can be

considered to be one of the model geometries of the injection molding process (as reviewed

in Sec. 1.2.6). Unlike the polymer melt spinning process, flows in the contraction-expansion

channel are mixtures of several flow types. Therefore, to correctly address the flow properties

in the contraction-expansion channel, the smoothed particle hydrodynamics (SPH) method

is employed as a macroscopic simulation model. At the microscopic level, the DT model

is employed to calculate the polymeric stress. Using the developed MSS technique, both

macroscopic and microscopic aspects of the flows in the contraction-expansion channel are

examined. This chapter describes the same results as those in Ref. [113].

In Chapter 5, general conclusions are stated. The contents of this dissertation are

summarized and the future perspectives are presented.
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2 Slip-link Model

2 Rheology and Entanglement Structure

of Well-Entangled Polymer Melts

2.1 Introduction

In this chapter, we focus specifically on the Doi-Takimoto slip-link model (DT model) [67],

which describes entangled polymer dynamics. This coarse-grained model has a low compu-

tational cost compared with other molecular-based models. Therefore, the DT model can be

employed as a microscopic model of MSSs for entangled polymer melt flows [113,137,142,146].

To realize a more sophisticated MSS using the DT model, we investigate the following two

aspects of this model: (i) nonlinear rheological properties at a high strain rate region where

polymer chains are stretched, and (ii) the statistical properties of the microscopic entangle-

ment structure. First, to perform MSSs under polymer processing conditions, the rheological

properties of fast flows should be correctly predicted by the DT model. Second, to utilize

the microscopic structure obtained using MSSs for the molecular design of entangled poly-

mer melts, the validity of the microscopic structure obtained from the DT model should be

investigated through comparison with other (less coarse-grained) models.

In the DT model, because of the degree of coarse graining, relaxation mechanisms that are

faster than the Rouse relaxation time τR are ignored. Therefore, the rheological properties

for the high strain rate region γ̇, ϵ̇ > τ−1
R should be carefully examined. In fact, steady-state

elongational viscosities obtained from the DT model show thinning behavior for ϵ̇ < τ−1
R and

hardening behavior for ϵ̇ > τ−1
R , as shown in the literature [67]. This behavior is not for typical

entangled polymer melts but rather for typical entangled polymer solutions. To correctly

predict steady-state elongational viscosities of entangled polymer melts, the concept of the

stretch/orientation-induced reduction of molecular friction (SORF) was originally proposed

by Ianniruberto et al. [148]. Yaoita et al. incorporated SORF into the Primitive Chain

Network (PCN) model and found that SORF can improve the predictions of the rheological

properties of entangled polystyrene (PS) melts under fast uniaxial elongational flows [64].
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The effect of SORF has also been verified by incorporating SORF into the tube model-

based constitutive equation [149, 150]. Masubuchi et al. have investigated the universality

of SORF by comparing PCN simulations with experiments of polyisoprene (PI) and poly(n-

butyl acrylate) (PnBA) [151]. More recently, Matsumiya et al. have examined the nonlinear

elongational rheology of unentangled polymer melts and confirmed that the Rouse model with

SORF can reproduce the steady elongational viscosity [152]. Based on the above background,

in this chapter, we have investigated the effect of SORF on the DT model to achieve the

above-stated purpose (i) and have clarified (ii) the statistical properties of the polymer chains

described by the DT model with SORF.

2.2 Model and Simulation

2.2.1 Original Doi-Takimoto Slip-link Model

In this subsection, we briefly explain the DT model [67], which is schematically illustrated

in Fig. 2.1. In the DT model shown in Fig. 2.1, a polymer chain is expressed by a primitive

path and by slip links on the primitive path. A slip link represents an entanglement point

between two different polymer chains.

In the DT model, the states of polymer chains are updated as follows. The position of a

slip link r(i)
j (1 ≤ j ≤ Zi(t)) of a polymer chain i (1 ≤ i ≤ Np) is evolved affinely according

Fig. 2.1: Schematic illustration of the slip-link model developed by Doi and Takimoto [67].

30



2 Slip-link Model 2.2 Model and Simulation

to an applied velocity gradient tensor κ as

∆r(i)
j = r(i)

j (t+∆t)− r(i)
j (t) = κ · r(i)

j (2.1)

where Zi(t) is the number of entanglements on the primitive path of the polymer chain i at

time t and Np is the number of polymer chains. In the DT model, relaxation mechanisms

faster than the Rouse time τR (e.g., force balance and fluctuation at entanglements) are

assumed to be ignored. In fact, Masubuchi et al. [153] have reported that the multichain slip-

link model without force balance can qualitatively capture the entangled polymer dynamics

in the linear region because the important relaxation mechanism is the reptation. However,

the effect of this assumption on the rheological properties, especially in the nonlinear region,

should be carefully examined by comparing with other models. Subsequently, the contour

length of a primitive path Li is updated as

∆Li = Li(t+∆t)− Li(t)

= − 1

τR
(Li(t)− L0)∆t+∆Laffine,i +

√
2a2∆t

3Z0τe
wL,i, (2.2)

where Li =
∑Z−1

j=1 |r(i)
j |+shead,i+stail,i is the length of the primitive path of the polymer chain

i, and shead,i and stail,i are the contour lengths of the two ends, head and tail, respectively.

Note that the primitive path is composed of (Zi(t) − 1) entangled strands and two ends.

L0 = Z0a is the equilibrium length of the primitive path, Z0 is the equilibrium number of

strands per chain, a is the equilibrium length between adjacent slip links, τR = Z2
0τe is the

Rouse relaxation time, τe is the unit time of the DT model, ∆Laffine,i is the change in length

caused by the affine deformation, and wL,i is a Gaussian random number with zero mean and

unit variance. The reptation motion can be described as the motion of the two free ends by
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the following two equations:

∆shead,i = shead,i(t+∆t)− shead,i(t) =
1

2
[∆Li −∆Laffine,i] +

√
2Dc∆t ws,i, (2.3)

∆stail,i = stail,i(t+∆t)− stail,i(t) =
1

2
[∆Li −∆Laffine,i]−

√
2Dc∆t ws,i, (2.4)

whereDc = L2
0/(π

2τDE
d ) is the diffusion constant, τDE

d = 3Z3
0τe is the reptation time calculated

from the Doi-Edwards model [21], and ws,i is a Gaussian random number with zero mean

and unit variance.

The number of entanglements Zi(t) is changed by the motions of its chain ends and the

motions of other chains entangled with this chain (constraint release; CR). When shead,i (stail,i)

becomes less than zero, the slip link on the chain end of the polymer chain i is removed. At

the same time, the slip link coupled to the removed one is also removed in a way that mimics

the CR. Conversely, when shead,i (stail,i) becomes larger than a, a new slip link is created at

the head (tail). Simultaneously, a partner polymer chain entangled with the new slip link is

randomly selected from other polymer chains. A new slip link is created on a strand that

is randomly selected from strands of the partner polymer chain with a probability that is

proportional to strand lengths.

The stress tensor is calculated as

σαβ = σe

〈
f
riαriβ
a |ri|

〉
, α, β ∈ {x, y, z} (2.5)

where f is the FENE factor defined as f ≡ (1 − λ2
eq)/(1 − λ2), λ ≡ L/Lmax is the stretch

ratio, Lmax is the maximum length of primitive paths, and ⟨· · · ⟩ is the statistical average

over Np polymer chains. The unit stress σe is expressed as

σe =
3kBTZtotal

V
=

3ρRT

Me
=

15

4
GN, (2.6)

where Me is the entanglement molecular weight and GN is the plateau modulus. In general,
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the relation between GN and Me is expressed as Me = AρRT/GN, where A is the model-

dependent prefactor. For the DT model, A is the same as in the Doi-Edwards model [21],

A = 0.8, as shown in Eq. (2.6). The unit time τe and the unit stress σe can be determined

using linear viscoelasticity data obtained from an experiment.

2.2.2 Improvement of the DT Model

The DT model explained in Sec. 2.2.1 can successfully predict linear and nonlinear rheologies

of entangled linear or symmetric star polymer melts for strain rates less than τ−1
R . However,

in the DT model, the dynamics of an entangled polymer chain in a time scale shorter than the

Rouse relaxation time τR is ignored to enhance the computational efficiency. Thus, the results

obtained from the DT model simulations under fast flows (γ̇, ϵ̇ >∼ τ−1
R ) may not be reliable.

For example, the original DT model shows that steady-state elongational viscosity increases

when the elongational strain rate is larger than τ−1
R , as shown later. Experimentally, this

behavior is not observed for entangled polymer melts. Computationally, by use of the PCN

model, the viscosity behavior under fast flows was discussed by Yaoita et al. [63, 64]. They

argued that the important mechanism for suppressing the increase in elongational viscosity

under fast elongational flows is the stretch/orientation-induced reduction of friction (SORF)

originally proposed by Ianniruberto et al. [148]. Yaoita et al. [64] reported that SORF can

improve the prediction of steady elongational viscosities, especially under fast elongational

flows (ϵ̇ > τ−1
R ). To investigate the effect of SORF on the DT model, we have incorporated

SORF with the DT model as follows (for more information on SORF, see Ref. [64]). To

incorporate SORF with the DT model, we have assumed that the change in the friction

coefficient can be mapped to the change in the unit time τe in the DT model and that τe can

be expressed as a function of the stretch/orientation factor Fs/o ≡ λ2S̄ as

τe(Fs/o)

τe(0)
=

ζ(Fs/o)

ζ(0)

1

fFENE
=

1

(1 + β)γ

⎡

⎣β +
1− tanh

[
α
(
F ′
s/o − F ′∗

s/o

)]

2

⎤

⎦

γ

(2.7)
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Table 2.1: Parameters of samples examined by the DT model.
sample M [kg/mol] Z0 T [◦C] τe(0)a [s] σe

a [Pa] λmax

PS145K [154] 145 14 120 3.6 7.3× 105 4.4
PS200K [53,155] 200 19 130 0.15 6.7× 105 4.4
PS200K-Shear [156] 200 19 175 1.9× 10−4 7.7× 105 4.4
PS390K [53,155] 390 37 130 0.15 6.7× 105 4.4
PS90K-Star [157] 92.4 9 130 0.23 8.4× 105 4.4
PI145K [158] 145 29 21.5 5.9

a From the linear viscoelasticity data.

where F ′
s/o is a parameter defined as F ′

s/o ≡ Fs/ofFENE, S̄ is the averaged orientation pa-

rameter, and α, β, γ and F ′∗
s/o are parameters. Eq. (2.7) is an empirical equation that is

determined from the experimental data [64]. The parameters in Eq. (2.7) for PS are deter-

mined to fit the experimental data as α = 20, β = 5.0 × 10−9, γ = 0.15 and F ′∗
s/o = 0.14 in

the literature [64]. Note that it is still uncertain whether the assumption that τe(Fs/o) can be

described using Eq. (2.7) with the original parameters is valid for the DT model where the

dynamics faster than τ−1
R is ignored. However, the determination of appropriate parameters

for the DT model is deferred to a future work because one of the purposes in this chapter is

to investigate the effect of SORF on the DT model. S̄ is defined as

S̄ ≡
√

|λ1 − λ2|2 =
√

{Tr(S)}2 − 4det(S) =
√(

⟨u2
x − u2

y⟩
)2

+ 4⟨uxuy⟩2, (2.8)

where u is the unit vector defined as u ≡ r/|r|, Sαβ ≡ ⟨uαuβ⟩ (α, β ∈ x, y), and λ1 and λ2

are the eigenvalues of S. Under shear flows, x is the flow direction, and y is the velocity

gradient direction. Meanwhile, under elongational flows, x is the elongation direction, and y

is orthogonal to the elongation direction. Moreover, fFENE is the FENE-P factor defined as

fFENE ≡ 1

1− (⟨L⟩/Lmax)
2 . (2.9)

In Eqs. (2.8) and (2.9), ⟨· · · ⟩ is the ensemble average of (· · · ).

In the simulations, the equilibrium length between adjacent slip links a is used as the
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Fig. 2.2: Linear viscoelasticity of the monodisperse linear polystyrene melt. Circles and
diamonds, respectively, indicate G′ and G′′ extracted from Ref. [53]. The simulation results
with and without SORF are shown by dashed and solid lines, respectively.

unit length, τe(0) is the unit time, and σe is the unit stress. We focus on the rheological

properties of entangled linear PS melts, an entangled star PS melt, and an entangled linear

PI melt. The maximum length is set to Lmax = 4.4L0 for PS and Lmax = 5.9L0 for PI in the

following simulations. The parameters used in this study are summarized in Table 2.1.

2.3 Results and Discussion

2.3.1 Linear Regime

Fig. 2.2 shows the linear viscoelasticity of a linear monodisperse PS polymer melt with a

molecular weight Mw = 200 K (Z0 = 19) (henceforth, it is referred to as PS200K). Before

applying a strain or a strain rate, the system is fully equilibrated under κ = 0; namely, we

equilibrate the system for a time duration that is longer than the theoretically estimated

longest relaxation time τDE
d . After the equilibration, the average number of entanglements

⟨Z⟩eq is found to be ⟨Z⟩eq ≃ 20. The storage modulus G′(ω) and loss modulus G′′(ω) are

calculated by Eqs. (2.11) and (2.12) using the stress relaxation modulus G(t) in Eq. (2.10)

after applying step shear strain γ0 = 0.4. As shown in Fig. 2.3, the system remains in the

linear region after applying step shear strain γ0 = 0.4 because the damping function h(γ) is
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Fig. 2.3: Damping function h(γ) of PS200K with (red circles) and without SORF (blue
squares). The solid black line is the prediction by the Doi-Edwards model [21].

almost equal to unity.

G(t) =
σxy(t)

γ0
(2.10)

G′(ω) = ω

∫ ∞

0

G(t)sinωtdt (2.11)

G′′(ω) = ω

∫ ∞

0

G(t)cosωtdt (2.12)

The unit time τe(0) and the unit stress σe can be determined through comparison with the

experimental data [53] as τe(0) = 0.15 s and σe = 0.67 MPa for PS at 130 ◦C. In addition,

since G′(ω) is proportional to ω and G′′(ω) is proportional to ω2 in the terminal relaxation

region, the longest relaxation time τd can be determined using the intersection of two lines

ω∗ as τd ≃ (2π/ω∗)τe(0). From Fig. 2.2, the longest relaxation time is determined to be

τd ≃ 2.1 × 104τe(0). As shown in Fig. 2.2, the simulation results with and without SORF

are almost identical, which means that the inclusion of SORF does not alter the rheological

behavior in the linear regime of the DT model and the effect of SORF would appear in a

nonlinear regime where polymer chains are highly oriented and stretched.

We turn to analysis of the statistical properties of the microscopic structure obtained

from the SL simulation at equilibrium. The following results are useful for examining the
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Fig. 2.4: The probability distribution of the number of slip links per chain P (Z) at equilib-
rium. Here, P (Z) is calculated by taking ensemble averages of Np = 1000 chains. The black
dashed line and the red solid line indicate the Poisson distribution with the same mean as
the data and the fitted Gaussian distribution, respectively.

microscopic structure of entangled polymer melts by using our MSS technique [113]. Fig. 2.4

shows the probability distribution of the number of slip links per chain P (Z) at equilibrium.

As clearly shown in Fig. 2.4, the P (Z) obtained from our SL simulation is narrower than

that of the theoretically expected Poisson distribution [48]. This result is consistent with the

findings in Ref. [66], as discussed in our previous work [113].

2.3.2 Nonlinear Regime

Fig. 2.5 shows viscosity growth and relaxation on start-up and cessation of uniaxial elon-

gational flows for the PS145K melt obtained by the DT model with (red dashed lines) and

without (solid lines) SORF. The symbols in Fig. 2.5 are the experimental data extracted

from the literature [154]. From Fig. 2.5, we can clearly observe the effect of SORF on the DT

model. That is, although the simulations without SORF overpredict the experimental data,

the simulations with SORF provide considerably better predictions and are in reasonable

agreement with the experimental data.

Fig. 2.6 shows (a) the transient uniaxial elongational viscosities η+E (t) plotted against time

t for various elongational strain rates and (b) the steady-state uniaxial elongational viscosities

ηE against Weissenberg numbers defined as Wi(e)R ≡ ϵ̇τR. Dashed and solid lines indicate the
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Fig. 2.5: Viscosity growth and relaxation on start-up and cessation of uniaxial elongational
flow for PS145K melt at 120 ◦C. Dashed and solid lines indicate the SL simulation results
with and without the stretch/orientation-induced reduction of friction, respectively. Strain
rates are 0.03, 0.01, 0.003, 0.001, 0.0003, and 0.00001 s−1 from left to right, and the strain
at the flow cessation is ϵ0 = 3.0. The experimental data from Ref. [154] are shown with
symbols.

SL simulation results with and without SORF, respectively. From Fig. 2.6 (a), at the lowest

strain rate (ϵ̇ = 0.001 s−1, Wi(e)R ≃ 0.05), the transient uniaxial elongational viscosity shows

almost identical behavior as the linear viscoelasticity growth function 3η+0 (t). As briefly noted

in Sec. 2.2.2, we can observe that the simulation results with and without SORF are almost

identical for the relatively small strain rate region (ϵ̇ <∼ 0.01s−1, Wi(e)R
<∼ 0.5). We can clearly

observe the effect of SORF in the high strain rate region (ϵ̇ >∼ 0.03s−1, Wi(e)R
>∼ 1.5). In the

high strain rate region (ϵ̇ >∼ 0.03s−1, Wi(e)R
>∼ 1.5), the SL simulations without SORF clearly

overpredict the steady-state values of uniaxial elongational viscosities, as shown by the solid

lines in Fig. 2.6 (a). Meanwhile, the SL simulations with SORF can improve the predictions of

steady-state uniaxial elongational viscosities, and the results are in good agreement with the

experimental data [53], as shown by the red dashed lines in Fig. 2.6 (a). From Fig. 2.6 (b), the

steady-state uniaxial elongational viscosities obtained from the SL simulations without SORF

exhibit thinning behavior for ϵ̇ <∼ τ−1
R and hardening behavior for ϵ̇ >∼ τ−1

R , which are typically

observed in entangled polymer solutions [159]. In contrast, steady-state uniaxial elongational

viscosities obtained from the SL simulation with SORF exhibit thinning behavior followed by
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Fig. 2.6: (a) Transient uniaxial viscosities and (b) steady-state uniaxial elongational viscosi-
ties for a PS200K melt at 130◦C. Dashed and solid lines indicate the SL simulation results
with and without the stretch/orientation-induced reduction of friction, respectively. In (a),
the strain rates are 0.1 (diamonds), 0.03 (reverse triangles), 0.01 (triangles), 0.003 (circles)
and 0.001 (squares) s−1 from left to right, and the bold solid line is the linear viscosity growth
function 3η+0 (t) calculated from the linear viscoelasticity data. The experimental data for
(a) and (b) from Refs. [53] and [155] are shown with symbols, respectively.

a slight increase at approximately ϵ̇ ≃ τ−1
R . The increase in steady-state elongational viscosity

at approximately ϵ̇ ≃ τ−1
R occurs presumably because there is no relaxation mechanism for

time scales shorter than τR in the DT model. Nevertheless, we can conclude that SORF can

significantly improve the agreement with the rheological data of PS200K [155] in the DT

model. For entangled PS that has a different molecular weight (PS390K), the tendency in

viscosities is almost the same as that of PS200K (for more details, see Appendix 2.A). Fig. 2.7

shows (a) the reduced chain stretch squared λ2, (b) the average orientation S̄ calculated from

Eq. (2.8), and (c) the number of slip links per chain normalized using the equilibrium value

Z/⟨Z⟩eq at steady states under uniaxial elongational flows as functions of Wi(e)R . The dashed

and solid lines indicate the SL simulation results with and without SORF, respectively. As

shown in Fig. 2.7 (a), the reduced chain stretch squared λ2 with SORF is reduced in the high
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Steady Uniaxial Elongational Flows

0.0
0.2
0.4
0.6
0.8
1.0

(a)

λ
2

0.0
0.2
0.4
0.6
0.8
1.0

(b)

– S

0.0

0.5

1.0

1.5

2.0

10-2 10-1 100 101

(c)

Z
/⟨
Z
⟩ e
q

Wi(e)R

Fig. 2.7: (a) The reduced chain stretch squared λ2, (b) the average orientation S̄ and (c)
the number of slip links per chain normalized using the equilibrium value Z/⟨Z⟩eq under
uniaxial elongational flows. These values are plotted against the Rouse-relaxation-time-
based Weissenberg number Wi(e)R ≡ ϵ̇τR. The simulation results with and without SORF are
indicated with dashed and solid lines, respectively.

strain rate region Wi(e)R
>∼ 1. For the average orientation S̄ shown in Fig. 2.7 (b), there is little

difference between the cases with and without SORF. These behaviors can also be observed

in the literature [64]. However, for the number of slip links per chain normalized using the

equilibrium value Z/⟨Z⟩eq, nonmonotonic behavior can be observed, particularly for the case

without SORF (black solid line); that is, as Wi(e)R increases, Z/⟨Z⟩eq first decreases and then

increases. This behavior in the high strain rate region Wi(e)R > 1 cannot be found in the

literature [64, 80]. Although the result becomes close to the result in the literature [64] if

we consider the SORF, the qualitative behavior remains unchanged (comparison with the

PCN model for PS390K is shown in Fig. 2.21 (c)). This result indicates that the validity of

the microscopic structure obtained from the DT model even with SORF in the strain rate
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Fig. 2.8: (a) Transient shear viscosities and (b) steady shear viscosities for a PS200K melt
at 175◦C. Dashed and solid lines indicate the SL simulation results with and without the
stretch/orientation-induced reduction of friction, respectively. In (a), the strain rates are 30
(diamonds), 10 (reverse triangles), 3 (triangles), 1 (circles) and 0.3 (squares) s−1 from left
to right, and the bold solid line is the linear viscosity growth function η+0 (t) calculated from
the linear viscoelasticity data. In (a), the experimental data from Ref. [156] are shown with
symbols.

region Wi(e)R > 1 is questionable and should be examined in detail by comparison with other

less-coarse-grained models. However, detailed examination of the microscopic structure in

the strain rate region Wi(e)R > 1 is beyond the scope of this work and is deferred to future

work.

Fig. 2.8 shows (a) the transient shear viscosities η+(t) plotted against time t for various

shear strain rates and (b) the steady shear viscosities η plotted against Weissenberg numbers

defined as Wi(s)R ≡ γ̇τR. The dashed and solid lines indicate the SL simulation results with and

without SORF, respectively. In Fig. 2.8 (a), for the examined strain rate region γ̇ <∼ 30s−1 that

corresponds to Wi(s)R
<∼ 2, there is no significant difference in the transient shear viscosities

η+(t) between the cases with and without SORF, and the simulation results are in good

agreement with the experimental data [156]. This result is consistent with the discussion in
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Steady Shear Flows
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Fig. 2.9: (a) The reduced chain stretch squared λ2, (b) the average orientation S̄ and (c) the
number of slip links per chain normalized using the equilibrium value Z/⟨Z⟩eq under shear
flows. These values are plotted against the Rouse-relaxation-time-based Weissenberg number
Wi(s)R ≡ γ̇τR. The simulation results with and without SORF are indicated with dashed and
solid lines, respectively.

the literature [64]. As shown in Fig. 2.8 (b), shear thinning behavior starts at a shear rate of

approximately Wi(s)d ≃ 1. For τ−1
d < γ̇ < τ−1

R , the shear viscosity can be described by a power

law of η ∝
{
Wi(s)R

}−0.8

, and this exponent is in good agreement with the experimentally

obtained value [4]. From Fig. 2.8 (b), the effect of SORF can be observed in Wi(s)R
>∼ 10.

Although the system without SORF exhibits plateau values of shear viscosities in Wi(s)R
>∼ 10,

the system with SORF exhibits monotonic thinning. A difference exists between uniaxial

elongational and shear flows in Wi(e/s)R , where the effect of SORF begins to work, namely,

Wi(e)R ≃ 1.5 and Wi(s)R ≃ 10. This difference originates mainly from the difference in Wi(e/s)R ,

where polymer chains start to stretch, as discussed in the next paragraph. In Fig. 2.9, we

also show (a) the reduced chain stretch squared λ2, (b) the average orientation S̄ calculated
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Fig. 2.10: (a) The normalized decoupled elongational viscosity η(DC)
E /η(DC)

E,0 and (b) the nor-

malized decoupled shear viscosity η(DC)
S /η(DC)

S,0 . The results of the decoupling approximation
with and without SORF are indicated with dashed and solid lines, respectively. Further-
more, (a) the normalized elongational viscosity ηE/ηE,0 and (b) the normalized shear viscosity
ηS/ηS,0 are shown as references. The simulation results with and without SORF are indicated
with diamonds and circles, respectively.

from Eq. (2.8), and (c) the number of slip links per chain normalized using the equilibrium

value Z/⟨Z⟩eq at steady states under shear flows. We can observe only a slight difference

between the cases with and without SORF in the high Wi(s)R region. This result is consistent

with the discussion of the result in Fig. 2.8.

If we adopt a decoupling approximation, the stresses under elongational and shear flows,

σE/S, can be expressed as σE/S ∼ fFENEλ2S̄(Z/⟨Z⟩eq). By use of the stresses σE/S, we de-

fine the elongational and shear viscosities as η(DC)
E ≡ σE/ϵ̇ and η(DC)

S ≡ σS/γ̇, respectively.

Fig. 2.10 shows (a) elongational and (b) shear viscosities using the stresses σE/S. From the

comparison of Fig. 2.10 with Fig. 2.6 (b) and Fig. 2.8 (b), we find that the decoupling ap-

proximation can quantitatively reproduce the behavior of steady-state viscosities. Moreover,

we can conclude that the difference in steady-state viscosities between the cases with and

without SORF mainly arises from the reduction of the chain stretch λ2 shown in Figs. 2.7

(a) and 2.9 (a).

In addition to the entangled linear PS melts mentioned above, we have investigated
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Fig. 2.11: (a) Transient uniaxial elongational viscosities and (b) steady-state uniaxial elon-
gational viscosities for a star polymer melt (PS90K-Star) at 130◦C. Dashed (red) and solid
(blue) lines indicate the SL simulation results with and without the stretch/orientation-
induced reduction of friction, respectively. In (a), the strain rates are 0.2, 0.1, 0.03, 0.01,
0.003, and 0.0003 s−1 from left to right, and the bold solid line is the linear viscosity growth
function 3η+0 (t) calculated from the linear viscoelasticity data. The experimental data for
(a) and (b) from Ref. [157] are shown with symbols.

the uniaxial elongational viscosity of an entangled symmetric star PS melt (corresponding

to PS90K-Star) [157] and an entangled linear PI melt (corresponding to PI145K) [158] to

examine the universality of the effect of SORF on the DT model. For the symmetric star

melt, the reptation motion (Eqs. (2.3) and (2.4)) can be considered to be highly suppressed

and is therefore not taken into account. Here, we assume that the simulation is independent

of the number of arms per star polymer. Moreover, we set the Rouse time as τ (star)R = 4Z2
0τe.

Fig. 2.11 shows (a) the transient uniaxial elongational viscosities η+E (t) plotted against time t

for various elongational strain rates and (b) the steady-state uniaxial elongational viscosities

ηE against Weissenberg numbers defined as Wi(e)R ≡ ϵ̇τ (star)R for the symmetric star PS melt

with three arms (for the linear viscoelasticity of the star PS melt, see Appendix 2.B). Dashed

(red) and solid (blue) lines represent the SL simulation results with and without SORF,
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Fig. 2.12: Effect of the parameter F ′∗
s/o in Eq. (2.7) on (a) ζ(Fso) and (b) Trouton ratio,

ηE/η0, for a PI145K melt. In (a), vertical lines show F ′∗
s/o = 0.007, 0.014, 0.07, and 0.14

from left to right. In (b), steady uniaxial elongational viscosities without SORF are shown
by the red solid line and those with SORF are shown by bluish dashed lines for F ′∗

s/o = 0.14,
0.07, 0.014, and 0.007, from top to bottom. The experimental data for (b) from Ref. [158]
are shown with symbols.

respectively. The parameters of SORF are the same as those used for entangled linear PS

melts. From Fig. 2.11, SORF can also improve the agreement with the rheological data of

the symmetric star PS melt [157] in the DT model. For the PI melt, we set the maximum

stretch ratio as λmax = 5.9 [158]. As shown in Fig. 2.12, the SL simulation results with

SORF having the same parameters as those of PS melts are close to the experimental data

compared with the results without SORF. For the PI melt, because the SL simulation result

with SORF having the same parameters as the PS melts still deviates from the experimental

data, we have tested for the effect of a change in F ′∗
s/o, which determines the onset of the

SORF effect. As shown in Fig. 2.12 (b), the SL simulation results with SORF having smaller

F ′∗
s/o are in good agreement with experimental data. However, to examine the effect of the

parameters in detail, further experiments for various molecular weights are needed. From

Figs. 2.11 and 2.12, we can draw the following two conclusions. First, SORF is effective for

star PS melts, linear PS and PI melts. Second, the parameters are not universal in terms

45



2 Slip-link Model 2.3 Results and Discussion

0.00

0.05

0.10

0.15

P
(Z

)

(a)

0.00

0.05

0.10

0.15

 0 10 20 30 40

P
(Z

)

Z

(b)

Fig. 2.13: The probability distribution of the number of slip links per chain P (Z) for (a)
steady elongational flows and (b) steady shear flows. The blue triangles indicate P (Z) for

Wi(e/s)d ≃ 2.1 (Wi(e/s)R ≃ 3.6 × 10−2), the red diamonds indicate P (Z) for Wi(e/s)d ≃ 21

(Wi(e/s)R ≃ 0.36), and the black circles indicate P (Z) at equilibrium.

of the chemical structure. In addition, for a poly(n-butyl acrylate) melt with flexible side

chains, the SL simulation without SORF achieves better agreement with the experimental

data, as discussed in the literature [151]. Further tests to clarify the universality and origin

of SORF are needed from both experiments and less-corse-grained simulations.

Next, we would like to discuss the statistical properties of the microscopic structure

obtained from the SL simulation under flows. Note that all of the results shown below are

the results with SORF. As discussed in a previous paragraph, because the validity of the

microscopic structure obtained from the DT model at the strain rate region Wi(e/s)R
>∼ 1 has

not yet been confirmed, we focus on the statistical properties of the microscopic structure

mainly for the strain rate region τ−1
d < γ̇ < τ−1

R . Fig. 2.13 shows the probability distribution

of the number of slip links per chain under flows for (a) steady elongational flows and (b)

steady shear flows. The blue triangles indicate P (Z) for Wi(e/s)d ≃ 2.1, and the red diamonds

indicate P (Z) for Wi(e/s)d ≃ 21. As shown in Figs. 2.13 (a) and (b), the shapes of P (Z) under

flows are almost identical to that at equilibrium. The average values of the distributions

in this strain rate region decrease as the strain rates increase, as shown in Fig. 2.7 (c) and

Fig. 2.9 (c).
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2 Slip-link Model 2.3 Results and Discussion

Fig. 2.14: (a) Snapshot of the superimposed conformation of all the polymer chains and (b)
static structure factor S(q) for a polymer chain at equilibrium obtained from the DT model.
The contour lines correspond to values of 0.1, 0.2, 0.3, 0.45, 0.6, 0.75 and 0.9.

Fig. 2.15: (a) Snapshots of the superimposed conformation of all the polymer chains and
(b) static structure factor obtained from the DT model under steady elongational flows for

(i) Wi(e)d ≃ 2.1 (Wi(e)R ≃ 3.6 × 10−2) and (ii) Wi(e)d ≃ 21 (Wi(e)R ≃ 0.36). The contour lines
correspond to values of 0.1, 0.2, 0.3, 0.45, 0.6, 0.75 and 0.9 in (b-i) and 0.05, 0.1, 0.15, 0.3,
0.45, 0.6 and 0.75 in (b-ii).

Figs. 2.14, 2.15 and 2.16 show (a) snapshots of the superimposed conformation of all the

polymer chains by fixing the center of mass of each polymer chain to be the origin and (b)

the static structure factor S(q)/N at equilibrium κ = 0, under uniaxial elongational flows

with κxx > 0 and κyy = κzz = −κxx/2 and shear flows κxy > 0, respectively (we show S(q)/N

because the maximum value of S(q)/N is unity). Here, S(q) is calculated from the following
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2 Slip-link Model 2.3 Results and Discussion

Fig. 2.16: (a) Snapshots of the superimposed conformation of all the polymer chains and
(b) static structure factor obtained from the DT model under steady shear flows for (i)

Wi(s)d ≃ 2.1 (Wi(s)R ≃ 3.6 × 10−2) and (ii) Wi(s)d ≃ 21 (Wi(s)R ≃ 0.36). The contour lines
correspond to values of 0.12, 0.21, 0.3, 0.45, 0.6, 0.75 and 0.9 in (b-i) and 0.09, 0.15, 0.24,
0.36, 0.5, 0.65 and 0.8 in (b-ii).

equation:

S(q) =
1

N

Z∑

n,m

〈∫ Mn

0

ds

∫ Mm

0

ds′ exp
[
−iq · {r(n, s)− r(m, s′)}

]〉
. (2.13)

Here, N is the number of all segments per polymer chain, r(n, s) is the position of the s-

th segment existing between the n-th and (n + 1)-th slip links, and Mn is the number of

segments between them (for more details, see Appendix 2.C). In Figs. 2.14, 2.15 and 2.16,

S(q) is obtained by taking ensemble averages of Np = 1000 chains. As shown in Fig. 2.13,

both the conformation of polymer chains and the static structure factor at equilibrium are

isotropic. As shown in Figs. 2.15 and 2.16, polymer chains are clearly oriented to the direction

that is determined by flow types. Furthermore, we can observe that the shapes of S(q) are

determined by the strain rates. This information will be the stepping stone for comparing

the microscopic structure obtained from SL simulations with scattering experiments.

Finally, we calculate the number distribution of entanglements along a polymer chain
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Fig. 2.17: The number distribution of entanglements along a polymer chain for Wi(e)R = 0

(black circles), Wi(e)R ≃ 0.11 (blue triangles), Wi(e)R ≃ 0.36 (red diamonds) and Wi(e)R ≃ 1.1
(gray squares). The results obtained by using a discretized number larger than that in the
main figure are shown in the inset.

defined as pZ(γ̇, s) = n⟨∆Z(γ̇, s; s < s < s + ∆s)⟩. Here, s (0 ≤ s ≤ L) is the internal

coordinate along the polymer chain, L is the contour length of the polymer chain, ∆s is the

interval length defined as ∆s ≡ L/n, and n is the division number (here, we employ n = 100).

By definition, pZ(γ̇, s) satisfies the relation
∫ 1

0 pZ(γ̇, s/L)d(s/L) = ⟨Z(γ̇)⟩. Fig. 2.17 shows

pZ(γ̇, s/L) for Wi(e)R = 0 (black squares), Wi(e)R ≃ 0.11 (blue triangles), Wi(e)R ≃ 0.36 (red

diamonds) and Wi(e)R ≃ 1.1 (gray squares). In addition to the strain rate region Wi(e)R < 1, to

examine a possible origin of increasing Z/⟨Z⟩eq in Wi(e/s)R
>∼ 1 shown in Figs. 2.7 (c) and 2.9

(c), we also show pZ(γ̇, s/L) for Wi(e)R ≃ 1.1. At equilibrium, pZ(γ̇ = 0, s) is almost constant.

At the strain rate region τ−1
d < ϵ̇ < τ−1

R , we can observe that pZ(γ̇, s) has two peaks near

the ends of the polymer chain and decreases mainly in the middle region (s/L ∼ 0.5). This

behavior can be explained by the CCR (convected constraint release) mechanism and is

consistent with our previous work [113]. However, as the strain rate increases, the two peaks

near the ends of the polymer chain are moved to both ends, as shown in the inset. Moreover,

the number distributions of entanglements near both ends are highly enhanced at Wi(e)R ≃ 1.1.

This leads to the increase in Z/⟨Z⟩eq in the high strain rate region (Wi(e/s)R
>∼ 1), as shown

in Fig. 2.7 (c) and Fig. 2.9 (c). This behavior in entanglement structure along a polymer
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2 Slip-link Model 2.4 Conclusions

chain suggests that the criterion for creating a new entanglement point in the high strain

rate region (Wi(e/s)R
>∼ 1) should be modified; that is, the hooking rate might be a function of

the orientation and stretch of polymer chains as discussed in the literature [160].

2.4 Conclusions

We have examined the rheological properties and statistical properties of the microscopic

structure of well-entangled polymer melts described by the slip-link model proposed by Doi

and Takimoto (DT model) [67]. Since we have recognized that the DT model does not

well-describe nonlinear rheological behavior for strain rates larger than τ−1
R , we have incor-

porated the concept of the stretch/orientation-induced reduction of friction (SORF), which

was originally proposed by Ianniruberto et al. [148], with the DT model.

In the linear region, we have confirmed that the rheological behavior obtained by the DT

model with and without SORF are almost the same because the effect of SORF works only

when polymer chains are highly oriented and stretched. For the statistical properties of the

microscopic structure of polymer chains in the linear region, the probability distribution of

the number of slip links per polymer chain and the static structure factor are shown. The

probability distribution of the number of slip links per polymer chain obtained from the

DT model can be fitted by the Gaussian distribution function rather than the theoretically

obtained Poisson distribution function. This result shows the same tendency as the result

obtained by the PCN model [66]. Moreover, as expected, the static structure factor at

equilibrium is almost isotropic.

In the nonlinear region, the effect of SORF is striking, particularly under uniaxial elonga-

tional flows. The steady-state elongational viscosities without SORF show thinning behavior

for τ−1
d

<∼ ϵ̇ <∼ τ−1
R and thickening behavior for ϵ̇ >∼ τ−1

R , which is typical for entangled poly-

mer solutions. However, the steady-state elongational viscosities with SORF show almost

monotonic thinning behavior. From the decoupling approximation, we can understand that

the major reason for the nonmonotonic behavior comes from not enough reduction of chain
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2 Slip-link Model 2.4 Conclusions

stretch under fast flows. Under shear flows, the effect of SORF can be observed in a relatively

high strain rate region Wi(s)R
>∼ 10. Although SORF can improve the rheological properties

obtained by the DT model, note that the validity for employing the assumption that τe(Fs/o)

can be described using Eq. (2.7) with the original parameters is uncertain for the DT model.

For more accurate predictions using the DT model with SORF, it is necessary to obtain a

more suitable expression for the friction ζ of the DT model directly by fitting the experimen-

tal data of relaxation after cessation of elongational flows [154]. For the microscopic structure

in the nonlinear region, we have found that the normalized number of slip links per chain

shows nonmonotonic behavior; that is, the normalized number of slip links first decreases

with the strain rate for τ−1
d

<∼ ϵ̇, γ̇ <∼ τ−1
R , which is consistent with the results obtained from

the PCN model [64], and then increases for ϵ̇, γ̇ >∼ τ−1
R .

Judging from the increasing behavior of the steady-state normalized number of slip links

per chain under elongational and shear flows in the region Wi(e/s)R
>∼ 1, we have concluded that

the microscopic structure obtained from the DT model for Wi(e/s)R
>∼ 1 is questionable. For a

reliable deformation rate region Wi(e/s)R
<∼ 1, the probability distribution of the number of slip

links per chain and the static structure factor are shown. In particular, the static structure

factor will be useful when comparing scattering experiments [108, 110]. Finally, we have

examined the number distribution of entanglements along a polymer chain. Consequently,

we have found that the number distribution of entanglements has peaks near both ends for

Wi(e)R
<∼ 1, and the peaks are highly enhanced and moved to the ends for Wi(e)R

>∼ 1. This

behavior in the region of Wi(e)R
>∼ 1 indicates that the hooking rate of the DT model should

be modified to be a function of orientation and stretch of polymer chains in the high strain

rate region.

Although room for improvement on the microscopic dynamics of polymer chains for

Wi(e/s)R
>∼ 1 still exists, the rheological properties obtained by the DT model can be improved

using SORF. Incorporating the DT model having the SORF with a macroscopic model, we

are able to extend our MSS method to highly nonlinear regions including strain hardening
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Fig. 2.18: Linear viscoelasticity of PS390K. Circles and diamonds indicate G′ and G′′ ex-
tracted from Ref. [53]. Simulation results with and without SORF are shown by dashed and
solid lines, respectively.

under fast elongational flows. This MSS method bring us improved predictions of process-

ing flows, such as a polymer melt spinning process [146], where the elongational strain rate

easily reaches a value larger than τ−1
R . Nevertheless, further studies from various directions

are clearly needed to improve the DT model. For instance, although the DT model can

successfully predict rheological properties, the thermodynamical properties of the DT model

are not yet fully understood. Furthermore, to examine the rheological properties of more

complicated systems, such as entangled branched polymer melts, we should refine the DT

model. We are continuing our study on the DT model along these directions, and the results

will be reported elsewhere.

Appendix 2.A Rheological Properties of PS390K

SL simulations were performed in the linear and nonlinear viscoelastic ranges for a linear

monodisperse PS polymer melt with a molecular weight Mw = 390 K (Z0 = 37) (henceforth,

it is referred to as PS390K). The parameters for the simulations in Figs. 2.18, 2.20 and 2.21

are the same as those of Figs. 2.2, 2.6 and 2.7, except for the equilibrium number of strands

Z0. Namely, the unit time and stress are the same as those determined in Fig. 2.2. Fig. 2.18

52



2 Slip-link Model 2.A Rheological Properties of PS390K

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.5 1.0 1.5 2.0

⟨Z
⟩ e
qP

(Z
/⟨
Z
⟩ e
q)

Z/⟨Z⟩eq

Fig. 2.19: The normalized probability distribution of the number of slip links per chain at
equilibrium for Z0 = 19 (black circles), 37 (red diamonds) and 60 (blue triangles). The
dashed lines indicate the fitted Gaussian distribution.

shows the linear viscoelasticity data of the polymer melt PS390K (Z0 = 37) calculated

from Eqs. (2.11) and (2.12) using the stress relaxation modulus G(t) in Eq. (2.10) after

applying step shear strain γ0 = 0.4. As shown in Fig. 2.18, the results obtained from the SL

simulations are in reasonable agreement with the experimental data [53]. In addition, as is

the case with PS200K, there is no difference between the cases with and without SORF in

linear viscoelasticity data for PS390K. Fig. 2.19 shows the normalized probability distribution

of the number of slip links per chain ⟨Z⟩eqP (Z/⟨Z⟩eq) at equilibrium (we have also examined

the probability distribution of Z0 = 60 as a reference). The fitted Gaussian distributions

are also shown. The variance σ2 of PS390K (Z0 = 37) is smaller than that of PS200K

(Z0 = 19), as shown in Fig. 2.19 (σ2(Z0 = 19) = 2.9 × 10−2, σ2(Z0 = 37) = 1.5 × 10−2,

and σ2(Z0 = 60) = 9.3 × 10−3). Fig. 2.20 shows the (a) transient uniaxial viscosities and

(b) steady uniaxial elongational viscosities for a PS390K melt at 130◦C [53, 155]. The basic

behavior is almost the same as that of PS200K; that is, the SL simulations with SORF can

capture the rheological properties under fast elongational flows better than the SL simulations

without SORF. Fig. 2.21 shows (a) the reduced chain stretch squared λ2, (b) the average

orientation S̄, and (c) number of slip links per chain normalized using the equilibrium value

Z/⟨Z⟩eq under uniaxial elongational flows for PS390K. Furthermore, the results of PCN

simulations [64] with and without SORF for PS390K are also shown. As shown in Fig. 2.21,
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Fig. 2.20: (a) Transient uniaxial viscosities and (b) steady uniaxial elongational viscosities
for a monodisperse linear PS melt (PS390K) at 130◦C. In (a), the strain rates are 0.03
(diamonds), 0.01 (reverse triangles), 0.003 (triangles), 0.001 (circles) and 0.0003 (squares)
s−1 from left to right, and the bold solid line is the linear viscosity growth function 3η+0 (t)
calculated from the linear viscoelasticity data. The experimental data for (a) and (b) from
Refs. [53] and [155] are shown with symbols, respectively. Dashed and solid lines indicate
the SL simulation results with and without SORF, respectively.

the tendencies of these values are almost identical to those of PS200K. As shown in Figs. 2.21

(a) and (b), the values of λ2 and S̄ are in qualitative agreement with those of the PCN

simulations. Because of the degree of coarse-graining, the values obtained from these models

are slightly different. Although the values of Z/⟨Z⟩eq for the strain rate region τ−1
d

<∼ ϵ̇ <∼ τ−1
R

are in reasonable agreement with those of the PCN simulations, the values of Z/⟨Z⟩eq for

the strain rate region ϵ̇ > τ−1
R are clearly larger than those of the PCN simulations. As

discussed in Fig. 2.17, this difference is presumably because entanglement near the ends,

which contributes less to the stress than in the middle region, increases for the strain rate

ϵ̇ > τ−1
R . Since the number of entanglements cannot be measured by present experiments, the

validity of the microscopic structure including the number of entanglements for the strain rate

region ϵ̇ > τ−1
R should be carefully examined by comparing with less-coarse-grained models.
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Steady Uniaxial Elongational Flows (PS390K)
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Fig. 2.21: (a) The reduced chain stretch squared λ2, (b) the average orientation S̄ and (c) the
number of slip links per chain normalized using the equilibrium value Z/⟨Z⟩eq under uniaxial
elongational flows for PS390K. These values are plotted against the Rouse-relaxation-time-
based Weissenberg number Wi(e)R ≡ ϵ̇τR. The simulation results with and without SORF
are indicated with the dashed and solid lines, respectively. The diamonds correspond to
the PCN simulation with SORF, and the circles correspond to the PCN simulation without
SORF extracted from Ref. [64].

However, we have concluded that the DT model for the strain rate region ϵ̇ > τ−1
R has been

improved by incorporating SORF because the prediction of stress σE that can be measured

by experiments is correctly captured.

Appendix 2.B Linear Viscoelasticity of the Star Polymer Melt

SL simulations were performed for a symmetric star PS melt having three arms with an arm

molecular weight Mw = 92.4 K (Z(star)
0 = 9) [157]. Fig. 2.22 shows the linear viscoelasticity

data of the star polymer melt (Z(star)
0 = 9) calculated from Eqs. (2.11) and (2.12) using the

stress relaxation modulus G(t) in Eq. (2.10) after applying step shear strain γ0 = 0.4. The
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Fig. 2.22: Linear viscoelasticity of the star polymer melt. Circles and diamonds indicate G′

and G′′ extracted from Ref. [157].

unit time τ (star)e (0) and the unit stress σ(star)
e can be determined through comparison with the

experimental data [157] as τ (star)e (0) = 0.23 s and σ(star)
e = 0.84 MPa for the star PS melt.

Appendix 2.C Derivation of Structure Factor

In the DT model, a polymer chain is composed of (Z − 1) entangled strands and two ends

(head and tail), as shown in Fig. 2.23 (a). The strands depicted with black lines in Fig. 2.23

(a) are referred to as entangled strands. Namely, the polymer chain has (Z + 1) strands

whose lengths are ℓi (0 ≤ n ≤ Z). To derive the expression for the structure factor S(q) of

a well-entangled polymer chain from the slip link positions obtained by the DT model, we

assume that entangled strands and the head and tail are Gaussian chains with two and one

fixed ends, respectively, as shown in Fig. 2.23 (b). Here, the Gaussian chain of a strand n

consists of Mn segments having equal length b. Since we assume the Gaussian chain, Mn can

be evaluated as Mn ≃ ℓ2n/b
2, and the Green function of the Gaussian chain with a length sb

whose two ends are located at r and r′, Gs[r, r′], is defined as [21]

Gs[r, r
′] =

(
3

2πsb2

)3/2

exp

[
− 3

2sb2
(r − r′)2

]
. (2.14)
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(b)

(a)

Fig. 2.23: (a) Schematic illustration of a polymer chain considered in the DT model and
(b) schematic illustration of a well-entangled polymer chain to evaluate the structure factor
S(q).

From the assumption mentioned above, the structure factor S(q) can be described as

NS(q) =
Z∑

n=0

Z∑

m=0

〈∫ Mn

0

ds

∫ Mm

0

ds′ exp
[
−iq · {r(n, s)− r(m, s′)}

]〉
(2.15)

=
Z∑

n=0

∫ Mn

0

ds

∫ Mn

0

ds′
〈
exp
[
−iq · {r(n, s)− r(n, s′)}

]〉 (
δn,0 + δn,Z + δ̄n,(0,Z)

)

+
Z∑

n=0

Z∑

m=0

∫ Mn

0

ds

∫ Mm

0

ds′
〈
exp
[
−iq · {r(n, s)− r(m, s′)}

]〉

×
{
δn,0δm,Z + δn,Zδm,0 +

(
δn,0δ̄m,(0,Z) + δn,Z δ̄m,(0,Z) + δ̄n,(0,Z)δm,0 + δ̄n,(0,Z)δm,Z

)

+ δ̄n,(0,Z)δ̄m,(0,Z)

}

≡
(
F0 + FZ +

Z−1∑

n=1

Fn

)
+

{
P−
0 P+

Z + P+
0 P−

Z

+
Z−1∑

n=1

(
P−
0 P+

n + P−
Z P+

n + P+
0 P−

n + P+
Z P−

n

)
+

Z−1∑

n=1

Z−1∑

m=1

δ̄n,mP
−
n P+

m

}
, (2.16)

where N ≡
∑Z

n=0 Mn is the number of all segments, δn,m is the delta function, and δ̄n,m is the

inverse of the delta function defined as δ̄n,m = 1− δn,m. The first terms in Eq. (2.16) are the

contribution from n = m, namely, a correlation between two segments in the head F0, the
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tail FZ and an entangled segment Fn (1 ≤ n ≤ Z − 1). The second terms in Eq. (2.16) are

the contribution from n ̸= m, namely, a correlation between two segments in the different

strands. Here, P±
0 stands for the contribution from the head, P±

Z is the contribution from

the tail, and P±
n (1 ≤ n ≤ Z − 1) is the contribution from entangled segments. The first two

contributions in the second terms are correlations between the segments in the head and tail,

the terms from the third to sixth stand for the correlations between segments in the head or

tail and an entangled strand, and the last contribution in the second terms is the correlation

between segments in different entangled strands. The first terms in Eq. (2.16) can be written

as

F0 ≡
∫ M0

0

ds

∫ M0

0

ds′
〈
exp
[
−iq · {r(0, s)− r(0, s′)}

]〉

=
1

N (1)
0

(∫ M0

0

ds′
∫ s′

0

ds

∫
dr0

∫
dr(0, s)

∫
dr(0, s′)

×Gs[r0, r(0, s)]Gs′−s[r(0, s
′), r(0, s)]GM0−s′ [r(0, s

′), r1]

+

∫ M0

0

ds

∫ s

0

ds′
∫

dr0

∫
dr(0, s)

∫
dr(0, s′)

×Gs′ [r0, r(0, s
′)]Gs−s′ [r(0, s

′), r(0, s)]GM0−s[r(0, s), r1]

)
exp
[
−iq · {r(0, s)− r(0, s′)}

]

= M2
0 f(K0), (2.17)

FZ ≡
∫ MZ

0

ds

∫ MZ

0

ds′
〈
exp
[
−iq · {r(Z, s)− r(Z, s′)}

]〉

=
1

N (1)
Z

(∫ MZ

0

ds′
∫ s′

0

ds

∫
drZ+1

∫
dr(Z, s)

∫
dr(Z, s′)

×Gs[rZ+1, r(Z, s)]Gs′−s[r(Z, s), r(Z, s
′)]GMZ−s′ [r(Z, s

′), rZ ]

+

∫ MZ

0

ds

∫ s

0

ds′
∫

drZ+1

∫
dr(Z, s)

∫
dr(Z, s′)

×Gs′ [rZ+1, r(Z, s
′)]Gs−s′ [r(Z, s

′), r(Z, s)]GMZ−s[r(Z, s), rZ ]

)

× exp
[
−iq · {r(Z, s)− r(Z, s′)}

]
= M2

Zf(KZ), (2.18)
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and

Fn ≡
∫ Mn

0

ds

∫ Mn

0

ds′
〈
exp
[
−iq · {r(n, s)− r(n, s′)}

]〉

=
1

N (1)
n

(∫ Mn

0

ds′
∫ s′

0

ds

∫
dr(n, s)

∫
dr(n, s′)

×Gs[rn, r(n, s)]Gs′−s[r(n, s), r(n, s
′)]GMn−s′ [r(n, s

′), rn+1]

+

∫ Mn

0

ds

∫ s

0

ds′
∫

dr(n, s)

∫
dr(n, s′)

×Gs′ [rn, r(n, s
′)]Gs−s′ [r(n, s

′), r(n, s)]GMn−s[r(n, s), rn+1]

)

× exp
[
−iq · {r(n, s)− r(n, s′)}

]

= π1/2M
2
n

K2
n

Re

[
e(z

−
1 )2z−2

{
erf
(
z−1
)
− erf

(
z−2
)}

+
(
1− e(z

−
1 )2−(z−2 )2

)]
, (2.19)

where N (1)
0 , N (1)

Z and N (1)
n are the normalization constants, Kn depends on q as Kn ≡

(Mnb2q2/6)1/2, f(x) is the Debye function defined as

f(x) =
2

x4

(
e−x2

+ x2 − 1
)
, (2.20)

z−1 and z−2 are complex numbers defined later in Eq. (2.25), and erf(z) is the error function

described as

erf(z) =
2√
π

∫ z

0

e−t2dt. (2.21)
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Moreover, by use of the Green function of the Gaussian chain, the second terms in Eq. (2.16)

can be written as

P±
0 =

∫ M0

0

ds
〈
e±iq·r(0,s)〉

=
1

N (2)
0

∫ M0

0

ds

∫
dr0

∫
dr(0, s)Gs[r0, r(0, s)]GM0−s[r(0, s), r1]e

±iq·r(0,s)

=
M0

K2
0

e±iq·r1
(
1− e−K2

0

)
, (2.22)

P±
Z =

∫ MZ

0

ds
〈
e±iq·r(Z,s)〉

=
1

N (2)
Z

∫ MZ

0

ds

∫
drZ+1

∫
dr(Z, s)Gs[rZ+1, r(Z, s)]GMZ−s[r(Z, s), rZ ]e

±iq·r(Z,s)

=
MZ

K2
Z

e±iq·rZ
(
1− e−K2

Z

)
, (2.23)

and

P±
n =

∫ Mn

0

ds
〈
e±iq·r(n,s)〉

=
1

N (2)
n

∫ Mn

0

ds

∫
dr(n, s)Gs[rn, r(n, s)]GMn−s[r(n, s), rn+1]e

±iq·r(n,s)

= i
√
π
Mn

2Kn
e(z

∓
1 )2±iq·rn

{
erf
(
z∓1
)
− erf

(
z∓2
)}

(2.24)

with ⎧
⎪⎪⎨

⎪⎪⎩

z±1 = ±q · (rn+1 − rn)

2Kn
− i

Kn

2
,

z±2 = ±q · (rn+1 − rn)

2Kn
+ i

Kn

2
,

(2.25)

whereN (2)
0 , N (2)

Z andN (2)
n are the normalization constants. The normalization constants N (1)

0 ,

N (1)
Z , N (1)

n , N (2)
0 , N (2)

Z , and N (2)
n are defined such that the second equations of Eqs. (2.17),

(2.18), (2.19), (2.22), (2.23), and (2.24) turn out to be unity when q = 0. Note that a large

proportion (> 80%) of the contribution to S(q) comes from the correlation between segments

in entangled strands. In our numerical simulations, we choose the equilibrium length between
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adjacent slip links a as unit length. Moreover, to avoid numerical instability when calculating

S(q), we ignore contributions from strands consisting of small number of segments.
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3 Multi-Scale Simulations

for Entangled Polymer Melt Spinning Process

3.1 Introduction

In this chapter, we focus specifically on a polymer melt spinning process, which is a common

process for manufacturing polymeric fibers. This process is important from both industrial

and scientific aspects for the following reasons [161]: Industrially, an ideal process for manu-

facturing polymeric fibers should be simple, effective and stable. Therefore, it is important

to stably operate this simple process and produce strong fibers with high degree of poly-

mer chain orientation and crystallinity. Scientifically, research interests include the relation

between microscopic polymer chain structure induced by an elongational flow and physical

properties of the resultant fiber. From this point of view, there are many experimental and

numerical studies on the polymer melt spinning process.

To the best of our knowledge, from a simulation perspective, a phenomenological consti-

tutive equation is used to couple the strain rate with the polymeric stress in all of the studies

on the polymer melt spinning process. However, it is often difficult to uniquely choose an

appropriate constitutive equation and obtain a parameter set that fits the experiments on

targeting polymer melt because there is no definite method for choosing a proper consti-

tutive equation from among the known ones. Moreover, to use the constitutive equation

prohibits one from directly obtaining microscopic information that is tightly related to the

macroscopic flow and physical properties of the resultant product. In fact, to develop well-

controlled polymeric products, it is significantly important to know the correlation between

the macroscopic flow behavior and the state of polymer chains at a local place. One of the

reliable methods to obtain microscopic information is a molecular dynamics (MD) simulation.

However, despite the recent rapid development of computational ability, it is still difficult to

solve flow problems of polymeric liquids by using solely the MD simulation because of its

high computational cost. To overcome these difficulties, increasing attention has been paid
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to a multi-scale approach that directly combines the macroscopic model with the microscopic

model.

The authors developed a multi-scale simulation method for the spinning process by using

the particle-based Lagrangian method and the dumbbell model recently [145]. However,

realistic polymer melts used in the spinning process are more complex due, for example, to

the effect of entanglements. Entangled polymer melts are used to enhance the strength of

the product in industrial cases. Based on the current situation mentioned above, the aim

of this chapter is to establish a multi-scale simulation method for the spinning process of

well-entangled polymer melts. In the present chapter, we therefore employ a more complex

microscopic polymer model that can describe well-entangled polymer melts called the slip-

link model proposed by Doi and Takimoto [67], and analyze the spinning process from both

the macroscopic and microscopic viewpoints.

3.2 Model of Entangled Polymer Melt Spinning

3.2.1 Macroscopic Model

In the multi-scale simulation of the polymer melt spinning process, we must connect the

macroscopic flow behavior of the filament and the microscopic molecular motions. A schematic

view of the polymer melt spinning process considered in this study is shown in Fig.3.1. Here

we briefly explain macroscopic equations; see our previous study for details [145]. To set up

the macroscopic equations, we made the following assumptions.

(i) The shape of the filament is axi-symmetric.

(ii) The polymer chains are relaxed at the location where the diameter of the filament

shows a maximum due to the die swelling effect.

(iii) The filament in the air gap region is isothermal.

(iv) The gravitational force, the surface tension between the polymer melt and the air, and
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Fig. 3.1: Schematic view of the polymer melt spinning process.

the friction of the filament with the air are all neglected.

(v) The polymer filament is in the melt state just before reaching the surface of the cooling-

water; just after it has gone into the water bath, it is solidified instantaneously by

cooling.

A number of previous studies made assumptions (i) and (ii), (v) particularly in isothermal

condition. However, the initial condition originating from assumption (ii) does not exactly

fit with the condition in the real process because the flow history in the die is neglected.

To obtain more practical solution, we must consider the shear flow in the die as shown in

Refs. [96, 98]. Assumptions (iii) and (iv) appear to be strong for industrial applications. In

particular, we should replace the isothermal assumption (iii) with the non-isothermal one to

discuss crystallization and/or solidification. In principle, it is possible to consider the non-

isothermal condition in our multi-scale method by employing a microscopic polymer model
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that takes into account temperature change. However, the aim of this study is to assess the

present multi-scale simulation method because the industrial application of the multi-scale

simulation method has not yet been established. Therefore, it is suitable to make these

assumptions in the present work.

Under these conditions, the dynamics of the melt spinning process in the macroscopic

scale can be described by the equation of continuity and equation of motion as follows:

∂A (x, t)

∂t
= − ∂

∂x

(
A (x, t)V (x, t)

)
, (3.1)

ρA(x, t)
DV (x, t)

Dt
=

∂

∂x

(
A(x, t)σ(x, t)

)
, (3.2)

σ(x, t) = σxx −
1

2
(σyy + σzz) (3.3)

where x-axis is taken along the spinning line, A(x, t) is the cross-sectional area, V (x, t) is

the velocity, and σαα is the normal stress of α-direction at a position x and time t. As seen

in Eq. (3.2), the force acting on the filament is given by the tension defined by T (x, t) ≡

A(x, t)σ(x, t). The boundary conditions for A and V at x=0 are given as:

V (x = 0, t) = Vo and A(x = 0, t) = Ao. (3.4)

We set the position that shows the maximum of the cross-sectional area to be the origin of

the x-axis. In addition, to solve the equations mentioned above, we need an initial value of

the normal stress difference σ in Eq. (3.3). In the present work, we use σinit evaluated by

a microscopic polymer model at a quiescent state (κ = 0) based on assumption (ii), where

κ is the velocity gradient tensor. Strictly speaking, to evaluate σ(x = 0, t) = σinit, we must

consider an upstream flow before extrusion from the die. However, considering the flow in

the die is beyond the scope of the present work; thus, the boundary condition for σ is given

as

σ(x = 0, t) = σinit. (3.5)
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Here, the initial value of the stress σinit is close to zero but σinit ̸= 0. At x = L, a water bath

is settled and the polymer melt filament is cooled to the water temperature. Because the

filament is solidified just after entering the water bath, the velocity of the filament at x = L

is the same as the winding velocity Vw. Namely, the boundary condition for V at x = L is

given as

V (x = L, t) = Vw. (3.6)

The velocity ratio between Vo and the winding velocity Vw is called the draw ratio Dr ≡ Vw/Vo.

It is known that such elongational flow becomes unstable above a critical draw ratio Dr(c);

above the critical draw ratio, the draw resonance phenomenon appears, and the cross-

sectional area of the fiber varies periodically. In this study, we consider the spinning process

under the draw ratio Dr that is less than the critical draw ratio Dr(c).

3.2.2 Bridge between Macroscopic and Microscopic Scales

In this section, we briefly explain the multi-scale simulation method for the entangled polymer

melt spinning process. For the macroscopic level, governing equations are Eqs. (3.1)∼(3.3).

A remaining problem here is to calculate the stress tensor coming from entangled polymer

dynamics. To obtain the stress tensor, we employ the Doi-Takimoto slip-link model without

SORF presented in Sec. 2.2.1.

The equations used in our simulations are expressed by nondimensional variables. In

the macroscopic scale, we choose L as the unit length, τ0 ≡ L/Vo as the unit time, and

σ0 ≡ η0Vo/L as the unit stress. Here, η0 is the zero shear viscosity. In addition, the cross-

sectional area A is scaled by Ao. In the microscopic scale, we choose a as the unit length, τ0

as the unit time, and σ0 as the unit stress. Here, a is the equilibrium length between adjacent

slip-links. All of the macroscopic variables are scaled by these units and are expressed with

a tilde symbol on their top. After scaling, the macroscopic Eqs. (3.1)∼(3.3) are rewritten as
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follows:

∂Ã
(
x̃, t̃
)

∂ t̃
= − ∂

∂x̃

(
Ã
(
x̃, t̃
)
Ṽ
(
x̃, t̃
))

, (3.7)

ReÃ(x̃, t̃)
DṼ (x̃, t̃)

Dt̃
=

∂

∂x̃

(
Ã(x̃, t̃)σ̃(x̃, t̃)

)
, (3.8)

σ̃(x̃, t̃) = σ̃xx −
1

2
(σ̃yy + σ̃zz) , (3.9)

where Re (≡ ρVoL/η0) is the Reynolds number. After scaling, the boundary conditions are

as follows:

Ṽ (x̃ = 0, t̃) = 1, Ṽ (x̃ = 1, t̃) = Dr, Ã(x̃ = 0, t̃) = 1, σ̃(x̃ = 0, t̃) = σ̃init. (3.10)

In the same manner, the microscopic equations Eq. (2.2) and Eq. (2.5) are rewritten as

follows:

dL̃p

dt̃
= − 1

De

(
L̃p

(
t̃
)
− L̃p,eq

)
+

(
dL̃p

dt̃

)

affine

+

√
2Zeq

3De∆t̃
g, (3.11)

σ̃αβ =
σe

σ0

〈
r̃iαr̃iβ
|r̃i|

〉
=

1

η̃0(Zeq)

〈
r̃iαr̃iβ
|r̃i|

〉
(3.12)

where De (≡ τR/τ0) is the Deborah number, and Zeq is the equilibrium number of strands.

Here, the primitive path length is expressed as Lp instead of Li in Eq. (2.2) to avoid confusion

in the notation.

The control parameters for simulating the isothermal polymer melt spinning process are

the Reynolds number (Re), the Deborah number (De) and the draw ratio (Dr). Moreover,

the scaled shear viscosity η̃0(Zeq), depending only on the number of entanglements Zeq, is

determined from the bulk slip-link simulation.

Fig. 3.2 (a) and (b) show the schematic picture of our multi-scale simulation method. The

spinning line is divided into M regions, which have a constant spatial interval ∆x = 1/M ,

to solve the macroscopic equations in the Eulerian manner. However, the stress tensor of a
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Fig. 3.2: Multi-scale simulation method of a spinning process of a well-entangled polymer
melt. (a) Microscopic polymer model and (b) macroscopic fluid dynamics.

polymeric fluid has a historical dependency on the strain rate. Therefore, it is suitable to

evaluate the stress tensor on a fluid particle based on the Lagrangian picture, as shown in

Fig. 3.2. The procedure of our multi-scale simulation is as follows:

(i) Macroscopic calculation to update the velocity V , the cross-sectional area A, and the

position of each Lagrange particle by using Eq. (3.7) and Eq. (3.8). When the position

of a Lagrange particle closest to x = 0 becomes greater than xinit, a new Lagrangian

particle located at x = 0 is inserted into the system. The state of polymer chains on

the newly inserted particle is fully equilibrated under κ = 0.

(ii) Calculation of the velocity gradient tensor κ at the position of each Lagrange particle.

(iii) Microscopic polymer simulation using the slip-link model to update σ by using κ

evaluated in (ii).

(iv) Evaluation of the stress tensor on the staggered lattice, which is obtained by taking an
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average over the stress tensors on the particles located in between two grid points (i.e.,

the spatial interval [(i− 1)∆x̃, i∆x̃]).

(v) Return to item (i).

The parameters of our multi-scale simulations are determined as follows. In an industrial

case, the density, the length of the air gap, the initial value of the cross-sectional area and

the spinning velocity are, as an example, ρ ≃ 1000 kg/m3, L ≃ 0.1 m, Ao ≃ 0.2 mm2 and

Vw ≃ 2× 103 m/min, respectively. We treat a low Dr region (Dr ≃ 10) in the present work.

Therefore, the output velocity is estimated to be Vo ≃ 102 m/min. If one considers a melt

spinning process for a entangled polystyrene melt with Zeq = 10 at temperature T ≃ 200 ◦C,

the zero shear viscosity η0 and the Rouse relaxation time τR are almost equal to η0 ≃ 103 Pa · s

and τR ≃ 10−4 s, respectively. From these typical values, the Reynolds number (Re) and

the Deborah number (De) are calculated as Re0 ≃ 0.33 and De0 ≃ 3.3× 10−3, respectively.

The results indicate that the inertia term cannot be discarded from Eq. (3.8), because the

Reynolds number estimated here is based on the velocity at x = 0; therefore, the actual

Reynolds number becomes larger than unity at approximately x = L.

In this chapter, we treat two types of polymer melts Zeq = 10 and Zeq = 15. The

characteristic times are changed according to the expressions of the relaxation times τd =

3Z3
eqτe and τR = Z2

eqτe in the reptation model (In fact, the reptation time τd is almost

proportional to Z3.45 in the slip-link model [67]. However, we estimate the parameters based

on the reptation model for simplification). Therefore, the Reynolds number and the Deborah

number are changed by replacing the polymer melt from Zeq = 10 to Zeq = 15. The Reynolds

number and the Deborah number of the polymer melt Zeq = 15 are estimated to be Re ≃

Re0 × 1.5−3 and De ≃ De0 × 1.52. In this chapter, the Reynolds number and the Deborah

number are Re = 0.5 and De = 0.004 in Zeq = 10 and Re = 0.15 and De = 0.009 in Zeq = 15.

In the slip-link simulation, the statistical error of the stress tensor depends on the number

of polymers Np on a Lagrange particle. Here, we show how the stress is affected by a

microscopic system consisting of Np polymer chains. Fig. 3.3 shows the startup elongational
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Fig. 3.3: Bulk startup elongational viscosity for Np = 102 (black), Np = 103 (blue) and
Np = 104 (red).

viscosity calculated by the slip-link model with a constant velocity gradient κxx(= dV/dx) =

Dxx = 15τ−1
0 , the Deborah number De = 0.004 and the equilibrium number of entanglements

Zeq = 10, but with different numbers of polymers, Np = 102, 103, and 104. Here, D ≡

(κ+κT)/2 is the strain rate tensor. Dxx = 15τ−1
0 is a typical value in the present multi-scale

simulations of the melt spinning process. We confirmed that the statistical error decreases

with 1/
√

Np and decided to use Np = 103 as the number of polymers on a single Lagrangian

particle from the viewpoint of the trade-off between the accuracy of the stress tensor and the

computational cost.

In the multi-scale simulation, we used M = 100 as the number of the grid points, xinit ≃

10−4 depending on Dr, Dr = 10, 15, 20 for Zeq = 10 and Dr = 10 for Zeq = 15, ∆t =

1.0 × 10−5τ0 for Zeq = 10 and ∆t = 2.5 × 10−6τ0 for Zeq = 15. Moreover, we used a

parallel computation that is quite effective for our calculation because the calculation of

the stress tensor on a fluid particle is independent of those on other fluid particles. We

developed a parallelized simulation code by Message Passing Interface (MPI) and performed

the calculations by 72 cores for Dr = 10 and 15 (Xeon E5-1680v3, 3.2GHz), and by 96 cores

for Dr = 20 (Xeon E5-2680, 2.7GHz).
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Fig. 3.4: Bulk rheological properties of entangled polymer melts, (a) linear viscoelasticity,
(b) shear viscosity and (c) elongational viscosity. In (a), the storage modulus G′(circle), the
loss modulus G′′(diamond) are plotted against the angular frequency ω for Zeq = 10 (red)
and Zeq = 15 (blue). In (b), the shear viscosity η is plotted against the shear rate. The red
line corresponds to Zeq = 10, the blue line corresponds to Zeq = 15 and the black line is the
absolute value of the complex dynamic viscosity |η∗| obtained from the linear viscoelastic
data. In (c), the elongational viscosity is plotted against time t for three different strain
rates, Dxx = 10 τ−1

0 (circle), Dxx = 50 τ−1
0 (diamond) and Dxx = 100 τ−1

0 (triangle). The red
series is for Zeq = 10, the blue series is for Zeq = 15 and the black solid lines are the linear
viscosity growth function 3η+0 (t).

3.3 Results and Discussion

Unless otherwise stated, in what follows, we omit the tilde symbols on the dimensionless

variables (except where doing so might cause confusion) to simplify the resulting expressions.

3.3.1 Macroscopic Behavior

The linear viscoelasticity data obtained for Zeq = 10 (red) and Zeq = 15 (blue) from the

slip-link simulation are shown in Fig. 3.4(a). The longest relaxation time τd ≃ 1.4× 10−2 τ0

for Zeq = 10 and τd ≃ 5.9 × 10−2 τ0 for Zeq = 15 are determined. Fig. 3.4(b) shows

the shear viscosity plotted against various shear rates for Zeq = 10 (red) and Zeq = 15

(blue). Moreover, the complex viscosity |η∗| (black line) is plotted. From Fig. 3.4(b), we

observe the shear thinning and determine the zero shear viscosity. The shear viscosities are

η0 = 3.3 × 10−3 σeτ0 for Zeq = 10 and η0 = 1.2 × 10−2 σeτ0 for Zeq = 15. (As estimated by

the reptation theory, the zero shear viscosities are almost proportional to Z3). The absolute
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Fig. 3.5: Spatial distributions of the number of Lagrangian particles NL(x) existing in the
interval [x, x+∆x] on the spinning line in Dr = 10 at t = 0 (black), t = 0.2 (green), t = 0.5
(purple), t = 1 (blue) and t = 2 (red). After t = 0.5, the distribution of Lagrangian particles
shows almost the same shape.

value of the complex dynamic viscosity |η∗| shows almost the same behavior as the shear

viscosity η, i.e., the Cox-Merz rule holds. Fig. 3.4(c) shows the elongational viscosity plotted

against different three strain rates Dxx = 10 τ−1
0 (circle), Dxx = 50 τ−1

0 (diamond) and

Dxx = 100 τ−1
0 (triangle). The red series is for Zeq = 10, the blue series is for Zeq = 15

and the black solid lines are the linear viscosity growth function 3η+0 (t). From Fig.3.4(c),

the elongational viscosities show almost the same behavior as the linear viscosity growth

function 3η+0 (t). These three strain rates (Dxx < τ−1
R ) are typical values for our multi-scale

simulations. The melt spinning for these two polymer melts are analyzed by the multi-scale

simulation method.

Before performing a multi-scale simulation using the slip-link model, the polymer chains

should be equilibrated. The equilibration of a polymer chains requires a simulation of the

system under κ = 0 to be performed for a longer time than at least the longest relaxation

time τd. Hence, we equilibrate the microscopic systems on all of the Lagrangian particles for

a time duration t = 0.1τ0 and then start the multi-scale simulations.

Fig. 3.5 shows spatial distributions of the number of Lagrangian particles NL(x) between

two grids [x, x + ∆x] with ∆x = 1/M . At t = 0, the particle distribution is set to be

almost uniform, and the total number of Lagrangian particles in the spinning line N (Total)
L is
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Fig. 3.6: Macroscopic properties at steady state obtained from the multi-scale simulation for
a polymer melt Zeq = 10. (a) Velocity, (b) cross-sectional area and (c) tension profiles along
the spinning line for three draw ratios Dr = 10 (black), 15 (blue) and 20 (red), respectively.
Each data point is averaged over the time duration from t = 1 to 2.

approximately 8000 for Dr = 10. The number of particles decreases over time and reaches a

steady state at approximately t = 0.5, as shown in Fig.3.5. After t ≃ 0.5, the distribution

of Lagrangian particles shows almost the same shape, and the total number of Lagrange

particles NL is N (Total)
L ≃ 3400.

Fig. 3.6 shows the velocity (a), the cross-sectional area (b) and the tension (c) averaged

over the time duration from t = 1 to t = 2 of the filament as a function of the position x at

steady state. We investigate the change in these physical variables at steady state by altering

the draw ratio Dr (≡ Vw/Vo). Here, the standard errors of each data are almost the same as

or less than the sizes of symbols in Fig. 3.6(a) and (b). In Fig. 3.6(c), standard errors are

slightly larger than symbols mainly in the vicinity of the end of the spinning line because

the number of Lagrangian particles NL(x) in the region is less than that at the upstream

side, as shown in Fig. 3.5. From Fig. 3.6(b), the cross-sectional area profile slightly decreases

as increasing Dr. Compared with the velocity and tension profiles, the cross-sectional area

profile depends only slightly on Dr. The microscopic structure however show significant

difference, as explained later in Fig. 3.9 and Fig. 3.10. From Fig. 3.6(c), the tension of the

filament profile increases as increasing Dr. In particular, in the region at the end of the

spinning line, the tension increases in response to the large velocity gradient by increasing
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Fig. 3.7: Macroscopic properties at steady state obtained from the multi-scale simulation for
Dr = 10. (a) Velocity, (b) cross-sectional area and (c) tension profiles along the spinning
line for two different polymer melts Zeq = 10 (red) and Zeq = 15 (blue). Each data point is
averaged over the time duration from t = 0.5 to 1.

the Dr. Moreover, a steep increase in tension T is observed at the region very close to x = 0

because the initial state of polymer chains is almost isotropic because of assumption (ii).

To reduce this steep increase of the tension, we should consider an upstream flow in a die.

However, considering an upstream flow in the die is outside the scope of the current work

and will be investigated in future work. Fig. 3.7 shows the velocity (a), the cross-sectional

area (b) and the tension (c) of the filament as a function of the position x at steady state

in Dr = 10 for two different polymer melts of Zeq = 10 (red) and Zeq = 15 (blue). The

values are averaged over the time duration from t = 0.5 to t = 1. Regarding the standard

errors of the data in Fig. 3.7, the tendencies are the same as those in Fig. 3.6. The velocity

profile for the polymer melt of Zeq = 15 is almost the same as that of the polymer melt of

Zeq = 10, but the former is slightly higher especially at the beginning of the spinning line.

The phenomenon occurs because the elastic effect coming from the slow relaxation of the

well-entangled polymer melt is strong in the polymer melt Zeq = 15. The cross-sectional area

for Zeq = 15 is smaller than that for Zeq = 10, especially in the beginning of the spinning

line. This tendency for the cross-sectional area A is consistent with that expected from the

velocity profiles, as shown in Fig. 3.7(a). Moreover, we can confirm that the tension profiles

for Zeq = 15 is almost three times larger than that for Zeq = 10, as seen from Fig. 3.7(c).
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Fig. 3.8: The average number of entanglements normalized by the equilibrium number of
entanglements Zeq (Zeq = 10) (red) and the velocity gradient κxx (= Dxx) (blue) profiles
along the spinning line for Dr = 20. A vertical line at x ≃ 0.9 divides the spinning line into
a linear and an orienting region.

3.3.2 Microscopic Behavior

We also investigate the microscopic state of the polymer chains as a function of position

x. Fig. 3.8 shows the average number of entanglements Z normalized by Zeq (red) and

the velocity gradient κxx (= Dxx) (blue) along the spinning line. In the initial part of the

spinning line, the average number of entanglements Z decreases slightly, and the velocity

gradient κxx (= Dxx) increases because the initial value of stress is almost zero. This effect,

however, vanishes at a position not far from the position x = 0. We can see that the

number of entanglements decreases, particularly in the vicinity of the end section. This

phenomenon occurs because the convective constraint release (CCR) effect starts to work

strongly after a position at approximately x ≃ 0.9 where the velocity gradient κxx (= Dxx)

steeply increases. By introducing the Weissenberg number (Wi(e)d ), defined as Wi(e)d = τdDxx,

the system can be quantitatively divided into two characteristic regions. The first region is

the linear region (Wi(e)d < 1), and the second is the orienting region (Wi(e)d > 1). The region

where the velocity gradient is greater than τ−1
d = 72τ−1

0 corresponds to the Wi(e)d > 1. From

Fig. 3.8, the number of entanglements is almost constant in the linear region and decreases

drastically in the orienting region corresponding to x >∼ 0.95. Moreover, Fig. 3.9 shows the
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Fig. 3.9: The average number of entanglements Z normalized by the equilibrium number of
entanglements Zeq (Zeq = 10) for different three draw ratios Dr = 10 (black), Dr = 15 (blue)
and Dr = 20 (red).

average number of entanglements Z normalized by Zeq for different three draw ratios Dr = 10

(black), Dr = 15 (blue) and Dr = 20 (red). The number of entanglements decreases at the

end part of the spinning line with increasing Dr because of the higher velocity gradients κxx

(= Dxx).

Fig. 3.10 shows the superimposed conformation of all of the polymer chains by fixing

the center of mass to the origin for three different draw ratios Dr = 10 (black), Dr = 15

(blue), and Dr = 20 (red) in Lagrange particles located at typical four points (a) x ≃ 0, (b)

x ≃ 0.5, (c) x ≃ 0.75 and (d) x ≃ 1. In these figures, the flow direction is the x-axis, and the

perpendicular direction to the flow is the y-axis. The polymer chains at x ≃ 0 are almost

isotropic because of assumption (ii), but they have already been stretched slightly along the

flow direction. At x ≃ 0.5 and at x ≃ 0.75, the polymer chains are clearly stretched along

the x-direction. Moreover, after going through the orienting region (Wi(e)d > 1) mentioned

above, the polymer chain is strongly stretched and oriented along the x-direction as shown

in Fig3.10(d). It is also found that the orientation is enhanced by increasing Dr. To evaluate

the orientation quantitatively, we introduce the conformation tensor described as follows:

Wαβ = ⟨RαRβ⟩ =
1

Np

Np∑

i=1

RiαRiβ (3.13)
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Fig. 3.10: The structure of the polymer chain in Lagrange particles for three different draw
ratios Dr = 10 (black), Dr = 15 (blue) and Dr = 20 (red) located at typical four points (a)
x ≃ 0, (b) x ≃ 0.5, (c) x ≃ 0.75 and (d) x ≃ 1. The 3D conformation of the polymer chain
is projected on the xy plane. Here, the x-axis is the flow direction, and the y-axis is the
perpendicular to the flow direction.

Table 3.1: Orientation parameter.

Dr λmax(x ≃ 0) λmax(x ≃ 0.5) λmax(x ≃ 0.75) λmax(x ≃ 1)
10 0.36 0.41 0.43 0.64
15 0.36 0.39 0.47 0.82
20 0.36 0.42 0.51 0.89

where Ri is the end-to-end vector of a polymer chain i. Note that TrW = ⟨R2⟩. The

eigenvalues λα of W indicate the degree of orientation in each direction [162]. We define

the normalized conformation tensor as S = W /TrW . When the polymer melt is isotopic,

Sαβ = δαβ/3. We can define the orientation parameter λmax, which denotes the degree of

orientation, by the largest eigenvalue of S. Here, the orientation parameter should be 1/3

when a conformation of the polymer chains is isotropic. Table 3.1 shows the orientation

parameter at four typical points along the spinning line. From Table 3.1, we can see how the

polymer chains are oriented to the x-direction quantitatively. The polymer chains at x ≃ 0

are almost isotropic but are weakly stretched because the values are slightly larger than 1/3,

and the chains are clearly oriented to the x-direction at x ≃ 0.5 and x ≃ 0.75. Moreover, the

degree of orientation is drastically enhanced at x ≃ 1. This tendency gives good agreement

with Fig. 3.10.

Next, to analyze the entanglements on polymer chains in detail, we introduce an internal
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Fig. 3.11: Probability density of entanglements P (ℓ̃) as a function of the internal coordinate
ℓ̃ on a polymer chain at x ≃ 0 (dashed line) and x ≃ 1 (solid line) for Dr = 10 (black circle)
and Dr = 20 (red diamond). Each data point is averaged over the time duration from t = 1
to 2. Moreover, the blue circle is the probability density for a quiescent state (κ = 0).

coordinate ℓ as the length along the primitive path of a polymer chain from one of the ends

to the other. The internal coordinate is scaled by the length of the primitive path Lp. In

addition, the polymer chains are divided into Mp sections, which have a constant interval

∆ℓ = Lp/Mp (Mp = 10). By using the internal coordinate ℓ̃, we define an average probability

density of entanglements P (ℓ̃) ≡ ⟨δZ(ℓ̃)/Z⟩, where Z is the total number of entanglements

on a polymer chain and δZ(ℓ̃) is the number of entanglements in the interval [(i−1)∆ℓ, i∆ℓ]

(1 ≤ i ≤ Mp) on the same chain, and ⟨· · · ⟩ denotes the statistical average of (· · · ). By

definition, P (ℓ̃) satisfies the condition
∫ 1

0 P (ℓ̃)dℓ̃ = 1. In Fig. 3.11, we show the average

density of entanglements P (ℓ̃) at x ≃ 0 (thin dashed line) and x ≃ 1 (bold solid line) for

Dr = 10 (black circle) and Dr = 20 (red diamond) averaged over the time duration from t = 1

to t = 2 as a function of ℓ̃. Moreover, the probability density for a quiescent state (κ = 0)

is plotted in Fig. 3.11 (blue circle). The probability density P (ℓ̃) is almost the same as the

quiescent state at x ≃ 0. At x ≃ 1, we observe that the number of entanglements mainly

decreases in the middle region of a polymer chain and increases at both ends. Moreover, the

tendency is enhanced with increasing Dr. The entanglements at the both ends is actively

created or removed depending on the length of strands in the slip-link model. In contract,

the entanglements in the middle region are created or removed only in a passive manner.
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Therefore, the frequency of a recreation of the entanglement at the ends is higher than that

in the middle region. The above-described microscopic information leads to a new idea and

insight for the design of a polymer melt that has desirable physical properties for use in a

fiber.

3.4 Conclusion

In this chapter, we successfully applied a multi-scale simulation method to spinning processes

of well-entangled polymer melts. The rheological properties were obtained by a coarse-grained

polymer model called the slip-link model, which can universally describe the entangled poly-

mer melt. In our multi-scale simulations, the macroscopic equations were solved using the

Eulerian picture. The stress tensors coming from entangled polymer chains were calculated

on all the fluid particles based on the Lagrangian picture as a response to the local velocity

gradient tensors obtained macroscopically at the positions of the fluid particles.

We investigated the microscopic information based on the multi-scale simulations. We

found that the number of entanglements decreases with flow because of the convective con-

straint release (CCR) effect. By introducing the Weissenberg number, we determined the

linear region and the orienting region and found that the microscopic structure is mainly al-

tered in the orienting region. Moreover, we found that the number of entanglements mainly

decreases in a middle region on a polymer chain and is enhanced at both ends. This infor-

mation will be useful for a molecular design optimized for producing a strong fiber.

We hope that the multi-scale simulation method takes us to a new stage in the field of

material science. In many industrial applications, the temperature change, including cooling

air, plays an important role for solidification and/or crystallization. A detailed mechanism

of the solidification and/or crystallization that occurs along the spinning line has not been

clarified yet. To address the effects of solidification and/or crystallization, we must develop a

multi-scale simulation method that can take into account temperature change by employing

another microscopic model. Moreover, we used mono-disperse linear polymer melts in the
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present work. However, in the realistic spinning case, various types of the polymer melts

composed of poly-dispersed linear, star and branched polymers melts and mixtures thereof

are used to realize desirable properties. Such polydispersity and blends of different chain

architectures can be considered in our multi-scale simulation method by developing the slip-

link model or employing a new microscopic model.

A high computational cost is always one of problems in this type of multi-scale simulation.

To overcome the problem, we must improve the numerical schemes, including the paralleliza-

tion of the numerical codes. Thereby the multi-scale simulation method will become a new

and effective tool for analyzing the melt spinning process.
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4 Multi-Scale Simulations for Flows of a Well-Entangled

Polymer Melt in a Contraction-Expansion Channel

4.1 Introduction

In this chapter, we focus specifically on flows in a contraction-expansion channel, which

can be considered to be one of the model flow geometries in the injection molding process.

The contraction-expansion channel is one of the complex flow geometries, and flows in this

channel have been extensibly examined with both experiments and numerical simulations

[102, 103, 105–107, 109]. However, to the best of our knowledge, the majority of previous

studies have employed the constitutive equations such as the Pom-Pom model [103,105] and

the Rolie-Poly model [106,107], except for a few MSS approaches [115,131].

To develop a more sophisticated method for predicting flow properties in the contraction-

expansion channel, the focus in this chapter is on the MSS method originally developed

by Murashima and Taniguchi [137, 142]. Using this MSS method, they have successfully

examined flows of an entangled polymer melt around a cylinder [137]. Based on this back-

ground, the aim of the present chapter is to extend the MSS method developed by Murashima

and Taniguchi to flows in the contraction-expansion channel and to assess the present MSS

method.

4.2 Smoothed Particle Hydrodynamics

4.2.1 Lagrangian Fluid Particle Method

Here, we present a Lagrangian fluid particle method that is employed as the macroscopic

fluid simulation model in the MSS method. Since entangled polymer chains show slow relax-

ations, a macroscopic flow of the entangled polymer melt depends on the strain rate history.

Therefore, to employ a simulation technique in a Lagrangian manner is suitable for properly

analyzing flows of entangled polymer melts. To describe macroscopic flows in the contraction-
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expansion channel, we employ the Lagrangian picture, where a fluid is described by a number

of fluid particles. At the macroscopic level of the MSS, the dynamics of fluid particle i is

described by the following equations based on the Lagrangian picture:

dxi

dt
= vi, (4.1)

dvi

dt
=

1

ρi

[
∇ · (σ − PI)

]
xi
+ Fi (4.2)

where xi and vi are the position and velocity of fluid particle i, respectively; ρi is the density;

and Fi is the external body force at position xi. The first term on the right-hand side in

Eq. (4.2) is calculated by taking a spatial derivative of the field (σ − PI) constructed from

sets {σj} and {Pj} based on an interpolation method explained later in Eq. (4.4), where σ

and P are the stress tensor field and pressure field, respectively; σj and Pj are the stress

tensor and pressure on fluid particle j located at position xj, respectively; and I is the unit

tensor. In this study, the stress tensor σi is described as follows:

σi = σ(p)
i + σ(d)

i (4.3)

where σ(p)
i is the stress originating from the temporal network of the entangled polymer

chains and σ(d)
i (≡ ηd(κi+κT

i )) is the dissipative stress arising from a non-bonding interaction

between unentangled parts [137]. Here, ηd is the Newtonian viscosity, and κi is the velocity

gradient tensor (∇v)|xi at position xi. The dissipative stress σ(d)
i is generally neglected in

flow problems of well-entangled polymer melts because the magnitude of the dissipative stress

is quite small compared with the stress originating from the temporal polymer network σ(p)
i .

However, in the present MSS, we take the contribution from the dissipative stress σ(d)
i to the

total stress into account to stabilize the simulation by suppressing relative stress fluctuations

in less-important velocity regions, e.g., at the corners in the flow path.
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Fig. 4.1: Schematic illustration of the Smoothed Particle Hydrodynamics (SPH) method.

4.2.2 Basic Equations of Smoothed Particle Hydrodynamics

To solve Eqs. (4.1) and (4.2), we employ a Lagrangian fluid particle method. There are several

types of fluid particle methods, such as a Smoothed Particle Hydrodynamics (SPH) method

[163], and a Moving-Particle Semi-implicit (MPS) method [164]. In this study, we employ the

SPH method originally developed by Gingold and Monaghan [163] as schematically shown

in Fig. 4.1. In SPH, a fluid is discretized into a number of fluid particles, and a physical

quantity A(xi) is determined by the following equation:

A(xi) =

∫
A(x′)W (xi − x′, h)dx′ ≃

∑

j

mj

ρj
A(xj)W (xi − xj, h) (4.4)

where W (xi − x′, h) is the smoothing kernel function, h is the smoothing length, mj is the

mass of fluid particle j, and ρj is the density of fluid particle j. In this study, we use the

following Gaussian kernel:

W (xi − xj, h) =
1

(h
√
π)n

exp

[
−
(
xi − xj

h

)2
]
, (4.5)

where n is the dimension. From Eq. (4.4), the density ρ(xi) at position xi can be obtained

as

ρ(xi) ≃
∑

j

mjW (xi − xj, h). (4.6)
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Moreover, a spatial derivative of the physical quantity ∇A(xi) is expressed by using a deriva-

tive of the kernel function as

∇A(xi) =

∫
A(x′)∇W (xi − x′, h)dx′ ≃

∑

j

mj

ρj
A(xj)∇iW (xi − xj, h). (4.7)

Similarly, a second derivative of the physical quantity ∇2A(xi) is expressed by using a second

derivative of the kernel function as

∇2A(xi) ≃
∑

j

mj

ρj
A(xj)∇2

iW (xi − xj, h). (4.8)

However, this expression is too sensitive to particle disorder to be practically employed [165].

Alternatively, the following expression for a second derivative is frequently used:

∇2A(xi) ≃
∑

j

2mj

ρiρj
(A(xj)− A(xi))

(xj − xi) ·∇iW (xi − xj, h)

|xj − xi|2
, (4.9)

which is called the Morris formula [166].

There are primarily two types of SPH methods for simulating incompressible fluids, which

satisfy Eq. (1.2). The first is weakly compressible SPH (WCSPH), and the second is incom-

pressible SPH (ISPH). In WCSPH [141, 166], density fluctuations are suppressed within 1%

by employing the equation of state including a speed of sound to provide a very low Mach

number. Note that WCSPH is acceptable for a low Reynolds number case [167]. On the

other hand, in ISPH [167–169], the incompressibility is basically achieved by introducing

the projection method that can numerically solve the incompressible Navier-Stokes equation.

Generally, due to the pressure projection algorithm for a pressure Poisson equation, the ISPH

method has a higher computational cost than the WCSPH method. Moreover, in this study,

we consider polymeric flows that have low Reynolds numbers. Therefore, we employ the

WCSPH method.

The dynamic pressure used in the WCSPH method is determined by the following equa-
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: Wall particle

: Virtual particle
: Fluid particle

Boundary
Velocity: vBC

Fig. 4.2: Schematic illustration of how to provide the velocity of a wall particle from the
boundary condition.

tion of state:

P (d)
i =

c2sρ0
γ

[(
ρi
ρ0

)γ

− 1

]
(4.10)

where cs is the speed of sound and ρ0 is the initial density. The speed of sound cs should be

determined such that the density fluctuation can be suppressed within 1%. Moreover, in a

low Reynolds number case corresponding to this study, the exponent γ = 1 is widely used to

evaluate the dynamic pressure [166].

The no-slip boundary condition is imposed in this study. There are mainly two approaches

to implement the no-slip boundary condition in SPH simulations. The first is the method to

introduce virtual particles [170], and the second is the method that uses boundary particle

forces [171]. In the MSS simulations shown in the chapter 4, we employ the former method.

Fig. 4.2 shows the schematic illustration that realizes the no-slip boundary condition. As

shown in Fig. 4.2, fluid particles distribute randomly, while wall particles are regularly ar-

ranged to mimic the wall. At every time step, we place a virtual particle i(v) (1 ≤ i(v) ≤ Nw)

in a position symmetrical to a wall particle i(w) (1 ≤ i(w) ≤ Nw) with respect to the bound-

ary. Here, Nw is the number of wall particles forming the first layer that is closest to the

fluid phase. After placing the virtual particles, we calculate the velocities at the positions of

virtual particles by using the basic SPH method. Following this procedure, we calculate the
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velocity of the wall particle as follows:

vi(w) = 2vBC − vi(v) (4.11)

where vBC is the value of velocity at the boundary position (vBC = 0 for the no-slip boundary

condition) and vi(v) and vi(w) are the velocities at the positions of the virtual particle i(v) and

the wall particle i(w), respectively.

4.2.3 Poiseuille and Couette Flows for a Newtonian Fluid

Here, two test cases for SPH simulations are shown: one is the Couette flow, and the other

is the Poiseuille flow. In both cases, flows between parallel plates located at y = −H/2 and

y = +H/2 are considered. For the left and right boundaries, periodic boundary conditions

are employed to consider flows between infinite parallel plates. Here, a Newtonian fluid is

employed to validate the SPH.

The first test case is the Couette flow. Initially, the fluid velocity is set to zero. At

time t = 0, the upper plate moves at constant velocity +Vwall, and the lower plate moves at

constant velocity −Vwall. The series solution for the time dependent behavior of the Couette

flow can be written as

vx(y, t) =
2Vwall

H
y − 2Vwall

π

∞∑

n=1

1

n
sin

[
πn

(
1− 2y

H

)]
exp

(
−4π2νn2

H2
t

)
, (4.12)

where Vwall is the wall velocity, ν = η/ρ is the kinetic viscosity [166]. The flow is simulated

using SPH for Vwall = 4×10−5 m/s, H = 0.01 m, ρ = 103 kg/m3, η = 10−3 Pa · s, and with 40

particles spanning the channel. As shown in Fig. 4.3 (a), the simulation results are in good

agreement with the series solution.

The second test is the Poiseuille flow. Initially, the fluid velocity is set to zero. The flow

is induced by a body force Fx parallel to x-axis for time t ≥ 0. The series solution for the
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Fig. 4.3: Comparison of SPH and series solutions. In (a), the flow profiles for the Couette
flow is plotted against position y/H for deferent four times, t/τ0 = 1 (square), t/τ0 = 5
(circle), t/τ0 = 10 (reverse triangle) and t/τ0 = 200 (diamond), where τ0 is the unit time. In
(b), the flow profiles for the Poiseuille flow is plotted against position y/H for deferent four
times, t/τ0 = 20 (square), t/τ0 = 50 (circle), t/τ0 = 100 (reverse triangle) and t/τ0 = 200
(diamond). The black solid lines are analytical solutions at the corresponding time.

time dependent behavior of the Poiseuille flow can be written as

vx(y, t) =− Fx

2ν

(
y +

H

2

)(
y − H

2

)

− 4FxH2

π3ν

∞∑

n=0

(−1)n

(2n+ 1)3
cos
[πy
H

(2n+ 1)
]
exp

(
−π2ν (2n+ 1)2

H2
t

)
, (4.13)

where Fx is the external force [166]. The flow is simulated using SPH for F = 3.2×10−7 m/s2,

H = 0.01 m, ρ = 103 kg/m3, η = 10−3 Pa · s, and with 80 particles spanning the channel.

As shown in Fig. 4.3 (b), the simulation results are in reasonably agreement with the series

solution. The slight deviation in a steady state presumably comes from resolution of the

simulation.

4.2.4 Stabilization methods in the SPH

The original SPH method has some problems. For example, the physical quantities near

wall boundaries cannot be treated accurately, and fluid particles form clusters, which cause a

numerical instability. In the MSS simulations shown in this chapter, to overcome inaccuracy
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(a) ε1 = 0.0, w/o PSM (b) ε1 = 0.4, w/o PSM (c) ε1 = 1.0, w/o PSM (d) ε1= 0.4, with PSM

Fig. 4.4: Flow profiles obtained from SPH simulations. In (a)∼(c), the flow profiles without
the particle shifting method are plotted for four different XSPH parameter values. In (d),
the flow profile with the particle shifting method is plotted.

in the physical quantities near wall boundaries, we employed the modified SPH (MSPH)

method developed by Zhang and Batra [172], which is based on the Taylor expansion of the

SPH averages (see Ref. [172] for more information). The MSPH method enables accurate

evaluations of physical properties near boundaries.

Additionally, in the SPH simulations, particle clusterings cause a numerical instability.

To prevent spatial inhomogeneity of fluid particles by the clusterings, it is quite effective to

employ the following two methods when calculating the time evolution of Eq. (4.1).

The first one is the XSPH method developed by Monaghan [173]. In the XSPH method,

the time integration of Eq. (4.1) is performed as follows:

dxi

dt
= v̂i = vi + ϵ1

∑

j

mj

ρj
(vj − vi)W (xi − xj, h) (4.14)

where vi and vj are the velocities of fluid particles i and j, respectively, and ϵ1 is a constant

(0≤ ϵ1 ≤1). Figs. 4.4 (a)∼(c) show the flow profiles obtained from the SPH simulations with

the XSPH method for (a) ϵ1 = 0.0, (b) ϵ1 = 0.4, and (c) ϵ1 = 1.0. As shown in Fig. 4.4 (a),

fluid particles form small clusters in the narrow channel region and string structures after

passing through the narrow channel. When increasing the value of ϵ1, fluid particles in the

narrow channel region becomes dispersed. However, string structures after passing through

the narrow channel do not disappear only by the XSPH method.

88



4 MSS for a Complex Flow Channel 4.2 Smoothed Particle Hydrodynamics

The second one is the particle shifting method developed by Xu et al [168]. To prevent

particles from clustering, the fluid particles are slightly shifted every time step. The shifting

vector ∆xi of particle i located at position xi is determined as follows:

∆xi = ϵ2bn(xi) (4.15)

where ϵ2 is a shifting parameter (0.001≤ ϵ2 ≤0.1), b is the initial distance between fluid

particles, and n(xi) is determined by the distribution of fluid particles as follows [174]:

n(xi) =

∫
xi − x′

|xi − x′|W (xi − x′, h)dx′ ≃
∑

j

mj

ρj

xi − xj

|xi − xj|
W (xi − xj, h). (4.16)

After updating the position and the velocity from (xi(t), vi(t)) to (x∗
i , v∗

i ) according to

Eqs. (4.1) and (4.2), we apply the following particle shifting method:

xi(t+∆t) = x∗
i +∆xi, (4.17)

vi(t+∆t) = v∗
i +∆xi ·∇vi. (4.18)

Eq. (4.18) can be derived by Taylor expansion of the velocity v(xi +∆xi) around xi. Note

that the particle shifting method does not conserve the total momentum. Nevertheless, this

method is used to stabilize SPH simulations [168, 169]. Figs. 4.4 (b) and (d) show flow

profiles obtained from the SPH simulations without and with the particle shifting method,

respectively. As shown in Fig. 4.4 (b), fluid particles form string structures after passing

through the narrow channel. Moreover, the density fluctuation is approximately 1.2%. On

the other hand, as shown in Fig. 4.4 (d), we can confirm that fluid particles are well dispersed

during the simulation by using the particle shifting method. Moreover, the density fluctuation

is at most 0.5%.

Figs. 4.5 (a)∼(c) show (a) the x-component of velocity vx, (b) the xy-component of the

velocity gradient tensor κxy, and (c) the xx-component of the velocity gradient tensor κxx
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Fig. 4.5: Flow properties obtained from SPH simulations for the Newtonian fluid. (a) The
x-component of velocity vx, (b) the xy-component of the velocity gradient tensor κxy, and
(c) the xx-component of the velocity gradient tensor κxx.

for the Newtonian fluid. As shown in Figs. 4.5 (a)∼(c), we can correctly capture the flow

properties in the contraction-expansion channel by using the SPH with the XSPH method

and the particle shifting method.

4.3 Multiscale Simulation Method

4.3.1 Bridge between Macroscopic and Microscopic Levels

In the MSS method shown in this chapter, we employ the SPH method for macroscopic fluid

simulations and the Doi-Takimoto slip-link (SL) model for microscopic entangled polymer

simulations. A schematic illustration is shown in Fig. 4.6. For the macroscopic level, govern-

ing equations are Eqs. (4.1), (4.2), and (4.10) described in Sec. 4.2. For the microscopic level,

the SL model without SORF described in Sec. 2.2.1 is employed since polymer chain stretch

is not significant in all of multi-scale simulations presented in this chapter. MSSs including

polymer stretch will be investigated in a future work.

Fig. 4.6: Schematic illustration of the present MSS method for a contraction-expansion
channel by using (a) SPH method and (b) the slip-link model.
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Fig. 4.7: (a) Schematic illustration of a contraction-expansion channel and (b) initial config-
uration for fluid particles. In (a), the origin of the coordinate is at the center of the system.

Fig. 4.7 shows (a) a flow geometry of the MSS and (b) initial configuration for fluid

particles. In Fig. 4.7(b), b is the initial distance between adjacent fluid particles, which

roughly corresponds to a grid interval in an Eulerian picture, and m (= ρ0b3) is the mass of a

fluid particle. Here, the masses of all fluid particles are set to be the same. The equations used

in our simulations are expressed by nondimensional variables as below. At the macroscopic

scale, we choose b as the unit length, m as the unit mass, τe as the unit time, and η0/τe as

the unit stress. Here, η0 is the zero shear viscosity given by η0 = η(P)0 + ηd, where η(P)0 is

the zero shear viscosity obtained from the SL model. At the microscopic scale, we choose

a as the unit length, τe as the unit time, and σe as the unit stress (for the definition of the

variables, see Sec. 2.2.1). All of the variables are scaled by these units. Moreover, all the

scaled variables are expressed with a tilde symbol on their top. After scaling, Eqs. (4.1) and

(4.2) are rewritten as follows:
dx̃i

dt̃
= ṽi, (4.19)

C1
dṽi

dt̃
=

1

ρ̃i

[
∇̃ ·

(
σ̃i − P̃ (d)

i I
)]

x̃i

+ F̃i, (4.20)

where C1 (≡ ρ0b2/τeη0) is a dimensionless parameter. Moreover, Eq. (4.3) is rewritten as

follows:

σ̃i =

(
σeτe
η0

)
σ̃(p)

i + C2

(
κ̃i + κ̃T

i

)
=

1− C2

η(P)0 /(σeτe)
σ̃(p)

i + C2

(
κ̃i + κ̃T

i

)
(4.21)

where C2 (≡ ηd/η0) is a dimensionless parameter and is a small value in a well-entangled
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polymer melt. Here, we use the relation η0 = η(p)0 /(1−C2). In the same manner, the dynamic

pressure defined by Eq. (4.10) is scaled as follows:

P̃ (d)
i = C3

(
ρi
ρ0

− 1

)
, (4.22)

where the dimensionless parameter C3 (≡ c2sρ0τe/η0) is related to the artificial speed of sound.

The exponent γ in Eq. (4.22) is set to unity. Summarizing the above, the control parameters

are C1, C2, C3 and Z0 through the scaled shear viscosity of the polymer melt η̃(P)0 (Z0) =

η(P)0 /(σeτe). Note that η̃
(P)
0 (Z0) depends only on the equilibrium number of entanglements Z0

and is determined from the bulk SL simulation.

Our MSS method is summarized as follows:

(1) Calculate the velocity gradient tensor κi (1 ≤ i ≤ Nf) at the position of fluid particle

i using the MSPH technique. Here, Nf is the number of fluid particles.

(2) At the microscopic level, calculate polymeric stress σ(p)
i in fluid particle i with the SL

model using κi evaluated in item (1).

(3) Update the velocity vi using Eq. (4.20) (MSPH).

(4) Update the position xi using Eq. (4.19) and XSPH explained in Sec. 4.2.4.

(5) Particle shifting (see Sec. 4.2.4).

(6) Return to item (1).

4.3.2 Parameters

To determine the parameters used in the MSS, we assume that the well-entangled polymer

melt is a polystyrene with a monodispersed molecular weight (Z0 = 7) at a temperature of

T ≃ 200 ◦C. Therefore, the density ρ0, the unit time τe and the unit stress σe are, as an

example, ρ0 ≃ 1.0 × 103 kg/m3, τe ≃ 1.6 × 10−5 s and σe ≃ 5.5 × 105 Pa (where τe and σe
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Table 4.1: Parameters and rheological properties of the SL model used in simulations.

Parameter definition value
C1 dimensionless parameter in Eq. (4.20) 0.01
C2 dimensionless parameter in Eq. (4.21) 0.1 [137]
C3 dimensionless parameter in Eq. (4.22) 25
∆t time-integral step 0.005τe
Nf no. of fluid particles 3304
(Lx, Ly) system size (80b, 56b)
(ℓx, ℓy) system size of a contraction region (28b, 14b)
Np no. of polymer chains in a particle 1000 [146]
Z0 equilibrium no. of entanglements 7
⟨Z⟩ average no. of entanglements 8.0±2.4
τd Reptation time 630τe
η(P)0 zero shear viscosity 22.1σeτe

are evaluated by using the time-temperature superposition rule and the experimental data at

T = 160 ◦C [175]). Our simulations are performed in a 4:1:4 contraction-expansion channel

with a channel width, for example, Ly = 10 mm as shown in Fig. 4.7. Here, we assume

that the width of the z-direction is infinite, and we consider a two-dimensional flow. The

parameters used in the MSSs are summarized in Table 4.1. In this study, we examined flows in

the following two cases, condition I: F̃ = (1.5×10−4, 0) and condition II: F̃ = (7.5×10−4, 0),

where F̃ is the externally applied body force. The simulations are conducted with 48 cores

(Xeon E5-2680, 2.7 GHz) and require approximately 72 hours for the system to reach a steady

state.

4.4 Results and Discussion

4.4.1 Rheological properties

In Fig. 4.8, we show the rheological properties of the polymer melt Z0 = 7, which are

obtained from SL simulations. Before applying a strain or a strain rate, the system is fully

equilibrated under D = 0, namely, we equilibrate the system for a time duration that is

longer than the longest relaxation time estimated in advance by the bulk SL simulation.
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Fig. 4.8: Rheological properties of the polymer melt used in multi-scale simulations. (a)
The linear viscoelasticity, (b) the steady shear viscosity and (c) the uniaxial elongational
viscosities. In (a), circles are the storage modulus G′ and diamonds are the loss modulus
G′′. In (c), the transient elongational viscosity is plotted for four different strain rates: ϵ̇τe =
1.0×10−3 (square), ϵ̇τe = 5.0×10−3 (circle), ϵ̇τe = 1.0×10−2 (triangle), and ϵ̇τe = 1.5×10−2

(diamond). The black solid line is the linear viscoelasticity growth function 3η+0 (t).

Here, D ≡ (κ+κT)/2 is the strain rate tensor. After the equilibration, the average number

of entanglements ⟨Z⟩eq is found to be ⟨Z⟩eq ≃ 8.0, as shown in Table 4.1. Fig. 4.8(a) shows

the linear viscoelasticity data. From Fig. 4.8(a), the longest relaxation time is determined

to be τd ≃ 630τe. Fig. 4.8(b) shows the steady shear viscosity plotted against various shear

rates. As shown in Fig. 4.8(b), the system exhibits a shear thinning at a shear rate above

approximately γ̇τe ≃ 1.6× 10−3. The zero shear viscosity η(p)0 is found to be η(p)0 ≃ 22.1 σeτe.

Fig. 4.8(c) shows the transient uniaxial elongational viscosities η+E (t) plotted against time

t/τe for various elongational strain rates. As shown in Fig. 4.8(c), the uniaxial elongational

viscosities present almost the same behavior as the linear viscoelasticity growth function

3η+0 (t) in the low strain rate region, whereas in the high strain rate region, they are slightly

larger than 3η+0 (t). This tendency of the uniaxial elongational viscosities can also be found

in the literature [67].

4.4.2 Macroscopic scale

Fig. 4.9 shows snapshots of our MSSs at four characteristic times. First, fluid particles are

uniformly arranged on rectangular grid points with a spacing of b, as shown in Fig. 4.9(a).

Before starting the MSSs, we equilibrate the polymer chains in each particle for a longer time
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(a) t = 0 τe (b) t = 500 τe (c) t = 750 τe (d) t = 1000 τe

Fig. 4.9: Flow profiles obtained from the multi-scale simulation at four typical times: (a)
t/τe = 0, (b) 500, (c) 750 and (d) 1000.

than the reptation time τd (≃ 630τe), specifically for a time duration of ∆Teq = 1500 τe, and

then we apply the external force F̃ to start the MSSs. From Figs. 4.9(b), (c) and (d), we can

confirm that fluid particles are well dispersed during the simulation. The density fluctuation

is at most 0.09% for condition I and 0.3% for condition II, which means that the density

fluctuation can be sufficiently suppressed (i.e., less than 1%) by Eq. (4.22) and the particle

shifting method.

The macroscopic flow reaches a steady state after 1000τe. To reduce the noise of the data,

the values obtained from the MSSs are averaged over the time duration from t = 1000τe

to t = 1500τe. For the macroscopic properties in the steady state, Fig. 4.10 shows the

spatial distributions of the magnitude of (a) velocity |v|/(b/τe), (b) the shear-deformation-

based Weissenberg number Wi(s)d ≡ |Dxy|τd, (c) the planar elongational-deformation-based

Weissenberg number Wi(e)d ≡ |Dxx|τd, and (d) the principal stress difference [103] PSD ≡

|λ1 − λ2| =
√

4σ2
xy +N2

1 for conditions I (upper panels) and II (lower panels). Here, N1 is

the first normal stress difference, and λ1 and λ2 (λ1 > λ2) are the eigenvalues of the stress

tensor. In (d), the arrows show the eigenvectors xλ1 that belong to the larger eigenvalues.

The directions of arrows are defined to satisfy xλ1 · ex > 0 (ex = (1, 0)). Note that the scales

of the color bars for (a), (b) and (d) are different between conditions I and II. In condition I,

the local Weissenberg numbers are smaller than unity (Wi(s)d
<∼ 1) in almost the entire region.

Therefore, the flow in condition I is close to a Newtonian flow. In condition II, however, as

expected from Fig. 4.10(II-a), the velocity gradient tensor becomes large in a narrow channel
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Fig. 4.10: Macroscopic flow properties obtained from the multi-scale simulation for condition
I (upper panels) and condition II (lower panels). (a) Magnitudes of velocity, (b) the shear-
deformation-based Weissenberg number, (c) the elongational-deformation-based Weissenberg
number and (d) the principal stress difference. In (d), the arrows show the eigenvectors that
belong to the larger eigenvalues, and the lengths of the arrows show the magnitude of the
eigenvalues. The directions of the arrows are the same as the direction of the flow.

region. In Fig. 4.10(II-b), we can observe the region of Wi(s)d > 1, particularly near the wall

of the narrow channel region. Moreover, planar elongational flows can be observed in the

region of the inlet and outlet, as shown in Fig. 4.10(II-c). The Weissenberg number related

to the chain stretch or compression Wi(e)R ≡ |Dxx |τR is still smaller than unity. Therefore,

polymer chains show almost no stretching during the planar elongational flow. Flows showing

Wi(e)R > 1 (including flow instabilities) will be investigated in a future work. As shown in

Fig. 4.10(II-d), the principal stress difference PSD becomes large mainly in the following two

regions: (i) near the wall of the narrow channel region and (ii) around the inlet and the

outlet. The former (i) arises from the large values of shear stress σxy in response to the shear

flow, as shown in Fig. 4.10(II-b). Conversely, the latter (ii) arises from large values of N1 in

response to the planar elongational flow, as shown in Fig. 4.10(II-c). Moreover, the directions

of the eigenvectors are changed to reflect the flow field (as shown in Fig. 4.12).

For a more quantitative analysis, we show the physical quantities along the centerline
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Fig. 4.11: The macroscopic variables along the center line (y = 0) for condition I (black
circle) and condition II (red diamond). Closed symbols show the results obtained by the
multi-scale simulation using the SL model. Open symbols show the results obtained by the
Newtonian fluid having a shear viscosity that is the same as the zero shear viscosity η0.
(a) The x component of the velocity, vx, (b) the total pressure and (c) the principal stress
difference. The shaded region represents the narrow channel region.

in Fig. 4.11. The shaded region represents the narrow channel region (−ℓx/2 < x < ℓx/2,

ℓx = 28b). In Fig. 4.11, the standard deviations of each macroscopic data point are less than

the sizes of the symbols. Fig. 4.11(a) shows the x-component of the velocity, vx, along the

center line y = 0 (filled symbol: the polymer melt flow with Z0 = 7; open symbol: the flow of

the Newtonian fluid with the shear viscosity η0). As shown in Fig. 4.11(a), the x-component

of the velocity in condition I is almost the same profile as that of the Newtonian flow, which

is consistent with Wi(s)d
<∼ 1 in almost the entire region. Conversely, the x-component of

the velocity in condition II is larger than that of the Newtonian flow. This result can be

understood by the shear thinning effect that starts to work mainly near the wall of the

narrow channel region, as expected from Fig. 4.8(b). Fig. 4.11(b) shows the total pressure

P (tot) ≡ P (d) + P (h) along the center line y = 0. Here, P (d) is the dynamic pressure that is

defined by Eq. (4.10), and P (h) is the hydrostatic pressure that corresponds to the externally

applied body force F (= (1/ρ)∇P (h)) [166]. As shown in Fig. 4.11(b), the pressure along the

center line steeply decreases in the narrow channel region. This nonlinear pressure profile was

also observed in a previous study (see Fig. 7 in Ref. [102]). Fig. 4.11(c) shows the principal

stress difference PSD along the center line y = 0. In condition I, the principal stress difference

PSD profile is almost symmetric with respect to the vertical center line x = 0. This behavior
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is consistent with that of the corresponding Newtonian flow. Conversely, in condition II,

the principal stress difference PSD shows an asymmetric profile. This result is in qualitative

agreement with a previous study; that is, the PSD along the centerline has two peaks. One

peak is near the entrance of the narrow channel region, and the other peak is slightly behind

the exit of the narrow channel region (see, for example, Fig. 7 in Ref. [105]). However, the

magnitude of the PSD depending on the positions along the centerline is not in quantitative

agreement because the materials used in reference [105] and the flow channel geometry are

different from those in this study. Note that the decrease in PSD in the vicinity of the position

x ≃ −40b results from the periodic boundary condition. The polymer chains almost relax at

the position x ≃ 40b, although the effect of the periodic boundary condition slightly remains.

Further study including the dependence of system geometry and system size is needed.

4.4.3 Microscopic scale

We now focus on microscopic information that is unique to our MSS. A priori, one might

expect that the entanglement structure obtained from the MSS will depend on particular

model used to account for the effect of entanglements. If this were the case, the purpose and

the meaning of the analysis that follows might be questioned. Therefore, we have compared

two relevant entanglement characteristics of our SL model with those of other models from

the literature [66,76,80]. For the conditions relevant to the present work, we found that the

entanglement characteristics of our SL model and the other models considered were essentially

identical. Armed with this agreement, we proceed with our analysis of the entanglement

structure of our SL model as seen during the MSS simulations.

Fig. 4.12 shows (a) the effective strain rate γ̇ ≡
√
D : D and (b) snapshots of the superim-

posed conformation of all of the polymer chains for eight typical points: (i) (x, y) = (−30b, 0),

(ii) (−15b, 0), (iii) (0, 0), (iv) (15b, 0), (v) (−14b,−7b), (vi) (0,−7b), (vii) (14b,−7b) and (viii)

(20b,−7b) at t = 1500τe in condition II. In figures (b-(i))–(b-(viii)), the center of mass of the

polymer chain is fixed at the origin, and the x-axis and y-axis are scaled by the equilibrium
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Fig. 4.12: (a) The effective strain rate γ̇τe ≡
√
D : D and (b) snapshots of the superimposed

conformation of all of the polymer chains for eight typical points: (i) (x, y) = (−30b, 0), (ii)
(−15b, 0), (iii) (0, 0), (iv) (15b, 0), (v) (−14b,−7b), (vi) (0,−7b), (vii) (14b,−7b) and (viii)
(20b,−7b) at t = 1500τe in condition II. In (a), the background color map shows the effective
strain rate γ̇, and the arrows show the velocity field. Here, the arrows are magnified by 125.
In (b), the x-axis and y-axis are scaled by the equilibrium length between adjacent slip-links
a.

length between adjacent slip-links a. The flow along the center line is dominated by the planar

elongational flow. At (i) (x, y) = (−30b, 0) (see Fig. 4.12(b-(i))), the polymer chains are al-

most relaxed. At (ii) (−15b, 0) (see Fig. 4.12(b-(ii))), the polymer chains are slightly oriented

to the x-direction in response to the planar elongational flow (Dxx > 0) of the inlet area, as

shown in Fig. 4.10(II-c). At (iii) (0, 0) (see Fig. 4.12(b-(iii))), the polymer chains are almost

relaxed. Moreover, at (iv) (15b, 0) (see Fig. 4.12(b-iv)), the polymer chains are slightly ori-

ented to the y-direction in response to the planar elongational flow with Dxx < 0 and Dyy > 0

in the outlet region, as shown in Fig. 4.10(II-c). However, the flow near the wall of the narrow

channel is mainly dominated by the shear flow. At (v) (−14b,−7b) (see Fig. 4.12(b-(v))), the

99



4 MSS for a Complex Flow Channel 4.4 Results and Discussion

Table 4.2: Orientation tensor at characteristic positions. Positions (i)–(viii) correspond to
those in Fig. 4.12(b).

Position Sxx Syy Szz Sxy Syz Szx λmax θ [deg.]
I (i) (−30b, 0) 0.33 0.34 0.33 −8.4× 10−4 4.7× 10−3 3.7× 10−4 0.34 −86.5

(ii) (−15b, 0) 0.38 0.30 0.32 1.1× 10−2 −2.6× 10−3 6.8× 10−3 0.38 7.2
(iii) (0, 0) 0.33 0.33 0.34 −2.1× 10−3 2.7× 10−4 −8.4× 10−3 0.35 −8.1
(iv) (15b, 0) 0.29 0.36 0.35 −1.5× 10−3 2.6× 10−3 −2.2× 10−3 0.36 −88.6
(v) (−14b,−7b) 0.43 0.34 0.23 6.0× 10−2 −3.7× 10−3 −4.9× 10−3 0.46 25.2
(vi) (0,−7b) 0.29 0.46 0.25 1.0× 10−1 −2.9× 10−3 −1.7× 10−4 0.51 65.2
(vii) (14b,−7b) 0.31 0.36 0.33 −6.2× 10−2 −3.6× 10−3 −4.1× 10−3 0.40 −55.3
(viii) (20b,−7b) 0.35 0.32 0.33 2.0× 10−2 2.5× 10−3 −3.3× 10−4 0.36 28.1

II (i) (−30b, 0) 0.38 0.29 0.33 −4.2× 10−3 1.9× 10−3 8.8× 10−4 0.38 −2.8
(ii) (−15b, 0) 0.52 0.20 0.28 6.6× 10−4 −1.1× 10−3 2.0× 10−3 0.52 0.1
(iii) (0, 0) 0.40 0.28 0.32 6.0× 10−3 −1.4× 10−3 2.2× 10−3 0.40 2.8
(iv) (15b, 0) 0.26 0.42 0.32 1.3× 10−3 −2.3× 10−3 2.4× 10−4 0.42 89.5
(v) (−14b,−7b) 0.50 0.37 0.13 2.9× 10−1 2.5× 10−3 2.0× 10−3 0.73 39.0
(vi) (0,−7b) 0.57 0.26 0.17 2.2× 10−1 −2.3× 10−3 5.6× 10−4 0.68 27.0
(vii) (14b,−7b) 0.47 0.35 0.18 −1.6× 10−1 −1.7× 10−3 6.4× 10−4 0.58 −34.3
(viii) (20b,−7b) 0.38 0.33 0.29 1.6× 10−1 1.2× 10−3 −1.2× 10−3 0.51 40.6

polymer chains are strongly oriented to the right diagonally upward direction due to the inlet

flow and the shear flow near the wall. At (vi) (0,−7b) (see Fig. 4.12(b-(vi))), the polymer

chains are also strongly oriented to the right diagonally upward direction mainly due to the

shear flow near the wall (Wi(s)d ∼ 7), but the orientation direction at (vi) (0,−7b) is a little

bit larger than that at the steady state under the simple shear flow with Wi(s)d at (vi), as

discussed later. It should be noted that the orientation direction at (vi) is determined not

by a shear flow at this position but by previously experienced shear and planar elongational

flows. At (vii) (14b,−7b) (see Fig. 4.12(b-(vii))), the orientation direction is changed due to

the outlet flow. Moreover, at (viii) (20b,−7b) (see Fig. 4.12(b-(viii))), the polymer chains

orienting to the right diagonally upward direction are advected by the outlet flow, as shown

in Fig. 4.12(a).

We also analyze the conformation tensor W defined by

Wαβ ≡
〈

1

Np

Np∑

n=1

R(n)
α R(n)

β

〉
(4.23)
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where R(n) is the end-to-end vector of a polymer chain n and ⟨· · · ⟩ is the time average. By

using the conformation tensor W , we introduce the orientation tensor as S ≡ W /TrW . The

maximum eigenvalue λmax of the orientation tensor S denotes the degree of orientation. From

the eigenvector that belongs to the maximum eigenvalue, (x(P)
λmax

, y(P)λmax
, z(P)λmax

), we can define

the orientation direction by using the expression θ ≡ (180/π) tan−1(y(P)λmax
/x(P)

λmax
) (−90◦ ≤

θ ≤ 90◦). Here, the directions of the eigenvectors are set to be the same as the direction of

the flow. When the polymer chains are isotropic, the orientation tensor satisfies the relation

Sαβ = δαβ/3, the maximum eigenvalue λmax should be 1/3, and the orientation direction

θ has no specific direction. Table 4.2 shows the components of the orientation tensor, the

maximum eigenvalue and the orientation direction. Positions (i)–(viii) shown in Table 4.2

correspond to those in Fig. 4.12(b). Table 4.2 quantitatively shows to what extent the

polymer chains are oriented to the eigenvector direction of the maximum eigenvalue. For

the components Syz and Szx, these values are one order or two orders of magnitude smaller

than the other components. In condition I, the polymer chains along the center line y = 0

are almost isotropic. However, the polymer chains along the stream line near the wall of the

narrow channel are slightly oriented. The tendencies of the orientation tensor in condition

II are in good agreement with those in Fig. 4.12(b). At (ii) (−15b, 0) and (iv) (15b, 0),

the polymer chains are oriented to the x-direction (θ ≃ 0◦) and the y-direction (θ ≃ 90◦),

respectively. Moreover, along the stream line near the wall of the narrow channel, at (v)

(−14b,−7b) and (vi) (0,−7b), the polymer chains are clearly oriented to the right diagonally

upward directions (θ ≃ 39◦ and 27◦, respectively). The orientation angle at position (vi)

(refer Fig. 4.12 (b-(vi))) is slightly larger than that obtained under steady simple shear flow

(≃ 22.8◦) (see supporting information if more specific information is necessary). Near the

wall of the inlet of the narrow channel region, the polymer chains experience not only simple

shear but also planar elongational deformation (Dxx < 0 and Dyy > 0). As the relaxation

time τd is longer than the time taken to move from the entrance of the narrow channel to

the position (vi), the larger orientation angle can be attributed to the residual effect of the
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Fig. 4.13: Average number of entanglements Z̄ obtained from the multi-scale simulation: (a)
condition I and (b) condition II.

planar elongation experienced near the entrance. At (vii) (14b,−7b), the orientation direction

is dramatically changed to a right diagonally downward direction θ ≃ −34◦ according to the

outlet flow. Moreover, at (viii) (20b,−7b), the orientation direction is θ ≃ 41◦ because the

oriented polymer chains are advected by the outlet flow, as observed in the velocity field

shown in Fig. 4.12(a).

We evaluated the spatial distribution of the average number of entanglements on a single

polymer chain, Z̄(x), by taking the average over all the polymer chains in fluid particles

existing in a small box located at position x. Fig. 4.13 shows the distribution Z̄(x) for (a)

condition I and (b) condition II. As shown in Fig. 4.13(a), Z̄(x) is almost constant throughout

the system in condition I, which is consistent with Figs. 4.10(I-b) and (I-c). In contrast, in

condition II shown in Fig. 4.13(b), the average number of entanglements on a chain decreases,

particularly in the positions where the Weissenberg number Wi(s)d is larger than unity. This

decrease in entanglements can be understood by the convective constraint release (CCR) [34]

effect that strongly works at the region Wi(s)d > 1 (the polymer chains are weakly stretched

in this region).

As with the macroscopic scale, we show the physical quantities along the line y = −0.5b

located at slightly below the center horizontal line and the line y = −6.5b in Fig. 4.14. In

this figure, the shaded region represents the narrow channel region. Fig. 4.14 shows (a) the

Weissenberg numbers Wi(e)d and Wi(s)d and (b) the average number of entanglements Z̄ on a

single chain along (i) the line y = −0.5b and (ii) the line y = −6.5b. The standard deviations
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Fig. 4.14: (a) The Weissenberg numbers (i) Wi(e)d and (ii) Wi(s)d , and (b) the average number
of entanglements Z̄ along two flow trajectories (i) along the center line (y = −0.5b) and
(ii) along the line (y = −6.5b) near the wall of the narrow channel. The black circles are
for condition I, and the red diamonds is for condition II. The shaded region represents the
narrow channel region.

of the macroscopic data are almost the same as or less than the sizes of the symbols in

Figs. 4.14(a-(i)) and (a-(ii)). However, the standard deviations of each microscopic data

point are almost the same as or larger than the sizes of the symbols shown in Figs. 4.14(b-

(i)) and (b-(ii)). From Fig. 4.14(a-(i)), the Weissenberg number Wi(e)d reflecting the planar

elongational deformation appears to be almost symmetric with respect to the vertical center

line x = 0. However, the average number of entanglements Z̄ of each condition shows

asymmetric profiles with respect to the vertical center line x = 0, as shown in Fig. 4.14(b-

(i)). This result occurs because the microscopic states of polymer chains such as the average

number of entanglements Z̄ on a single chain depend on the flow history. As with case (i), the

average number of entanglements decreases with increasing Weissenberg number, as shown

in Fig. 4.14(a-(ii)) and Fig. 4.14(b-(ii)).

Finally, to analyze the entanglements along a polymer chain in detail, we introduce the

number density distribution of entanglements along a polymer chain, n. As mentioned earlier,

in principle, the number density of entanglements along a polymer chain and its variation

under flow may depend on the particular model. Therefore, we had compared the entangle-

ment characteristics of our SL model to other models from the literature and found them to

be essentially identical (see Appendix 4.A). In addition, even molecular models where the

number density of entanglements is unchanged under flow (such as Ianniruberto-Marrucci

model [176, 177], Mead-Larson-Doi model [37], Rolie-Poly model [39], etc.) can generate re-

sults similar to those presented here [108]. Be that as it may, we believe that the analysis

103



4 MSS for a Complex Flow Channel 4.4 Results and Discussion

0.0

0.5

1.0

1.5

2.0

 0  0.2  0.4  0.6  0.8  1

n
 (
s/
L
)

s/L

(a)

0.0

0.5

1.0

1.5

2.0

 0  0.2  0.4  0.6  0.8  1

n
 (
s/
L
)

s/L

(b)

0.0

0.5

1.0

1.5

2.0

 0  0.2  0.4  0.6  0.8  1

n
 (
s/
L
)

s/L

(c)

0.0

0.5

1.0

1.5

2.0

 0  0.2  0.4  0.6  0.8  1

n
 (
s/
L
)

s/L

(d)

Fig. 4.15: Time-averaged number density of entanglements n(s/L) at four typical positions:
(a) (x, y) = (−30b, 0) as a far upstream position from the inlet region, (b) (−15b, 0) in the
inlet region, (c) (0,−7b) as a position near the wall of the narrow channel region and (d)
(14b,−7b) as a position in the outlet region for condition I (black circle) and condition II
(red diamond).

that follows can enrich our understanding of the behavior of entangled polymer chains under

flow. We calculate n(s, t) as a function of internal coordinate s, which is the length along

the primitive path from one end (s = 0) to the other (s = L). Polymer chains are divided

into M sections (here, we employ M = 25) that have an interval ∆s = L/M . The number

density of entanglements along a polymer chain is defined as

n(s, t) ≡
〈
∆Z(s, t)

∆s

〉
, (4.24)

where ∆Z(s, t) is the number of entanglements in the interval ∆s at s and ⟨· · · ⟩ is the

statistical average of (· · · ). Moreover, the time-averaged number density of entanglements

along a polymer chain is defined as n(s) = (1/T )
∫ t0+T

t0
n(s, t)dt, where t0 is a time after

reaching a steady state and T is the time averaging duration. By definition, n(s) satisfies

the relation
∫ L

0 n(s)ds = ⟨Z⟩. Fig. 4.15 shows n(s/L) obtained by the MSS at four typical

points: (x, y) = (a) (−30b, 0) as a far upstream position from the inlet region, (b) (−15b, 0)

in the inlet region, (c) (0,−7b) near the wall of the narrow channel and (d) (14b,−7b) in the

outlet region for condition I (black circle) and condition II (red diamond). The quantities

are averaged over the time duration from t = 1000τe to t = 1500τe. At (a) (−30b, 0) (see

Fig. 4.15(a)), n(s/L) is almost constant along s. At (b) (−15b, 0) (see Fig. 4.15(b)), n(s/L)

for condition I is almost constant because of the small strain rate shown in Fig. 4.10(I-c)

and Fig. 4.14(a-i). Meanwhile, n(s/L) at (−15b, 0) for condition II slightly decreases at
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Fig. 4.16: Bulk properties obtained by SL simulations. (a) Average number density of
entanglements in bulk n(s/L) for a quiescent state (black square), for a steady state under a
shear flow of γ̇τe = 1.0× 10−2 (blue diamond) and a steady state under an elongational flow
of ϵ̇τe = 1.0× 10−2 (red circle); (b) the hooking rate Ṅhooking(γ̇); and (c) the average length
of the chain end ⟨shead⟩. In (b) and (c), the black horizontal solid line is for a quiescent state,
blue diamonds are for shear flows, red circles are for elongational flows, and black dashed
line is the strain rate 1/τd.

the position around s/L ≃ 0.5. This result occurs because of the planar elongational flow

shown in Fig. 4.10(II-c) and Fig. 4.14(a-i). As shown in Figs. 4.15(c) and (d), n(s/L) clearly

decreases mainly in the middle region of the primitive path and has peaks near both ends,

particularly in condition II. In these regions, n(s/L) is determined by the high shear flow

because the flow behavior close to the wall of the narrow channel region is mainly dominated

by the shear flow, as shown in Fig. 4.10(I-b) and Fig. 4.10(II-b). The change in density near

ends occurs because entanglements are created (“hooking”) or removed (“dehooking”) by

their own motions, i.e., in an active manner. In contrast, the change in density in the middle

region occurs because entanglements in the middle region are created (“hooked by others”)

or removed (“the CR mechanism”) only in a passive manner.

For a more quantitative analysis, we calculate some bulk properties. Fig. 4.16(a) shows

n(s/L) in bulk for a quiescent state (black square), for a shear flow (blue diamond) and for an

uniaxial elongational flow (red circle). In the quiescent state, n(s/L) is almost constant along

s. However, n(s/L) under the flows decreases in the middle region (s/L ≃ 0.5) of the primitive

path and has peaks near both ends (s/L ≃ 0 and s/L ≃ 1). Similar results are obtained by

using the SL model developed by Likhtman [71] (see Fig. 14 in Ref. [74]). Fig. 4.16(b) shows

a hooking rate defined by Ṅhooking(γ̇) ≡
(
1/Np

∑Np

n=1 Nhooking(γ̇)
)
/∆T for a quiescent state
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(black solid line), for shear flows (blue diamond) and for uniaxial elongational flows (red

circle). Here, Nhooking(γ̇) is the total number of events that create entanglements through the

hooking of head and tail to other chains during a time ∆T . As shown in Fig. 4.16(b), the

hooking rates under shear and uniaxial elongational flows are almost the same as that of the

quiescent state in the small strain rate region. However, in the strain rate region larger than

approximately 1/τd (vertical dashed line in Fig. 4.16(b)), the hooking rates monotonically

increase. In addition, note that the dehooking rate, defined by the number of dehooking

events of head and tail per time, is almost the same profile as that of the hooking rates.

Fig. 4.16(c) shows the average length of the chain end ⟨shead⟩ for a quiescent state (black

solid line), for shear flows (blue diamond) and for uniaxial elongational flows (red circle). As

with the hooking rate case, the average lengths of the chain end monotonically increase in

the strain rate region larger than approximately 1/τd. Note that the average length of the

other chain end ⟨stail⟩ is almost the same profile as ⟨shead⟩. As shown in Fig. 4.16, the number

density of entanglements along a polymer chain is deeply related to the hooking/dehooking

rate. A further discussion on the relation between the number density of entanglements along

a polymer chain and the hooking/dehooking rate will be presented in the next paragraph.

To clarify the reason why the number density of entanglements along a polymer chain

exhibits the behaviors shown in Fig. 4.15 and Fig. 4.16, that is, has peaks near both ends

under shear and elongational flows, we consider an equation that can describe the time

evolution of the number density of entanglements along a polymer chain (a similar single-

chain model can be found in Ref. [178]). The time evolution of the number density of

entanglements along a polymer chain n(s, t) can be described as

∂n(s, t)

∂t
= −∂J

∂s
+ ṅhooked + ṅCR + ṅhooking (4.25)

where the first term on the right-hand side J (= JD +Jv) is the contribution of a diffusion of

entanglements (JD) and an effective advection of entanglements along the primitive path (Jv).

Note that the effective advection is caused by the hooked event and the CR event (for more
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details, see Appendix 4.B). The second term is the contribution from gaining entanglements

hooked by other polymer chains, the third term is the contribution from losing entanglements

by the CR, and the last term is the contribution from gaining entanglements by the hooking

event due to chain end motions. Hereafter, we consider the number density of entanglements

along a polymer chain in a steady state under a strain rate γ̇, n(s). Moreover, we only

consider the range 0 ≤ s ≤ L/2 because the profile of n(s) is symmetric with respect to

s = L/2. To obtain a more detailed expression for each contribution on the right-hand side

of Eq. (4.25), we make the following assumptions.

(A) The diffusion flux JD of entanglements follows Fick’s law. Moreover, the diffusion

constant D(s) can be written as D(s) = Dc+DCLF+DH/CR(s). Here, the first term on

the right-hand side is the contribution from the reptation motion, the second term is

the contribution from the CLF, and the third term is the contribution from the hooked

and the CR events that are discussed later.

(B) The rate of increase of entanglements per unit length hooked by others, ṅhooked, is

constant along the primitive path, but the constant depends on the strain rate γ̇.

(C) The rate of decrease of entanglements per unit length by the CR, ṅCR(s), is proportional

to the number density of entanglements along a polymer chain at s.

(D) The hooking rate at head and tail per unit length, ṅhooking(s), depends on the strain

rate, as shown in Fig. 4.16 (b).

(E) The length of a primitive path L is constant, but the constant depends on the strain

rate.

From assumptions (A), (B), (C) and (D), J , ṅhooked, ṅCR and ṅhooking can be written as
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follows:

J(s) = JD + Jv = −D(s)
dn(s)

ds
+ v(s)n(s), (4.26)

ṅhooked(s, γ̇) → ṅhooked(γ̇), (4.27)

ṅCR(s) = − 1

τCR(γ̇)
n(s) (4.28)

and

ṅhooking(s) =
Ṅ (0)

hooking

a

[
Θ (s1(γ̇)− s) +Θ (s− sZ(γ̇))

]
(4.29)

where v(s) is the effective advection velocity along the primitive path; ṅhooked(γ̇) and 1/τCR(γ̇)

are positive constants depending on the strain rate; Ṅ (0)
hooking is the hooking rate in the qui-

escent state that can be determined by Fig. 4.16 (b); s1(γ̇) and sZ(γ̇) are the positions of

the first and the Z-th entanglements, respectively; and Θ(x) is the step function defined

as Θ(x) = 1 for x > 0 and Θ(x) = 0 otherwise. The diffusion constant arising from the

hooked and the CR events DH/CR(s) and the effective advection velocity v(s) can be written

as follows (for more details, see Appendix 4.B):

DH/CR(s) =
Ṅhooking(γ̇)

4

{
(∆sH +∆sCR)

(
1

2
− s

L

)}2

, (4.30)

v(s) = −Ṅhooking(γ̇)(∆sH −∆sCR)

(
1

2
− s

L

)
(4.31)

where ∆sH and ∆sCR are variations of the internal coordinate of a slip-link located at s

per hooked event and CR event, respectively. Because the “hooked” event is related to the

“hooking” event, ṅhooked and ṅhooking should satisfy the following equation:

∫
ṅhookedds =

∫
ṅhookingds. (4.32)
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Using Eq. (4.32) and the relation Ṅhooking(γ̇) =
∫
ṅhookingds, ṅhooked(γ̇) can be written as

ṅhooked(γ̇) =
Ṅhooking(γ̇)

L
. (4.33)

In addition, from the relation of Ṅhooking(γ̇) to ṅhooking and Eq. (4.29), Ṅhooking(γ̇) can be

connected to Ṅ (0)
hooking as

Ṅhooking(γ̇) =
Ṅ (0)

hooking

a

[
s1(γ̇) + (L− sZ(γ̇))

]
. (4.34)

Using L − sZ(γ̇) = s1(γ̇) and the above equation, s1(γ̇) can be determined by Ṅ (0)
hooking and

Ṅhooking(γ̇) obtained from Fig. 4.16(b). Note that the obtained s1(γ̇) is found to be slightly

larger than ⟨shead⟩ in Fig. 4.16(c). Because an event of an entanglement-disappearance at

both ends by the flux J is related to a CR event, ṅCR should satisfy the equation
∫
ṅCRds =

J(0) − J(L). We are now considering at a steady state the left-hand side of Eq. (4.25)

∂n/∂t = 0. By integrating Eq. (4.25) along s from 0 to L and using Eq. (4.32) and the

equation
∫
ṅCRds = J(0)− J(L), we can derive the relation

∫
ṅCRds = −

∫
ṅhookingds. From

this relation, we have the following expression of ṅCR as

ṅCR(s) = −Ṅhooking(γ̇)

Z
n(s). (4.35)

Furthermore, a boundary condition can be determined by the relation
∫
ṅhookingds = −J(0)+

J(L). Because we can have J(0) = −J(L) from the symmetric nature of the density distribu-

tion with respect to s = L/2, the boundary condition can be obtained as J(0) = −Ṅhooking/2,

i.e.,

−D(0)
dn

ds

∣∣∣∣
s=0

+ v(0)n(0) = −Ṅhooking(γ̇)

2
. (4.36)

We have solved Eq. (4.25) numerically by using Eqs. (4.26)–(4.36). Fig. 4.17 shows the

average number densities of entanglements along a polymer chain at steady states n(s/L)

obtained by Eq. (4.25) for four typical non-dimensionalized parameter sets that are summa-
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Table 4.3: Parameters for solving Eq. (4.25).

Dc +DCLF L Z Ṅhooking(γ̇) ∆sH ∆sCR

(a) 0.05 8.0 8.0 0.15 0.3 0.3
(b) 0.05 8.5 7.0 0.16 0.3 0.0
(c) 0.05 8.5 7.0 0.16 0.3 0.3
(d) 0.05 8.5 7.0 0.15 0.3 0.0
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Fig. 4.17: The average number density of entanglements obtained by Eq. (4.25) for four
typical parameter sets: (L, Z, Ṅhooking(γ̇), ∆sH, ∆sCR) = (a) (8.0, 8.0, 0.15, 0.3, 0.3) (black
square), (b) (8.5, 7.0, 0.16, 0.3, 0.0) (red circle), (c) (8.5, 7.0, 0.16, 0.3, 0.3) (gray dashed
line) and (d) (8.5, 7.0, 0.15, 0.3, 0.0) (gray solid line) with Dc +DCLF = 0.05.

rized in Table 4.3. The diffusion constant from the reptation and the CLF Dc+DCLF can be

estimated as 0.05 by using the relations Dc ≃ L2
0/(π

2τd) and DCLF ≃ a2/(3Z0τe). Moreover,

the variations of the internal coordinate ∆sH and ∆sCR can be estimated from the SL model.

Here, the values of parameter sets (a) and (b) are typical ones that are obtained from the

SL simulations shown in Fig. 4.16. In the quiescent state (γ̇ = 0), the advection effect can

be neglected (veq(s) = 0) because the variation in the internal coordinate of a hooked event

∆sH is the same as that of a CR event ∆sCR. Meanwhile, under a flow (γ̇ ̸= 0), we should

consider the advection effect (v(s) ̸= 0) because the slip-link appears to be advected in the

s-coordinate by a hooked event. In the case of parameter set (a), n(s/L) is almost the same

as that in the quiescent state. In the case of parameter set (b), which corresponds to the

large strain rate case shown in Fig. 4.16, n(s/L) decreases in the middle region (s/L ≃ 0.5)
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Fig. 4.18: Schematic illustration of the number density of entanglements along a polymer
chain under a shear/elongational flow.

and has peaks near both ends. In the cases of parameter sets (c) and (d), which have the

same length L, number of entanglements Z and ∆sH as parameter set (b) but have different

∆sCR and hooking rate Ṅhooking(γ̇), respectively, although the values of n(s/L) are altered,

their shapes of distributions are almost the same as that in (a). Therefore, we can draw

the following two points from Fig. 4.17. The first is that the height of n(s/L) is mainly

determined by the value of Z/L. The second is that the value of n(s/L) near both ends

is determined by competition between the effective advection effect at both ends and the

hooking rate, as shown in Fig. 4.18.

The MSS method enables us to directly access molecular-level dynamics and macroscopic

flow properties. From our MSS, we can obtain detailed microscopic information, such as the

local orientation of polymer chains, the spatial distribution of the average number of entan-

glements and the number density of entanglements along a polymer chain as a function of the

internal coordinate along the primitive path. Although further studies including comparisons

with other models [48,58,75] are needed, these types of microscopic information can be useful

when designing polymer melts with specific properties.

4.5 Conclusion

We have successfully applied an MSS method to flows of a well-entangled polymer melt in

a contraction-expansion channel. In our MSS method, the macroscopic model based on the

Lagrangian picture is combined with a microscopic model that can predict the rheological

properties of well-entangled polymer melts. For the former, we employ SPH, and for the
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latter, we employ the SL model developed by Doi and Takimoto [67]. Using the MSS method

mentioned above, we have examined flows in a contraction-expansion channel, which is one

of the model flow channel geometries of polymer processing flows.

We have investigated both macroscopic and microscopic information obtained from the

MSS for two different conditions. One is the condition in which the externally applied

body force is small (condition I), and the other is the condition in which the force is large

(condition II). In condition I, we have confirmed that the flow profile is almost the same as the

Newtonian flow because the shear-deformation-based Weissenberg number Wi(s)d is less than

unity in almost the entire region. Conversely, in condition II, the Weissenberg number Wi(s)d

is partially larger than unity. Reflecting the macroscopic flow field, the states of polymer

chains are different between each condition. For microscopic information, we have analyzed

molecular orientations and entanglements between polymer chains in detail. In condition

I, the polymer chains are weakly oriented, the average number of entanglements is almost

constant, and the number density of entanglements along a polymer chain is almost the same

as that in the equilibrium state. However, in condition II, the states of the polymer chains

are altered mainly in the region corresponding to Wi(s)d > 1. In this region, the polymer

chains are strongly oriented, and the average number of entanglements on a chain decreases.

Furthermore, we have found that the number density distribution of entanglements along a

polymer chain decreases in the center part on the primitive path and has peaks near the tails.

To understand entanglements on a chain under flows in detail, we have developed a model

equation that describes the time evolution of the number density of entanglements along a

polymer chain. The model equation can successfully reproduce the profile of the number

density of entanglements along a polymer chain in steady states. These types of microscopic

information will provide us with new insights for the molecular design of a polymer chain.

To make the MSS method a new and effective tool for analyzing flows of polymer melts,

further studies are clearly required. For example, the effects of temperature, molecular

weight, molecular weight distribution, branching polymer and so on should be taken into
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account. Moreover, a three-dimensional simulation including comparisons with experiments is

also needed. We are continuing our study to develop our MSS method along these directions,

and the results will be reported elsewhere.

Appendix 4.A Microscopic Structures of the Slip-link Model

There are a lot of microscopic models with artificial entanglements that can successfully

predict rheological properties [48, 58, 67–69, 71, 75]. The SL model employed in this work

is a type of these microscopic models. Although the aforementioned microscopic models

can successfully predict bulk rheological behavior of entangled polymer melts, it is not fully

understood whether or not statistical properties of microscopic entanglement structure of

these microscopic models are consistent with the results obtained from less coarse-grained

simulations or theoretical studies. Here we present a short review on the works related to

the entanglement structures of these microscopic models.

As for the entanglement structure at equilibrium states, Schieber theoretically derived

equilibrium distribution functions for dynamic variables at a subchain level based on a free

energy of a polymer chain [54]. Masubuchi et al. examined entangled network structure using

the PCN model and compared their results with theories and less coarse-grained simulations

[66]. Consequently, they concluded that the PCN model can reproduce the network structures

that are consistent with less coarse-grained simulations. As for the entanglement structure

under flows, Schieber reported that the average number of entanglements decreases although

the distribution of the number of entanglements is almost same as that at an equilibrium

state [48]. More recently, Sgouros et al. examined the number of entanglements under steady

shear flows using the slip-spring model and compared their results with Brownian dynamics

simulations and MD simulations [80]. They found that their results are in good agreement

with both Brownian dynamics simulations and MD simulations.

Here, to verify validity of our SL model using in this study, we have examined of entangle-

ment structure obtained from our SL model for two cases, (a) at equilibrium and (b) under
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Fig. 4.19: Entanglement characteristics obtained from slip-link simulations. (a) Probability
distribution of the number of slip-links per chain at equilibrium and (b) number of slip-links
per chain under steady shear flow (normalized using the equilibrium value) for ⟨Z⟩eq = 4
(circles), 9 (triangles), 19 (reverse triangles) and 39 (diamonds). In (a), the solid lines were
extracted from literature [66] and the dashed lines indicate Poisson distributions with the
same mean as the data. In an inset to the figure (a), the normalized probability distribution
is shown. In the inset, results obtained from our SL simulations (symbols) and extracted
from literature [66] (solid lines) are shown. In (b), the “×” correspond to the slip-spring
model of Sgouros et al. [80] with ⟨Z⟩eq ≃ 19 while the “+” correspond to the multi-chain
slip-spring model of Masubuchi [76] with ⟨Z⟩eq ≃ 21. The vertical dashed lines indicate
γ̇ = τ−1

d , γ̇ = τ−1
R (⟨Z⟩eq = 19) and γ̇ = τ−1

R (⟨Z⟩eq = 39) from left to right.

steady simple shear flows.

First, Fig. 4.19 (a) shows distribution of the number of slip-links per chain at equilibrium.

In an inset to the Fig. 4.19 (a), the normalized probability distribution ⟨Z⟩eqP (Z/⟨Z⟩eq) is

shown. Note that the value of equilibrium number of strands Z0 is model-dependent. In

general, the relation between G0 and Me is expressed as Me = AρRT/G0, where A is the

model-dependent prefactor. For our SL model, A is just the same as the Doi-Edwards

model [21], A = 0.8, whereas for the PCN model [59], A ≃ 0.5. This difference in A is due

to the fluctuations around the entanglement point imposed in the specific model. Therefore,

because of the difference of A, if we consider a certain molecular weight M , the number of

entanglements Z for our SL model and that for the PCN model differ with each other. Here,

we compare the statistics of the number of entanglements Z obtained from our SL model with

those having the same average number of entanglements Z obtained from the PCN model.
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Fig. 4.20: Schematic illustration of the hooked event and the CR event in the SL model.
Here, circles are the slip-links.

From Fig. 4.19 (a), it is clear that the equilibrium distributions obtained from our SL model

are nearly identical to those obtained from the PCN model [66] rather than the theoretically

expected Poisson distribution [48]. This is consistent with the findings in literature [66].

Second, Fig. 4.19 (b) shows normalized number of slip-links per chain (Z/⟨Z⟩eq) under

shear flows. Here, Z is the number of slip-links, ⟨Z⟩eq is the equilibrium number of slip-links

and Wi is the Weissenberg number defined as Wi ≡ γ̇τd. Moreover, data taken from Refs. [80]

and [76] are also shown by × and + symbols, respectively. From Fig. 4.19 (b), for the strain

rates examined in this work, i.e., when γ̇ <∼ τ−1
R , the normalized number of slip-links from

our model is essentially identical to those obtained from the slip-spring model of Sgouros et

al. [80] and from the multi-chain slip-spring model of Masubuchi [76]. On the other hand,

for γ̇ >∼ τ−1
R , the different models clearly disagree. This disagreement is for shear rates larger

than those considered in this work and hence outside the scope of our discussion.

Appendix 4.B Number Density of Entanglements

4.B.1 Hooked and CR event

In the SL model, the contour length of a primitive path changes at the same time that the

hooked event or the CR event occurs, as shown in Fig. 4.20. We assume that probabilities

of the hooked event pH(s) and the CR event pCR(s) occurring are constant, i.e., pH(s) =

pCR(s) = 1/L, where s is the internal coordinate, which is the length along the primitive
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path from one end (s = 0) to the other (s = L). More accurately, the probability of the

CR event pCR(s) is not constant, but it would be proportional to the number density of

entanglements along a polymer chain n(s). However, we consider pCR(s) to be constant

because n(s) under flows does not deviate much from that in the quiescent state. Further

study using MD simulations is needed to determine more reasonable assumptions for the

model equation. When a hooked event occurs, the length of the primitive path locally

increases by ∆sH (> 0). Conversely, when a CR event occurs, the length locally decreases

by ∆sCR (> 0). Because we have assumed that the length L(γ̇) is constant at the steady

state under a constant strain rate (assumption (E)), we discuss three processes of recovering

total length (i) after a hooked event, (ii) after a CR event in quiescent state and (iii) after

a CR event under flows separately in the following sections, where we focus on a change in

the local coordinate s specifying a slip-link after a hooked or a CR event occurs at s′.

4.B.2 Just after the Hooked Event

When a hooked event occurs at s′, the coordinate s of a slip-link changes to s+∆sH if s > s′,

but it does not change otherwise. The changed coordinate sH can be written as

sH = sΘ(s′ − s) + (s+∆sH)Θ(s− s′). (4.37)

Here, the length of the primitive path becomes L +∆sH. As mentioned in assumption (E),

the total length L is constant in the steady state, and the length returns to the original

length L by the Rouse relaxation mechanism in Eq. (2.2). This change in length is equally

allocated to the change in shead and stail in the SL model. Therefore, a new coordinate s(new)
H

of the slip-link is given as

s(new)
H = sΘ(s′ − s) + (s+∆sH)Θ(s− s′)− ∆sH

2
. (4.38)
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By using the probability of the hooked event occurring pH(s), the average new coordinate

⟨s(new)
H ⟩ of the slip-link having the coordinate s before the hooked event is found to be

⟨s(new)
H ⟩ =

∫ L

0

pH(s
′)s(new)

H ds′ = s−∆sH

(
1

2
− s

L

)
. (4.39)

4.B.3 Just after the CR Event in the Quiescent State

When a CR event occurs at s′ on a primitive path in the quiescent state, the coordinate s

of a slip-link changes to s − ∆sCR if s > s′, but it does not change otherwise. Thus, the

changed coordinate sCR can be written as

sCR = sΘ(s′ − s) + (s−∆sCR)Θ(s− s′). (4.40)

Here, the length of the primitive path becomes L−∆sCR. The length returns to the original

length L only by the Rouse relaxation in Eq. (2.2) because there is no contribution from an

affine deformation in the quiescent state. Therefore, after the change in the length, the new

coordinate of the slip-link s(new)
CR can be written as

s(new)
CR = sΘ(s′ − s) + (s−∆sCR)Θ(s− s′) +

∆sCR

2
. (4.41)

Using Eq. (4.41), the average new coordinate ⟨s(new)
CR ⟩ can be obtained as

⟨s(new)
CR ⟩ =

∫ L

0

pCR(s
′)s(new)

CR ds′ = s+∆sCR

(
1

2
− s

L

)
. (4.42)

4.B.4 Just after the CR Event under Flows

When a CR event occurs at s′ on a primitive path under a flow, the coordinate s of a slip-link

also changes to sCR in Eq. (4.40). The length returns to the original length L mainly by a

contribution of affine deformation in Eq. (2.2). Therefore, after the change in length, a new
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position s(new)
CR can be written as follows:

s(new)
CR =

[
sΘ(s′ − s) + (s−∆sCR)Θ(s− s′)

]
ϵaffine (4.43)

where ϵaffine is written as ϵaffine = L/(L−∆sCR). Thus, we can obtain

⟨s(new)
CR ⟩ =

∫ L

0

pCR(s
′)s(new)

CR ds′ ≃
(
s−∆sCR

s

L

)(
1 +

∆sCR

L

)
≃ s (4.44)

where we neglect the higher-order contribution proportional to (∆sCR/L)2 because ∆sCR is

small compared with the length of the primitive path L (∆sCR ≪ L).

4.B.5 Derivation of DH/CR(s) and v(s)

We define the amounts of changes in coordinate δsH and δsCR as δsH ≡ ⟨s(new)
H ⟩ − s and

δsCR ≡ ⟨s(new)
CR ⟩ − s, respectively. When the hooked event occurs n times and the CR event

occurs (N − n) times, the total amount of movement δS(n) is written as δS(n) = nδsH +

(N − n)δCR. Moreover, the probability P (n) can be written as P (n) = NCnpnqN−n, where

p is the probability of occurrence of the hooked event and q (= 1 − p) is the probability

of occurrence of the CR event. Therefore, an average amount of movement ⟨δS(n)⟩ and a

variance of movement ⟨(δS(n)− ⟨δS(n)⟩)2⟩ can be written as

⟨δS(n)⟩ =
N∑

n=0

δS(n)P (n) = N(pδsH + qδsCR) (4.45)

and

〈(
δS(n)− ⟨δS(n)⟩

)2〉
=

N∑

n=0

(
δS(n)− ⟨δS(n)⟩

)2
P (n) = Npq(δsH − δsCR)

2. (4.46)

Here, the total number of hooked and CR events N can be written as N = 2Ṅhooking(γ̇)∆t

because both the hooked and CR events occur Ṅhooking(γ̇) times per unit time. Furthermore,
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the probabilities of occurrence of the hooked event p and the CR event q are equal (p = q =

1/2). Thus, we can obtain DH/CR(s) and v(s) as

DH/CR(s) ≡

〈(
δS(n)− ⟨δS(n)⟩

)2〉

2∆t
=

Ṅhooking(γ̇)

4
(δsH − δsCR)

2 (4.47)

and

v(s) ≡ ⟨δS(n)⟩
∆t

= Ṅhooking(γ̇)(δsH + δsCR). (4.48)

By substituting Eq. (4.39) and Eq. (4.42) or (4.44) for Eqs. (4.47) and (4.48), we can obtain

Eqs. (4.30) and (4.31). In the quiescent state, the variation of the internal coordinate by the

hooked event ∆sH is the same as that by the CR event ∆sCR because there is no contribution

from affine deformations. Therefore, the advection term veq(s) is equal to zero. However,

under flows, we should take the effective advection term into account because v(s) is not equal

to zero but negative in s < L/2 due to ∆sH > ∆sCR (From Eq. (4.44), we can regard ∆sCR

as zero for convenience). Namely, the slip-link appears to be advected in the s-coordinate by

hooked events.

Appendix 4.C Analytical Solution of n(s) in a Steady State

We consider only the range 0 ≤ s ≤ L/2 because the profile of n(s) is symmetric with respect

to s = L/2. From Eqs. (4.30) and (4.31), the spatial averages of the diffusion constant DH/CR

and the advection velocity v can be written as

DH/CR ≡ 1

L

∫ L

0

DH/CR(s)ds =
Ṅhooking(γ̇)

48
(∆sH +∆sCR)

2 (4.49)

and

v ≡ 2

L

∫ L/2

0

v(s)ds = −Ṅhooking(γ̇)

4
(∆sH −∆sCR). (4.50)
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By using Eqs. (4.49) and (4.50), Eq. (4.25) is reduced to

D
d2n(s)

ds2
− v

dn(s)

ds
− Ṅhooking(γ̇)

Z
n(s) = −Ei (i = 1, 2) (4.51)

with

E1 =
Ṅhooking(γ̇)

L
+

Ṅhooking(0)

a
(0 ≤ s < s1), (4.52)

E2 =
Ṅhooking(γ̇)

L
(s1 ≤ s ≤ L

2
), (4.53)

where D is the average diffusion constant that can be written as D = Dc +DCLF +DH/CR.

The boundary conditions can be written as

−D
dn

ds

∣∣∣∣
s=0

+ vn(0) = −Ṅhooking(γ̇)

2
, (4.54)

dn

ds

∣∣∣∣
s=L/2

= 0, (4.55)

n1(s1) = n2(s1) (4.56)

and

dn1

ds

∣∣∣∣
s=s1

=
dn2

ds

∣∣∣∣
s=s1

(4.57)

where n1(s) and n2(s) are the average number densities in the ranges 0 ≤ s < s1 and

s1 ≤ s ≤ L/2, respectively. Using Eqs. (4.51)–(4.53) with B.C.’s (4.54)–(4.57), analytical

solutions can be obtained as

ni(s) = A(i)
+ eα+s + A(i)

− eα−s + Fi (i = 1, 2) (4.58)
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with

F1 =
Z

a

(
Ṅhooking(0)

Ṅhooking(γ̇)
+

a

L

)
, F2 =

Z

L
(4.59)

and

α± =
1

2

⎛

⎝ v

D
±

√(
v

D

)2

+
4Ṅhooking(γ̇)

DZ

⎞

⎠ . (4.60)

The constants A(i)
+ , A(i)

− are determined as follows:

A(1)
± =

±1

H±I

(
G
eα∓s1

H∓

(
K

N
α∓ − 1

)
− F12

)
, (4.61)

A(2)
± =

∓1

NIα±eα±L/2
(G ·O +MF12) (4.62)

with

F12 = F1 − F2, (4.63)

G =
Ṅhooking(γ̇)

2D
+ F1

v

D
, (4.64)

H± = α± − v

D
, (4.65)

I = J − KM

N
, (4.66)

J =
eα+s1

H+
− eα−s1

H−
, (4.67)

K =
eα+(s1−L/2)

α+
− eα−(s1−L/2)

α−
, (4.68)

M =
α+eα+s1

H+
− α−eα−s1

H−
, (4.69)

N = eα+(s1−L/2) − eα−(s1−L/2), (4.70)

O =
e(α++α−)s1 (α+ − α−)

H+H−
. (4.71)
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Fig. 4.21: The average number densities of entanglements in steady states obtained by
Eq. (4.58) for two typical parameter sets: (L, Z, Ṅhooking(γ̇), v, D) = (a) (8.0, 8.0, 0.15,
0.0, 0.05) (black solid line) and (b) (8.5, 7.0, 0.16, 0.01, 0.05) (red dashed line).

Fig. 4.21 shows the average number density of entanglements along a polymer chain n(s/L)

in the steady state obtained by using Eq. (4.58) for two typical parameter sets: (L/a, Z,

Ṅhooking(γ̇)/τ−1
e , v/(aτ−1

e ), D/(a2τ−1
e )) = (a) (7.0, 7.5, 0.15, 0.0, 0.05) (black solid line) and

(b) (8.5, 7.0, 0.16, −0.01, 0.05) (red dashed line). These two cases correspond to steady

states (a) in quiescent and (b) under a flow. We can observe that the profile of n(s/L) is in

qualitative agreement with that in Fig. 4.15.

Appendix 4.D Static Structure Factor

Experimentally, microscopic information of polymer chains under flows is measured using

scattering experiments. For flows of monodisperse linear entangled polymer melts in the

contraction-expansion channel, there are several experimental studies using a small angle

neutron scattering (SANS) technique [106, 108, 110]. In these studies, molecular structure

under nonlinear flows was investigated through SANS measurements for several monodisperse

linear entangled polystyrene melts with different molecular weights. In the Refs. [108, 110],

the scattering intensity along the centerline [108] and near the re-entrant corners [110] of the

4:1:4 contraction-expansion channel has been examined.
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Fig. 4.22: (a) The effective strain rate γ̇τe ≡
√
D : D and (b) static structure factor S(k)

for eight typical points: (i) (x, y) = (−30b, 0), (ii) (−15b, 0), (iii) (0, 0), (iv) (15b, 0), (v)
(−14b,−7b), (vi) (0,−7b), (vii) (14b,−7b) and (viii) (20b,−7b) in condition II. In (a), the
background color map shows the effective strain rate γ̇, and the arrows show the velocity
field. Here, the arrows are magnified by 125. In (b), the x-axis and y-axis are scaled by the
equilibrium length between adjacent slip-links a, and each value of the static structure factor
S(k) is obtained by averaging over 20 data at different times.

From SANS experiments, the single-chain structure factor S(k) can be obtained. In our

MSSs, the single-chain structure factor can be calculated from the positions of the slip-links

using Eq. (2.13) (for more detail, please see Appendix 2.C). Fig. 4.22 shows the single-

chain structure factor obtained from our MSS simulations. These results are in qualitative

agreement with previous studies [108,110]. The SANS measurement is a powerful technique

that can obtain information on microscopic molecular structure of polymer chains. Therefore,

we can directly compare our results at the microscopic level with experimental results if we

consider the same conditions (such as the molecular weight of the polymer melt, the flow

rates, and the channel geometry) as those in experiments. Since these conditions must be
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carefully considered, we will make a quantitative comparison on the single-chain structure

factor in our future work.
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5 Concluding Remarks

5.1 Summary

In this dissertation, transport phenomena of entangled polymer melts were investigated from

both macroscopic and microscopic viewpoints. The polymeric liquids in an entangled state is

important for the polymer industry because the majority of polymeric liquids are used in the

entangled state. As mentioned in Chapter 1, designing polymer products starting from the

primary structure of polymer chains is still one of the grand challenges in the field of chemical

engineering due to the various time and length scales involved. From a simulation perspec-

tive, the fluid dynamics approach with phenomenological viscoelastic constitutive equations

is conventionally employed to solve transport problems of entangled polymeric liquids. Us-

ing this macroscopic approach, one can access time and length scales that are suitable for

polymer processing. However, this “phenomenological” approach is too coarse grained to

directly access molecular-level entangled polymer dynamics. One possible approach to this

problem could be obtained with a Multi-Scale Simulation (MSS) approach, where a micro-

scopic (or mesoscopic) model for describing entangled polymer dynamics is combined with

a macroscopic fluid dynamics model for solving macroscopic balance equations. To develop

a further sophisticated MSS technique that can be employed to predict polymer processing

flows, studies from both macroscopic and microscopic aspects are still required. A summary

of the results obtained in the chapters of this dissertation is as follows.

In Chapter 2, viscoelastic and statistical properties of the Doi-Takimoto slip-link model

(DT model) [67] were extensively examined. We confirmed that the original DT model can

give good rheological predictions for the linear viscoelasticity of monodisperse linear, and

symmetric star polymer melt systems by comparing with experiments. Furthermore, nonlin-

ear rheological properties for a moderate strain rate region, where polymer chains are oriented

without significant stretching (γ̇, ϵ̇ <∼ τ−1
R ), were in reasonable agreement with experimental

rheological data. Here, γ̇ and ϵ̇ are the shear and elongational strain rate, respectively, and τR
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is the Rouse time. However, for the chain stretching region (γ̇, ϵ̇ >∼ τ−1
R ), we recognized that

the original DT model does not well-describe nonlinear rheological behavior especially under

elongational flows. Therefore, to develop a more sophisticated microscopic coarse-grained

model, we incorporated the concept of the stretch/orientation-induced reduction of friction

(SORF), which was originally proposed by Ianniruberto et al. [148], with the DT model.

The DT model was improved using an empirical equation of SORF, which was obtained by

analyzing experimental data of the stress relaxation after cessation of transient elongational

flow. In the linear region, we confirmed that the rheological behavior obtained by the DT

model with and without SORF are almost the same because the effect of SORF works only

when polymer chains are highly oriented and stretched. In the nonlinear region, the effect

of SORF is striking, particularly under uniaxial elongational flows. The steady-state elon-

gational viscosities without SORF show thinning behavior for τ−1
d

<∼ ϵ̇ <∼ τ−1
R and thickening

behavior for ϵ̇ >∼ τ−1
R , which is typical for entangled polystyrene (PS) solutions. Here, τd

is the reptation time. However, the steady-state elongational viscosities with SORF show

almost monotonic thinning behavior, which is seen in experiments of entangled PS melts.

Additionally, steady elongational viscosities for an entangled symmetric star PS melt and an

entangled linear polyisoprene melt were investigated. For both cases, we confirmed that the

DT model with SORF can give better agreement with experimental data.

For the statistical properties of microscopic structure obtained from the DT model, we

examined several microscopic variables, such as the number of slip links per chain. As a

result, we found that the normalized number of slip links per chain shows nonmonotonic

behavior; that is, the normalized number of slip links first decreases with the strain rate for

τ−1
d

<∼ γ̇, ϵ̇ <∼ τ−1
R , which is consistent with the results obtained from other coarse grained mod-

els [64,80], and then increases for γ̇, ϵ̇ >∼ τ−1
R , which is inconsistent with the results from other

coarse grained models. Judging from the increasing behavior of the steady-state normalized

number of slip links per chain under shear and elongational flows in the region Wi(s/e)R
>∼ 1, we

concluded that the microscopic structure obtained from the current DT model for Wi(s/e)R
>∼ 1
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is questionable. Further studies are needed to clarify the origin of this behavior.

In Chapter 3, well-entangled polymer melt spinning processes were investigated using

the MSS method. In the MSS method for the polymer melt spinning process, the macroscopic

balance equations were solved using the Eulerian picture. To take the effect of the deformation

history into account, a Lagrangian fluid particle approach was combined with the Eulerian

picture. As a response to the local velocity gradient tensors macroscopically obtained at

the positions of the fluid particles, the polymeric stress coming from the entangled polymer

melt was calculated using the DT model. By use of the developed MSS method, both

macroscopic and microscopic information was examined. At the macroscopic level, velocity,

cross-sectional area, and tension profiles along the spinning line were successfully obtained.

At the microscopic level, we focused on polymer chain orientation and entanglements obtained

from the DT model. For example, we confirmed that the number of entanglements per

polymer chain decreases with flow because of the convective constraint release (CCR) effect.

In the CCR picture, entangled polymer chains are transiently stretched under flows, and

subsequent retraction of polymer chains induces the constraint release (CR). Additionally,

we calculated the number density of entanglements along a polymer chain. As a result, we

found that the number of entanglements mainly decreases in a middle region on a polymer

chain, and is enhanced at both ends. This information would be useful for a molecular design

optimized for producing a strong fiber.

In Chapter 4, flows of a well-entangled polymer melt in a contraction-expansion channel,

which is one of the model flow channel geometries of polymer processing flows, were inves-

tigated using the MSS method. In the MSS method presented in Chapter 4, a Smoothed

Particle Hydrodynamics (SPH) method was combined with the DT model. In SPH, a fluid is

discretized into a number of fluid particles, and physical quantities at a fluid particle position

are determined using an interpolation method. In the MSS technique, instead of employing

a phenomenological constitutive equation for the polymeric stress, each fluid particle has a

microscopic system represented by the DT model.
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We investigated both macroscopic and microscopic information obtained from the MSS.

MSS simulations were performed under two different conditions by changing the external

body force: one was the small body force condition, and the other was the large body

force condition. Reflecting the macroscopic flow field induced by the external body force,

the states of polymer chains were different between two conditions. For a clear analysis,

the shear-deformation-based Weissenberg number Wi(s)d was introduced. The states of the

polymer chains are altered mainly in the region corresponding to Wi(s)d > 1. In the small

body force case, since the Weissenberg number Wi(s)d is less than unity in almost the entire

region, macroscopic flow properties are similar to those of the Newtonian fluid, and micro-

scopic states of polymer chains are almost isotropic. In the large body force case, since the

Weissenberg number Wi(s)d is larger than unity especially in the narrow channel region, the

polymer chains are strongly oriented, and the average number of entanglements per chain

decreases. Moreover, in Wi(s)d > 1, we found that the number density distribution of entan-

glements along a polymer chain decreases in the center part on the primitive path and has

peaks near the tails. To understand distribution of entanglements on a chain under flows in

detail, we developed a model equation that can describe the time evolution of the number

density of entanglements along a polymer chain of the DT model. The model equation can

successfully reproduce the profile of the number density of entanglements along a polymer

chain in steady states. We hope that these microscopic insights during processing flows will

provide us with new perspectives for the molecular design of a polymer chain, as well as en-

rich understanding in the field of polymer physics. However, further researches from various

directions are clearly required, and some of them are described in the next section.
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5.2 Future Outlooks

MSS is a promising method to analyze flow problems in the polymer industry. In addition to

fundamental studies of MSS methods, some studies on the flows in polymer processing using

MSS methods have also been performed. However, there are many remaining problems that

should be addressed before MSS methods can be applied to industrial processes. Here, we

summarize some of the remaining problems.

• In industrial processes, the polymeric liquids undergo temperature changes, which

can result in crystallization or solidification. Macroscopically, there are many simu-

lation studies that have addressed flows of polymeric liquids with temperature changes

[95–98,112,140]. In macroscopic approaches with crystallization, the crystallization ki-

netics is modeled in a phenomenological manner [95–98]. Microscopically, although MD

simulations would be effective in tackling problems related to polymer crystallization or

solidification (for more details, please see Ref. [179] and references therein), the correla-

tion between the macroscopic properties and microscopic states of polymer chains has

not been investigated. Therefore, studies that include the role of temperature changes

should be performed at both macroscopic and microscopic scales.

• Industrially, polydisperse polymer melts are used to obtain desirable properties. Namely,

sourced polymers have various primary structures, such as linear and branched poly-

mers, and additionally, they are often mixed. While such polymeric liquids are diffi-

cult to handle with present constitutive equations, some mesoscale molecular models

that can address linear and branched polymers and mixtures thereof have been devel-

oped [51, 61, 62, 77]. Using these molecular-based models, polydisperse polymer melts

should be considered under processing conditions in the MSS method.

• Polymeric materials containing solid particles have been used in the polymer industry

because the combination of polymers and solid particles can provide specific properties

that cannot be obtained from a single polymer species. However, the interaction be-
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tween polymeric liquids and solid particles is not fully understood. One of the reasons

for this is that the flow near solid particles is complex because it is a mixture of shear

and elongational flows. Characterizing this interaction is important to accurately pre-

dict the rheological properties of suspensions, such as shear thickening in viscoelastic

suspending fluids. Numerically, suspensions in a viscoelastic fluid are examined using

phenomenological constitutive equations, such as the Oldroyd-B model [180, 181]. Al-

though rheological properties can be qualitatively captured by macroscopic approaches,

microscopic insights are limited depending on the employed constitutive equations.

MSS approaches might be one of the candidates for unraveling the physics behind the

rheological properties of suspensions. In addition, if the size of the solid particles is

comparable to the characteristic length of the polymer chain, then development of a

new mesoscale model is required. However, studies on developing such models have not

been performed.

• MSS methods might be useful for understanding the microscopic origin of macroscopic

phenomena, such as shear banding. Shear banding is observed in various complex fluids,

including polymer melts, polymer solutions, and wormlike micellar solutions, and has

been extensively examined from experimental, theoretical, and simulation points of

view [182, 183]. In addition to accurately predicting a constitutive relation between

shear stress and shear rate, one of the important aspects to predict shear banding is

to incorporate the effect of the spatial concentration differences. The effect of such

concentration difference has not yet been addressed in current MSS approaches, and

should be considered in the future. Regarding wormlike micellar solutions, constitutive

models that can capture rheological properties are not yet fully developed. Therefore,

studies from a microscopic viewpoint are required.

• Recently, informatics and data-driven approaches have been applied in many fields,

including materials science and chemical engineering. Combining data and statistical

algorithms can be useful for developing complex predictive models. However, in the field
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of polymer science, the application of this information strategy is not as advanced as

that in other fields. This is obviously because the characteristics of polymeric liquids are

determined by complex combinations of properties at various time and length scales.

Zhao and coworkers developed a data-driven MSS method using Gaussian processes

(GP) [184, 185]. In their data-driven approach, a GP regression technique is used

to “learn” the constitutive relation from a small number of microscopic simulations.

However, the deformation history of the polymers and the memory effects, which are

important for flow problems of polymeric liquids, have not been addressed.

After solving the abovementioned problems, MSS methods can be employed for engineering

applications. In the field of chemical engineering, process design has been performed using

only macroscopic parameters, such as the viscosity. In the future, it will be important to de-

sign industrial processes using microscopic molecular structures as process design parameters.

Regarding this point, MSS methods can provide a new perspective on transport phenomena

in chemical engineering.
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