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Abstract

Around 1970, importance of fractals was recognized by Benoit Mandelbrot and
fractals have been well-studied since 1970s. One of the most important methods
to construct the fractals is the application of iterated function systems (IFSs) and
there are a lot of results related to the estimates of the Hausdorff dimension and
the Hausdorff measure of the limit sets (fractals) generated by IFSs and many other
important results. In this thesis, we consider the family of IF'Ss of generalized complex
continued fractions as an example of (families of ) infinite IFSs and we discuss the
estimates of the Hausdorff dimension, the Hausdorff measure, the packing dimension
and the packing measure of the limit sets generated by the IFSs. The point to estimate
dimensions and measures is to construct the conformal measure since the (family of )
IFSs have a “good” properties.

By the way, there is not only the study of CIFSs in recent studies. For example,
there are a study of the Non-autonomous IFSs (NAIFSs) which is a generalization of
the IFSs and a study of IFSs with overlaps which does not satisfy usual conditions
(for example, open set condition) in the theory of IFSs. In this thesis, we discuss
NAIFSs (with weights) defined on complete (separable) metric spaces, which has not
been discussed before. If the NAIFS (with weights) satisfies a “good” condition, we
can construct the limit set (limit measure) generated by the NAIFS (with weights)
and we discuss some basic properties. The point to construct the limit sets and prove
the properties of the limit sets is to apply the generalized Banach fixed point theorem
to the NAIFSs (with weights) under the “good” condition. Finally, we discuss the
estimate of the Hausdorff dimension of limit sets generated by the IFSs with overlaps.
The point to prove the estimate of the Hausdorff dimensions is the following: we
consider a minimum number of the level-l cells which cover the limit sets and we
obtain the asymptotic behavior of the numbers.
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1 Introduction and the main results

Iterated function systems arise in many contexts. One of the most famous applications
to use the systems is to construct many kinds of fractals. Studies of these fractal sets
constructed by the contractive iterated function systems (for short IFS), sometimes called
limit sets, have been developed in many directions. Note that general properties of limit
sets of systems with finitely many mappings have been well-studied. For example, see
Hutchinson [10], Falconer [8], Barnsley [4], Bandt and Graf [2], and Schief [30] and so on.

Around 1990’s, studies of the limit sets of the conformal IFSs (for short CIFS) were
initiated and there are many results related to CIFSs. Especially, Mauldin and Urbanski
found a formula on the Hausdorff dimension of limit sets generated by finite CIF'Ss. For
example, they found the formula on the Hausdorff dimension of the limit sets, and there
exist statements which claim that the Hausdorff measure of the limit set of any finite CIFS
with respect to the Hausdorff dimension is positive and finite and the packing measure
of the limit set with respect to the Hausdorff dimension is also positive and finite (from
this, we deduce that the Hausdorff dimension of the limit set of any finite CIFS and the
packing dimension of the limit set are the same in general).

In addition, studies of limit sets of conformal iterated function systems with infinitely
many mappings (for short, infinite CIFS) were initiated by Mauldin and Urbanski ([22],
[23], [24]) and there are many related results on infinite CIFSs with overlaps by Mihailescu
and Urbariski ([25], [26]). Note that there exist other papers of infinite IFS (for example,
see [27]). Especially, Mauldin and Urbaiiski first showed deep results to estimate the
Hausdorff dimension and the Hausdorff measure of the limit sets. For example, they
found a condition under which the Hausdorff measure of the limit set of the infinite CIFS
with respect to the Hausdorff dimension is zero.

Moreover, Mauldin and Urbanski constructed an interesting example of an infinite
CIFS which is related to the complex continued fractions in the paper [22].

The construction of the example is the following. Let X :={z € C | [z —1/2]| < 1/2}.
We call S := {qg(mm(z): X — X | (myn) € Z x N} the CIFS of complex continued
fractions, where Z is the set of integers, N is the set of positive integers and

A 1
¢(m,n)(z) =TT T (Z € X)

z+m+ni
Let .J be the limit set of S (see Definition 2.19) and h be the Hausdorff dimension of .J.
For each s > 0, we denote by H® the s-dimensional Hausdorff measure and denoted by P?*
the s-dimensional packing measure. For this example, Mauldin and Urbanski showed the
following theorem.
Theorem 1.1 (D. Mauldin, M. Urbanski (1996)). Let S be the CIFS of complex continued

fractions. Then, we have that H"(.J) = 0 and 0 < PE(J) < 0.

This is an example of infinite CIFS of which the Hausdorff measure of the limit set
with respect to the Hausdorff dimension is zero and the packing measure of the limit set
is positive and finite. Note that this is a new phenomenon of infinite CIFSs which cannot
hold in finite CIFSs.

Moreover, interests in families of CIFSs have emerged. Roy and Urbarnski especially
studied the Hausdorff dimension functions for the families of CIFSs ([29]). They showed
that the Hausdorff dimension functions for the families of CIFSs are continuous with
respect to the “A-topology” which they introduced, and if the families are analytic in some
sense, then the Hausdorff dimension functions for the families of CIFSs are real-analytic
and subharmonic.



There exist rich general theories of limit sets of CIFSs for given families of infinite
CIFSs. However, the authors do not think we have found sufficiently many examples of
families of infinite CIFSs to which we can apply the above general theories. Therefore,
the first aim of this thesis is to present a new interesting family of infinite CIFSs. More
precisely, we define a subset Ag of the complex plane as a parameter space and for each
point in the parameter space, we introduce a CIFS related to generalized complex contin-
ued fractions {S;}rca,. Note that {S;};ca, is a family of CIFSs which has uncountably
many elements.

We found Mauldin and Urbariski’s general theories [22], [23] and Roy and Urbariski’s
general theory [29] can apply to this family. We also show that the Hausdorff dimension
function for the family is continuous in the parameter space and is real-analytic and
subharmonic in the interior of the parameter space by applying the general theories of
the families of infinite CIFSs. We also show that, as a corollary for these results, the
Hausdorff dimension function has a maximum point and it belongs to the boundary of
the parameter space. Moreover, to find examples of infinite CIFSs with the phenomenon
which cannot hold in finite CIFSs, we also show that the Hausdorff measure of the limit
set with respect to the Hausdorff dimension is zero and the packing measure of the limit
set is positive and finite for each 7 € Ay.

The precise statement is the following. Let

Ay ={r=u+iveC|u>0and v > 1}

and X :={z€C||z—1/2] <1/2}. Also, we set I := {m +n7t € C | m,n € N} for each
T € Ag, where N is the set of the positive integers.

Definition 1.2 (The CIFS of generalized complex continued fractions). For each 7 € Ay,
S; i ={¢p: X — X | b e I} is called the CIFS of generalized complex continued fractions.
Here, for each 7 € Ay,

op(2) == (ze X,beI,).

z+b
The family {S;},;ca, is called the family of CIFSs of generalized complex continued
fractions. For each 7 € Ag, let J. be the limit set of the CIFS S, (see Definitions 2.12,
2.19) and let h, be the Hausdorff dimension of the limit set J;.
We remark that this family of CIFSs is a generalization of S in some sense. The system
S; is related to “generalized” complex continued fractions since each point of the limit set

Jr of S; is of the form
1

b1 +
by +

b+ -

for some sequence (b1, be,bs,...) in I; (See Definition 2.19). Note that there are many
kinds of general theories for continued fractions and related iterated function systems
(115, [22], 23], [26]).

We denote by Int(Ap) the set of interior points of Ay with respect to the topology in
C. We now present the first five main results in this thesis.

Theorem 1.3 (Main Theorem 1 ([11, Theorem 1.2])). Let {S;}rca, be the family of
CIF'Ss of generalized complex continued fractions. Then, the function 7 — h.; is continuous
in Ag. Moreover, for each 7 € Ay, h; is equal to the unique zero of the pressure function
of S; (see Definition 2.2), 1 < h; <2 and hy — 1 (7 € Ay, 7 = 0).



Theorem 1.4 (Main Theorem 2 ([11, Theorem 1.3])). Let {S;},ca, be the family of
CIFSs of generalized complex continued fractions. Then, we have that 7 — h, is real-
analytic and subharmonic in Int(Ap). Also, the function 7 +— h, is not constant on any
non-empty open subset of Ag.

Theorem 1.5 (Main Theorem 3 ([11, Theorem 1.4])). Let {S;}rca, be the family of
CIF'Ss of generalized complex continued fractions. Then, there exists a maximum value of
the function 7 +— h; (7 € Ag) and any maximum point of the function 7 — h, belongs to
the boundary of Ag. In particular, we have that max{h,|7 € Ao} = max{h.|T € 0Ap}.

Remark 1.6. It was shown that for each 7 € Ag, J, \ J, is at most countable and
h; = dimy/(J;) ([32, Theorem 6.11]). For the readers, we give a proof of this fact in the
Appendix in section 2 of this paper. Also, for each 7 € Ag, since the set of attracting
fixed points of elements of the semigroup generated by S; is dense in J,, Theorem 1.1
of [31] implies that J, is equal to the Julia set of the rational semigroup generated by

{¢," | be I}

Theorem 1.7 (Main Theorem 4 ([12, Theorem 1.3])). Let {S;};ca, be the family
of CIFSs of generalized complex continued fractions. Then, for each 7 € Ay, we have
H(J;) =0

Theorem 1.8 (Main Theorem 5 ([12, Theorem 1.3], [13])). Let {S;};ca, be the family
of CIFSs of generalized complex continued fractions. Then, for each 7 € Ay, we have
0 < Ph(J;) < oo. In particular, for each 7 € Ay, the packing dimension of the limit set
Jr equals the Hausdorff dimension h, of the limit set J,.

Remark 1.9. By the general theories of finite CIFSs, the Hausdorff measure of the limit
set of each finite CIFS with respect to the Hausdorff dimension and the packing measure
of the limit set with respect to the Hausdorff dimension is positive and finite. However,
Theorem 1.7 and Theorem 1.8 indicates that for each S; of the family of CIFSs of gen-
eralized complex continued fractions, which consists of uncountably many elements, the
Hausdorff measure of the limit set with respect to the Hausdorff dimension is zero and the
packing measure of the limit set with respect to the Hausdorff dimension (which is equal
to the packing dimension ) is positive and finite. This is also a new phenomenon which
cannot hold in the finite CIFSs.

As we have seen, iterated function system is one of the most famous methods to
construct fractals and there are many papers of studies of the limit sets of IFSs. Especially,
fractals (limit sets) generated by iterated function systems with finitely many mappings
are well-studied and there exist many results related to the Hausdorff dimension and the
Hausdorff measure of the limit sets, the packing dimension and the packing measure of
the limit sets and so on ([10], [2], [30], [8], [4], [17], [18]). Note that the self-similarity
of the limit sets of (autonomous) iterated function systems is one of the most important
points to obtain these rich results. However, there exist some results related to fractals
generated by non-autonomous iterated function systems ([3], [9], [29], [1], [20], [21], [7]).
For example, Barlow and Hambly consider generalized Sierpiniski gasket generated by the
non-autonomous iterated function systems and they studied the geometric properties and
analytical properties of the limit sets ([3]). In addition, there exist the general theories
which assure the existence of the limit sets of non-autonomous iterated function systems
and which show the estimates on the Hausdorff dimension of the limit sets (][9], [29], [1]).
This indicates we can analyze not only the limit sets of (autonomous) iterated function



systems but also ones of non-autonomous iterated function systems. Henceforth, we focus
on the non-autonomous iterated function systems.

As we mentioned, there exist some results related to the fractals generated by the non-
autonomous iterated function systems ([9], [29], [1], [20], [21], [7]). However, the authors
of those papers only deal with the non-autonomous iterated function systems defined on
bounded sets (in some sense) or compact sets.

On the other hand, Hutchinson’s original idea to construct the fractals is now gen-
eralized as follows (for example, see [17]). We first consider a complete metic space X
(which is not always bounded) and (autonomous finite) iterated function systems defined
on X. We next consider the set of all non-empty compact subsets of X and the Hausdorff
distance on the set. Sometimes, this metric space is denoted by (K(X),dn). Note that
the metric space (K(X),dp) is complete since X is complete. In addition, we define a
contractive mapping (which is often called the Barnsley operator, see [19]) on K(X) asso-
ciated with the iterated function system. By the Banach fixed point theorem, we deduce
that there exists the unique fixed point (the unique non-empty compact subset) of the
Barnsley operator. The unique non-empty compact subset is the limit set of the iterated
function system.

The author of this thesis found that we can generalize this Hutchinson’s idea to the
setting of non-autonomous iterated function systems on complete metric spaces which are
possibly unbounded.

Therefore, the second aim of this thesis is to give the method to construct the limit
sets of the non-autonomous iterated function systems on (possibly) unbounded complete
metric spaces based on Hutchinson’s idea. We first consider a sequence of the contractive
mappings defined on a complete metric space and show a generalized Banach fixed point
theorem for a sequence of the contractive mappings under a certain condition. We finally
show that we can define the limit set of the system as the limit of a sequence in K(X)
which is constructed by the non-autonomous Barnsley operators of the non-autonomous
iterated function system defined on a complete metric space (which is not always bounded)
under another certain condition which is easy to check. Note that if we assume a stronger
condition, we also show that the convergence to the limit sets is exponentially fast. In
addition, under the same condition, we can construct the projection mapping which is
important to analyze geometrical properties of the limit sets.

Moreover, we consider the non-autonomous iterated function systems with (positive)
weights to construct a generalization of self-similar measures (we call the measures limit
measures in this thesis). By the above ideas, we also define the limit measure as the limit of
a sequence in the space of all Borel probability measures in X which is constructed by non-
autonomous contractive mappings (Each mapping is often called the Foias operator, see
[19]) associated with the non-autonomous iterated function system with weights defined
on a complete separable metric space (which is possibly unbounded) under the same
condition. In addition, we also show that the support of the limit measure is compact and
is equal to the limit set.

The precise statement is the following. Let I be a set and (X, p) be a complete metric
space.

Definition 1.10. We say that ({f;}ier, {Jn}nen) satisfy the setting (NAIFS) if
(1) {Jn}nen is a sequence in {J C I | J is finite}, and

(i1) {fi: X — X}ier is a family of contractive mappings on X with the uniform con-
traction constant ¢ € (0, 1), that is, there exists ¢ € (0, 1) such that for all ¢ € I and



z,y € X,

Note that for each i € I, there exists z; € X such that z; is the unique fixed point of
fi since X is complete and for each i € I, f; is a contractive mapping defined on X. Let
dp be the Hausdorff distance on K(X) which is defined by

dp(A,B):=inf{e>0| AC B,BC A} (A,BeK(X)),

where for each ¢ > 0 and A C X, we set A. := {y € X | Ja € A, p(y,a) < €}. For each
n €N, let F,,: K(X) — K(X) be the mapping defined by

Fo(A) = | fi(4),
1€Jn

which is well-defined since each f; is continuous on X and each J,, is finite. Each mapping
F,, is often called the Barnsley operator. We now present the next two main results in
this thesis.

Theorem 1.11 (Main Theorem 6 (see [14])). Let ({fi}icr, {Jn}nen) satisfy the setting
(NAIFS). Suppose that there exists zp € X such that

Z {?el%fp(xo’ zz)} " < oo.
neN

Then, there exists the unique sequence of compact subsets { K, }men in (X) such that
for each m € N and A € K(X), we have

lim (Fp 0o Fipp10--0 Fryn—1)(4) = Ky, in K(X). (1.1)

n—o0

In addition, for each m € N, we have
Ky = Fp(Kipg1)- (1.2)

Moreover, suppose that there exists zg € X,

. 1
a := limsup p/max p(xg,z;) < —.
n—»00 i€Jn c

Then, forallm e Nyr e {r >0 | c<r <lyac<r}and A € K(X), (FpoFpy10---0
Frin—1)(A) converges to K, as n tends to infinity in (X ) exponentially fast with the
rate 7.

Theorem 1.12 (Main Theorem 7 (see [14])). Let ({fi}icr, {Jn}nen) satisty the setting
(NAIFS). Suppose that there exists o € X such that

Z {maxp(azo,zi)} " < o0. (1.3)
neN i€n

Then, diam(f,, (Km+n)) converges to zero as n tends to the infinity. In addition, for each
m € N, there exists a mapping mp,: I[I72,,J; — Ky, such that

{mm(w)} = ﬂ fw|n(Km+n)a

neN

8



o0 .
where w = Wy Wpy1--- € Hj:m J; and fw|n = fwm © fwmir © 0 © fumin_1, and mpy is
surjective and uniformly continuous. Moreover, suppose that there exists zg € X such

that )
a := limsup p/max p(zg, 2;) < —
n—oo 'l‘eJn C

Then, for each 7 € {r >0 | ¢ <r < 1,ac < r}, diam(f,, (Km+n)) converges to zero as n
tends to the infinity exponentially fast with the rate r.

Moreover, we consider non-autonomous iterated function systems with weights. Let I
be a set and (X, p) be a complete separable metric space.

Definition 1.13. We say that ({fi}ier, {/n}nen, {Pn}nen) satisfy the setting (wNAIFS)
if

(1) {Jn}nen is a sequence in {J C I | J is finite},

(ii) {fi: X — X}ier is a family of contractive mappings on X with the uniform con-
traction constant ¢ € (0, 1), that is, there exists ¢ € (0, 1) such that for all ¢ € I and
z,y € X,

p(fi(x), fiy)) < ¢ p(z,y), and

(iii) for each n € N, p, is [0, co)-valued functions on I with p,(¢) > 0 if and only if i € J,,,

and p,, satisfies
g pn(i) = 1.
1€Jn

Let P1(X) be the set of Borel probability measures defined on the complete separable
metric space (X, p) for which there exists a € X such that the function z — p(a,x) is
integrable. Note that for each b € X and P € P1(X), we have [ p(b,x)P(dx) < oo since

/Xp(b, x) P(dx) < /Xp(b, a) P(dz) —i—/Xp(a,:r) P(dz) = p(b, a)+/ pla,x) P(dx) < oo.

X

Let Lip;(X) be the set of R-valued functions f on X for which p(f(z), f(y)) < p(z,y)
for all z,y € X. Let dyx be the Monge-Kantrovich distance on P;(X) which is defined
by

o) i=swp{ [ fan= [ jav| petinCo} (uye o),
Let My, : P1(X) = P1(X) (n € N) be mappings defined by
My(p)(B) := Y pali) p(f;1(B)) (B € B(X)),
1€Jn

where B(X) is the set of all Borel sets in X. Note that for each n € N, M,, is well-defined
since

= 7 T, a of !
[ o) ol = Y pali) [ plasa) diue £

i€Jn

= S0l [ i@ A< 3 pali) [ oo £ie0) + (i), e

i€Jn X i€Jn
= L 0] [ eptene) dut oo} < .
i€Jn X

Each mapping M, is often called the Foias operator. We now present the following two
more main results in this thesis.



Theorem 1.14 (Main Theorem 8 (see [14])). Let ({fi}icr, {Jn}nen, {Pn}nen) satisfy
the setting (WNAIFS). Suppose that there exists g € X such that

n
E  Zi < 0.
{Iilé%i(p(a:o z,)} " < o0

neN

Then, there exists the unique sequence of probability measures {Vy, }men in P1(X) such
that for each m € N and p € P1(X),
lim (M, o Myiq1 00 Mypipn—1)(pt) = v, in P1(X). (1.4)

n—o0

In addition, for each m € N, we have
U = M, (Vim+1)- (1.5)

Moreover, suppose that there exists zg € X such that

. 1
a := limsup p/max p(zg,2;) < —
n—00 1€Jn c

Then, foreachm e Nyr € {r >0 |c<r <1l,ac<r}and p € Pi(X), (MpyoMyqi10---0
My tn—1)(p) converges to vy, as n tends to infinity in P;(X) exponentially fast with the
rate r.

Theorem 1.15 (Main Theorem 9 (see [14])). Let ({fi}ier, {Jn}nen, {Pn}nen) sat-
isfy the setting (WNAIFS). If 1 € P;(X) has a compact support, then supp(M,(u)) =
F,(supp(p)) for each n € N. In addition, if there exists z9p € X such that

n
Y ; < Y
g {?gicp(a;o zz)}c 00

neN

then for each m € N, we have supp(vy,) = K, and if p € P1(X) has a compact support,
then

nl;rréo supp(My, o Mpp41 00 Mppipn—1(p)) = supp(vs,) in £(X). (1.6)

Moreover, suppose that there exists zo € X such that

. 1
a := limsup p/max p(xg, 2z;) < —,
n—00 1€Jn C

and p € P1(X) has a compact support, then for each r € {r >0 | ¢ <r < l,ac < r},
supp(Mpm o Mpp410- -0 Myipn—1(1t)) converges to supp(vy,) in (X)) as n tends to infinity
exponentially fast with the rate r.

As we have seen, it is not obvious that we can construct the limit sets of non-
autonomous iterated function systems on complete metric spaces which are possibly un-
bounded. However, the construction of the limit sets of the systems is not the only interest
in the study of fractal geometry. Another interest in the study of the fractal geometry is to
estimate the dimensions of the fractals and the measures of the fractals. To estimate the
Hausdorff dimension of the limit sets of iterated function systems, we usually assume some
conditions (the open set condition etc.) on the iterated function systems ([8], [10], [17],
[22]). Under one of the conditions, we can analyze the limit sets of the iterated function
systems and we can estimate the Hausdorff dimension of them.

10



However, we sometimes encounter the limit sets of iterated function systems which
do not satisfy the open set condition. There exist some results on the estimate of the
Hausdorff dimension of the limit sets under another kind of condition for iterated function
systems ([25], [26]). Also, there exist some results on the specific case of the iterated
function systems (for example, see [5]). The author of this thesis and H. Sumi introduce a
different type of method to estimate the Hausdorff dimension of the limit sets of iterated
function systems.

Therefore, the third aim of this thesis is to find the estimate of the Hausdorff dimension
of the limit sets of iterated function systems which do not satisfy the open set condition.
We give another type of estimate of the Hausdorff dimension of the limit sets of iterated
function systems without well-known conditions (for example, the open set condition, the
transvarsality condition etc.). That is, by using the technique to define the entropy in the
ergodic theory, we obtain an upper estimate on the Hausdorff dimesnion of the limit sets
of iterated function systems.

The precise statement is the following. Let X be a complete metric space. Let I be a
finite set with |I| = m and {f; }ier be a (finite) family of the contractive mappings f;: X —
X with contraction constant ¢; € (0,1). {f;}ier is called a (finite) iterated fucntion system
(for short, (finite) IFS). Note that by the above argument (original Hutchinson’s idea),
there exists a non-empty compact set K in X uniquely such that K = U;e;fi(K). K is
called the limit set of an IFS {f;};c;. For each I € N and w = wiws---w; € I', we set

Jw = fur © fuwy 00 fu, and |w| := 1.

Definition 1.16. Let [ € N. The compact covering of K is defined by oy := { fu(K) | w €
I'} and the minimun covering number of a; is defined by

N(qy) ;= min{k € N | Fwy,wo,...,wy, € I' such that K C U, f,.(K)}.
We set H(oy) :=log N(ay).

Note that for each I € N, N(ay) < ml. We set h({fi}icr) = lim_o H(ay)/l =
infjeny H(ay)/l (see Lemma 6.2). Note that 0 < h({fi}ier) < logm since for each | € N,
H(oy)/l > 0 and h({fi}ier) < H(a1)/1 < logm. We now present the last main result in
this thesis.

Theorem 1.17 (Main Theorem 10). Let X be a complete metric space and let I be
a finite set with |I| = m. Let {f;}ic;r be a (finite) IFS such that each f: X — X is
contractive mapping with contraction constant ¢; € (0,1) and let K be the limit set of the
IF'S {fi}icr- Then, we have dimy (K) < h({fi}ier)/—log(max;cy ¢;), where dimy (K) is the
Hausdorff dimension of K. In addition, if h({f;}ic;) = logm, then for each w, T € UjenI’
with w # 7, we have f,, # f;.

The rest of the paper is organized as follows. In Section 2, we summarize the theory
of CIFSs and the theory of the families of CIF'Ss without proofs. In addition, we give the
proofs of some properties of the CIFS of the generalized complex continued fractions. In
Section 3, we prove Main Theorems 1, 2, 3 of this thesis. In Section 4, we prove Main
Theorems 4, 5 of this thesis. In Section 5, we give the proofs of some basic properties of
non-autonomous iterated function systems defined on bounded sets and we prove Main
Theorem 6 of this thesis, in which we deal with non-autonomous iterated function systems
on (possibly unbounded) complete metric spaces. In addition, we give some examples of
the non-autonomous iterated function systems dedined on R. Moreover, we prove Main
Theorems 7, 8, 9 of this thesis. In Section 6, we prove Main Theorem 10 of this thesis.
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2 Preliminaries

2.1 TIterated function systems and their basic properties

In this subsection, we consider basic properties of infinite IFSs. Through in this subsection,
(X, p) is a non-empty compact metric space and I is a set which have at least two elements.

Definition 2.1. We say that S = {@ X=X i€ I} is a IF'S if S satisfies the following
conditions.

(i) For each i € I, ¢; is injective.
(ii) There exists ¢ > 0 such that for each i € I and z,y € X, p(¢i(z), ¢:(y)) < cp(x,y).

We set I* :=J,,~; [" and I := IN. We denote by wiws - - - wy, (w1, ws, ..., w,) € I™.
If w € I" for some n € N, we set |w| := n and if w € I*°, we set |w| := co. In addition,
for each w € I* U I*° and n € N with n < |w|, we set w|,, := wy ... w,. Besides, for each
n € N and w = wyws, ..., w, € I"™ for some n € N, we set

Gw = Puwy O+ O Doy,
and we set ¢,,|, := id., where id. is identity map on X.

Proposition 2.2. For all w € I, {¢,, (X)}n>1 is a monotone decreasing sequence of
compact sets. In addition, we have diam(¢,,|, (X)) — 0 (n — oo) uniformly with respect
to w € I*°, where diam(A) is the diameter of A defined by diam(A) := sup, ye4 p(7,y)-

Proof. Note that since for each i € I, ¢;: X — X is continuous, for each w € I*® and
n € N, ¢, is continuous. Therefore, we have for each w € I°° and n € N, ¢, (X)
is a compact set and since for each n € N, ¢y, (X) = by, (w41 (X)) C by, (X),
{#w],(X)}n>1 is a monotone decreasing sequence. In addition, for each w € I*° and
n € N, we have

diam(¢w|n (X)) = xS;eI;( p(¢w\n(x)v ¢w|n(x)) < ms;le%( Cp(¢w|n_1(x)v ¢w\n_1(y))' (21)

By induction, we obtain that diam(g,,(X)) < c"diam(X) for each n € N. Since
c"diam(X) — 0 as n — oo uniformly with respect to w € I°*°, we have proved our
lemma. O

Corollary 2.3. (1,2, ¢y, (X) is a single set.

Proof. If N2 1 dy, (X) = 0, we have X C UpZ by, (X)¢. Since X is compact, there exists
N € N such that X C Ufl\[:1¢w|n(X)c = ¢u|y (X)¢. Therefore, we have ¢, (X) = 0. This
contradicts ¢, (X) # 0. In addition, if ,y € NJ2; ¢y, (X), then for each n € N we have
p(r,y) < diam(e,, (X)) < c"diam(X) by the inequality (2.1). Therefore, we have proved
our corollary. O

Definition 2.4. The coding map 7 : I*® — X for IFS S is defined by {m(w)} =
Nn—o w|,, (X) for each w € I°.

We endow I with the discrete topology, and endow I°° := IN with the product topology.
Note that a basis of the topology for IN is the set of subsets

V() ={p € I*|fp =an,n=1,--- ,m} (. € I, m € N).
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We set a metric d on I defined by d(z,y) =0 if x = y and d(z,y) =1 if z # y. Let v be
a metric on I*° defined by

o0

1(0,8) == >0 A0 (0 = (), 8 = (8) € 1),

n=1
The following lemma is deduced by the the theory of general topology.

Lemma 2.5. Let A, be the topology induced by the metric v and A7 be a the product
topology of I°°. Then, we have A, = Aj.

In addition, we obtain the following property of I°°.

Lemma 2.6. If ] is a finite set, then I*° is a compact metric space. If I is a infinite set,
1°° is a complete separable metric space.

Proof. If I is finite, then I*° is also compact by the Tychonoff theorem. We assume that
1 is infinite. Let w € I. We set

I'={wel®|wy,=w(m>n+1)} and I':= UI,’l
neN

Note that since for each n € N, |I]}| = |I"| and I™ is countable, I’ is countable. Let € > 0
and N € N with ZZO=N+1 1/2™ < e. For each w € I, we set 7y = wy -+~ wyww - -+ € 1.
We have 7, € Iy C I' and

o0 o0

’y(w,m)zzd(w”’ Tun) Z w”’“" <y 2%36.

n=1 n=N-+1 n:N+1

Therefore, we have proved the separability of I°°.

We next show that Completeness of I°. Let {wy}ren be a Cauchy sequence in I°°.
For each k € N, we denote wy, by {wy, }nen. Note that for each n € N, {wy, p tren C I is
a Cauchy sequence in I since d(wppn,wyy)/2" < vy(wg,wy) for each k,1 € N. In addition,
since the metric d takes values 0 or 1, there exists K (n) € N such that for each k > K (n)
we have Wy, = Wi(n)n- We set Woo = {Wk(n)nfnen € I Let € > 0 and L € N with
Z;’;LH 1/2" < e. We set K := maxp—12__ 1 K(n). Since for each k > K, we have
Woon = WEK(n),n = Wk,pn for eachn=1,... L, for all k > K, we have

> d(wK n ,nawk,n) > d(wK nywkn > 1
7(“’0071%):2 @ <0+ Z (2 Z on S€
n=L+

on
n=1 n=L+1

Therefore, we have proved our lemma. O
Lemma 2.7. The coding map 7: I*°® — X is uniformly continuous.

Proof. Let ¢ > 0. Note that there exists N € N such that cVdiam(X) < e. We set
§ := 1/2N. Let w,7 € I*® with v(w,7) < §. Then, we have for each i = 1,2,..., N,
we have w; = 7;. Therefore, we have p(7(w),7(7)) < diam(¢,, (X)) < c"diam(X) < e.
Thus, we have proved our lemma. O

Definition 2.8. the (left) shift map o: I°® — I°° is defined by

o(w) =waws - (w=wjwy--- € I®).
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Proposition 2.9. The left shift map is Lipshitz continuous on I°° with Lipshitz constant
2.

Proof. Let w = {wy }nen, T = {Tn}nen € I°°. Then, we have

How).o(r) = 3 WntliTet) _ oy 5m Al Tu) < gy
n=1 n=2

and if wy = 71, then vy(o(w),o (7)) = 29(w, 7). Therefore, we have proved our lemma. [

Lemma 2.10. For each w = wywsy --- € I*® and i € I, we have

¢i(m(w)) = m(iw) and  7(w) = du, (r(o(w))).

Proof. Let w = wywy -+ € I°® and i € I. Since ¢;(N72L1 Py, (X)) C NpLdi(dy), (X)) =
NZ19(iw)), (X), we have {¢;(m(w))} C {m(iw)}. Therefore, we obtain that ¢;(m(w)) =
m(iw) for each w € I*® and ¢ € I. Since ¢;(m(w)) = w(iw) for each w = wwg--- € I
and ¢ € I, we have

Dy (r(o(w))) = Pwy (T(waws - - -)) = T(wiwaws - - - ) = w(w).
Therefore, we have proved our lemma. ]
Since ¢; is injective, we obtain that the following corollary.
Corollary 2.11. For each w = wywy - -+ € I, we have 7o o(w) = ¢,,! o m(w).

Definition 2.12. Let S = {¢; : X — X|i € I} be a IFS. The limit set of S is defined by
Js 1= m(I7) = Upere Nzt Gul, (X)-

Note that if 1 is a finite set, then Jg is compact since I*° is compact and 7 is continuous.
Lemma 2.13. Let Jg be the limit set of S. Then, we have Jg = [, ¢i(Js)-

Proof. Let m(w) € Jg (w = wjwsy--- € I*®). By Lemma 2.10, we have

m(w) = duy((0(w))) € $ur (Js) € | dilJs).

el

On the other hand, let € U;cr¢i(Js). Note that there exists ig € I such that x € ¢;,(Jg).
By lemma 2.10, there exists ¢g € [ and w € I*° such that

x = ¢iy(m(w)) = w(igw) € Jg.
Therefore, we have proved our lemma. O

By induction with respect to n € N, we obtain that Jg = Uyemdy(Js) for each n € N.

Definition 2.14. We say that IFS S = {¢; : X — X | i € I} is pointwise finite if for each
x€ X, wehave |{i €I |z € ¢(X)}| < 0.

Note that if I is finite, then IFS S = {¢; : X — X|i € I} is pointwise finite.

Proposition 2.15. Let S = {¢; : X — X | i € I} be a pointwise finite IF'S. Then, for
each z € X and n > 1, we have |[{w € I" | x € ¢, (X)}| < 0.
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Proof. We prove Theorem 2.15 by induction with respect to n € N. By the definition of
the pointwise finite, the statement in Theorem 2.15 holds if n = 1. We assume that the
statement holds if n € N. Let z € X. We set I} := {w e I" | x € ¢,(X)}. Note that
11" < co. We set I:={r eI | ¢-'({z}) # 0}. Note that for each 7 € I, z € ¢,(X) and
¢r is injective. We set I’ := UfefI;;l(x)'

We show that 1"t C I x I'. Indeed, let w = wiws - - wyy1 € IPTL. Note that since
Puw(X) C Py, (X), we have w|, € I}}. In addition, since there exists y € X such that

¢w(y) = x, we have gzﬁ;'ln () = Gwpir (Y) € buwpnyy (X). Therefore, we have w|, € I}, and

Wpy1 € Iqul @ C I' and we obtain that I?t! c I x I'. Moreover, since |I| < [I?| < oo

and for each 7 € I, |I¢1),1(x)| < 00, we have |I'| < co. It follows that [I?TY < |12 x I'] < oo.

Thus, we have proved our proposition. O

Proposition 2.16. Let S = {¢; : X — X|i € I} be a pointwise finite IFS. Then, we have

Js = ﬂ U ¢w(X>

neNwel”

In particular, Jg is a Borel subset in X.

Proof. Let m(w) € Js (w € I°°). Then, for each n € N, we have x € ¢, (X) C
Uwermdw(X). Tt follows that € Npen Uwern ¢w(X). On the other hand, let = €
NneN Uwern ¢w(X). Then, for each n € N, there exists w(n) € I" such that @ € ¢, ,)(X).
By Proposition 2.15, there exists a € I such that [{n € N |w(n); = a1}| = co. We denote
{n>2|wn)1 = a1} by {n(k) | k € N} with n(k) < n(k+1) for each k € N. Since for each
k€N, Z € @a uwy(n(k))(X), there exists az € I such that [{k € N | w(n(k))2 = a1}| = oo.
By induction, there exists a := ajag--- € I such that for each n € N, we have
T € ¢q,(X) and we deduce that © € Npendql,(X) = {m(a)} C Js. Therefore, we
have proved Js = (,eny Uwern @w(X). Note that for each n € N, I" is countable set
and for each w € I, ¢,(X) is compact in metric space X. Thus, we have proved our
proposition. O

Definition 2.17. Let I be a set with |I| = oo and I’ C I with |I'| = co. We say that
z; € X (i € I') converges to z if for each € > 0, there exists F' C I’ with |F’| < oo such
that for each i € I' \ F', p(x;,x) < e.

We set Xg(00) := {limep z; € X| I' C I with |I'| =00 and z; € ¢;(X) (i € I')}.

Lemma 2.18. If lim;c; diam(¢;(X)) = 0, then we have Jg = Jg U U, e/ duw(X(o0)) U
X (00).

Proof. We first show Xg(o0) C Jg. Let & = lim;cp v; € Xg(o0) with (i € I’ z; € ¢;(X)).
Let € > 0. Then, there exists finite subset Fi C I’ such that for each i € I' \ I,
p(zi, x) < /2. In addition, since lim;ec; diam(¢;(X)) = 0, there exists finite subset F» C I
such that for each i € I'\ Fy, diam(¢;(X)) < ¢/2. We set F' := F} UF3. Note that |F| < oc.
Let ¢ € I' \ F. Since there exists y € ¢;(Js) C Jg such that

pla,y) < pla,as) + plaivy) < 5 +diam(6,(X)) < e

We deduce that z € Jg and X (c0) C Js. Since ¢,, is continuous for each w € I* and
Js = Upermdy(Jg) for each n € N,

$u(X(00)) C ¢u(Js) C du(Js) C Js.
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On the other hand, let z € Jg. Note that there exist m(w(n)) € Js = 7(I*®°) (n €
N) such that lim,, o 7(w(n)) = x. We show that if {w(n); | n € N} is infinite, then
x € X(oo) Indeed, We set I(1) := {w(n); | n € N}. Since for each n € N, m(w(n)) €
Puw(ny, (X), if [I(1)] = oo, then there exists y(n) € X such that w(w(n)) = dum), (¥(n)).
Therefore we deduce that lim,,(,, e1(1) Pw(n), (¥(n)) = =, which is equivalent to z € X (00).
We assume that I(1) := {w(n); | n E N} is finite, then there exists u; € I such that
H{n € N | w(n); =ui}| =o00. Weset Ny :={neN|wn); =u}. If{wh)|ne N}
is infinite, then = € ¢,,(X(c0)) by the above same procedure. If {w(n)s | n € Ni}
is finite, then there exists uy € I such that [{n € Ny | w(n)y = us}| = co. We set
Ny :={n € N1 | w(n)s = ug}. By induction with respect to m € N, we deduce that if
there exists m € N, Ny, is infinite, we have x € ¢y, ...uy,, (X (00)).

We assume that for all m € N, Ny,p1 = {n € Ny, | w(n)mt1 = Um41} is finite.
We set u := ujug--- € I°°. We show that for each m € N, x € ¢, (X). Indeed, if
there exists mo € N, « ¢ ¢, (X). By induction, there exists a subsequence {jn} in
N such that j, € N, and j,+1 > jn for each n € N. Note that lim, oo m(w(jn)) = x
since limy o0 T(w(n)) = @. Since for each m € N with jn, = mo, m(w(jm)) € Puy,,, (X)
and ¢, (X) is compact, we have = € Dutfyng (X). This contradicts there exists mg € N,
x ¢ Gy, (X). Therefore, we have € Npendy|,, (X) C Js and we have proved our
lemma. O

2.2 Conformal iterated function systems, pressure functions and con-
formal measures

Definition 2.19 (Conformal iterated function system). Let X C R? be a non-empty
compact and connected set with the Euclidean norm |- | and let I be a finite set or bijective
to N. Suppose that I has at least two elements. We say that S :={¢;: X - X |i € [}isa
conformal iterated function system (for short, CIFS) if S satisfies the following conditions.

(i) Injectivity: For all i € I, ¢;: X — X is injective.

(ii) Uniform Contractivity: There exists ¢ € (0,1) such that, for all i € I and =,y € X,
the following inequality holds.

pi(x) — ¢i(y)| < clx —yl.

(iii) Conformality: There exists a positive number € and an open and connected subset
V C R? with X C V such that for all i € I, ¢; extends to a C'+¢diffeomorphism on
V and ¢; is conformal on V i.e. for each x € V and i € I, there exists C;(z) > 0
such that for each u,v € R?,

' (@)u = f(x)o] = Ci(x)|u— vl

(iv) Open Set Condition(OSC): For all 4,5 € I (i # j), ¢i(Int(X)) C Int(X) and
¢i(Int(X)) N ¢;(Int(X)) = (0. Here, Int(X) denotes the set of interior points of
X with respect to the topology in R

(v) Bounded Distortion Property(BDP): There exists K > 1 such that for all z,y € V
and for all w € I* := (J;7, I", the following inequality holds.

|6 (2)] < K - |¢r,(y)].

Here, for each n € N and w = wywa - - - w, € I", We set ¢y = Py © Gy © -+ O Py,
and |¢!,(z)| denotes the norm of the derivative of ¢, at z € X with respect to the
Euclidean norm on R
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(vi) Cone Condition: For all z € 90X, there exists an open cone Cone(z,u,«) with a
vertex x, a direction u, an altitude |u| and an angle «a such that Cone(x,u, ) is a
subset of Int(X).

Note that if S is a CIFS, then S is an IFS. For each f: Y — R? with C! class defined
on a subset Y C R?, we set || f||y :=sup{|f'(y)| | y € Y}.

Remark 2.20. Since for each i € I, ¢; is conformal, ¢}(z) is similitude for each z € V.
In addition, we have for each u,v € R? with u # 0 and v # 0, we have

o (B0 )
) = Clo) R )]~ Tl o] ™

where (-, ) is the Euclidean inner product in R?.

[(¢3(w) ™| = (i ()],

We consider the basic properties of the Bounded Distortion Property. Since X is
compact and 9V is closed in R?, we have the following lemma.

Lemma 2.21. Let S be a CIFS on X € R? and V' C R? be a open subset which satisfies
the definition of CIFS S. Then, we have p(X,0V) > 0, where p is the Euclidean metric
on V C R4

Lemma 2.22 ((BDP.1)). Let S be a CIFS on X C R% and V C R be a open subset which
satisfies the definition of CIFS S. Let B be a convex set in V', w € I* and r € (0, p(X,0V)).
Let V’ be a open set with B C V' C V and B(z,r) C V' for each € X. Then, for each
x € X, we have

diam(¢w (B)) < ||¢y,[|v-diam(B)  and  ¢u(B(x,7)) C B(dw(), [|¢ylv)-

Lemma 2.23. Let S be a CIFS on X € R% and V' C R? be a open subset which satisfies the
definition of CIFS S. Then, there exists ¢ € N, z1,29,...,24 € X and r; € (0, p(X,0V))
t=1,2,...,q such that for all j =1,2,...,q—1,

q
X C U B(CCZ',TZ') and B(CEZ',T‘Z') N B(:UiJrl,’l“iJrl) # 0.
=1

In particular, we retake a open subset Vp := U, B(x;, 1) C R? which satisfies the defini-
tion of CIFS S. In addition, we have X C V; C V and V} is connected.

Proposition 2.24 ((BDP.2)). Let S be a CIFS on X C R? and V5 C R? be a open
connected subset which we defined in Lemma 2.23. Then, for each D > max{q, diam(Vp)}
and w € I*, we have diam(¢.,(Vp)) < D||&L,||ve-

Proposition 2.25. Let S be a CIFS on X C R? and Vi C R? be the open connected
subset which we define in Lemma 2.23. Let z € X, r € (0,p(X,0V)) and w € I'*. Then,
R :=max{t > 0| B(¢w(x),t) C ¢u(B(x,7))} exists and OB (¢w (), R)NOpy (B(x, 7)) # 0.
In addition, we have

$w' (B(duw (@), R)) C Bz, Rll(62") l.00)) € Blad, KRI|(¢w)'lly;)-

Moreover, we have

KR||(¢w)'llyy 27 and  ¢u(B(z,r)) D B(¢uw(), K 'rl[(¢w) llve)-
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We set 1 := p(X,0V), where p is the Euclidean metric on V' C R

Proposition 2.26 ((BDP.4)). Let S be a CIFS on X C R? and V, € R? be the open
connected subset which we define in Lemma 2.23. Then, there exists D > 0 such that for
each w € I* and x € Int(X), we have

diam(éw (Vo)) = D7 I(dw)'[lvy  and  ¢w(Vo) D B(¢w(), K~ 'nll(¢w)'llvy)-

In addition, for each x € Int(X), there exists D/, > 0 such that

diam(dw (X)) > (D) 7' (¢w)llvy and ¢ (X) D B(dw (@), (D5)~[[(¢w)'llva)-

We consider some properties deduced by the Cone Condition.

Lemma 2.27. Let S be a CIFS on X C R? and Vj € R? be the open connected subset
which we define in Lemma 2.23. Then, there exists D > 1 and § € (0,«) such that for
each z € X and w € I*, there exists u € S9! such that

buw(Int(X)) D Cone(dw (), D7[(dw) ||V, ) D Cone(py (), D~ 2diam (X )u, 3).

Lemma 2.28. Let S be a CIFS on X € R? and Vj € R? be the open connected subset
which we define in Lemma 2.23. Then, we have ) . ; H(Z);H%l/o < K4,

Note that by Lemma 2.28, we deduce that lim;c; diam(¢;(X)) = 0.
Lemma 2.29. Let S be a CIFS on X C R% Then, we have X = Int(X).

Definition 2.30. Let w, 7 € I*. We say that w is a extension of 7 if there exists o € I*
such that w = Ta. We say that w is comparable with 7 if w is a extension of 7 or 7
is a extension of w, which is denoted by w =~ 7. We say that w and 7 are mutually
incomparable if w is not comparable, which is denoted by w % 7.

The following lemma shows that for all CIFS S, S is pointwise finite.

Lemma 2.31. Let S be a CIFS on X C R? Suppose that 7, (z) C I" satisfies the
following conditions: for each w, 7 € 7, (z),

(i) = € Pu(X).

(i) if w =~ 7, then w = 7.

Then, we have |7, (z)| < 1/8, where 8 is introduced by Proposition 2.27. In particular,
for each x € X, we have

{well|reg(X)} <

|

Lemma 2.32. Let S be a CIFS on X C R? Suppose that F(z,r) C I* satisfies the
following conditions: for each w,r € F(x,r),

(i) B(z,r) N ¢w(X) # 0 and diam(¢,(X)) > 7.
(ii) if w =~ 7, then w = 7.

Then, we have |F(z,r)| < D*371(1+ D~2)? where 3 and D is introduced in Proposition
2.27.

For each IFS S, we set hg := dimy Jg, where dimy denote the Hausdorff dimension.
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2.3 The pressure function for CIFSs and the Hausdorff dimension of the
limit sets of CIFSs

For any CIFS S, we define the pressure function of S as follows.

Definition 2.33 (Pressure function). For each n € N, [0, oo]-valued function 9§ is defined
by
Ya) = Y gk (=0
weln
We set g := inf{t > 0] ¥L(t) < oo} and F(S) := {t > 0 | ¥§(t) < co}. Note that by
the following lemma, we deduce that F'(S) = (6s,00) or F(S) = [fg, 0).

Lemma 2.34. Let S be a CIFS. Then, ¢}(t) is non-incerasing on [0, 00) and decreasing
and convex on F(S). In addition, we have 1(d) < K?. In particular, s < d.

Proposition 2.35. Let S be a CIFS. For all m,n € N and t > 0, we have

K26 () 0d(t) < v8t(t) < v2(6)ve().

In particular, 9%(t) < oo for each n € N is equivalent to ¢¢(t) < oo for some n € N (or
n = 1), and for all ¢ > 0, log ¢§(t) is subadditive with respect to n € N.

By subadditivity of log1§(t), we define the pressure function of S as follows.

Definition 2.36. The function Ps: [0,00) — (—o0, 0] is called the pressure function of
S, which is defined by

1
Ps(t) := lim —logys(t) € (—o0,00] (t > 0).
n—o00 N
Proposition 2.37. Let S be a CIFS and Pg be the pressure function of S. Then, for
each t > 0, Ps(t) < oo is equivalent to ¢} (t) < co. In particular, we have g = inf{t >
0 ‘ Pg(t) < OO}

Proposition 2.38. Let S be a CIFS and Pg be the pressure function of S. Then, for
eachx € V and t > 0,

. 1
Ps(t) = lim ~log ) _ [¢f,()(z)["
weln
In addition, if ¢ € F(S), then (1/n)log>, cm |¢!,(2)(z)|! converges Pg(t) as n — oo
uniformly with respect to x € V.

Proposition 2.39. Let S be a CIFS and Pg be the pressure function of S. Then, Pg is
non-increasing on [0, o) and decreasing and convex on F'(5).

Note that Pg(0) = co is equivalent to I is infinite. By using the pressure function, we
define some properties of CIFSs.

Definition 2.40 (Regular, Strongly regular, Hereditarily regular). Let S be a CIFS. We
say that S is regular if there exists ¢ > 0 such that Ps(¢) = 0. We say that S is strongly
regular if there exists ¢ > 0 such that Ps(t) € (0,00). We say that S is hereditarily regular
if, for all I’ C I with [I\I'] < 00, 8" :={¢i: X — X | i € I} is regular. Here, for any set
A, we denote by |A| the cardinality of A.
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Note that if a CIFS S is hereditarily regular, then .S is strong regular and if S is strong
regular, then S is regular. We set F(I) :={F C I| 2 < |F| < oo}. For each F' € F(I), we
set Sp :={¢;: X = X| i € F}. Mauldin and Urbanski showed the following results.

Theorem 2.41 ([22] Theorem 3.15). Let S be a CIFS. Then we have
hs =inf{t > 0 | Ps(t) < 0} = sup{hs,| FF € F(I)} > 05.

Moreover, if there exists ¢t > 0 such that Pg(t) = 0, then ¢ is the unique zero of the pressure
function Ps and we have t = hg.

Theorem 2.42 ([22] Theorem 3.20). Let I be infinite and let S be a CIFS. Then, the
following conditions are equivalent:

(i) S is hereditarily regular.
(i) ¥g(fs) = oc.
Especially, if S is hereditarily regular, we have 6g < hg.

If CIFS S is regular, then we obtain a following a “nice” probability measure on Jg,
which is called hg-conformal measure of S. In fact, by the existence of the conformal
measure of CIFS, we deduce Theorem 2.41.

Proposition 2.43 ([22] Lemma 3.13). Let S be a CIFS. If S is regular, then there exists
the unique Borel probability measure mg on X such that the following properties hold.

(i) ms(Js) = 1.
(i) For all Borel subset A on X and i € I, mg(¢i(A)) = [, [¢}]"sdms.
(iii) For all 4,j € I with i # j, mg(¢;(X) N ¢;(X)) = 0.

We call mg the hg-conformal measure of S. By the existence of the conformal measure
of CIFSs, we obtain the following four theorems.

Theorem 2.44 ([22] Theorem 4.5). Let S be a regular CIFS and A4 be the d-dimensional
Lebesgue measure. If \g(Int(X) \ X1) > 0, then hg < d. Here, X := Ujer¢i(X).

Theorem 2.45 ([22] Theorem 4.9). Let S be a regular CIFS and mg be the hg-conformal
measure of S. We set ro := dist(X,9V). If there exist a sequence of {2;}32; in Xg(c0)
and a sequence {r;}3%; in (0,70) such that

B . .
Jim sup mg( (hZSJ, TJ))

N L
J—00 ’I”J

= 00,

then we have H"s (Jg) = 0.

Theorem 2.46 ([22] Lemma 4.3). Let S be a regular CIFS. If Jg N Int(X) # 0, then we
have P"s(Jg) > 0.

Theorem 2.47 ([22] Lemma 4.10). Let S be a regular CIFS and mg be the hg-conformal
measure of S. Soppose that there exist L > 0, £ > 0 and v > 1 such that for all b € I and
r > 0 with ydiamegy(X) < r < &, there exists y € ¢p(V) such that mg(B(y,r)) > Lr"s.
Then, we have P"s(Jg) < oc.
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2.4 Families of conformal iterated function systems

We now consider families of CIFSs. Let CIFS(X, I) be the family of all CIFSs with X C C
and an infinite alphabet I. For each S € CIFS(X,I), let mg: I°*° — X be the coding map
of S. In this paper, for any sequence {S" },en in CIFS(X,I) and S € CIFS(X,I), we write
A{S™}nen) = S if the following conditions are satisfied.

(L1) For every i € I, limp oo ([|67 — oill + [[(67)" — (#3)'l]) = 0.

(L2) There exist C' > 0, M € N and a finite set F' C I such that for all ¢ € I\ F' and
n> M, | logl|(¢})|| - log l¢ill | < C.

Here, we write S™ as {¢I'}icr and S as {¢;}ier, and we set ||¢}|| = sup,cy |#;(2)],
167 = dull 1= sup.ex [62(2) — du(2)| and [(87) — (66)]] = supex (B2 (2) — (86) (=)
If a sequence {S"},en in CIFS(X,I) does not admit any S € CIFS(X,I) for which the
above conditions are fulfilled, we declare that A({S"}nen) = 0. A sequence {S"},en €
CIFS(X, I)" is called A-converging if A({S™}nen) € CIFS(X, I). We endow CIFS(X,I)
with the A-topology (]29]).

Definition 2.48. Let A be an open and connected subset of C. Let {S*},eca be a family
of elements of CIFS(X, I). We write S* as {¢!'}ic;. We say that {S#} e is plane-analytic
if for all z € X and i € I, pu— ¢!'(x) is holomorphic in A.

Moreover, we say that plane-analytic {S*},ea is regularly plane-analytic if there exists
o € A such that the following conditions are satisfied.

(i) S*o is strongly regular.

(ii) There exists n € (0,1) such that for all w € I*® and p € A, |k’ (1) — 1| < 1. Here,
for each p1p € A and w = wiwy --- € I, we set 7, 1= ms, and

KMo — (1) (mu(ow))
W) = o (0w))

(ne ).

Roy and Urbariski showed the following results [29].

Theorem 2.49 ([29] Theorem 5.10). The Hausdorff dimension function h:
CIFS(X, I) — [0,00), S + hg, is continuous when CIFS(X, I) is endowed with the
A-topology.

Theorem 2.50 ([29] Theorem 6.1). Let A be an open and connected subset of C. Let
{S*}.en be a family of elements of CIFS(X, I). If {S*},ca is regularly plane-analytic,
then p — hgu is real-analytic in A.

Theorem 2.51 ([29] Theorem 6.3). Let A be an open and connected subset of C. Let
{S#}en be a family of elements of CIFS(X, I). If {S#},cp is plane-analytic, then p —
1/hgu is superharmonic in A.

2.5 Conformal iterated function systems of generalized complex contin-
ued fractions

In this subsection, we prove some properties of the CIFSs of generalized complex continued
fractions [33]. Note that they are important and interesting examples of infinite CIFSs.
We introduce some additional notations. For each 7 € Ay, we set m, := 7g,, 0; := 0g_,
Y(t) = ¥ (1) (t>0,n€N) and Pr(t) i= Ps,(t) (t>0).
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Proposition 2.52. For all 7 € Ay, S; is a CIFS.

Proof. Let 7 € Ay. Firstly, we show that for all b € I, ¢»(X) C X. Let Y := {z €
C| Rz > 1} and let f: C — C be the Mdbius transformation defined by f(z) := 1/z. Since
f(0) =00, f(1) =1, f(1/2+i/2) =2/(1 4+1i) = (1 — i), we have f(0X) = Y U {oo}.
Moreover, since f(1/2) = 2, we have f(X) = Y U {oco}. Thus, f: X — Y U{oco} is a
homeomorphism. Let g5: X — Y be the map defined by g,(2) := z + b. We deduce that
¢op = f~Log,and ¢p(X) C f~H(Y) C X. Therefore, we have proved ¢,(X) C X.

We next show that for each 7 € Ay, S, satisfies the conditions of Definition 2.19.

1. Injectivity.
Since each ¢y is a Mobius transformation, each ¢ is injective.

2. Uniform Contractivity.
Let b = m + n7(= m + nu + inv) be an element of I and let z = x + iy and 2’ = 2/ + iy/
be elements of X. We have

|z + b = |z 4+ m 4+ nu + i(y + nw)|?
)
= (z+mtnu?+ (y+n)? 2 041407+ (-1/2+1)* = .

Therefore, we deduce that |z + b| > /5/4. We also deduce that |2’ +b| > /5/4. Finally,
we obtain that

1 1
) = ) = | 5~

2
|z_zl| \/Z ’ 4 /
=" _“1 < = — =2z 2.
o2 +6 = \V5 |z =2l =5lz =~

Therefore, S; is uniformly contractive on X.

4. Open Set Condition.
Note that Int(X) = {z € C| |z —1/2| < 1/2}. Let 7 € Ap and let b € I.. Since
f(0X) =0Y U {0}, we deduce that for all b € I,

gp(Int(X)) C {z=2+iy € C| z > 1} = f(Int(X)).

Moreover, if b and b are distinct elements, then g,(Int(X)) and gy (Int(X)) are disjoint.
Therefore, we have that for all b € I,

oy(Int(X)) = F~ 0 gp(Int(X)) € F~4 o f(Int(X)) = Int(X).
And if b and b’ are distinct elements,
(Int(X)) N gy (Int(X)) = £~ (gp(Int(X)) N gy (Tnt(X))) = 0.

Therefore, S, satisfies the Open Set Condition of S;.

5. Bounded distortion Property.
Let € be a positive real number which is less than 1/12 and let V' := B(1/2,1/2+¢) be the
open ball with center 1/2 and radius 1/2+e¢. We set 7 := u+iv. Then, for all (m,n) € N
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and z := x + 1y € V/, we have that

, 1 1
[Fmnr (2)] = |z +m + nt|? - (z +m +nu)? + (y + nv)?
- 1
T (—e+ 1402+ (-1/2—e+1)?
_ 1 _ 1
22 —3¢+5/4  2(e—3/4)2+1/8
1 72

S S(i/i2—3/A 18 73 "
For each z € V/, we set
19—z 1/2) B
s femrz-aE B eex)
z (z € X).

Then, we have that |z — 2| < e and |2/ — 1/2| < 1/2. It implies that 2’ € X. Thus, we
obtain that |¢y(2) — ¢p(2)| < (72/73)|z — 2/| < € and

o) = 5| <10u() - ) +

1 1
/ _ — —
(bb(z ) 2‘ < 5 + €.
It follows that for all b € I, ¢,(V') C V'. In addition, ¢ is injective on V' and ¢y, is
holomorphic on V' := B(1/2,1/2 + ¢€) since ¢} is holomorphic on C\ {—b}.
Let b be an element of I and 19 := 1/2 + €. Let f; be the function defined by
(¢v(roz +1/2) — ¢3(1/2))
z) = z e D:={zeClz] <1}).
fol2) rod;(1/2) ( {zeCll2l <1})

Note that f, is holomorphic on D and f,;(0) = 0 and f;(0) = 1. By using the Koebe
distortion theorem, we deduce that for all z € D,
1—|z] 1+ 2|
AL <inel < gL
(14 12[)? (1 —1z[)?

Let r1 := (ro + 1/2)/2. we deduce that there exist C; > 1 and Cs < 1 such that for all

z € B(0,r1/ro)(C D),

1—|z] 1+ |z
- d —— < .
arep ™ aop =@

Let C := C1/C5. Then, we have that for all z, 2" € B(0,71/r9),

Gz + /D] _ o 4]
o - s T

Cy <

_ 1 -]
=GO = O

100 |¢;)(TOZ/+ 1/2)|
<C <cC

It follows that for all z,2" € B(0,71/r0), |¢}(roz +1/2)| < C|¢, (02’ 4+ 1/2)|. Finally, let
V := B(1/2,r1) be the open ball with center 1/2 and radius 7. Then, V is an open and
connected subset of C with X C V and for all 2,2’ € V,

|5(2)] < Cly(2")]-
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Therefore, S, satisfies the Bounded Distortion Property.
3. Conformality.
Let 7 € Ag and let b € I,. Since ¢y, is holomorphic on C \ {—b}, ¢ is C? and conformal
on V. By the above argument, we have ¢,(V) C V.
6. Cone Condition.
Since X is a closed disk, the Cone Condition is satisfied. O

For the rest of the paper, let V := B(1/2,r1), where r; is the number in the proof of
Lemma 2.52.

Lemma 2.53. Let 7 € Ag. Then, there exists C' > 1 such that for all z € V and b € I,
we have C71|b|72 < |¢}(2)| < C|b| 2

Proof. Note that |¢}(0)| = [b|~2. By using the BDP, there exists C' > 1 such that for all
z € B(1/2,71), we have C~1|#,(0)] < |¢}(2)| < C|¢;(0)]. We deduce that C~1[p|72 <
|64,(2)] < O 2. [

Lemma 2.54. For all 7 € Ap, S; is a hereditarily regular CIFS with 6, = 1.

Proof. Let 7 € Ag. For each non-negative integer p, we set K'(p) := {b = m + n7r €
I;| (myn) € N: m < 2°,n < 2P} and K(p) := K'(p) \ K'(p — 1). Note that for each
non-negative integer p, |K’(p)| = (2” — 1)2. We deduce that for each p € N, |K(p)| =
K'(p)| = |K'(p—1)] = (2P —1)2 — (271 —1)2 =3 .4p71 —2. 2071 = 2r=1(3. 2,71 _2) and
4=l < |K(p)| <3477

Let b =m +nt =m+ n(u + iv) € K(p). We consider the following two cases.

(i) If m > 2P~! then we have
6|2 = |m + nu + inv|?

= (m + nu)? + (nv)
> (2P~ 4 u)? + 0

—1\2 2 —1 |7_’2
> @4 P = (14 )

2

(i) If n > 2P~! then we have

b]? = |m + nu + inv|?
= (m + nu)? + (nv)?
> n?(u® 4 v?) > 4772

Then for any ¢t > 0, we have

S =3" > P

bel, PENbEK (p)
i
< Sl {minfL+ 1 Py |
peN
s
<Z3 Alp—1)(1-1) {mm{1+4p = |7 }
peN
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Hence, we deduce that

—t
Z]b[ 2t<3z:4p D=t {mln{1+ip|1,| ]}} . (2.2)

bel, peEN

2
Moreover, by the inequality |7]? > 1 and the inequality 1 + ZLT’—l > 1, we deduce that for
all p € N,

3. 4(P-10-1) {mln{l—i— L'l,\ | }} < 3.4p-10-1) (2.3)

Also, by the inequality |b] < |m|+ |n||7| < 2P(1 + |7]) (p € N,b € K(p)), we have

S =>" Z {1pI=2}'

bel, pENbEK (p
> |K(p !4 P+ |7)) =%
peN
Thus, we deduce that
DN = SR I C R (2.4)
bel peEN

Finally, from Lemma 2.53, the inequality (2.2) and the inequality (2.4), it follows that
YPL(1) = oo and if t > 1, then .(t) < oco. Therefore, we deduce that 6, = 1 and by
Theorem 2.42, we obtain that for all 7 € Ag, S; is hereditarily regular. Hence, we have

proved our lemma. ]

Lemma 2.55. We have lim;_,o rca, hr = 1, i.e., for each € > 0, there exists N > 0 such
that, for all 7 € Ay with |7| > N, we have |h, — 1] < e.

Proof. Let ¢ > 0 and ¢t := 1+ € > 1. Let {7,}nen be any sequence in Ay such that

5 -
|7n| — 00 as m — oo. Note that for all p € N, we have {min{l + Z;Dn’l , |Tn|2}} — 0 as

n — 00. By the inequality (2.2) and the inequality (2.3), we deduce that the function

2 —t
fulp) = 3. 400D {min{l | Il |m|2}} wen)

4p—1’
is dominated by the integrable function g(p) := 3 -4®P=D10-  (p € N) with respect to
the counting measure on N. Then, by Lebesgue’s dominated convergence theorem, we
deduce that lim Z | ?" = 0. By Lemma 2.53, we obtain lim ¢! (¢) = 0. It follows
n—00 n—00

bel,,
that for any € > 0, there exists N € N such that for all 7 € Ay with |7| > N, we have
L1+ €) = BL(t) < 1.

By Proposition 2.35, we obtain that ¥?(1 + €) < (¥1(1 + €)™ < 1. Therefore, we
deduce that P-(1+¢) < 0. Thus, for all € > 0, there exists N € N such that for all 7 € Ay
with [7| > N, h; <1+e.

Moreover, by Theorem 2.41 and Lemma 2.54, for all 7 € Ay, we have 1 — € < h..
Hence, we have proved our lemma. ]

Theorem 2.56. Let 7 € Ag. Then we have 1 < h; < 2.
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Proof. Let 7 € Ag. By Theorem 2.42, we have 1 = 0, < h,. We now show that h, < 2.
We use the notations in the proof of Proposition 2.52. Note that

U g(X) C {z€C| Rz>1and 3z > 0}.
bel

Let Up be an open ball such that Uy C {z € C| Rz > 1 and Sz < 0}. Since Uy C
Y, we deduce that f~1(Up) C f~HY) = Int(X). We set X1 := Uper ¢(X). Since
Uo N Uper, 96(X) = 0, we deduce that f~1(Up) N X1 = f~1(Uo N Uper, 96(X)) = 0. Tt
follows that Int(X) \ X1 D f~1(Up).

Therefore, we deduce that A2(Int(X)\ X;) > 0 where, A3 is the 2-dimensional Lebesgue
measure. By Theorem 2.44, we obtain that h, < 2. Hence, we have proved 1 < h, < 2. 0O

2.6 Appendix: the proof of the fact J. \ J, is at most countable

Rest of this section, we give the proof of the fact for each 7 € Ay, J; \ J; is at most
countable and h, = dimy (J;) ([32, Theorem 6.11]).
Let {Sr}rea, be the family of CIFSs of generalized complex continued fractions. We

set X, (00) := Xg, (0c0). H. Sugita showed the following result ([32]).

Theorem 2.57. Let {S;};ca, be the family of CIFSs of generalized complex continued
fractions. Then, we have that for all 7 € Ag, X-(c0) = {0}. In particular, for each 7 € Ay,

J-=J1-U |J éw{0}) U{0} and T\ J.C |J éw({0})U{0}.
wel* wel*
Proof. We first show that for all 7 € Ap, 0 € X, (c0). Weset I .= {m+7 € I;| m €
N} C I and b,, := m + 7 € I.. Then, we have that |[I/| = oo and since 0 € X,
®b,,(0) € ¢, (X). Let € > 0. Then, there exists M € N such that M > 1/e. Let
F.:={m+7e€l|lmeNm< M} CI.. Weobtain that |F;| < oo and if b,, € I. \ F,
then ¢y,,(0) € ¢p,,(X) and

1

m-+T

1
< —< —=<e.
m M ¢

60,001 = |

Thus, for all 7 € Ag, 0 € X (00).

We next show that for each 7 € Ay, a € X,(00) implies a = 0. Suppose that there
exists a € X;(0o) such that a # 0. Then, there exist I C I; and {z,}ye. such that
1| = o0, 2, € ¢p(X) (b€ I) and blg} z, = a. Let § := |a]/2 > 0. Then, there exists

T

F! C I such that |F/| < co and for all b € I.\ F), |z, —a| < §. In particular, for all
be I\ F,
23] > la| — |2 — al > 0. (*)
Moreover, for each z € X, 7 € Ag and b € I, we write z := z + yi, 7 := v + iv and
b :=m + n7. Note that

|2+ b2 = |z +m +nu+i(y +no)?

= (z+m+nu)? + (y + nv)?

> (0+m+nu)® + (—1/2 +nv)? > m? + (n — 1/2)%
Let M := 1/6. By using the above inequality, there exists N5 € N such that for all
meN, neNand z € X, if m > Ns or n > Ng, then |z +b| > M = 1/§. In particular,
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b € I\ F-(Ns) implies that for all z € X, |¢p(2)| < 6. Here, Fr(N;) := {b:=m +nt €
I | n < Ns,m < Ns}.

By the inequality (*) and |F(Ns)| < oo, this contradicts that there exist b € I.\ (FLU
F;(Njs)) and z, € ¢p(X) such that |z;| > ¢. Therefore, we have proved that for all 7 € Ay,
X, () = {0}, .

Corollary 2.58. Let {S;};ca, be the family of CIFSs of generalized complex continued

fractions. Then, we have that for all 7 € Ag, dimy/(J;) = h,.

Proof. By Theorem 2.57, we obtain that .J;- \ J, is at most countable. Note that if A is at
most countable, then dimy A = 0. Thus,

dimy (J;) = max{dimy J,,dimy (J; \ J-)} = max{dimy J,,0} = h,

Therefore, we have proved Corollary 2.58. O

3 The Hausdorff dimension function of the family of con-
formal iterated function systems of generalized complex
continued fractions

3.1 Proof of Main Theorem 1
We first show the following lemma.

Lemma 3.1. Let 7 € Ag and suppose that a sequence {7, },en in Ay satisfies lim,, o, 7, =
7. Then, there exist K € N, C1 > 0 and Cy > 0 such that for all k > K, (m,n) € N? and
2,2 € X,

2" +m + nrg|?
Ci < < (O. 3.1
L= |z +m+nt]? — 2 (3.1)

Proof. We set 7 = u + iv and we set for each n € N, 7, = u,, + iv,,. Since lim, o 7, = 7,
there exists K € N such that for all £ > K, |u —ug| <1 and |v — vg| < v/3. Then, for all
(m,n) € N? and 2,2/ € X,

|2/ +m + nrg|?

|z +m+nt|?

< (14 m + nug)? + (1/2 + nwy)?

—  (m+nu)?+(—1/2 4 nv)?

o (+mtn(+ u))? + (1/2 + n(4/3)v)?

- (m +nu)? 4+ (—1/2 + nv)?

T+ m+n(l+u)? (1/2 + n(4/3)v)?

C(mFnu)?2 4+ (=1/24+ )2 (m+nu)? 4+ (—1/2 + nw)?

< max { I+ 1 +uw)+1)2 1+1+u)+ 1)2} N (1/2n 4+ (4/3)v)?

- 12 T w2+ (v—1/2)2 (v—1/2n)?

1+ 1T +uw)+1)2 (1+(1+u)+ 1)2} (1/2 + (4/3)v)?
12 T w4 (v—1/2)2 (v—1/2)2

< max{
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and

2" +m + nrg|? - (m + nug)? + (—1/2 + nog)?
lz+m+nt2 — (14+m+nu)?+ (1/2 + nv)?
S m? + (—1/2 +n(2/3)v)?
~ 2(1 +m + nmax{u,v})?

% (min { 1+1+ nllax{u,u}’ 1 +(21/i)xvn;xl{fv} })2 > 0.

Therefore, we have proved our lemma. O

v

We now prove Theorem 1.3.

Proof. By Lemma 2.54, for each 7 € Ay, the value h; is equal to the unique zero of
the pressure function of S.. Moreover, by Lemma 2.55 and Theorem 2.56, we have that
1< h; <2foreach 7€ Ag and h — 1 as 7 — oo in Ap.

We next show that if a sequence {7,}nen in Ao satisfies limy, oo 7, = 7, then we
have A({S, }nen) = S-. Since for all (m,n) € N2, ¢, mins(2) = 1/(z + m + n7) and
(bmans) (2) = (=1)/(z + m + n7)?, condition (L1) is satisfied. Since X is compact, there
exist zg, 2z € X such that

108 (|| @1 smr | x /1B pnr | 1x) = 108(160, 7 (20)|/ | D, (2)])
= log(|zr + m + n7k|2/|zo +m + n7]2).

By Lemma 3.1, there exist C > 0 and K € N such that for each k > K and (m,n) € N2,

| 1og (|| ¢1n+nr|lx) = Tog ([|$1nm | 1x) | = [10g ([|$1r |1 /11 & nm, 1) | < C-

Therefore, we have proved that if a sequence {7, }nen in Ag satisfies lim,,_ o 7, = 7, then
A({Sr, Inen) = S

We next show that 7 +— h; is continuous in Ayg. By Theorem 2.49, S; — h; is
continuous with respect to the A-topology. By Lemma 3.3 of [29], if A({S, }nen) = Sr,
then lim,_yoc by, = hy. Thus, if lim, o0 7, = 7, then lim,_,o h,, = h;. Therefore, we
have proved that 7+ h; is continuous in Ay. O

3.2 Proof of Main Theorem 2

We now prove Theorem 1.4.

Proof. We first show that 7 — h; is subharmonic in Int(A4y). Let z € X and Let (m,n) €
N2. Note that since the real part of —(m + z)/n is negative, —(m + z)/n is not an element
of Int(Ap). Therefore, we deduce that the function 7 — @nin-(2) = 1/(z + m + n7)
is holomorphic in Int(Ap). Hence, {Sr} cmt(4y) 18 plane-analytic. Therefore, by using
Theorem 2.51, we obtain that 7 — h; is subharmonic in Int(Ay).

We next show that 7 +— h; is real-analytic in Int(Ap). Since for each 7 € Ay, S; is
a hereditarily regular CIFS, we have that for each 7 € Int(Ap), S: is a strongly regular
CIFS. We now show that for any 79 € Int(Ap), there exists an open ball U C Int(Ap)
with center 79 and n € (0,1) such that for all 7 € U and w := (m;,ni)ien € (N?)>,
|kT0(7) — 1] < 71, where we denote (¢ (mrow)) /(o) (mryow)) by k(7).

mi1+niT m1+mn1To
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By Lemma 3.1, there exists an open ball U” C Int(Ag) with center 79 such that ||
is bounded in U” uniformly on w € (N?)*. Note that x7¢ is holomorphic in Int(Ag). By
using the Cauchy formula

1 ki (€)
T0Y\/ _ = w d c U//
W) =5 [ e (rev),
we deduce that there exists M > 0 such that for all 7 € U’ and w € (N?)*°, |(xT0)'(7)| < M.
Here, U’ is an open ball with center 7y such that U’ C U”. Then, we have that

|k (1) = 1] = |53 () — K (70|

[ ey

0

< / (R2Y (©)lldé] < M7 — mol.

It follows that there exist an open ball U(C U’) with center 79 and an element 7 € (0, 1)
such that for all 7 € U and w € (N*)*°, |x70(7) — 1] < 7.

Thus, for any 79 € Int(Ap), there exists an open ball U C Int(Ag) with center 7y such
that {S;},cy is regularly plane-analytic. By Theorem 2.50, for any 79 € Int(Ay), there
exists an open ball U C Int(Ap) with center 7y such that the map 7+ h; is real-analytic
in U. Since 7y is arbitrary, we deduce that the map 7 — h; is real-analytic in Int(Ay).
Combining this with Theorem 1.3 (Main Theorem 1), we obtain that the function 7 — h,
is not constant on any non-empty open subset of Ag. O

3.3 Proof of Main Theorem 3

We now prove Corollary 1.5.

Proof. For each n € N, let B,, := Ag N {z € C| |Rz| < n and |Jz| < n}. Note that for all
n € N, the map 7 +— h, is subharmonic in Int(B,,) by Theorem 1.4. Let € := (h;—1)/2 > 0,
where i = v/—1. By Lemma 2.55, we deduce that there exists N € N such that for all
T € Ao \ By, |hr — 1| < e. It follows that (h; —1)/2 > h; — 1. Then, we obtain that for
all 7 € Ay \ By,

hi >2h; —1=h; + (hy — 1) > h,.

Since the function 7 +— h; is continuous in By, there exists a maximum point of the
function 7 — h, in Ag and

max{h,| 7 € Ao} = max{h,| T € By}.

Since the function 7 +— h; is subharmonic in Int(Ap), there exists no maximum point
of the function 7+ h, in Int(Ap). Thus, we have proved Corollary 1.5. O

4 The Hausdorff measures and the packing measures of the
limit sets of CIFSs of generalized complex continued frac-
tions

4.1 Proof of Main Theorem 4

In order to prove Theorem 1.7 (Main Theorem 4), we first show a basic estimate for the
conformal measure. Note that for each 7 € Ag, there exists the unique h,-conformal
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measure mg_ of S; by Proposition 2.43 since for each 7 € Ap, S; is hereditarily regular.
We set m, :=mg, .

Lemma 4.1. Let 7 € Ag and m. be the h,-conformal measure of S;. Then, there exists
Ko > 1 such that for each b € I, we have ¢,(X) C B(0, Ko|b| ™) and

me(¢p(X)) = Ko [o| 72"

Proof. By Lemma 2.53 with K = Ky, we deduce that for all b € I, and z € V,
¢p(V) € B(0, Kolp|™!) and Kb 72 < |¢)(2)] < Ko|b|~2. Therefore, we have ¢(X) C
B(0, K|b|~!) and

me(6y(X)) = /X Gy i dmy > (KL |b=2) . (X) > Ky b2,

Thus, we have proved our lemma. O

Recall that X;(co) = {0}. By Lemma 4.1, for sufficiently small » > 0, b € I; and
N > 0 with r/N < Ko|b|~! < r, we have ¢(X) C B(0, Ko|b|~!) € B(0,r) and

me(B0,1)) _ mo(dp(X)) o K" [b7 Ko ( r )2’“

h
~ phT, 4.1
NK, " (4.1)

rhr rhr rhr = rhr

This inequality (4.1) does not satisfies the assumption of Theorem 2.45 unfortunately.
However, since for all b,b' € I, with b # V', m.(¢p(X) N ¢y (X)) = 0, we have a sharper
estimate on the value of m.(B(0,7)). To obtain this estimate, we set

L(r):={be I, | r/N, < Koo| ' <r},
where NN, is the number we introduce later. Then, we have

meBOr) g~ mellX)

e > |Lx(r) | Kq "Ny et (4.2)

rhr
bel(r)

Note that since I, (r) = {b € I, | Kor~! < |b| < N,Kor—'}, we have |I.(r)| = r2
intuitively since we have a intuition that the number of the points b € I(r) in the slant
lattice I is almost the same as the area of I.(r).

To prove this intuitive estimate rigorously, we introduce the following notations and
prove lemma 4.2, Proposition 4.3 and Lemma 4.4. We identify C with R?, I, with {¢(a,b) €
R? | a +ib € I} and N? with {{(m,n) € R? | m,n € N}, where for any matrix A, we
denote by *A the transpose of A. For each 7 = u + iv € Ag, we set

=1 %) ad F='BE (1 %)
0 v u 7]

Note that E.N? = I, since det(E;) = v # 0, E; is invertible and by direct calculations,
there exist the eigenvalues Ay > 0 and Xy > 0 of F, with A\; < Xo. Let v; € R? be a
eigenvector with respect to A1 and vy € R? be a eigenvector with respect to Ay. Note that
since F, is a symmetric matrix, there exist eigenvectors v; € R? and vy € R? such that
V; := (v1,v2) is an orthogonal matrix.

For each Ry > 0 and Ry > 0 with R1/v/A1 < Ra/v/ A2, we set

Di(1, Ry, Ry) == {"(z,y) € R* | R}/M\ <2® +y* < R3/\} and
Dy(Ry, Re) := {!(z,y) e R* | R} < 2? +y* < R3}.
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Lemma 4.2. Let 7 € Ay and let Ry > 0 and Ry > 0 with Ry /v A1 < Ra/v/A2. Then, we
have that E,(D/(r, R1, R2)) C D)(R1, R2). In particular, we have that

E.(N*ND(r,R1,Ry)) C I, NDY(Ry,Ry) and |N>ND/(r,Ri,Rs)| < |I-NDj(Ry, Ry)|.

Proof. By the above observation of F,, we deduce that

_ )\1 0 t
F, = v;( 0 )\2> V.

Let !(z,y) € Di(r, R1, R2). We set (2/,y') := (x,y) V; and (v,w) := (x,y) 'E,. Note
that since V, is an orthogonal matrix, we deduce that (2')2 + (/)2 = 2% + y?. Since
A1 < Ao, we have

R < M(#® +97) = (@)’ + (¥)?) < M(@)” + Xa(y)?
—(96’,1/)(%1 AOZ > ( z: ) = (z,9) VT< A01 ;)2 )t%<§>
:4mwm<§):mwwﬁa(j).

By the above inequality, we deduce that R? < v? 4+ w?. Also,

B3 > h(e? +4%) = (@) + (1)) > M()? + ho(y))?
:4ﬂw(§ g)(;):mwm(ﬁ i)m(z)
=@wﬂa<j)=@wwma(§).

By the above inequality, we deduce that v? + w? < R3. Therefore, we have proved our
lemma. O

For each R > 0, we set I(R) := {!(m,n) € N? | m? + n? < R?}.
Proposition 4.3. Let R > 0. Then, for each R > 6,

R? —TR+7
0< % < |I(R)| < R

Proof. For each a € R, we denote by |a] the maximum integer of the set {n € Z | n < a}.
Let R > 6. We set M := |VR2—1|(> 1). For each mg = 1,..., M, we set N(myg) :=
|v/R? —m3|(>1). Note that since M < vVR?—1< M + 1, we deduce that

VR2—1-1<M<+/R2—1. (4.3)

Also, since N(myg) < /R? —mg < N(mg) + 1, we deduce that

\/ B2 —mi—1< N(mg) </R%2—md. (4.4)

By using a geometric observation, we deduce that [I(R)| = M _ N(my).

mo=1
By the inequalities (4.3) and (4.4), we deduce that ’

M
I(R)| < > y/R*~md3 <RM < RYR?-1< R’

mo=1
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We now show that |I(R)| > (R? — TR+ 7)/2. Since \/R? —m2 > R —my for each
mo =1,..., M, by the inequalities (4.3) and (4.4) again, we deduce that

M M

M(M +1)
LLTEDY) <\/32 3 - 1) > 3 (oo =) = MR- 1) -
mo= mo=
MER-3) - M2 _ (\/R2—1—1> (2R —3) — (R? — 1)
B 2 - 2
- (R—2)2R—-3)—R*+1 R*-TR+7
- 2 B 2 '
Therefore, we have proved our lemma. O

For each 7 € Ay, we set Ny = /2X\/vV/\1 + 1 (> 2). For each R > 0, we set
Di(7, R) := D(7, R, N;R) and Ds(7, R) := D)(R, N, R). Note that since v/ A2/v/A1 < N,
we have that R/v/A1 < (N;R)/v/Aa.

Lemma 4.4. Let 7 € Ag. Then, there exist R, > 0 and L, > 0 such that for all R > R,

7N,
2V

Proof. Let 7 € Ayg. We set L, := NTQ/(2)\2) — 1/A1. Note that since Ny > /2o /v/ A1, we
deduce that L, > 0. We set

R, = max{(G\/ AQ)/NT, 6/ )\1}(> O)
Let R > R.. Note that N,R/\/X2 > 6, R/\/A1 > 6 and

IN? N Dy(r,R)| > L,R? — R.

N:R R
N2NDy(1,R :I< T ) I() 4.5
(1, R) o \ o (4.5)
Also, we have I (N:R)/v/Az) D I (R/v/A1). By (4.5) and Proposition 4.3, we deduce
that
N R R
N*N Dy(r,R)| = ‘1( . > —~ ‘1<>‘
2 2
> 1 (UVTR) _ N +7> _E > L.R* - N
2 AQ \/)\2 )\1 2\/T2
Therefore, we have proved our lemma. O

Note that by Lemma 4.4, there exists @, > 0 and R, > 0 such that for all R > R/,
we have

IN*> N Dy(1, R)| > Q. R>. (4.6)
We now give the proof of the main result Theorem 1.7.

Proof of Theorem 1.7. Let 7 € Agp. Recall that there exists the unique h.-conformal
measure m, of S;. We set 7, := KoR-'(> 0) and M, := (7TN;)/(2v/\2).
We first show that for all r € (0, 7],

|L(r)| = {b € I | /N, < Ko|b| ™t < 7}| > L, Kgr=2 — M, Kor— . (4.7)
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Let 7 € (0,7,]. We set R := Kor~!. Note that r < r, if and only if R > R,. Recall that
L(r):=={bel | r/N; < Kolb|™t < r} and

L(r)y={bel | Kor ' <|b| < N,Kor '} = I. N Dy(Kor™', N, Kor™ ).
Recall that R := Kor~!, Di(r,R) := Di(7,R,N;R) and M, := (7N;)/(2/A2). By
Lemmas 4.2 and 4.4, it follows that
|L-(r)| = |I; N Dy(Kor~t, N, Kor )| = |I, 0N Dy(R, N,R)| > |N? N D}(r, R, N,R)|
= |N*NDy(r,R)| > L,R* - MR = L. K3r—? — M, Kor~*

Thus, we have proved the inequality (4.15).
We next show that for all r € (0, 7],

m,(B(0,7)) > Ly K23t N-2hryp2he=2 _ g 3 =30e N = 2hrp2he =1, (4.8)
By Lemma 4.1 and the definition of I;(r), we have that for all b € I.(r), ¢(X) C
B(0, Ko|b|™1) € B(0,7). Tt follows that
U (xX) c Bo,r). (4.9)
bel,(r)

In addtion, if b,b € I, with b # ¥, then m,(¢p(X) N ¢y (X)) = 0 by the definition of
the conformal measure (Proposition 2.43). Thus, by inequality (4.9) and Lemma 4.1, it
follows that

me(BO,r) =m [ | o(X) | = Y melep(X) = > Kyl
belr(r) bel(r) bel (r)
h ro\ h
—hr _ —3hs n7—2hr 2R,
zbE;)KO (NTK()) = | L (r)| K 3t N2y 2he

By the inequality (4.15), we obtain that
mr(B(0,7)) 2 LK 2w N2 =2 — Mg~ N2 e

Thus, we have proved inequality (4.8).

We now show that H"(J;) = 0. For each j € N, we set z; :== 0 and r; :=r,/j (€
(0,77]). Note that {r;},cy is a sequence in the set of positive real numbers and by Lemma
2.57, {zj}jen is a sequence in X, (0o). Thus, by the inequality (4.8), we deduce that for
each j € N,

me(B(z,75)) _ mr(B(0,7))

hr hr
Ty Ty

> LTKg_ShTNT_2hTT?T_2 _ MTKé_ghT N;ZhTT;LT—l

hr—1
_ _ 9.9 _ _ (1)
L, K2 N phe=22mhe _ \p pel=dhe N =2hr o1 <j .

By Lemma 2.56, we have that 2 — h, > 0 and h, — 1 > 0. It follows that
m-(B(zj,75))

lim sup ———— " = 00
j—00 T‘jT
By Theorem 2.45, we obtain that H"(J,) = 0. O
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4.2 Proof of Main Theorem 5

In this section, We show that 0 < P"7(.J,) < oo for each 7 € Aj.

4.2.1 Proof of positiveness of the packing measures

Proof. Let 7 =u+iv € Ag. We set by := 2+ 7 € I.. We use some notations in Lemma
2.52. For any z =z + 1y € X,

gp,(2) =2+ (2+7)
=(@+2+u)+ily+v)e{zecC| Rz >1} =Int(Y).

Since f(0X) =0Y U{oo} and f: X — Y U{oo} is bijective, we have

¢b2(X) - (f_l © gbz)(X) - Int(X)
Therefore, we obtain that J. N Int(X) # (. Since S, is hereditarily regular and J. N
Int(X) # (), we deduce that P~ (J.) > 0 by Theorem 2.46. O
4.2.2 Proof of finiteness of the packing measures
To prove the finiteness of the packing measure, we prove the following lemmas.

Lemma 4.5. Let 7 € Ay, & € R?2 and R > 0. Then, we have
E,(B(E;'%,}/\/32)) C B(#. R).
In particular, we have
E.(NNB(E:'#,R/\/A\2)) C I. N B(&, R).

@, R/\/A2). We set § = 4(f1,52) :='(z,y) — E;'&. Since V; is
orthogonal and |§|? = |'(z,y) — E-'%|?> < R?/\y, we have

B (2,y) — &> = |E-9|* = '9'E, E-5 = "§F,j

N A O . N N ~
= tgV, < 01 N > Wog = M22 4 Xazd < M| Vg2 = Xo|f]? < R,

where (21, z2) := 'V;§. Therefore, since E.(x,y) € B(&, R), we have proved our lemma.
O

Lemma 4.6. Let 7 € A, let w € R? and R > 0 with |w| > R. Then, for each M > 2, we
have

B (w _ ]\}2'3' ﬁ) C B(0, [w)) N B(w, 2R/M) € B(0,]w]) A B(w, B).

In particular, by Lemma 4.5 with & := w — Rw/M|w| and R := R/M, we have

E.B <E;1 <w - ﬁ%) , \/)\ijM> c B(0, |w|) N B(w, R).

and since I, = E.(N?) and E, is injective, we have

E. <N2 nB (E;l <w - JS’ZO , \/gM» c I, N B(0, |w|) N B(w, R).
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Proof. Let 7 € Ag, w € R?, R > 0 with |w| > R, M > 2 and z € B(w—%%,%).

Then,
I A X
B M fwl M [w
<E+ l—i\wl—i—i- 1—i |lw| = |w]|
M M|wl M M|wl S

since R < |w| and M > 2, which deduce that 1 > 1/M > R/M|w|. In addition,

< Rw)‘ Rw‘ R R 2R
z—(w

_ < _ = -7 [ T g
2= wl < M |w| M| SM MM

and since M > 2, we have 2R/M < R. Therefore, we have proved our lemma. ]

Note that by similar argument of Proposition 4.3, Lemma 4.4 and the equation (4.6),
we obtain the following lemma.

Lemma 4.7. Let 7 € Ag, w € R?, R > 0 with |w| > R. Then, there exist C; > 0 and
Q- > 0 such that for all R > C;, we have

11, 01 B(O, [w]) N B(w, B)| > QR
We now prove the finiteness of the packing measure of J.

Proof of the finiteness of packing measures in Theorem 1.8. To prove Main Theorem 5, it
suffice to show the assumption of Lemma 2.47 for each 7 € Ag. Let 7 € Ag. Let rg <
min{1/8, Ko (R.) "'}, where R’ is defined in the equation (4.6). Note that there exists
R > max{C}, 1} such that for each R > R, (R —1)/R > 1/2, where C, > 0 is defined in
Lemma 4.7. We set L. := min{Q" /4, (R 4+ 1)~2} (> 0), where @/, is defined in Lemma
4.7. We also set & :=r3(> 0), v := K(> 1) and

Ly i= min { L'(4K) 7, Q, K§ = N7 22272 | (> 0),

Let b:=m+n7 € I; and r > 0 with ydiam(¢p(X)) <7 <& Weset x := 1/b = ¢(0) €
op(V'). We consider the following three cases.

1. r <|z|/2.
Note that by the assumption, we have 0 < r (< |z]/2) < |z| and

z]* = K - K7'b| 7% < - diamgy(X) < r (4.10)

We set f(z) :=1/z (2 € C\ {0}). We show that for each B(z,r) with r < |z|, we have

B =5 2P 1 _r ).

|z]2 —r2 2 |z|2 —1r?

Indeed, for each a € C, [1/a — Z/(|z|>—7r2)| = r/(|z|?>—r?) is equiavalent to |r? —Z(z—a)| =
r|a| which is also equivalent to

r* —r?(@(x — a) + (T — @) + aa) + 27(z — a)(T — @) = 0. (4.11)
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Since (Z(x —a) +x(T—a) +aa) = 2T+ (z — a)(T —a), the equation (4.11) is equivalent to
(r?—|z—al?)(r?—|z|?) = 0. Since r < |z|, we deduce that [1/a—%/(|z|*—r?)| = r/(|x|*—r?)
is equivalent to r = |x — a|. In addition, since f(x) = 1/x satisfies

z|? 1 r r r
10~ e 5| = ] < e
we obtain that e . .
f(B(z,r)) =B (|x!2—r2 o |x]2—7’2) . (4.12)
We set e . .
w::m-; and R::m.

Note that |w| := |z|/(]x[* — r?). We set
L(z,r):={bel. | p(X)C B(z,r)} ={be Il | B(b+1/2,1/2) C f(B(z,r))} (4.13)

and I, := I.(z,r) N B(0, |w|).

We now show that b € I, ;. Note that since |b| = 1/|z| < |z|/(|z|? —7?) = |w|, we have
b € B(0, |wl|). Therefore, it is sufficient to show that |w — (b4 1/2)| < R—1/2. Indeed, we
set A :=1— |b|*r? for simplicity. Since r < |z|, we have A > 0. Then, since |b|?>r —1 >0,
which is equivalent to r > |z|?, we have

12612 — A — (2°2[b]%b — A) (2r2[b]25 — A)

= 4|b|*r? — 24 - 2[b]%r + A% — (20b)%r%)% - |2 + 2[b]2r2A - (b4 ) — A?

= 4|b|*r? — 4[b|%rt — 4AB)?r + 4)b*r2A - R(b) = 4|2 (1 — |b]2r?) 4 4A[D)*r (rR(D) — 1)
= 4 A% + 4A|b2r(rR(D) — 1) = 4Ab|*r(|b]*r + rR(b) — 1) > 0,

where R(b) > 0 is the real part of b. In addition, since |[b|?r — 1 > 0, we have
2(b]*r — A = [b]*r? + |b]*r + |b|*r — 1 > |b]*r — 1 > 0.

Therefore, we have |2r2|b|?b — A| < 2|b|>r — A. It follows that

o (D) = et
2 |z]2 —r2x 2 1 — |b|?r2 2
126 —26(1 — [br?) — (L= B*r?)| _ [2b[b*r? — A
- 2(1 — [b[*r?) - 2(1— [pf*r?)
20b2r— A  |br 1—b*r* r I R 1
21— 1b)2r2) 1 —p]2r2 2(1 —|b2r2)  |x]2 -2 2 2

Thus, we have proved B(b+1/2,1/2) C B(w, R).
Note that by the inclusion (4.13) and (4.12) we have

I.1=1L(z,r)NB(0,|w|) ={be I, | B(b+1/2,1/2) C f(B(z,r))} N B0, |w|)
={bel;, | B(b+1/2,1/2) C B(w,R)} N B(0, |wl|)
>{bel,|be Blw,R—1)} NnB(0,|w|]) = NB(w,R—1)N B0, |w|)  (4.14)

Recall that there exists R > max{C;,1} such that for each R > R, (R —1)/R > 1/2,
where C; > 0 is defined in Lemma 4.7.
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We next show that |I;1| > L, R? for each R > 0. To prove this, we consider the
following two cases.

1-'1. R>R+1.
Recall that since |z > 7, we have |w| > R(> R > 0). By the inclusion (4.14) and Lemma
4.7 with R= R —1 (= R > 0), we have

/
[Ira] 2 |10 B(w, R— 1) N B(O, [w])| > Qn(R ~ 1)* > “T R > L R*.

1-2. R+1>R.
Since I, is not empty set and R+ 1 > R, we have |I,1| > 1 > (R/R+ 1) > L.R>.
Hence, we have proved |I,1| > L. R? for each R > 0.

We finally show Main Theorem 5 if r < |#|/2. Since |z|? — 72 > 3|x|?/4 and therefore
lw| = |z|/(|z|? — %) < 4/3|z|, and h, < 2, we obtain that

meBa) zme | 6X)) = 3 [ lirdme = 3 Kb m ()

bEITJ bEIT’l bGIT’l

2
_ Z K—hr‘x|2hf > ’ITyl‘thT‘xPhT > L;. (M) K*h7—|x’2hr
bEITJ

2
> L/T’;ﬁK_hT]a:\QhT = LK~ hrp?|gPhr=d > [} K hep2phe=2 > phe,

By Threorem 2.47, we have proved Main Theorem 5 if r < |z|/2.

2. |z|/2 < r and r < 2|x|.
We set 7 := r/4. Then, by the assumption, we have 7 < |z|/2. In addition, since
2|2 = K- K71b|72 < v - diamgy(X) < r < € = r, we have

2 L .
|z|* < rolz| < §-2r:7“.

Therefore, instead of > 0, 7 > 0 satisfies the assumption r > |z|/2 and the inequality
(4.10) in the case 1. r < |z|/2. Thus, by the similar argument discussed in the case 1.
r < |z|/2, we have
me(Bla,r)) = mo(B(a, 7)) = LK i
> LK hrgmhephe > [F(4K)~hrphe > Lol
By Threorem 2.47, we have proved Main Theorem 5 if |z|/2 < r and r < 2|x|.
3. 2z| <r.

We set 7 := r/2. Note that B(0,7) C B(x,r) since, if y € B(0,7), then |y —z| < |z|+]y| <
r/2+7 =1r. We set r, := KoR-1(> 0), where R, is defined in the inequality (4.6). We
show that

I (7)] = |{b € I | #/N; < Ko|b| ™" < 7}| > QK37 2. (4.15)

Indeed, note that 7 =r/2 < rg < r;. We set R := Ko7~!. Note that 7 < r, if and only if
R > R;. Recall that I (7) := {b€ I, | #/N, < Ko|b|™' < 7} and

17(7:) == {b S IT ‘ K()?:_l < |b| S NTKof_l} = I‘r M Dé(KOf—l’NTKO,F—l).
By Lemmas 4.2 and 4.4, we obtain that

|L(7)| = | I, N DY (KoL, N Ko Y)| = |I. N Dy(R, N-R)| > N> N D/ (, R, N,R)|
= |N*N Dy(r,R)| > Q,R* = Q, KZ7 2.
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Thus, we have proved the inequality (4.15). Therefore, we obtain that

mT(B(x7T)) > mT(B(()?F)) > my U ¢b(X) - Z mr (¢b<X>)

bel, (7) bel, (7)
2h,
/¢> " dm, > Z Kol > Y K, ( )
bel, (7) bel, (7 bel, (7) N

- (142h+) nr—2h, ~2hT 1—2hs nT—2hr 52k —2
= L (7)| Ky T N2 p2he > KL N2
1—-2h+ A7—2hr2—2h+ 2h —2 1-2h+ A7—2hr2—2h+ h.
= Q. K} NZ2hr92-2he 2he =2 5 [gl=2he N 2heg2=2he phe s T T

By Threorem 2.47, we have proved Main Theorem 5 if 2|z| < r. Hence, by the three cases,
we have proved Main Theorem 5. O

5 Non-autonomous iterated function systems and the limit
sets
5.1 Basic properties

In this subsection, we consider non-autonomous iterated fucntion systems (for short,
NAIFS). Before we study the NAIFSs, we first consider some properties of sequences
generated by contractive mappings on complete metric spaces.

Definition 5.1. Let (X, p) be a complete metric space. We say that f;: X — X (j € N)
is a sequence of contractive mappings on X with an uniform contraction constant ¢ € (0, 1)
if there exists ¢ € (0,1) such that for all j € N and z,y € X,

p(fi(x), fi(y)) < ¢ p(z,y).

For each m,n € N with m < n, we set g(m,n): X — X defined by

g(m,n) = fmo-0fn1 (5.1)

and g(m,m) := idx (We call {g(m,n)}>2,, the non-autonomous right iterated sequence
of the contractive mappings on X with {fj Fien ).

Note that since X is complete, for each j € N, there exists the unique fixed point
zj of the f;. We set Z := {z; € X | j € N}. For each r > 0 and A C X, we set
A ={ye X |Jac A ply,a) <r}.

Lemma 5.2. Let f;: X — X (j € N) be a sequence of contractive mappings on a complete
metric space (X, d) with an uniform contraction constant ¢ € (0,1). Suppose that Z is
bounded. Then, there exists 7z > 0 such that for each r > rz and j € N, f;(Z,) C Z,.

Proof. We set M := diam Z < co. We set rz := cM/(1 —c¢). Let r > rz, j € N and
x € Z,. Then, there exists jo € N such that d(z, z;,) < r. In addition, we have

p(fi(), z5) = p(f(2), [i(2)) < cp(w, 2)
< C(p(.iU,Zjo) + p(zjmzj» < C(?" + M) <r

since ¢cM /(1 — ¢) < r. Therefore, we have proved our lemma. O
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The following lemma shows that if we consider a sequence of contractive mappings
defined on a bounded set in some sense, then there exists the sequence of limit points
generated by contractive mappings and it is bounded.

Lemma 5.3. Let {f;}jen (j € N) be a sequence of contractive mappings on a complete
metric space (X, p) with an uniform contraction constant ¢ € (0,1). Suppose that Z is
bounded. Then, for each m € N, there exists z,,(c0) € X such that for all x € X, the
sequence {g(m,n)(z)}>2, . converges to x,(c0). In addition, {z,(c0) € X | m € N} is
bounded and for each mi, mo € N with my; < mo, we have

g(m1, m2)(Zm, (00)) = @m, (00).

Proof. Let m € N and x € X. We set x,,(n) := g(m,m + n)(z) (n € N). Note that
by Lemma 5.2, there exists » > rz such that x € Z, and for each k € N, f,,1x(z) €
fmax(Zy) C Zy. Then, for all ny,ny € N with ny < na,

p(zm(n1), 2m(n2))

na—1 no—1
<Y plam(k),zm(k+1)) = > plg(m,m+k)(@), g(m,m + k +1)(z))
k=n1 k=n1
no—1 no—1
= Fpla, frnin(z)) = > Fdiam Z,.
k=n1 k=n1

Therefore, we deduce that {x,,(n)}»en is a Cauchy sequence on the complete metric space
X and there exists x,,(c0) € X such that z,,(n) — z,(00) as n — oo. In addition,
Let m € N and y € X. We set y,,(n) := g(m,m +n)(y) (n € N). By the same argument,
there exists y,,(00) such that y,(n) — ym(c0) as n — oco. Then, for all n € N,

s Zm (1)) + p(zm (1), Yym(n)) + p(Ym(n), ym(00))
,Zm(n)) + "p(2,y) + p(Ym(n), ym(00)) "—57 0.

P(2m(00), ym(00)) < p(wm (00

(z

Let z € X. Since Z is bounded, so is Z,. Since there exists r > rz such that z,,(n) € Z,
for all m,n € N, {z;,(c0) € X | m € N} is included by the closure of Z,. Therefore,
{zm(c0) € X | m € N} is bounded. Finally, let mj, mo € N with m; < mg. Then, for all
ne€Nand z € X,

<p )
< p(@m(c0)

g(mi,mz +n)(z) = g(m1,ma) o g(ma, m2 +n)(z) = g(mi, m2)(Tm,(n)).

Since T, ((ma —m1) +n) = glmi, ma + n)(x) "= @, (00), Tmy (1) "—° Ty, (00)

and g(m1,ma) is continuous, we have g(mi,m2)(Zm,(00)) = Tm, (00). Therefore, we have
proved our lemma. ]

Corollary 5.4. Under the assumption of Lemma 5.3, for all m € N and « € X, the
sequence {g(m,n)(x)},, convrges to x,,(co0) exponentially fast with the rate c.

Proof. Let z € X. There exists r > rz such that € Z, and {z,(c0) € X | m € N} C Z,",
where Z,” c X is the closure of Z, C X. Then, for all m,n € N with m < n, we have

p(xm(00), g(m,n)(x)) < p(g(m,n)(zn(c0)), g(m, n)(x))

A p(xn(00), ) < A MdiamZ,” .

IN

Since Z,” is bounded, we have proved our corollary. ]
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We now present the general definition of NAIFSs. Let I be a set and (X, p) be a
complete metric space.

Definition 5.5. We say that ({fi}ier, {/n}nen) satisfy the setting (NAIFS) if
(1) {Jn}nen is a sequence in {J C I | J is finite}, and

(ii) {fi: X — X}ier is a family of contractive mappings on X with the uniform con-
traction constant ¢ € (0, 1), that is, there exists ¢ € (0,1) such that for all 7 € I and
z,y € X,

p(fi(x), fi(y)) < c p(a,y).

Note that for each i € I, there exists z; € X such that z; is the unique fixed point of
fi since X is complete and f; is contractive on X.

Let K(X) be the set of non-empty compact subsets in a complete metric space (X, p).
For each € > 0 and set A C X, weset A := {x € X | %a € A, s.t. p(a,z) < ¢}. Let dy be
the Hausdorff distance on K(X) which is defined by

dig(A,B) :=inf{e >0| AC B,,BC A} (A, B e K(X)).
Let F,,: K(X) — K(X) (n € N) be mappings defined by
Fu(A) == | fi(4),
i€Jn

which is well-defined since f; is continuous and J, is finite. Each mapping F), is often
called the Barnsley operator.

Note that since (X, p) is complete, ((X), dg) is also complete (For example, see [17]).
In addition, if {L,, }nen is a Cauchy sequence in (K(X),dg), then {L, }nen tend to

L= UL ekx) (5.2)

neNk>n

as n tends to infinity, where A” is the closure of A C X with respect to the metric p. Note
that {F), }nen is the sequence of the contractive mappings on (K(X), dy) with an uniform
contraction constant ¢ € (0,1) since for all A, B € K(X) and n € N,

dg ( U @), U fi(B)> < maxdy(fi(A), f;(B)) < maxc dg(A, B) = ¢ dg(A, B).

i€ J, i€ J,
i€Jn i€Jn " "

Note that since IC(X) is complete and F;, is contractive on K(X) for each n € N, there
exists A, € X such that A, is the unique fixed point of F, for each n € N. We set

Zg ={4, € K(X) | n €N, A, is the unique fixed point of F),}.

To apply Lemma 5.3, we consider a sufficient condition to show Zg is bounded in K(X).
Recall that for each ¢ € I, there exist the unique fixed points z; of f;.

Lemma 5.6. Let ({f;}icr, {J/n}nen) satisfy the setting (NAIFS). Suppose that Z := {z; €
X | i € I} is bounded. Then, Zy is bounded.
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Proof. By Lemma 5.2, there exists rz > 0 such that for all » > rz and i € I, f;(Z,) C Z,.
We set r > ry. Let A € K(X) with A C Z,. (for example, we can take A as set of
one point in Z). Since f;(A) C fi(Z,) C Z, for each i € I, we have for each n € N,
Uiey, filA) C Z,, ie. Fy(A) C Z,. We deduce that for any m € N,

F™(A) c F{mY(z,) c z,,
where Fy," is the m-th composition of F,, (i.e. Fy, " (A) := (Fp,o0---0F,)(A) A € K(X)).
In addition, for each n € N, {F,(Lm)(A)}meN is a Cauchy sequence in (K(X),dy) and

FT(Lm)(A) tend to the unique fixed point A4,, in K£(X) as m — oo by the Banach fixed
point theorem. Therefore, we have for each n € N,

A= UE™ @ cz”

meNI>m

We set R := diamzp = diamZ, < oo. We show that for all n € N and m € N,
di(An, Ap) < R. Let x € A,,,. For any y € A, d(z,y) < diamZd = R since A,, C Zd
and A, C Zd. We deduce that A,, C (A,)gr. By the same argument, we have A4, C
(Am)r. Therefore, di(Ay, Arm) < R. Thus, we have proved our lemma. O

Theorem 5.7. Let ({fi}tier, {/n}nen) satisfy the setting (NAIFS). Suppose that Z :=
{2; € X | i € I} is bounded. Then, there exists a sequence { K, }men C K(X) such that
for each m € N and A € K£(X), G(m,n)(A) converges to K, as n tends to infinity, where
for each m,n € N with m <n, G(m,n) := F,o0---0F,_1.

In addition, {K,, € K(X) | m € N} is a bounded set in (K(X), dg), for each my, mgy €
N with m; < mg, we have G(m1,m2)(Ky,) = K, and for all m € N and A € K(X),
{G(m,n)(A)}>2,, convrges to K,, exponentially fast with the rate c.

Proof. By Lemma 5.6, we have that Zy is bounded. Therefore, by applying the Lemma
5.3 and Corollary 5.4. Thus, we have proved our theorem. ]

By Theorem 5.7, we define the limit set (or the sequence of the limit sets) as the limit
of the sequence in IC(X) which is constructed by the Barnsley operators of an NAIFS
defiend on a bounded set. Note that if the set of the unique fixed point of the contractive
mappings is bounded, then we deduce to the case that we consider NAIFSs defined on a
bounded set. This is the same case of [29]. However, we consider NAIFSs with the weaker
assumption in Main Theorem 6 and Main Theorem 7.

We next consider the sequence of the limit sets and the sequence of the limt measures
generated by NAIFSs with weights ({ fi }ier, {Jn fnen, {Pn }nen) (for short, wNAIFSs). Let
I be a set and (X, p) be a complete separable metric space.

Definition 5.8. We say that ({f;}icr, {Jn}nen, {Pn}nen) satisty the setting (wNAIFS) if
(i) {Jn}nen is a sequence in {J C I | J is finite},

(i1) {fi: X — X}ier is a family of contractive mappings on X with an uniform contrac-
tion constant ¢ € (0,1), that is, there exists ¢ € (0,1) such that for all i« € I and
T,y € X,

p(fi(z), fi(y)) < ¢ p(z,y), and
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(iii) for each n € N, p,, is [0, 0co)-valued functions on I with p, (i) > 0 if and only if i € J,,,

and p,, satisfies
Z pn(l) =1
1€Jn

Let P1(X) be the set of Borel probability measures defined on a complete separable
metric space (X, p) for which there exists a € X such that the function z — p(a,x) is
integrable. Note that for each b € X and P € P1(X), we have [ p(b,z)P(dx) < oo since

/Xp(b, x) P(dz) < /Xp(b, a) P(dz) —i—/Xp(a,x) P(dx) = p(b, a)—l—/Xp(a, z) P(dx) < oo

Let Lip;(X) be a set of R-valued functions f on X with |f(x) — f(y))| < p(x,y) for
all z,y € X. Let dj;x be the Monge-Kantrovich distance on P1(X) which is defined by

darr (p, v) :=sup {/ fdu —/ fdv | fe Lipl(X)} (u,v € P1(X)).
X X
Let M, : P1(X) — P1(X) (n € N) be mappings defined by

B) =Y pali) u(f; {(B)) (B e B(X)),

1€Jn

where B(X) is the set of the Borel sets in X. Note that for each n € N, M,, is well-defined
since

[ sta = S 0) [ oo o £7)

i€Jn
= T / ns Xl i) [ U@, i) + o)) dn
= Z; P {/ ¢ plzi, ) du+p(zi,a)} < 0.

Each mapping M, is often called the Foias operator.

Note that (Py(X),dyk) is a complete separable metric space since (X, p) is complete
and separable (For example, [18], [34]). In addition, {M,}nen is the sequence of the
contractive mappings on (P1(X),dyx) with an uniform contraction constant ¢ € (0,1).
Indeed, since (f o f;)/c € Lip;(X) for each i € I, for all p,v € P1(X), f € Lip;(X) and

n €N,
[ rant = [ fant,w) < 3wt ( [ feosau= [ go de)

1€Jn

< an ) ¢ dyk (p,v) = ¢ dyk (p,v).
ZGJn

Note that for each n € N, there exists y,, € P1(X) such that p, is the unique fixed
point of M,, since P;(X) is complete and for each n € N, M, is contractive on P;(X).
Later, we consider the limit sets and the limit measures gnerated by the wNAIFSs under
some assumption.
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5.2 Proof of Main Theorem 6

To prove the existence of the limit (1.1) and the equation (1.2) in Main Theorem 6, we
first prove the following lemma.

Lemma 5.9. Let {f;: X — X}jen be a sequence of contractive mappings on a complete
metric space (X, p) with an uniform contraction constant ¢ € (0,1). For each j € N, let
zj € X be the unique fixed point of f;. If there exists 2’ € X such that 37,y dp(a,z) <
oo, then for each z € X, we have 3 dp(z,2;) < oo.

Proof. Let x € X and Let 2’ € X satisfy the inequality 3,y p(a’, zj) < co. Then,

chp(x,zj) < p(z,2") Zcﬂ + chp(x',zj) < oo

jEN jEN JjEN
since > jeN ¢l is finite. Therefore, we have proved our lemma. ]

Remark 5.10. By Lemma 5.9 if there exists 2’ € X such that > .y Ip(a,z;) = oo,
then for each x € X, we have } & p(x, z) = 0.

Lemma 5.11. Let {f;}jen be a sequence of contractive mappings on a complete metric
space (X, p) with an uniformly contractive constant ¢ € (0,1). For each j € N, let z; € X
be the unique fixed point of f;. Suppose that there exists 2’ € X such that

chp(a:',zj) < 0. (5.3)

jeN

Then, for all m € N, there exists x,,(c0) € X such that for all z € X, g(m,m + n)(x)
converges to T, (c0) as n tends to infinity. In addition, for all my, me € N with m; < mg,

g(ma,m2)(Tm, (00)) = Tmy (00).

Proof. Let m € N and € X. For each n € N, we set z,,,(n) := g(m,m + n)(z). Note
that by Lemma 5.9,

chp(x, 2j) < 00.
jeN
Then, for all n1,n € N with nq < no,

(1), 5m(12)) < kZ (), Bk + 1)
- Zi p(g(m,m + k)(x), g(m,m + k + 1)(z))
_ k:z Fol, fmsi(2) < k:z (ol k) + ol k()
e k:z M, 2 1) + DUtk sy s (2)
< ™(1+0) Zf KMo ). (5.4)
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Therefore, we deduce that {z,,(n)},en is a Cauchy sequence in X and there exists
ZTm(00) € X such that x,,(n) converges to z,,(00) as n tends to infinity. In addition,
let m € N and y € X. For each n € N, we set y,(n) := g(m,m + n)(y). By the same
argument, there exists y,,(00) € X such that y,,(n) converges to y,,(c0) as n tends to
infinity. Then, for all n € N,

P(&m(00), ym(20)) < p(2m(00), 2m(n)) + p(m (1), ym (1)) + P(Ym (1), Ym(c0))
< p(xm(00), zm(n)) + "p(2,y) + p(Ym(n), ym(c0)) — 0

as n tends to infinity. Finally, let mi, ms € N with m; < ms. Then, for all n € N,
Tm, (M2 —ma) +n) = g(ma, me + n)(z) = g(ma, ma2)(Tm, (n)).

Since Ty, ((m2 — m1) + n) converges to Z,, (co) as n tends to infinity, z,,(n) con-
verges to T;,,(00) as n tends to infinity and g(mi,m2) is continuous on X, we have
g(m1,m2)(Xm, (00)) = T, (00). Therefore, we have proved our lemma. O

To prove the existence of the limit (1.1) and the equation (1.2) in Main Theorem 6,
we give the following lemma without proof.

Lemma 5.12 (Collage theorem, Inverse collage theorem [18]). Let f: X — X be a
contractive mapping on a complete metric space (X, p) with a contraction constant ¢ €
(0,1). Let z € X be the unique fixed point of f. Then, for each a € X, we have

a),a
p(f(@).0) < (1+6) p(zca) and p(z.a) < LI,
We now show the limit (1.1) and the equation (1.2) in Main Theorem 6.

Proof of the limit (1.1) and the equation (1.2). Let xy € X satisfy the assumption in
Main Theorem 6. Recall that A, € K(X) be the unique fixed point of F,, for each m € N.
Note that {zo} € K(X) and F,,({z0}) = Uies, {fi(x0)} for each n € N. By Lemma 5.12,

we have
di({ao}, Ay) < LU0l {70}) _ di(Uies, Uiwo)}: {z0})

1—-c 1-c
In addition, by the properties of the Hausdorff distance and Lemma 5.12; we have

di(Uie, { fi(zo)}, {zo}) = I@Ié%fﬂ(fi(«’ﬂo)yxo) < max (14 c)p(zo, 2i).

Therefore, for each n € N, we have

1+¢c
A,) < ). .
dir({zo}, An) < T maxp(o, ) (5.5)
By the assumption of Main Theorem 6, we deduce that ) _ydg({zo},An) < co. By
Lemma 5.11, we have proved our theorem. ]

To prove the rest of Main Theorem 6, we prove the following lemma and corollary.

Lemma 5.13. Let {f;}jcn be a sequence of contractive mappings on a complete metric
space (X, p) with an uniform contraction constant ¢ € (0,1). For each j € N, let z; € X
be the unique fixed point of fj. Suppose that there exist 2’ € X, r € [¢,1) and C' > 0
such that for all j € N,

dp(a’,z;) < C'r? (5.6)
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Then, for all m € N, there exists x,,(c0) € X such that for all z € X, we have g(m,n)(x)
converges to Z,,(00) as n tends to infinity exponentially fast with the rate . In addition,
for all mq,mg € N with my < ma,

g(mla mg)(l‘m2 (OO)) = Tmy (OO)

Proof. Let m € N and € X. For each n € N, we set x,,(n) := g(m,m + n)(z). Note
that by the assumption (5.6), for each ¢ € N,

Cip(l‘) Zi) < p(x’ J"/)Ci + cip(x/7 Zi) < C(I) Ti)

where C(z) := C" + p(z,2’). Then, for all ny,n2 € N with n; < no,

p(Zm(11), T (n2)) < :éjlp(xm(k),xm(k +1))
- :Zl p(g(m,m +k)(z), g(m,m + k + 1)(z))
_ kz F o, i) < kz (s i) + s e (1))
o kz () + Pt T (2))
<M1+ ¢) :22:1 (2, 2mir) < O (x) (1 + ¢) :i:l rktm (5.7)

Therefore, we deduce that {z,,(n)},en is a Cauchy sequence in X and there exists
ZTm(o00) € X such that x,,(n) converges to z,,(00) as n tends to infinity. In addition,
let m € N and y € X. For each n € N, we set y,(n) := g(m,m + n)(y). By the same
argument, there exists y,,(0c0) € X such that y,,(n) converges to y,,(c0) as n tends to
infinity. Then, for all n € N,

P(&m(00), ym(20)) < p(m(00), 2m(n)) + p(Tm (1), ym (1)) + P(Ym (1), Ym(c0))
< p(xm(00), zm(n)) + "p(2,y) + p(ym(n), ym(c0)) — 0

as n tends to infinity. In addition, as ny tends to infinity in the inequality (5.7), we have

f)m C(x)(1+¢) o

p(zm(n1), Tm(o0)) < ¢"C(x)(1 + ¢) Z phtm — ( T

C
k=n1

for all n; € N. Therefore, we deduce that for each m € N, g(m,m + n)(z) converges to
Tm(00) as n tends to infinity exponentially fast with the rate r. Finally, let mq, mo € N
with mq < msy. Then, for all n € N,

T, (M2 —ma) +n) = g(ma, me + n)(z) = g(mi, m2)(Tm, (n)).

Since X, ((m2 — m1) + n) converges to x,,, (c0) as n tends to infinity, z,,(n) con-
verges to Tm,(00) as n tends to infinity and g(mi,ms) is continuous on X, we have
g(m1, m2)(m,(00)) = T, (00). Thus, we have proved our lemma. O
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Note that the constant C'(x) > 0 depends on x € X. However, if X is bounded, then
instead of C'(z) > 0, we can take the constant C' > 0 which does not depend on = € X.
Indeed, we set C' := diam, yexp(z,y) + C'(< 00) and we have C(z) = d(z,2’) + C' < C.

Corollary 5.14. Let {f;}en be a sequence of contractive mappings on a complete metric
space (X, p) with an uniformly contraction constant ¢ € (0,1). For each j € N, let z; € X
be the unique fixed point of fj. Suppose that there exists 2’ € X,

, 1
a := limsup {/p(a:’,zj) < -
c

j—ro0

Then, for all m € Nand r € {r > 0| ¢ <r < 1,ac < r}, there exists z,,(c0) € X such
that for all x € X, g(m, m+n)(x) converges to z,,(c0) as n tends to infinity exponentially
fast with the rate r. In addition, for all m1,ms € N with mq < ms,

g(ma,ma)(#m, (00)) = Tm, (00).

Proof. Let r € {r >0 | ¢ <r < 1,ac < r}. Then, by the assumption (5.14), there exists
M € N such that for all j > M, we have ¢ {/p(2’, z;) < r, which is equivalent to

(', z) <1l
We set C" := max{c/p(a’,z;)/r? | j < M} U{1}(> 0). Then, we have for all j € N,
dp(a',z) < C"rd.
By Lemma 5.13, our statement of corollary holds. O

We now prove the rest of Main Theorem 6.

Proof of the rest of Main Theorem 6. Let r € {r > 0| ¢ <r < 1l,ac <r}. Let zg € X
satisfy the assumption in Main Theorem 6. Recall that A,, € K(X) be the unique fixed
point of F,, for each m € N. By the argument in the proof of Corollary 5.14, there exists
C" > 0 such that for all n € N,

max d(zg, 2;)c" < C"'r™.
1€Jn

By the similar argument to deduce the inequality (5.5), we have

1+¢ 1+¢
di({wo}, An)c" < —— p %%fd(xo’zi)cn < C”’ar" (5.8)
for each n € N. By Lemma 5.13, the statement of our corollary holds. O

5.3 Examples of the sequence of contractive mappings

Let ({fi}icr, {Jn}nen) satisfy the setting (NAIFS). If we do not assume that there exists
x’ € X such that > .oy & p(x',z;) < oo, conculusion in Lemma 5.11 does not hold in
general. To show this, we give the following counterexample.

Example 5.15. Let f;: R = R (j € N) is defined by

fi(x) :==clx —a;) +aj = cx+ (1 — c)a; (x € R),
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where ¢ € (0,1) and a; > 0. Note that for each j € N, a; > 0 is the unique fixed point of
fjie. zj = a;. Then, for all m,k € N and = € R, we have

k—1
gmm+k)(z)=cfz+(1—-c Z Ay (5.9)
=0

Indeed, we show this by induction with respect to k € N, let m € N. Since
gm,m+1)(x) = f(x) = cx + (1 — ¢)ap,

we deduce the equation (5.9) if k = 1.
Assume that g(m, m + k)(z) = ¥z + (1 —¢) Zf:_ol a1 holds with k£ € N. Then, we
have

g(m,m+l<:+ 1)($) = g(mam"i'k)(fm-‘rk(l‘)) =cC fm-i—k 1 —C anm-i-l

= (cx+ (1= )amar) + (1 —¢) chamH =+ (1—¢) chamH.

Thus, we deduce that the equation (5.9) holds with £ 4+ 1 € N.
If c =1/2, a; = 27! and = € R, then for each k € N, the equation (5.9) is the following.

k—1
1 1 1
g(m,m+k‘)( ) 2kx+ 2 :2l2m+l+1 2kx+k,2m

which deduce that for each m € N and =z € R, g(m, m+k)(x) does not converge as k tends
to infinity.

In addition, there exists the example of the setting (NAIFS) in which the condition
(5.3) holds but the set Z of the unique fixed point of f; and {z;,,(c0) € X | m € N} are
not bounded. To show this, we give Example 5.16.

Example 5.16. In the previous Exmaple 5.15, we set ¢ = 1/2, a; =i and = 0. Then,
we first show that

ZCZ|’Zi|:Z§ < 0. (5.10)
=0 i=0

To prove this, let k € N and we set S := Zle i/2¢. Then, we have

1 LI N S DT R e g k
_§Sk:2§_22i+1:§+22¢+1_22¢+1_2k+1
i—1 i—1 i—1 i=1
1 =y Eooo1 1 1 k
:2+22i+1_2k+1:2+2<22_2k+1>_2k+1
i=1
1 k
:1_27_21:—&-1'

Therefore, we deduce that

S0 1 k
Z? ok—1 "~ ok"

=1
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Thus, we have proved the inequality (5.10). Note that {z; | i« € N} = N is not bounded.
In addition, for all m,k € N and « € R, we have

k—1

x m+1
g(m,m+k)(w):2—k+z T
=0
Therefore, we have z,,(0c0) = 2m + 2 for all m € N since
k k k k
m+1 1 l k1 l
> > :Z?m+zgz2(1—l/2 )m+zg—>2m+2

1=0 1=0 1=0 =1

as k tends to infinity. Thus, we deduce that Z is also unbounded.

5.4 Proof of Main Theorem 7

Definition 5.17. Let ({fi}tier, {/n}nen) satisfy the setting (NAIFS). For each k,l € N
with 1 < k <[ < 0o, we set

O il e e

For each m € Nand n € NU {oo} with 1 < m < n < oo and w € J™", we write w
as Wy, -+ wp—1 (wg € Jg,k = m,...,n —1). For each m € N and n € NU {oo} with
1<m<n<ooand we Jm we set |w| :=n —m. For each m € N and n € NU {oo}
with 1 <m < n < oo, w € Jmm) and s € N with 1 < s < |w|, we set

L m-+s—1
Ws 1= W+ Wints—1 € I Jj

For each m € N and n € NU{oo} with 1 < m < n—1 < oo, the shift map o: J™") —
J(m+1n) g defined by

m+1,n)

a(w) = Wyt 1Wm42 ** - Wp—1 € J( (w = W W1 Wn1 € J(m,n))

For each m € Nand n € NU {oo} with 1 <m <n—1 < oo and wy, € Jy,, the map
Ow,,: JTLM) 5 J(mn) s defined by

Ow,, (W) := WpWpt1 -+ Wp—1 € Jmn) (W = W1 Wmt2 - Wp—1 € J(m+1’")).

Note that the definition of o depends on m € N. However, we omit m € N from the
representation of the map. For each m € N, we introduce a metric d(,, ) on J (m,20) which
is defined by

o0

Do) (W, T) 1= dn(Wn, 70) /2" (W = W1+ ;T = Ty Tynp1 -+ € J)),

n=m

where for each n € N, d,, is the metric on J,, defined by

0 ifw,=m

dp (W, Tp) = {

1 otherwise

For each m,n € Nwithm < nand w = wy, - - - wp_1 € J™™ weset fy, := Sfwmo0fw, ;-
We show the following lemma holds even if Z is not bounded.
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Lemma 5.18. Let ({fi}icr, {/n}nen) satisfy the setting (NAIFS). For each n € N, let
A, € K(X) be the unique fixed point of F;,. Suppose that there exists A € K(X) such
that

> du(A, A" < oo
neN

Then, for each m’ € N and n; € NU {0}, we have

oo

dp (Am/(nl),Km/) < C_m/(l + C) Z deH(A,Ak),

k=m/+n1
where A,/(ny) == Fpyo---0 Fpyin,—1(A) if ng > 1 and A,,(0) := A.

Proof. Let m’ € N and A € K(X). By the same argument of the inequality (5.4) in
Lemma 5.11, we have

ni+ngs—1
A (Apy (1), Apr(n1 +12)) ™ (L+0) Y ™y (A, Ar) (5.11)

k=n1

for each ny,ne € N. Since 4,,/(n1+ng) converges to K,/ as ny tends to infinity by Lemma
5.11, we have

iy (A (m1), Kpr) < 7™ (14¢) Y ™ g (A, A yr)

k=nq
as ng tends to infinity in the inequality (5.11). Therefore, we have proved our lemma. [J

Lemma 5.19. Let ({fi}ier, {Jn}nen) satisfy the setting (NAIFS). For each n € N, let
A, € K(X) be the unique fixed point of F),. Suppose that there exists A € K(X) such
that

Z dp(A, Ay)c" < 0.

neN

Then, for each m € N and w € J™*) we have diam( fy), (Km+n)) tends to zero as n

tends to infinity uniformly with respect to w € J(™) and there exists the unique element
a(m,w) € K, such that

a(m,w) € ﬂ Fuwln (Kmtn),

neN

where we wirte w as Wy W41 - -+ and fw‘n = fuw,, © fme 0---0 fwm+n71.

Proof. Let m € N and w € J(™)_ We first show that Myen fwl, (Kmtn) # 0. Note that
by Lemma 5.11, for each mi, mo € N,

G(m17m1 + m2)(Km1+m2) — Km17

where G(mqi,my +mg) := Fy, 0+ -0 Fpy 4m,—1. Especially, for each n > m and w,, € J,,
we have
fwm+n (Km—l-n—l-l) CGm+n,m+n+1)(Knini1) = Kmin.

Therefore, for each n € N, we have

Jwm © fwm+1 ©---0 fwm+n(Km+n+1) C fuwm © fwm+1 ©--+0 fwm+n—1(Km+n)-
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Since { fu|, (Km+n)nen is a decreasing sequence of non-empty compact sets, we have

m fw|n(Km+n) # 0.

neN

We next show that (1, cy fu|, (Km+n) is a single set. It is sufficient to show

lim diam(fy, (Km+n)) = 0. (5.12)

n—0o0

Indeed, admitting (5.12), if z,w € (e ful, (Kmtn), then d(z,w) < diam(fy,|, (Kmnin))
for each n € N, which deduce that z = w as n tends to infinity.
In order to prove (5.12), let m € N, w € J(™>) and z € X. Note that for each n € N,

diam( fy),, (Km+n)) < 2¢"dg ({2}, Kmyn)- (5.13)

Indeed, for each n € N and x,y € fy,|, (Km+n),

p($ay) < P(l', fw|n(z)) + p(fw\n(z)7y) <2 sup p(fw|n(z)7y)
Z’/Efw|n(Km+n)

< 2" sup p(z,y) < 2CndH({Z}7Km+n)'
YEKm4n

Therefore, we have proved the inequality (5.13).
Note that by the assumption and Lemma 5.9, we have

> du({z}, An)c" < oo

neN

Moreover, by Lemma 5.18 with A := {z}, n; := 0 and m' := m + n, we have

diam fy), (Kmtn) < 2¢"dp ({2}, Kimin) < 2¢n ™M) (1 4 ¢) Z Fdy({z}, Ay)
k=m+n
=2 (140¢) Y Fdu({z}, A).
k=m+n

We have proved diam( fy,, (Km+n)) converges to zero as n tends to infinity uniformly with
respect to w € J(™)_ Hence, we have proved our lemma. O

Definition 5.20. Let ({fi}ier, {Jn}nen) satisty the setting (NAIFS). For each n € N, let
A, € K(X) be the unique fixed point of F,,. Suppose that there exists A € (X) such
that

> du(A, Ay < oo.
neN

Then, for each m € N, the projection map 7: J™) — K, is defined by
7(w) := a(m,w) (we Jm>®)),

Note that the definition of m depends on m € N. However, we omit m € N from the
representation of the map.
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Lemma 5.21. Let ({fi}ier, {J/n}nen) satisfy the setting (NAIFS). For each n € N, let
A, € K(X) be the unique fixed point of F;,. Suppose that there exists A € K(X) such
that

> du(A, A" < oo

neN

Then, for each m € N, we have 7: J("™>) — K, is uniformly continuous and surjective,
and for each w,, € Jn,

T = fu, OTO0, fy, OM =TO00y,,.

Proof. We first show that 7 is uniformly continuous. Let € > 0 and m € N. By Lemma
5.19, there exists M € N such that diamf,,, (Kmn+m) < € uniformly with respect to
w e Jm®) We set § := 2~ (M+m)

We deduce that for each w, 7 € J(™) with d(m,o0) (W, T) < 6, wp, = 7, for each n =
m,...m + M. Therefore, we have 7(w),w(t) € NAH! fwly (Kmtn) = MM Frin (Kontn)-

Especially, we have m(w),7(7) € fu|,, (Km+ar). We deduce that

p(m(w),n(7)) < diam f,,, (Kmyn) < e

Thus, we have proved that 7 is uniformly continuous.

We next show that 7 is surjective. Let m € N and z,, € K,, = F,,(K+1). By the
definition of F,,, there exists wy, € Jp, such that z,, € fy, (Kn+1). We deduce that there
exists zmi1 € Kmt+1 = Fip1(Kpy2) such that z,, = fu,,(2m+1). By the definition of
Fy1, there exists w41 € Jypy1 such that 2,41 € fu,,y ) (Kmy2). We deduce that there
exists zm42 € Kipyo = Fqo(Kimg3) such that 2,01 = fu,.., (Zm2)-

By induction with respect to n € N, there exists w = wpwmt+1 -+ € J(m:) and
Zm+n € Kmin (n € N) such that for all n € N,

Zm = fuw, 0000 fwm+n71(zm+n) € fw|n(Km+n)-

Since zp, is the unique element of [, oy fu|, (Km+n), we deduce that z, = 7(w). Therefore,
we have proved that 7: J(") — K, is surjective.

We finally show for each wy, € J,,, we have m = f,, omoo and f,, o7 = T o0y,,-
Let w € J™)_ Note that 7(c(w)) € Mnen fwmit © © fumpn (Kms14n). Then, we have

fwm (71'(0'(21)))) € fwm (ﬂ fwm+1 0---0 fwm+n (Km+1+n)>

neN

C ) fum © s ©+ © Fumyn Emins1).
neN

Since fu,, (m(o(w))) is the unique element of N, cy ful, (Km+n), we have f,, (7(o(w))) =
m(w).

Let w € J+12) and w,, € J,,. Note that m(w) € Mnen fwmer © 0 fomen (Km+14n)
and (0w, (W) € Npen fum ©* © fumin_1 (Kmin). Then, we have

fwm (W(w)) € fwm (ﬂ fwm+1 ©--0 fwm+n (Km+1+n)> C ﬂ fwm ©:--0 fwm+n71(Km+n)'

neN neN

Since fu,, (7m(w)) is the unique element of (,,cn fiow,. (w))]n (Km+n), We have fu,, (m(w))
(0w, (w)) . Therefore, we have proved our lemma.

Ol
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We now prove the Main Theorem 7.

Proof of Main Theorem 7. Let xg € X satisfy the assumption in Main Theorem 7. By
the assumption (1.3) and the inequality (5.5), we have

> du(A, Ay < oo.
neN

Therefore, by Lemma 5.19, Definition 5.20, Lemma 5.21 and the inequality (5.8), we have
proved our Theorem. ]

5.5 Proof of Main Theorem 8
We now show the limit (1.4) and the equation (1.5) in Main Theorem 8.

Proof of the limit (1.4) and the equation (1.5). Let z9 € X be a element of X in the as-
sumption of Main Theorem 8. Note that d,, € P1(X). By Lemma 5.12, for each n € N,
we have

Ay (Mn(82y),020) Ak (D, Pn(i) Oz © fi_172ieJn Pn(i) Oz)
1—c n 1—c¢c '

dMK((SJ?()J Mn) <

In addition, by Lemma 5.12, for each f € Lip;(X) and n € N, we have

£ X plasg o 7 = / £ pa(i)dsn, = 3 pali) ( [ abngost= [ fd5x0>

i€Jn i€Jn i€Jn
= an f fz fEO an fz -770 )

i€dp i€dn

=D pn(i)(1 + )p(zi, w0) = (1 + ¢) max p(zi, o)
i€Jp 1€

and we have

1+c¢
dari (Oog, in) < 7= max p(zo, zi). (5.14)

By assumption, we deduce that )y dari 0z, pn)c” < 00. By Lemma 5.11, we have
proved our theorem. ]

We next prove the rest of Main Theorem 8.

Proof of the rest of Main Theorem 8. Letr € {r >0|c <7 < 1,ac <r}and u, € Pi(X)
be the unique fixed point of M, for each m € N. Let xg € X satisfy the assumption in
Main Theorem 8. By the same argument in the proof of Corollary 5.14, there exists
C" > 0 such that for all n € N,

max p(xg, 2;)c" < C"'r™.
lGJn

In addition, by the inequality (5.14), we have

14+¢ 14+¢
< C//l n
T grplen =) < O

Ak (Oug, pin )" <

for each n € N. By lemma 5.13, the statement of our theorem holds. O
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5.6 Proof of Main Theorem 9

In this subsection, we show the support of the limit measures equals the corresponding
limit sets when ({ f; }ier, {J/n }nen, {Pn }nen) satisfies the setting (WNAIFS) (Main Theorem
9). To prove Main Theorem 9, we first show the following lemmas. Note that since (X, p)
is complete and separable, for for each finite Borel measures p on X, supp(p) € B(X)
is the minimum closed set F' in X such that u(F) = u(X), which is equaivalent to the
maximum open set O in X such that x(O) = 0. In addition, if z € X \ supp(u), there
exists € > 0 such that p(B(z,€)) = 0.

Lemma 5.22. Let (X, p) be a complete separable metric space and let p be a finite Borel
measure with a compact support. If f: X — X is continuous on X, then supp(uo f~1) is
also compact in X and we have supp(p o f=1) = f(supp(u)).

Proof. Let p be a finite Borel measure with a compact support and f: X — X is contin-
uous on X. Since supp(u) C f~1o f(supp(u)), we have

(o fH)(f(supp(p)) = u(f ™" o f(supp(p))) > p(supp(p)) = pu(X).

Since f(supp(u)) is compact, we have supp(u o f~1) C f(supp(r)) and supp(po f~1) is
also compact.

We next show supp(po f~1)¢ C f(supp(p))¢. Let x € supp(po f~1)¢. Note that there
exists € > 0 such that uo f~!(B(z,€)) = 0, which is equivalent to u(f~!(B(z,¢€))) = 0.

We now assume that © € f(supp(p)). Then, there exists z € supp(p) such that
x = f(z). Since f is continuous on X, we have there exists § > 0 such that f(B(z,0)) C
B(f(2),¢€), which is equivalent to B(z,d) C f~Y(B(z,€)).

Since if z € supp(), then for each 6 > 0, u(B(z,6)) > 0, we deduce that p(B(z,6)) <
u(f~Y(B(z,€))) = 0, which contradicts z € supp(u). Therefore, We have proved our
lemma. O

Lemma 5.23. Let (X, p) be a complete separable metric space and p, v be a Borel mea-
sures on X. Then, for each ¢ > 0, supp(cu) = supp(p) and supp(p + v) = supp(p) U
supp(v).

Proof. Since for each open subset U C X, cu(U) = 0 is equivalent to u(U) = 0. Therefore,
we have supp(cu) = supp(p). We now show supp(p + v)¢ = supp(u)© N supp(v)°. Let
xz € supp(p + v)¢. Then, there exists 6 > 0 such that pu(B(z,9)) + v(B(z,d)) = 0.
Therefore, we have p(B(z,0)) = v(B(z,0)) = 0. It follows that z € supp(p)¢ N supp(v)©.
Conversely, let € supp(p)¢ N supp(v)©. Then, there exists d1,02 > 0 such that
u(B(x,61)) =0 and v(B(x,d2)) = 0. We set 6 := min{d;,d2} > 0. Then, we have

(b +v)(B(z,6)) < u(B(z, o)) +v(B(z,d2)) = 0.
We deduce that = € supp(u + v)¢. Therefore, we have proved our lemma. O

Lemma 5.24. Let ({fi}icr, {Jn}nen, {Pn}nen) satisfy the setting (wNAIFS). For each
n € N, let v, € P1(X) be a limit measure of the setting (wNAIFS) in Main Theorem 8.
Let n € N. Then, for each L € N, w € J™>) and B € B(X), we have

L-1

Vn(fw\L(B)) > H Prtj (Wnt5)Vnt1(B).
=0
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Proof. Let n € N and w = wpwp41--- € J(m°) We show the statement of our lemma by
induction with respect to L € N. Since v, = M, vp41 for each B € B(X), we have

Vn(fun(B)) = Mavis1 (fu, (B)) = D pu(@)vns1(f7 © fu, (B))

1€Jn
> pn(wn)l/n-l-l(fz;: © fwn (B)) > pn(wn)l/n+1(B>.
Therefore, we have proved the statement of our lemma if L = 1.

We assume that the statement of our lemma holds if L € N. Then, for each B € B(X),
we have

L-1

Vi(Fulpor (B)) = va(fuly (Funr (B)) = T Pt (Wns)Vnsr(funir (B))-
j=0

Since vyt = Mp+LVn+1+1, we deduce that for each B € B(X),

Vnt L(fwnsr (B)) = Moyt 141 (fw,, (B)) = Z Pl (Onsra1(fi 0 funiy (B))

1€JntL

> pn+L(wn+L)Vn+L+1(f;n1+L o fwn+L (B)) > anrL(wnJrL)VnJrLJrl(B)'

Therefore, for each B € B(X), we have

-1 L
V(fulpr (B) = T Poti(wnri)pnsr(wnir)nspa1(B) = [ [ Poi (W) vnrr41(B)
=0 =0

and the statement of our Lemma holds when L +1 € N. Thus, we have proved our
lemma. O

Note that by Lemmas 5.22 and 5.23, if 4 € P;(X) has a compact support, then we
have proved then supp(M, (1)) = F,(supp(n)). We now prove the equation (1.6) in Main
Theorem 9.

Proof of the limit (1.6). Let z¢p € X satisfy the assumption in Main Theorem 9, n € N
and p € P1(X) with compact support. Note that supp(M,,(u)) = Fy,(supp(p)) for each
n € N. We set py := My o---0 M, () and

By := supp(p) = supp(My 0 - 0 My (pn)) = Fp 0+ 0 Fppyy(supp(p))

for each n € N and [ € N. By Theorem 1.11 and the equation (5.2), we have B; converges
to K, as [ tends to infinity in (K(X),dy) and K,, = ﬁmeNUlZMBlp since {Bj}ien is a
Cauchy esquence in (K(X),dq).

We first show that v, (K,,) = 1. Let m,l € N with [ > m. Then, we have

1= p(supp()) < w(UismBi°).
By the Portmanteau theorem (for example, see [16]), we have

1 < limsup w(UsmBi”) < vn(UsmB’).
l—o0

Since UZZWBZP is a decresing sequence with respect to m € N, we obtain that

1< lim Vn(ulszlp) = Vn(mmGNUIZmBlp) = Vn(Kn)

m—ro0
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Therefore, we have v, (K,) = 1. Thus, we have supp(v,,) C K,, and supp(v,) is compact.

We next show K,, C supp(v,). Let a € K,, and ¢ > 0. By Theorem 1.12, there
exists w € J(™*) such that {a} = NieN fw|, (Kny1)- In addition, since diam f,|, (K;11)
converges to zero as [ tends to infinity by Theorem 1.12, there exists L € N such that
fwl, (Knyr) C B(a,€). By lemma 5.24 with B = K, 1, and the equation vy, ,(Kny1) = 1,
we have

L-1 L—1
vn(B(a, €)) 2 vn(fu),(KniL)) 2 H Prtj (Wt Wi £ (Kpir) = H Ptj(Wntj) > 0.
§=0 3=0

Therefore, we obtain that a € supp(v,) and supp(v,,) = K, for each n € N. In addition,
we have

lim supp(M,, o0 M,1;(n)) = lim B; = K,, = supp(v,) in K(X).
l—o0 l—o0
Thus, we have proved the limit (1.6). O
We now prove the rest of Main Theorem 9.

Proof of the rest of Main Theorem 9. By the argument of the proof of the limit (1.6), for
each n € N and [ € N, we have

B = Supp(Mn ©:--0 Mn-l—l(,u)) =Fpo--- Fn-&-l(suPp(:u))'

By Theorem 1.11 and the equation (5.2), for each r € {r > 0 | ¢ < r < 1l,ac < r}, we
have B converges to K, as [ tends to infinity in ((X),dpy) exponentially fast with the
rate r and K,, = ﬂmeNUlszlp since {B;}ien is a Cauchy esquence in (K(X),dy). By
the similar argument in the proof of the limit (1.6), we have supp(v,) is compact and
supp(vn) = K, for each n € N. Therefore, for each n € N, we have

Fyo - Fuy(supp(p)) = By — Ky = supp(vn) in K(X)

as [ tends to infinity exponentially fast with the rate r. Thus, we have proved the rest of
Main Theorem 9. O

6 The entopy of iterated function systems and the Haus-
dorff dimension of the limit sets

In this section, we introduce the notion of entropy of general (finite) iterated function
systems and we estimate the Hausdorff dimension of the limit sets of general (finite)
iterated function systems.

Let (X, p) be a complete metric space, let I be a finite set with |I| = m and let {f;}ier
be a (finite) family of contractive mappings f;: X — X with a contraction constant ¢; €
(0,1). The family of the contractive mappings { fi}ier is called a (finite) iterated function
systems on X (for short, IFS on X). Note that by Hutchinson’s idea (for example, see
[17]), there exists the non-empty compact set K in X uniquely such that K = U;er fi(K).
The compact set K is called the limit set of an IFS {f;}icr.

For each [ € N and w = wywa - - - w; € I', we set fuy := fu, O fuwn 0+ 0 fu, and |w| := L.
In addition, for each k,l € N, w = wywy - --wy € I¥ and w' = wiw)- cw) € I', we set

ww' = wiwy - - wpwiwh - w; € I+

We now define the compact covering of the limit set of IFSs.
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Definition 6.1. Let K be the limit set of an IFS { f;};c; on complete metric space X and
let I € N. The compact covering of K with the level [ is defined by oy := {f,(K) | w € I'}
and the minimun covering number of o; is defined by

N(ay) ;== min{k € N | Fwy,wy, ..., w € I' s.t. K C U fu, (K)}.
We set H(«y) :=log N(ay).
Note that by the definition of the limit set, for each I € N, N(q;) < m'.

Lemma 6.2. Let K be the limit set of an IFS {f;}ic; on complete metric space X. Let
N(ay) is the minimum covering number of compact covering oy of K. Then, H(ag)/l
converges to infjeny H(ay)/l as [ tend to infinity.

Proof. By the general theory of subadditive sequence (for example, see [35]), we suffice to
show that for each k,l € N, N(ag1;) < N(ag)N(ap).

Let k l E N. By the definition of N(ay), there exists wy,ws, ... s WN (o) € I* such that
K C U fw (K). In addition, by the definition of N(«;), for each i = 1,..., N(ay),

there ex1st wh, wh, . .. ,w?v(a ) € I' such that K C U; al)fw (K). Therefore, we have

N(ow) N(ax) N(ar)

(ak) N(az)
Kc | fulK) U Uj@ﬁ, U U fuwr (K)
=1 =1 j=1

Since fuw; (K) (wiw; € I™1Y is elements in oy, K is covered by the elements of the set

o = {fuwuw,(K) |i=1,...,N(),j=1,...,N(a)}.

In addition, we have |o/| = N(ag)N (o), where || is the cardinality of o’. Therefore, we
deduce that N(ag1;) < N(ag)N(aq). Thus, we have proved our lemma. O

We set h({fi}icr) = lim;_yo0 H(y)/l = infieny H(oy)/l. Note that the definition of
h({fi}ier) is derived from the definition of the entropies in the ergodic theory (for example,
see [35]). In addition, we have 0 < h({fi}icr) < logm since for each [ € N, H(«y)/l > 0
and h({fz}zej) < H(Oél)/l < log m.

6.1 Proof of Main Theorem 10
We now prove Theorem 1.17 (Main Theorem 10).

Proof of Main Theorem 10. We first show that if h({f;}icr) = logm, then f, (w € I* :=
Usen?) is distinct. We assume that there exist w, 7 € I* such that f,, = f,. Without loss
of generality, we assume that |w| > |7|. We consider the following two cases.

1. |w| = || = for some | € N.
By the assumption, we have K C U,cp -1 fw(K). We deduce that N(oy) < m! — 1.
Therefore, we obtain that

log(m! — 1
M fdien) < Hon/t < P2 =Y <o,
2. 1= |w|>|r| = for some [,I' € N with [ > .
We set 7'V := {rw' € I' | w’' € I'"V}. Note that [7I"""| = m!". Since fr(K) C
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fr(K) = f,(K) for each w’ € I'™V', we deduce that K C Uperi\r - fw(K). Therefore, we

obtain that

h({fi}ier) < H(ay)/l < Log(m’ - m™) _ log m.

Therefore, we have proved if h({f;}icr) = logm, then f, (w € I* := U;en?) is distinct.
we next show that dimy (K) < h({fi}icr)/(—logmax;er¢;). We set ¢ := maxes ¢;.
Note that K is bounded and for each I € N and w € I', diamf,(K) < c/diamK since
A(ful@), fuly)) < dd(z,y) for cach 2,y € X.
Let €, > 0. We set s, := h({fi}icr)/(—logc) + €. Note that there exists L € N such
that for all [ > L, c/diamK < §. Since diamf,, (K) < § for all i = 1,..., N(q;), we have

N(x) N(au)
log H3 (K) <log | Y (diamfy, (K))* | <log | > (c'diamK)*
=1 =1

= log (N(al)(cldiamK)SE) <log N(ag) + s¢(llog ¢ + diamK)
1 diamK
< - {—ZH(al) + (—s0) <logc + = >} .

Since lim;_, —%H(al) = —h({fi}ier) and

diamK
Jim (—5e) <logc + laEn ) = (=sc)loge = h({fi}icr) — elogc,
—00
we have . Qi
llim —7H(al) + (—s¢) (logc—i— 1a;n ) = —celogc > 0.
—00

Therefore, we obtain that log H;(K) = —oo, which is equivalent to Hj(K) = 0. Thus,
we have dimy (K) < sc = h({fi}ier)/(—logc) + € for each € > 0. Hence, we have proved
our theorem. O
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