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Abstract

Around 1970, importance of fractals was recognized by Benoit Mandelbrot and
fractals have been well-studied since 1970s. One of the most important methods
to construct the fractals is the application of iterated function systems (IFSs) and
there are a lot of results related to the estimates of the Hausdorff dimension and
the Hausdorff measure of the limit sets (fractals) generated by IFSs and many other
important results. In this thesis, we consider the family of IFSs of generalized complex
continued fractions as an example of (families of ) infinite IFSs and we discuss the
estimates of the Hausdorff dimension, the Hausdorff measure, the packing dimension
and the packing measure of the limit sets generated by the IFSs. The point to estimate
dimensions and measures is to construct the conformal measure since the (family of )
IFSs have a “good” properties.

By the way, there is not only the study of CIFSs in recent studies. For example,
there are a study of the Non-autonomous IFSs (NAIFSs) which is a generalization of
the IFSs and a study of IFSs with overlaps which does not satisfy usual conditions
(for example, open set condition) in the theory of IFSs. In this thesis, we discuss
NAIFSs (with weights) defined on complete (separable) metric spaces, which has not
been discussed before. If the NAIFS (with weights) satisfies a “good” condition, we
can construct the limit set (limit measure) generated by the NAIFS (with weights)
and we discuss some basic properties. The point to construct the limit sets and prove
the properties of the limit sets is to apply the generalized Banach fixed point theorem
to the NAIFSs (with weights) under the “good” condition. Finally, we discuss the
estimate of the Hausdorff dimension of limit sets generated by the IFSs with overlaps.
The point to prove the estimate of the Hausdorff dimensions is the following: we
consider a minimum number of the level-l cells which cover the limit sets and we
obtain the asymptotic behavior of the numbers.
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1 Introduction and the main results

Iterated function systems arise in many contexts. One of the most famous applications
to use the systems is to construct many kinds of fractals. Studies of these fractal sets
constructed by the contractive iterated function systems (for short IFS), sometimes called
limit sets, have been developed in many directions. Note that general properties of limit
sets of systems with finitely many mappings have been well-studied. For example, see
Hutchinson [10], Falconer [8], Barnsley [4], Bandt and Graf [2], and Schief [30] and so on.

Around 1990’s, studies of the limit sets of the conformal IFSs (for short CIFS) were
initiated and there are many results related to CIFSs. Especially, Mauldin and Urbański
found a formula on the Hausdorff dimension of limit sets generated by finite CIFSs. For
example, they found the formula on the Hausdorff dimension of the limit sets, and there
exist statements which claim that the Hausdorff measure of the limit set of any finite CIFS
with respect to the Hausdorff dimension is positive and finite and the packing measure
of the limit set with respect to the Hausdorff dimension is also positive and finite (from
this, we deduce that the Hausdorff dimension of the limit set of any finite CIFS and the
packing dimension of the limit set are the same in general).

In addition, studies of limit sets of conformal iterated function systems with infinitely
many mappings (for short, infinite CIFS) were initiated by Mauldin and Urbański ([22],
[23], [24]) and there are many related results on infinite CIFSs with overlaps by Mihailescu
and Urbański ([25], [26]). Note that there exist other papers of infinite IFS (for example,
see [27]). Especially, Mauldin and Urbański first showed deep results to estimate the
Hausdorff dimension and the Hausdorff measure of the limit sets. For example, they
found a condition under which the Hausdorff measure of the limit set of the infinite CIFS
with respect to the Hausdorff dimension is zero.

Moreover, Mauldin and Urbański constructed an interesting example of an infinite
CIFS which is related to the complex continued fractions in the paper [22].

The construction of the example is the following. Let X := {z ∈ C | |z − 1/2| ≤ 1/2}.
We call Ŝ := {ϕ̂(m,n)(z) : X → X | (m,n) ∈ Z × N} the CIFS of complex continued
fractions, where Z is the set of integers, N is the set of positive integers and

ϕ̂(m,n)(z) :=
1

z +m+ ni
(z ∈ X).

Let Ĵ be the limit set of Ŝ (see Definition 2.19) and ĥ be the Hausdorff dimension of Ĵ .
For each s ≥ 0, we denote by Hs the s-dimensional Hausdorff measure and denoted by Ps

the s-dimensional packing measure. For this example, Mauldin and Urbański showed the
following theorem.

Theorem 1.1 (D. Mauldin, M. Urbanski (1996)). Let Ŝ be the CIFS of complex continued

fractions. Then, we have that Hĥ(Ĵ) = 0 and 0 < P ĥ(Ĵ) <∞.

This is an example of infinite CIFS of which the Hausdorff measure of the limit set
with respect to the Hausdorff dimension is zero and the packing measure of the limit set
is positive and finite. Note that this is a new phenomenon of infinite CIFSs which cannot
hold in finite CIFSs.

Moreover, interests in families of CIFSs have emerged. Roy and Urbański especially
studied the Hausdorff dimension functions for the families of CIFSs ([29]). They showed
that the Hausdorff dimension functions for the families of CIFSs are continuous with
respect to the “λ-topology” which they introduced, and if the families are analytic in some
sense, then the Hausdorff dimension functions for the families of CIFSs are real-analytic
and subharmonic.

4



There exist rich general theories of limit sets of CIFSs for given families of infinite
CIFSs. However, the authors do not think we have found sufficiently many examples of
families of infinite CIFSs to which we can apply the above general theories. Therefore,
the first aim of this thesis is to present a new interesting family of infinite CIFSs. More
precisely, we define a subset A0 of the complex plane as a parameter space and for each
point in the parameter space, we introduce a CIFS related to generalized complex contin-
ued fractions {Sτ}τ∈A0 . Note that {Sτ}τ∈A0 is a family of CIFSs which has uncountably
many elements.

We found Mauldin and Urbański’s general theories [22], [23] and Roy and Urbański’s
general theory [29] can apply to this family. We also show that the Hausdorff dimension
function for the family is continuous in the parameter space and is real-analytic and
subharmonic in the interior of the parameter space by applying the general theories of
the families of infinite CIFSs. We also show that, as a corollary for these results, the
Hausdorff dimension function has a maximum point and it belongs to the boundary of
the parameter space. Moreover, to find examples of infinite CIFSs with the phenomenon
which cannot hold in finite CIFSs, we also show that the Hausdorff measure of the limit
set with respect to the Hausdorff dimension is zero and the packing measure of the limit
set is positive and finite for each τ ∈ A0.

The precise statement is the following. Let

A0 := {τ = u+ iv ∈ C | u ≥ 0 and v ≥ 1}

and X := {z ∈ C | |z − 1/2| ≤ 1/2}. Also, we set Iτ := {m+ nτ ∈ C | m,n ∈ N} for each
τ ∈ A0, where N is the set of the positive integers.

Definition 1.2 (The CIFS of generalized complex continued fractions). For each τ ∈ A0,
Sτ := {ϕb : X → X | b ∈ Iτ} is called the CIFS of generalized complex continued fractions.
Here, for each τ ∈ A0,

ϕb(z) :=
1

z + b
(z ∈ X, b ∈ Iτ ).

The family {Sτ}τ∈A0 is called the family of CIFSs of generalized complex continued
fractions. For each τ ∈ A0, let Jτ be the limit set of the CIFS Sτ (see Definitions 2.12,
2.19) and let hτ be the Hausdorff dimension of the limit set Jτ .

We remark that this family of CIFSs is a generalization of Ŝ in some sense. The system
Sτ is related to “generalized” complex continued fractions since each point of the limit set
Jτ of Sτ is of the form

1

b1 +
1

b2 +
1

b3 + · · ·
for some sequence (b1, b2, b3, . . .) in Iτ (See Definition 2.19). Note that there are many
kinds of general theories for continued fractions and related iterated function systems
([15], [22], [23], [26]).

We denote by Int(A0) the set of interior points of A0 with respect to the topology in
C. We now present the first five main results in this thesis.

Theorem 1.3 (Main Theorem 1 ([11, Theorem 1.2])). Let {Sτ}τ∈A0 be the family of
CIFSs of generalized complex continued fractions. Then, the function τ 7→ hτ is continuous
in A0. Moreover, for each τ ∈ A0, hτ is equal to the unique zero of the pressure function
of Sτ (see Definition 2.2), 1 < hτ < 2 and hτ → 1 (τ ∈ A0, τ → ∞).
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Theorem 1.4 (Main Theorem 2 ([11, Theorem 1.3])). Let {Sτ}τ∈A0 be the family of
CIFSs of generalized complex continued fractions. Then, we have that τ 7→ hτ is real-
analytic and subharmonic in Int(A0). Also, the function τ 7→ hτ is not constant on any
non-empty open subset of A0.

Theorem 1.5 (Main Theorem 3 ([11, Theorem 1.4])). Let {Sτ}τ∈A0 be the family of
CIFSs of generalized complex continued fractions. Then, there exists a maximum value of
the function τ 7→ hτ (τ ∈ A0) and any maximum point of the function τ 7→ hτ belongs to
the boundary of A0. In particular, we have that max{hτ |τ ∈ A0} = max{hτ |τ ∈ ∂A0}.

Remark 1.6. It was shown that for each τ ∈ A0, Jτ \ Jτ is at most countable and
hτ = dimH(Jτ ) ([32, Theorem 6.11]). For the readers, we give a proof of this fact in the
Appendix in section 2 of this paper. Also, for each τ ∈ A0, since the set of attracting
fixed points of elements of the semigroup generated by Sτ is dense in Jτ , Theorem 1.1
of [31] implies that Jτ is equal to the Julia set of the rational semigroup generated by
{ϕ−1

b | b ∈ Iτ}.

Theorem 1.7 (Main Theorem 4 ([12, Theorem 1.3])). Let {Sτ}τ∈A0 be the family
of CIFSs of generalized complex continued fractions. Then, for each τ ∈ A0, we have
Hhτ (Jτ ) = 0

Theorem 1.8 (Main Theorem 5 ([12, Theorem 1.3], [13])). Let {Sτ}τ∈A0 be the family
of CIFSs of generalized complex continued fractions. Then, for each τ ∈ A0, we have
0 < Phτ (Jτ ) < ∞. In particular, for each τ ∈ A0, the packing dimension of the limit set
Jτ equals the Hausdorff dimension hτ of the limit set Jτ .

Remark 1.9. By the general theories of finite CIFSs, the Hausdorff measure of the limit
set of each finite CIFS with respect to the Hausdorff dimension and the packing measure
of the limit set with respect to the Hausdorff dimension is positive and finite. However,
Theorem 1.7 and Theorem 1.8 indicates that for each Sτ of the family of CIFSs of gen-
eralized complex continued fractions, which consists of uncountably many elements, the
Hausdorff measure of the limit set with respect to the Hausdorff dimension is zero and the
packing measure of the limit set with respect to the Hausdorff dimension (which is equal
to the packing dimension ) is positive and finite. This is also a new phenomenon which
cannot hold in the finite CIFSs.

As we have seen, iterated function system is one of the most famous methods to
construct fractals and there are many papers of studies of the limit sets of IFSs. Especially,
fractals (limit sets) generated by iterated function systems with finitely many mappings
are well-studied and there exist many results related to the Hausdorff dimension and the
Hausdorff measure of the limit sets, the packing dimension and the packing measure of
the limit sets and so on ([10], [2], [30], [8], [4], [17], [18]). Note that the self-similarity
of the limit sets of (autonomous) iterated function systems is one of the most important
points to obtain these rich results. However, there exist some results related to fractals
generated by non-autonomous iterated function systems ([3], [9], [29], [1], [20], [21], [7]).
For example, Barlow and Hambly consider generalized Sierpiński gasket generated by the
non-autonomous iterated function systems and they studied the geometric properties and
analytical properties of the limit sets ([3]). In addition, there exist the general theories
which assure the existence of the limit sets of non-autonomous iterated function systems
and which show the estimates on the Hausdorff dimension of the limit sets ([9], [29], [1]).
This indicates we can analyze not only the limit sets of (autonomous) iterated function
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systems but also ones of non-autonomous iterated function systems. Henceforth, we focus
on the non-autonomous iterated function systems.

As we mentioned, there exist some results related to the fractals generated by the non-
autonomous iterated function systems ([9], [29], [1], [20], [21], [7]). However, the authors
of those papers only deal with the non-autonomous iterated function systems defined on
bounded sets (in some sense) or compact sets.

On the other hand, Hutchinson’s original idea to construct the fractals is now gen-
eralized as follows (for example, see [17]). We first consider a complete metic space X
(which is not always bounded) and (autonomous finite) iterated function systems defined
on X. We next consider the set of all non-empty compact subsets of X and the Hausdorff
distance on the set. Sometimes, this metric space is denoted by (K(X), dH). Note that
the metric space (K(X), dH) is complete since X is complete. In addition, we define a
contractive mapping (which is often called the Barnsley operator, see [19]) on K(X) asso-
ciated with the iterated function system. By the Banach fixed point theorem, we deduce
that there exists the unique fixed point (the unique non-empty compact subset) of the
Barnsley operator. The unique non-empty compact subset is the limit set of the iterated
function system.

The author of this thesis found that we can generalize this Hutchinson’s idea to the
setting of non-autonomous iterated function systems on complete metric spaces which are
possibly unbounded.

Therefore, the second aim of this thesis is to give the method to construct the limit
sets of the non-autonomous iterated function systems on (possibly) unbounded complete
metric spaces based on Hutchinson’s idea. We first consider a sequence of the contractive
mappings defined on a complete metric space and show a generalized Banach fixed point
theorem for a sequence of the contractive mappings under a certain condition. We finally
show that we can define the limit set of the system as the limit of a sequence in K(X)
which is constructed by the non-autonomous Barnsley operators of the non-autonomous
iterated function system defined on a complete metric space (which is not always bounded)
under another certain condition which is easy to check. Note that if we assume a stronger
condition, we also show that the convergence to the limit sets is exponentially fast. In
addition, under the same condition, we can construct the projection mapping which is
important to analyze geometrical properties of the limit sets.

Moreover, we consider the non-autonomous iterated function systems with (positive)
weights to construct a generalization of self-similar measures (we call the measures limit
measures in this thesis). By the above ideas, we also define the limit measure as the limit of
a sequence in the space of all Borel probability measures in X which is constructed by non-
autonomous contractive mappings (Each mapping is often called the Foias operator, see
[19]) associated with the non-autonomous iterated function system with weights defined
on a complete separable metric space (which is possibly unbounded) under the same
condition. In addition, we also show that the support of the limit measure is compact and
is equal to the limit set.

The precise statement is the following. Let I be a set and (X, ρ) be a complete metric
space.

Definition 1.10. We say that ({fi}i∈I , {Jn}n∈N) satisfy the setting (NAIFS) if

(i) {Jn}n∈N is a sequence in {J ⊂ I | J is finite}, and

(ii) {fi : X → X}i∈I is a family of contractive mappings on X with the uniform con-
traction constant c ∈ (0, 1), that is, there exists c ∈ (0, 1) such that for all i ∈ I and
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x, y ∈ X,
ρ(fi(x), fi(y)) ≤ c ρ(x, y).

Note that for each i ∈ I, there exists zi ∈ X such that zi is the unique fixed point of
fi since X is complete and for each i ∈ I, fi is a contractive mapping defined on X. Let
dH be the Hausdorff distance on K(X) which is defined by

dH(A,B) := inf{ϵ > 0 | A ⊂ Bϵ, B ⊂ Aϵ} (A,B ∈ K(X)),

where for each ϵ > 0 and A ⊂ X, we set Aϵ := {y ∈ X | ∃a ∈ A, ρ(y, a) ≤ ϵ}. For each
n ∈ N, let Fn : K(X) → K(X) be the mapping defined by

Fn(A) :=
∪
i∈Jn

fi(A),

which is well-defined since each fi is continuous on X and each Jn is finite. Each mapping
Fn is often called the Barnsley operator. We now present the next two main results in
this thesis.

Theorem 1.11 (Main Theorem 6 (see [14])). Let ({fi}i∈I , {Jn}n∈N) satisfy the setting
(NAIFS). Suppose that there exists x0 ∈ X such that∑

n∈N

{
max
i∈Jn

ρ(x0, zi)

}
cn <∞.

Then, there exists the unique sequence of compact subsets {Km}m∈N in K(X) such that
for each m ∈ N and A ∈ K(X), we have

lim
n→∞

(Fm ◦ Fm+1 ◦ · · · ◦ Fm+n−1)(A) = Km in K(X). (1.1)

In addition, for each m ∈ N, we have

Km = Fm(Km+1). (1.2)

Moreover, suppose that there exists x0 ∈ X,

a := lim sup
n−→∞

n

√
max
i∈Jn

ρ(x0, zi) <
1

c
.

Then, for all m ∈ N, r ∈ {r > 0 | c ≤ r < 1, ac < r} and A ∈ K(X), (Fm ◦ Fm+1 ◦ · · · ◦
Fm+n−1)(A) converges to Km as n tends to infinity in K(X) exponentially fast with the
rate r.

Theorem 1.12 (Main Theorem 7 (see [14])). Let ({fi}i∈I , {Jn}n∈N) satisfy the setting
(NAIFS). Suppose that there exists x0 ∈ X such that∑

n∈N

{
max
i∈Jn

ρ(x0, zi)

}
cn <∞. (1.3)

Then, diam(fw|n(Km+n)) converges to zero as n tends to the infinity. In addition, for each
m ∈ N, there exists a mapping πm : Π∞

j=mJj → Km such that

{πm(w)} =
∩
n∈N

fw|n(Km+n),

8



where w = wmwm+1 · · · ∈
∏∞

j=m Jj and fw|n = fwm ◦ fwm+1 ◦ · · · ◦ fwm+n−1 , and πm is
surjective and uniformly continuous. Moreover, suppose that there exists x0 ∈ X such
that

a := lim sup
n→∞

n

√
max
i∈Jn

ρ(x0, zi) <
1

c
.

Then, for each r ∈ {r > 0 | c ≤ r < 1, ac < r}, diam(fw|n(Km+n)) converges to zero as n
tends to the infinity exponentially fast with the rate r.

Moreover, we consider non-autonomous iterated function systems with weights. Let I
be a set and (X, ρ) be a complete separable metric space.

Definition 1.13. We say that ({fi}i∈I , {Jn}n∈N, {pn}n∈N) satisfy the setting (wNAIFS)
if

(i) {Jn}n∈N is a sequence in {J ⊂ I | J is finite},

(ii) {fi : X → X}i∈I is a family of contractive mappings on X with the uniform con-
traction constant c ∈ (0, 1), that is, there exists c ∈ (0, 1) such that for all i ∈ I and
x, y ∈ X,

ρ(fi(x), fi(y)) ≤ c ρ(x, y), and

(iii) for each n ∈ N, pn is [0,∞)-valued functions on I with pn(i) > 0 if and only if i ∈ Jn,
and pn satisfies ∑

i∈Jn

pn(i) = 1.

Let P1(X) be the set of Borel probability measures defined on the complete separable
metric space (X, ρ) for which there exists a ∈ X such that the function x 7→ ρ(a, x) is
integrable. Note that for each b ∈ X and P ∈ P1(X), we have

∫
X ρ(b, x)P (dx) <∞ since∫

X
ρ(b, x) P (dx) ≤

∫
X
ρ(b, a) P (dx)+

∫
X
ρ(a, x) P (dx) = ρ(b, a)+

∫
X
ρ(a, x) P (dx) <∞.

Let Lip1(X) be the set of R-valued functions f on X for which ρ(f(x), f(y)) ≤ ρ(x, y)
for all x, y ∈ X. Let dMK be the Monge-Kantrovich distance on P1(X) which is defined
by

dMK(µ, ν) := sup

{∫
X
fdµ−

∫
X
fdν | f ∈ Lip1(X)

}
(µ, ν ∈ P1(X)).

Let Mn : P1(X) → P1(X) (n ∈ N) be mappings defined by

Mn(µ)(B) :=
∑
i∈Jn

pn(i) µ(f
−1
i (B)) (B ∈ B(X)),

where B(X) is the set of all Borel sets in X. Note that for each n ∈ N, Mn is well-defined
since ∫

X
ρ(x, a) dMn(µ) =

∑
i∈Jn

pn(i)

∫
X
ρ(x, a) d(µ ◦ f−1

i )

=
∑
i∈Jn

pn(i)

∫
X
ρ(fi(x), a) dµ ≤

∑
i∈Jn

pn(i)

∫
X
ρ(fi(x), fi(zi)) + ρ(fi(zi), a) dµ

=
∑
i∈Jn

pn(i)

{∫
X
c ρ(zi, x) dµ+ ρ(zi, a)

}
<∞.

Each mapping Mn is often called the Foias operator. We now present the following two
more main results in this thesis.
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Theorem 1.14 (Main Theorem 8 (see [14])). Let ({fi}i∈I , {Jn}n∈N, {pn}n∈N) satisfy
the setting (wNAIFS). Suppose that there exists x0 ∈ X such that∑

n∈N

{
max
i∈Jn

ρ(x0, zi)

}
cn <∞.

Then, there exists the unique sequence of probability measures {νm}m∈N in P1(X) such
that for each m ∈ N and µ ∈ P1(X),

lim
n→∞

(Mm ◦Mm+1 ◦ · · · ◦Mm+n−1)(µ) = νm in P1(X). (1.4)

In addition, for each m ∈ N, we have

νm =Mm(νm+1). (1.5)

Moreover, suppose that there exists x0 ∈ X such that

a := lim sup
n→∞

n

√
max
i∈Jn

ρ(x0, zi) <
1

c
.

Then, for each m ∈ N, r ∈ {r > 0 | c ≤ r < 1, ac < r} and µ ∈ P1(X), (Mm ◦Mm+1 ◦ · · · ◦
Mm+n−1)(µ) converges to νm as n tends to infinity in P1(X) exponentially fast with the
rate r.

Theorem 1.15 (Main Theorem 9 (see [14])). Let ({fi}i∈I , {Jn}n∈N, {pn}n∈N) sat-
isfy the setting (wNAIFS). If µ ∈ P1(X) has a compact support, then supp(Mn(µ)) =
Fn(supp(µ)) for each n ∈ N. In addition, if there exists x0 ∈ X such that∑

n∈N

{
max
i∈Jn

ρ(x0, zi)

}
cn <∞,

then for each m ∈ N, we have supp(νm) = Km and if µ ∈ P1(X) has a compact support,
then

lim
n→∞

supp(Mm ◦Mm+1 ◦ · · · ◦Mm+n−1(µ)) = supp(νm) in K(X). (1.6)

Moreover, suppose that there exists x0 ∈ X such that

a := lim sup
n→∞

n

√
max
i∈Jn

ρ(x0, zi) <
1

c
,

and µ ∈ P1(X) has a compact support, then for each r ∈ {r > 0 | c ≤ r < 1, ac < r},
supp(Mm ◦Mm+1 ◦ · · · ◦Mm+n−1(µ)) converges to supp(νm) in K(X) as n tends to infinity
exponentially fast with the rate r.

As we have seen, it is not obvious that we can construct the limit sets of non-
autonomous iterated function systems on complete metric spaces which are possibly un-
bounded. However, the construction of the limit sets of the systems is not the only interest
in the study of fractal geometry. Another interest in the study of the fractal geometry is to
estimate the dimensions of the fractals and the measures of the fractals. To estimate the
Hausdorff dimension of the limit sets of iterated function systems, we usually assume some
conditions (the open set condition etc.) on the iterated function systems ([8], [10], [17],
[22]). Under one of the conditions, we can analyze the limit sets of the iterated function
systems and we can estimate the Hausdorff dimension of them.
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However, we sometimes encounter the limit sets of iterated function systems which
do not satisfy the open set condition. There exist some results on the estimate of the
Hausdorff dimension of the limit sets under another kind of condition for iterated function
systems ([25], [26]). Also, there exist some results on the specific case of the iterated
function systems (for example, see [5]). The author of this thesis and H. Sumi introduce a
different type of method to estimate the Hausdorff dimension of the limit sets of iterated
function systems.

Therefore, the third aim of this thesis is to find the estimate of the Hausdorff dimension
of the limit sets of iterated function systems which do not satisfy the open set condition.
We give another type of estimate of the Hausdorff dimension of the limit sets of iterated
function systems without well-known conditions (for example, the open set condition, the
transvarsality condition etc.). That is, by using the technique to define the entropy in the
ergodic theory, we obtain an upper estimate on the Hausdorff dimesnion of the limit sets
of iterated function systems.

The precise statement is the following. Let X be a complete metric space. Let I be a
finite set with |I| = m and {fi}i∈I be a (finite) family of the contractive mappings fi : X →
X with contraction constant ci ∈ (0, 1). {fi}i∈I is called a (finite) iterated fucntion system
(for short, (finite) IFS). Note that by the above argument (original Hutchinson’s idea),
there exists a non-empty compact set K in X uniquely such that K = ∪i∈Ifi(K). K is
called the limit set of an IFS {fi}i∈I . For each l ∈ N and w = w1w2 · · ·wl ∈ I l, we set
fw := fw1 ◦ fw2 ◦ · · · ◦ fwl

and |w| := l.

Definition 1.16. Let l ∈ N. The compact covering of K is defined by αl := {fw(K) | w ∈
I l} and the minimun covering number of αl is defined by

N(αl) := min{k ∈ N | ∃w1, w2, . . . , wk ∈ I l such that K ⊂ ∪k
i=1fwi(K)}.

We set H(αl) := logN(αl).

Note that for each l ∈ N, N(αl) ≤ ml. We set h({fi}i∈I) := liml→∞H(αl)/l =
inf l∈NH(αl)/l (see Lemma 6.2). Note that 0 ≤ h({fi}i∈I) ≤ logm since for each l ∈ N,
H(αl)/l ≥ 0 and h({fi}i∈I) ≤ H(α1)/1 ≤ logm. We now present the last main result in
this thesis.

Theorem 1.17 (Main Theorem 10). Let X be a complete metric space and let I be
a finite set with |I| = m. Let {fi}i∈I be a (finite) IFS such that each f : X → X is
contractive mapping with contraction constant ci ∈ (0, 1) and let K be the limit set of the
IFS {fi}i∈I . Then, we have dimH(K) ≤ h({fi}i∈I)/−log(maxi∈I ci), where dimH(K) is the
Hausdorff dimension of K. In addition, if h({fi}i∈I) = logm, then for each ω, τ ∈ ∪i∈NI

i

with ω ̸= τ , we have fω ̸= fτ .

The rest of the paper is organized as follows. In Section 2, we summarize the theory
of CIFSs and the theory of the families of CIFSs without proofs. In addition, we give the
proofs of some properties of the CIFS of the generalized complex continued fractions. In
Section 3, we prove Main Theorems 1, 2, 3 of this thesis. In Section 4, we prove Main
Theorems 4, 5 of this thesis. In Section 5, we give the proofs of some basic properties of
non-autonomous iterated function systems defined on bounded sets and we prove Main
Theorem 6 of this thesis, in which we deal with non-autonomous iterated function systems
on (possibly unbounded) complete metric spaces. In addition, we give some examples of
the non-autonomous iterated function systems dedined on R. Moreover, we prove Main
Theorems 7, 8, 9 of this thesis. In Section 6, we prove Main Theorem 10 of this thesis.
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2 Preliminaries

2.1 Iterated function systems and their basic properties

In this subsection, we consider basic properties of infinite IFSs. Through in this subsection,
(X, ρ) is a non-empty compact metric space and I is a set which have at least two elements.

Definition 2.1. We say that S =
{
ϕi : X → X | i ∈ I

}
is a IFS if S satisfies the following

conditions.

(i) For each i ∈ I, ϕi is injective.

(ii) There exists c > 0 such that for each i ∈ I and x, y ∈ X, ρ(ϕi(x), ϕi(y)) ≤ cρ(x, y).

We set I∗ :=
∪

n≥1 I
n and I∞ := IN. We denote by w1w2 · · ·wn (w1, w2, ..., wn) ∈ In.

If w ∈ In for some n ∈ N, we set |w| := n and if w ∈ I∞, we set |w| := ∞. In addition,
for each w ∈ I∗ ∪ I∞ and n ∈ N with n ≤ |w|, we set w|n := w1 . . . wn. Besides, for each
n ∈ N and w = w1w2, ..., wn ∈ In for some n ∈ N, we set

ϕw := ϕw1 ◦ · · · ◦ ϕwn

and we set ϕw|0 := id., where id. is identity map on X.

Proposition 2.2. For all w ∈ I∞, {ϕw|n(X)}n≥1 is a monotone decreasing sequence of
compact sets. In addition, we have diam(ϕw|n(X)) → 0 (n→ ∞) uniformly with respect
to w ∈ I∞, where diam(A) is the diameter of A defined by diam(A) := supx,y∈A ρ(x, y).

Proof. Note that since for each i ∈ I, ϕi : X → X is continuous, for each w ∈ I∞ and
n ∈ N, ϕw|n is continuous. Therefore, we have for each w ∈ I∞ and n ∈ N, ϕw|n(X)
is a compact set and since for each n ∈ N, ϕw|n+1

(X) = ϕw|n(ϕwn+1(X)) ⊂ ϕw|n(X),
{ϕw|n(X)}n≥1 is a monotone decreasing sequence. In addition, for each w ∈ I∞ and
n ∈ N, we have

diam(ϕw|n(X)) = sup
x,y∈X

ρ(ϕw|n(x), ϕw|n(x)) ≤ sup
x,y∈X

cρ(ϕw|n−1
(x), ϕw|n−1

(y)). (2.1)

By induction, we obtain that diam(ϕw|n(X)) ≤ cndiam(X) for each n ∈ N. Since
cndiam(X) → 0 as n → ∞ uniformly with respect to w ∈ I∞, we have proved our
lemma.

Corollary 2.3.
∩∞

n=1 ϕw|n(X) is a single set.

Proof. If ∩∞
n=1ϕw|n(X) = ∅, we have X ⊂ ∪∞

n=1ϕw|n(X)c. Since X is compact, there exists

N ∈ N such that X ⊂ ∪N
n=1ϕw|n(X)c = ϕw|N (X)c. Therefore, we have ϕw|N (X) = ∅. This

contradicts ϕw|N (X) ̸= ∅. In addition, if x, y ∈ ∩∞
n=1ϕw|n(X), then for each n ∈ N we have

ρ(x, y) ≤ diam(ϕw|n(X)) ≤ cndiam(X) by the inequality (2.1). Therefore, we have proved
our corollary.

Definition 2.4. The coding map π : I∞ → X for IFS S is defined by {π(w)} =∩∞
n=0 ϕw|n(X) for each w ∈ I∞.

We endow I with the discrete topology, and endow I∞ := IN with the product topology.
Note that a basis of the topology for IN is the set of subsets

Vm(α) = {β ∈ I∞|βn = αn, n = 1, · · · ,m} (α ∈ I∞,m ∈ N).
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We set a metric d on I defined by d(x, y) = 0 if x = y and d(x, y) = 1 if x ̸= y. Let γ be
a metric on I∞ defined by

γ(α, β) :=
∞∑
n=1

d(αn, βn)

2n
(α = (αn), β = (βn) ∈ I∞).

The following lemma is deduced by the the theory of general topology.

Lemma 2.5. Let ∆γ be the topology induced by the metric γ and ∆I be a the product
topology of I∞. Then, we have ∆γ = ∆I .

In addition, we obtain the following property of I∞.

Lemma 2.6. If I is a finite set, then I∞ is a compact metric space. If I is a infinite set,
I∞ is a complete separable metric space.

Proof. If I is finite, then I∞ is also compact by the Tychonoff theorem. We assume that
I is infinite. Let ω ∈ I. We set

I ′n := {w ∈ I∞ | wm = ω (m ≥ n+ 1)} and I ′ :=
∪
n∈N

I ′n.

Note that since for each n ∈ N, |I ′n| = |In| and In is countable, I ′ is countable. Let ϵ > 0
and N ∈ N with

∑∞
n=N+1 1/2

n < ϵ. For each w ∈ I∞, we set τw = w1 · · ·wNωω · · · ∈ I∞.
We have τw ∈ I ′N ⊂ I ′ and

γ(w, τw) =

∞∑
n=1

d(wn, (τw)n)

2n
≤

∞∑
n=N+1

d(wn, ωn)

2n
≤

∞∑
n=N+1

1

2n
≤ ϵ.

Therefore, we have proved the separability of I∞.
We next show that Completeness of I∞. Let {wk}k∈N be a Cauchy sequence in I∞.

For each k ∈ N, we denote wk by {wk,n}n∈N. Note that for each n ∈ N, {wk,n}k∈N ⊂ I is
a Cauchy sequence in I since d(wk,n, wl,n)/2

n ≤ γ(wk, wl) for each k, l ∈ N. In addition,
since the metric d takes values 0 or 1, there exists K(n) ∈ N such that for each k ≥ K(n)
we have wk,n = wK(n),n. We set w∞ = {wK(n),n}n∈N ∈ I∞. Let ϵ > 0 and L ∈ N with∑∞

n=L+1 1/2
n < ϵ. We set K := maxn=1,2,...,LK(n). Since for each k ≥ K, we have

w∞,n = wK(n),n = wk,n for each n = 1, . . . , L, for all k ≥ K, we have

γ(w∞, wk) =
∞∑
n=1

d(wK(n),n, wk,n)

2n
≤ 0 +

∞∑
n=L+1

d(wK(n),n, wk,n)

2n
≤

∞∑
n=L+1

1

2n
≤ ϵ.

Therefore, we have proved our lemma.

Lemma 2.7. The coding map π : I∞ → X is uniformly continuous.

Proof. Let ϵ > 0. Note that there exists N ∈ N such that cNdiam(X) < ϵ. We set
δ := 1/2N . Let w, τ ∈ I∞ with γ(w, τ) < δ. Then, we have for each i = 1, 2, . . . , N ,
we have wi = τi. Therefore, we have ρ(π(w), π(τ)) ≤ diam(ϕw|n(X)) ≤ cndiam(X) < ϵ.
Thus, we have proved our lemma.

Definition 2.8. the (left) shift map σ : I∞ → I∞ is defined by

σ(w) = w2w3 · · · (w = w1w2 · · · ∈ I∞).
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Proposition 2.9. The left shift map is Lipshitz continuous on I∞ with Lipshitz constant
2.

Proof. Let w = {wn}n∈N, τ = {τn}n∈N ∈ I∞. Then, we have

γ(σ(w), σ(τ)) =
∞∑
n=1

d(wn+1, τn+1)

2n
= 2

∞∑
n=2

d(wn, τn)

2n
≤ 2γ(w, τ)

and if w1 = τ1, then γ(σ(w), σ(τ)) = 2γ(w, τ). Therefore, we have proved our lemma.

Lemma 2.10. For each w = w1w2 · · · ∈ I∞ and i ∈ I, we have

ϕi(π(w)) = π(iw) and π(w) = ϕw1(π(σ(w))).

Proof. Let w = w1w2 · · · ∈ I∞ and i ∈ I. Since ϕi(∩∞
n=1ϕw|n(X)) ⊂ ∩∞

n=1ϕi(ϕw|n(X)) =
∩∞
n=1ϕ(iw)|n(X), we have {ϕi(π(w))} ⊂ {π(iw)}. Therefore, we obtain that ϕi(π(w)) =

π(iw) for each w ∈ I∞ and i ∈ I. Since ϕi(π(w)) = π(iw) for each w = w1w2 · · · ∈ I∞

and i ∈ I, we have

ϕw1(π(σ(w))) = ϕw1(π(w2w3 · · · )) = π(w1w2w3 · · · ) = π(w).

Therefore, we have proved our lemma.

Since ϕi is injective, we obtain that the following corollary.

Corollary 2.11. For each w = w1w2 · · · ∈ I∞, we have π ◦ σ(w) = ϕ−1
w1

◦ π(w).

Definition 2.12. Let S = {ϕi : X → X|i ∈ I} be a IFS. The limit set of S is defined by
JS := π(I∞) =

∪
w∈I∞

∩∞
n=1 ϕw|n(X).

Note that if I is a finite set, then JS is compact since I∞ is compact and π is continuous.

Lemma 2.13. Let JS be the limit set of S. Then, we have JS =
∪

i∈I ϕi(JS).

Proof. Let π(w) ∈ JS (w = w1w2 · · · ∈ I∞). By Lemma 2.10, we have

π(w) = ϕwi(π(σ(w))) ∈ ϕw1(JS) ⊂
∪
i∈I

ϕi(JS).

On the other hand, let x ∈ ∪i∈Iϕi(JS). Note that there exists i0 ∈ I such that x ∈ ϕi0(JS).
By lemma 2.10, there exists i0 ∈ I and w ∈ I∞ such that

x = ϕi0(π(w)) = π(i0w) ∈ JS .

Therefore, we have proved our lemma.

By induction with respect to n ∈ N, we obtain that JS = ∪w∈Inϕw(JS) for each n ∈ N.

Definition 2.14. We say that IFS S = {ϕi : X → X | i ∈ I} is pointwise finite if for each
x ∈ X, we have | {i ∈ I | x ∈ ϕi(X)} | <∞.

Note that if I is finite, then IFS S = {ϕi : X → X|i ∈ I} is pointwise finite.

Proposition 2.15. Let S = {ϕi : X → X | i ∈ I} be a pointwise finite IFS. Then, for
each x ∈ X and n ≥ 1, we have | {w ∈ In | x ∈ ϕw(X)} | <∞.
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Proof. We prove Theorem 2.15 by induction with respect to n ∈ N. By the definition of
the pointwise finite, the statement in Theorem 2.15 holds if n = 1. We assume that the
statement holds if n ∈ N. Let x ∈ X. We set Inx := {w ∈ In | x ∈ ϕw(X)}. Note that
|Inx | <∞. We set Ĩ := {τ ∈ Inx | ϕ−1

τ ({x}) ̸= ∅}. Note that for each τ ∈ Ĩ, x ∈ ϕτ (X) and
ϕτ is injective. We set I ′ := ∪τ∈ĨI

1
ϕ−1
τ (x)

.

We show that In+1
x ⊂ Inx × I ′. Indeed, let w = w1w2 · · ·wn+1 ∈ In+1

x . Note that since
ϕw(X) ⊂ ϕw|n(X), we have w|n ∈ Inx . In addition, since there exists y ∈ X such that

ϕw(y) = x, we have ϕ−1
w|n(x) = ϕwn+1(y) ∈ ϕwn+1(X). Therefore, we have w|n ∈ Inx , and

wn+1 ∈ Iϕ−1
w|n

(x) ⊂ I ′ and we obtain that In+1
x ⊂ Inx × I ′. Moreover, since |Ĩ| ≤ |Inx | < ∞

and for each τ ∈ Ĩ, |I1
ϕ−1
τ (x)

| <∞, we have |I ′| <∞. It follows that |In+1
x | ≤ |Inx ×I ′| <∞.

Thus, we have proved our proposition.

Proposition 2.16. Let S = {ϕi : X → X|i ∈ I} be a pointwise finite IFS. Then, we have

JS =
∩
n∈N

∪
w∈In

ϕw(X).

In particular, JS is a Borel subset in X.

Proof. Let π(w) ∈ JS (w ∈ I∞). Then, for each n ∈ N, we have x ∈ ϕw|n(X) ⊂
∪w∈Inϕw(X). It follows that x ∈ ∩n∈N ∪w∈In ϕw(X). On the other hand, let x ∈
∩n∈N ∪w∈In ϕw(X). Then, for each n ∈ N, there exists w(n) ∈ In such that x ∈ ϕw(n)(X).
By Proposition 2.15, there exists α1 ∈ I such that |{n ∈ N | w(n)1 = α1}| = ∞. We denote
{n ≥ 2 | w(n)1 = α1} by {n(k) | k ∈ N} with n(k) < n(k+1) for each k ∈ N. Since for each
k ∈ N, x ∈ ϕα1w2(n(k))(X), there exists α2 ∈ I such that |{k ∈ N | w(n(k))2 = α1}| = ∞.
By induction, there exists α := α1α2 · · · ∈ I∞ such that for each n ∈ N, we have
x ∈ ϕα|n(X) and we deduce that x ∈ ∩n∈Nϕα|n(X) = {π(α)} ⊂ JS . Therefore, we
have proved JS =

∩
n∈N

∪
w∈In ϕw(X). Note that for each n ∈ N, In is countable set

and for each w ∈ In, ϕw(X) is compact in metric space X. Thus, we have proved our
proposition.

Definition 2.17. Let I be a set with |I| = ∞ and I ′ ⊂ I with |I ′| = ∞. We say that
xi ∈ X (i ∈ I ′) converges to x if for each ϵ > 0, there exists F ′ ⊂ I ′ with |F ′| < ∞ such
that for each i ∈ I ′ \ F ′, ρ(xi, x) < ϵ.

We set XS(∞) := {limi∈I′ zi ∈ X| I ′ ⊂ I with |I ′| = ∞ and zi ∈ ϕi(X) (i ∈ I ′)}.

Lemma 2.18. If limi∈I diam(ϕi(X)) = 0, then we have JS = JS ∪
∪

w∈I∗ ϕw(X(∞)) ∪
X(∞).

Proof. We first show XS(∞) ⊂ JS . Let x = limi∈I′ xi ∈ XS(∞) with (i ∈ I ′, xi ∈ ϕi(X)).
Let ϵ > 0. Then, there exists finite subset F1 ⊂ I ′ such that for each i ∈ I ′ \ F1,
ρ(xi, x) < ϵ/2. In addition, since limi∈I diam(ϕi(X)) = 0, there exists finite subset F2 ⊂ I
such that for each i ∈ I \F2, diam(ϕi(X)) < ϵ/2. We set F := F1∪F2. Note that |F | <∞.
Let i ∈ I ′ \ F . Since there exists y ∈ ϕi(JS) ⊂ JS such that

ρ(x, y) ≤ ρ(x, xi) + ρ(xi, y) ≤
ϵ

2
+ diam(ϕi(X)) < ϵ.

We deduce that x ∈ JS and X(∞) ⊂ JS . Since ϕw is continuous for each w ∈ I∗ and
JS = ∪w∈Inϕw(JS) for each n ∈ N,

ϕw(X(∞)) ⊂ ϕw(JS) ⊂ ϕw(JS) ⊂ JS .
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On the other hand, let x ∈ JS . Note that there exist π(w(n)) ∈ JS = π(I∞) (n ∈
N) such that limn→∞ π(w(n)) = x. We show that if {w(n)1 | n ∈ N} is infinite, then
x ∈ X(∞). Indeed, We set I(1) := {w(n)1 | n ∈ N}. Since for each n ∈ N, π(w(n)) ∈
ϕw(n)1(X), if |I(1)| = ∞, then there exists y(n) ∈ X such that π(w(n)) = ϕw(n)1(y(n)).
Therefore, we deduce that limw(n)1∈I(1) ϕw(n)1(y(n)) = x, which is equivalent to x ∈ X(∞).
We assume that I(1) := {w(n)1 | n ∈ N} is finite, then there exists u1 ∈ I such that
|{n ∈ N | w(n)1 = u1}| = ∞. We set N1 := {n ∈ N | w(n)1 = u1}. If {w(n)2 | n ∈ N1}
is infinite, then x ∈ ϕu1(X(∞)) by the above same procedure. If {w(n)2 | n ∈ N1}
is finite, then there exists u2 ∈ I such that |{n ∈ N1 | w(n)2 = u2}| = ∞. We set
N2 := {n ∈ N1 | w(n)2 = u2}. By induction with respect to m ∈ N, we deduce that if
there exists m ∈ N, Nm+1 is infinite, we have x ∈ ϕu1···um(X(∞)).

We assume that for all m ∈ N, Nm+1 = {n ∈ Nm | w(n)m+1 = um+1} is finite.
We set u := u1u2 · · · ∈ I∞. We show that for each m ∈ N, x ∈ ϕu|m(X). Indeed, if
there exists m0 ∈ N, x /∈ ϕu|m0

(X). By induction, there exists a subsequence {jn} in
N such that jn ∈ Nn and jn+1 > jn for each n ∈ N. Note that limn→∞ π(w(jn)) = x
since limn→∞ π(w(n)) = x. Since for each m ∈ N with jm ≥ m0, π(w(jm)) ∈ ϕu|m0

(X)
and ϕu|m0

(X) is compact, we have x ∈ ϕu|m0
(X). This contradicts there exists m0 ∈ N,

x /∈ ϕu|m0
(X). Therefore, we have x ∈ ∩m∈Nϕu|m(X) ⊂ JS and we have proved our

lemma.

2.2 Conformal iterated function systems, pressure functions and con-
formal measures

Definition 2.19 (Conformal iterated function system). Let X ⊂ Rd be a non-empty
compact and connected set with the Euclidean norm |·| and let I be a finite set or bijective
to N. Suppose that I has at least two elements. We say that S := {ϕi : X → X | i ∈ I} is a
conformal iterated function system (for short, CIFS) if S satisfies the following conditions.

(i) Injectivity: For all i ∈ I, ϕi : X → X is injective.

(ii) Uniform Contractivity: There exists c ∈ (0, 1) such that, for all i ∈ I and x, y ∈ X,
the following inequality holds.

|ϕi(x)− ϕi(y)| ≤ c|x− y|.

(iii) Conformality: There exists a positive number ϵ and an open and connected subset
V ⊂ Rd with X ⊂ V such that for all i ∈ I, ϕi extends to a C1+ϵdiffeomorphism on
V and ϕi is conformal on V i.e. for each x ∈ V and i ∈ I, there exists Ci(x) > 0
such that for each u, v ∈ Rd,

|f ′(x)u− f ′(x)v| = Ci(x)|u− v|.

(iv) Open Set Condition(OSC): For all i, j ∈ I (i ̸= j), ϕi(Int(X)) ⊂ Int(X) and
ϕi(Int(X)) ∩ ϕj(Int(X)) = ∅. Here, Int(X) denotes the set of interior points of
X with respect to the topology in Rd.

(v) Bounded Distortion Property(BDP): There exists K ≥ 1 such that for all x, y ∈ V
and for all w ∈ I∗ :=

∪∞
n=1 I

n, the following inequality holds.

|ϕ′w(x)| ≤ K · |ϕ′w(y)|.

Here, for each n ∈ N and w = w1w2 · · ·wn ∈ In, we set ϕw := ϕw1 ◦ ϕw2 ◦ · · · ◦ ϕwn

and |ϕ′w(x)| denotes the norm of the derivative of ϕw at x ∈ X with respect to the
Euclidean norm on Rd.
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(vi) Cone Condition: For all x ∈ ∂X, there exists an open cone Cone(x, u, α) with a
vertex x, a direction u, an altitude |u| and an angle α such that Cone(x, u, α) is a
subset of Int(X).

Note that if S is a CIFS, then S is an IFS. For each f : Y → Rd with C1 class defined
on a subset Y ⊂ Rd, we set ||f ||Y := sup{|f ′(y)| | y ∈ Y }.

Remark 2.20. Since for each i ∈ I, ϕi is conformal, ϕ′i(x) is similitude for each x ∈ V .
In addition, we have for each u, v ∈ Rd with u ̸= 0 and v ̸= 0, we have

|ϕ′i(x)| = Ci(x),
⟨ϕi(u), ϕi(v)⟩
|ϕi(u)| · |ϕi(v)|

=
⟨u, v⟩
|u| · |v|

and |(ϕ′i(u))−1| = |(ϕ′i(u))|−1,

where ⟨·, ·⟩ is the Euclidean inner product in Rd.

We consider the basic properties of the Bounded Distortion Property. Since X is
compact and ∂V is closed in Rd, we have the following lemma.

Lemma 2.21. Let S be a CIFS on X ⊂ Rd and V ⊂ Rd be a open subset which satisfies
the definition of CIFS S. Then, we have ρ(X, ∂V ) > 0, where ρ is the Euclidean metric
on V ⊂ Rd.

Lemma 2.22 ((BDP.1)). Let S be a CIFS on X ⊂ Rd and V ⊂ Rd be a open subset which
satisfies the definition of CIFS S. Let B be a convex set in V , w ∈ I∗ and r ∈ (0, ρ(X, ∂V )).
Let V ′ be a open set with B ⊂ V ′ ⊂ V and B(x, r) ⊂ V ′ for each x ∈ X. Then, for each
x ∈ X, we have

diam(ϕw(B)) ≤ ||ϕ′w||V ′diam(B) and ϕw(B(x, r)) ⊂ B(ϕw(x), ||ϕ′w||V ′).

Lemma 2.23. Let S be a CIFS onX ⊂ Rd and V ⊂ Rd be a open subset which satisfies the
definition of CIFS S. Then, there exists q ∈ N, x1, x2, . . . , xq ∈ X and ri ∈ (0, ρ(X, ∂V ))
i = 1, 2, . . . , q such that for all j = 1, 2, . . . , q − 1,

X ⊂
q∪

i=1

B(xi, ri) and B(xi, ri) ∩B(xi+1, ri+1) ̸= ∅.

In particular, we retake a open subset V0 := ∪q
i=1B(xi, ri) ⊂ Rd which satisfies the defini-

tion of CIFS S. In addition, we have X ⊂ V0 ⊂ V and V0 is connected.

Proposition 2.24 ((BDP.2)). Let S be a CIFS on X ⊂ Rd and V0 ⊂ Rd be a open
connected subset which we defined in Lemma 2.23. Then, for each D ≥ max{q, diam(V0)}
and w ∈ I∗, we have diam(ϕw(V0)) ≤ D||ϕ′w||V0 .

Proposition 2.25. Let S be a CIFS on X ⊂ Rd and V0 ⊂ Rd be the open connected
subset which we define in Lemma 2.23. Let x ∈ X, r ∈ (0, ρ(X, ∂V )) and w ∈ I∗. Then,
R := max{t ≥ 0 | B(ϕw(x), t) ⊂ ϕw(B(x, r))} exists and ∂B(ϕw(x), R)∩∂ϕw(B(x, r)) ̸= ∅.
In addition, we have

ϕ−1
w (B(ϕw(x), R)) ⊂ B(x,R||(ϕ−1

w )′||ϕw(V0)) ⊂ B(xd,KR||(ϕw)′||−1
V0

).

Moreover, we have

KR||(ϕw)′||−1
V0

≥ r and ϕw(B(x, r)) ⊃ B(ϕw(x),K
−1r||(ϕw)′||V0).
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We set η := ρ(X, ∂V ), where ρ is the Euclidean metric on V ⊂ Rd.

Proposition 2.26 ((BDP.4)). Let S be a CIFS on X ⊂ Rd and V0 ⊂ Rd be the open
connected subset which we define in Lemma 2.23. Then, there exists D > 0 such that for
each w ∈ I∗ and x ∈ Int(X), we have

diam(ϕw(V0)) ≥ D−1||(ϕw)′||V0 and ϕw(V0) ⊃ B(ϕw(x),K
−1η||(ϕw)′||V0).

In addition, for each x ∈ Int(X), there exists D′
x > 0 such that

diam(ϕw(X)) ≥ (D′
x)

−1||(ϕw)′||V0 and ϕw(X) ⊃ B(ϕw(x), (D
′
x)

−1||(ϕw)′||V0).

We consider some properties deduced by the Cone Condition.

Lemma 2.27. Let S be a CIFS on X ⊂ Rd and V0 ⊂ Rd be the open connected subset
which we define in Lemma 2.23. Then, there exists D ≥ 1 and β ∈ (0, α) such that for
each x ∈ X and w ∈ I∗, there exists u ∈ Sd−1 such that

ϕw(Int(X)) ⊃ Cone(ϕw(x), D
−1||(ϕw)′||V0u, β) ⊃ Cone(ϕw(x), D

−2diam(X)u, β).

Lemma 2.28. Let S be a CIFS on X ⊂ Rd and V0 ⊂ Rd be the open connected subset
which we define in Lemma 2.23. Then, we have

∑
i∈I ||ϕ′i||dV0

≤ Kd.

Note that by Lemma 2.28, we deduce that limi∈I diam(ϕi(X)) = 0.

Lemma 2.29. Let S be a CIFS on X ⊂ Rd. Then, we have X = Int(X).

Definition 2.30. Let w, τ ∈ I∗. We say that w is a extension of τ if there exists α ∈ I∗

such that w = τα. We say that w is comparable with τ if w is a extension of τ or τ
is a extension of w, which is denoted by w ≈ τ . We say that w and τ are mutually
incomparable if w is not comparable, which is denoted by w ̸≈ τ .

The following lemma shows that for all CIFS S, S is pointwise finite.

Lemma 2.31. Let S be a CIFS on X ⊂ Rd. Suppose that π−1
n (x) ⊂ In satisfies the

following conditions: for each w, τ ∈ π−1
n (x),

(i) x ∈ ϕw(X).

(ii) if w ≈ τ , then w = τ .

Then, we have |π−1
n (x)| ≤ 1/β, where β is introduced by Proposition 2.27. In particular,

for each x ∈ X, we have

|{w ∈ I | x ∈ ϕi(X)}| ≤ 1

β
.

Lemma 2.32. Let S be a CIFS on X ⊂ Rd. Suppose that F (x, r) ⊂ I∗ satisfies the
following conditions: for each w, τ ∈ F (x, r),

(i) B(x, r) ∩ ϕw(X) ̸= ∅ and diam(ϕw(X)) ≥ r.

(ii) if w ≈ τ , then w = τ .

Then, we have |F (x, r)| ≤ D2dβ−1(1+D−2)d, where β and D is introduced in Proposition
2.27.

For each IFS S, we set hS := dimH JS , where dimH denote the Hausdorff dimension.
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2.3 The pressure function for CIFSs and the Hausdorff dimension of the
limit sets of CIFSs

For any CIFS S, we define the pressure function of S as follows.

Definition 2.33 (Pressure function). For each n ∈ N, [0,∞]-valued function ψn
S is defined

by

ψn
S(t) :=

∑
w∈In

||ϕ′w(z)||tX (t ≥ 0).

We set θS := inf{t ≥ 0| ψ1
S(t) < ∞} and F (S) := {t ≥ 0 | ψ1

S(t) < ∞}. Note that by
the following lemma, we deduce that F (S) = (θS ,∞) or F (S) = [θS ,∞).

Lemma 2.34. Let S be a CIFS. Then, ψ1
S(t) is non-incerasing on [0,∞) and decreasing

and convex on F (S). In addition, we have ψ1
S(d) ≤ Kd. In particular, θS ≤ d.

Proposition 2.35. Let S be a CIFS. For all m,n ∈ N and t ≥ 0, we have

K−2tψk
S(t)ψ

n
S(t) ≤ ψm+n

S (t) ≤ ψm
S (t)ψn

S(t).

In particular, ψn
S(t) < ∞ for each n ∈ N is equivalent to ψn

S(t) < ∞ for some n ∈ N (or
n = 1), and for all t ≥ 0, logψn

S(t) is subadditive with respect to n ∈ N.

By subadditivity of logψn
S(t), we define the pressure function of S as follows.

Definition 2.36. The function PS : [0,∞) → (−∞,∞] is called the pressure function of
S, which is defined by

PS(t) := lim
n→∞

1

n
logψn

S(t) ∈ (−∞,∞] (t ≥ 0).

Proposition 2.37. Let S be a CIFS and PS be the pressure function of S. Then, for
each t ≥ 0, PS(t) < ∞ is equivalent to ψ1

S(t) < ∞. In particular, we have θS = inf{t ≥
0 | PS(t) <∞}.

Proposition 2.38. Let S be a CIFS and PS be the pressure function of S. Then, for
each x ∈ V and t ≥ 0,

PS(t) = lim
n→∞

1

n
log

∑
w∈In

|ϕ′w(z)(x)|t.

In addition, if t ∈ F (S), then (1/n) log
∑

w∈In |ϕ′w(z)(x)|t converges PS(t) as n → ∞
uniformly with respect to x ∈ V .

Proposition 2.39. Let S be a CIFS and PS be the pressure function of S. Then, PS is
non-increasing on [0,∞) and decreasing and convex on F (S).

Note that PS(0) = ∞ is equivalent to I is infinite. By using the pressure function, we
define some properties of CIFSs.

Definition 2.40 (Regular, Strongly regular, Hereditarily regular). Let S be a CIFS. We
say that S is regular if there exists t ≥ 0 such that PS(t) = 0. We say that S is strongly
regular if there exists t ≥ 0 such that PS(t) ∈ (0,∞). We say that S is hereditarily regular
if, for all I ′ ⊂ I with |I \ I ′| <∞, S′ := {ϕi : X → X | i ∈ I ′} is regular. Here, for any set
A, we denote by |A| the cardinality of A.
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Note that if a CIFS S is hereditarily regular, then S is strong regular and if S is strong
regular, then S is regular. We set F (I) := {F ⊂ I| 2 ≤ |F | <∞}. For each F ∈ F (I), we
set SF := {ϕi : X → X| i ∈ F}. Mauldin and Urbański showed the following results.

Theorem 2.41 ([22] Theorem 3.15). Let S be a CIFS. Then we have

hS = inf{t ≥ 0 | PS(t) < 0} = sup{hSF
| F ∈ F (I)} ≥ θS .

Moreover, if there exists t ≥ 0 such that PS(t) = 0, then t is the unique zero of the pressure
function PS and we have t = hS .

Theorem 2.42 ([22] Theorem 3.20). Let I be infinite and let S be a CIFS. Then, the
following conditions are equivalent:

(i) S is hereditarily regular.

(ii) ψ1
S(θS) = ∞.

Especially, if S is hereditarily regular, we have θS < hS .

If CIFS S is regular, then we obtain a following a “nice” probability measure on JS ,
which is called hS-conformal measure of S. In fact, by the existence of the conformal
measure of CIFS, we deduce Theorem 2.41.

Proposition 2.43 ([22] Lemma 3.13). Let S be a CIFS. If S is regular, then there exists
the unique Borel probability measure mS on X such that the following properties hold.

(i) mS(JS) = 1.

(ii) For all Borel subset A on X and i ∈ I, mS(ϕi(A)) =
∫
A |ϕ′i|hSdmS .

(iii) For all i, j ∈ I with i ̸= j, mS(ϕi(X) ∩ ϕj(X)) = 0.

We call mS the hS-conformal measure of S. By the existence of the conformal measure
of CIFSs, we obtain the following four theorems.

Theorem 2.44 ([22] Theorem 4.5). Let S be a regular CIFS and λd be the d-dimensional
Lebesgue measure. If λd(Int(X) \X1) > 0, then hS < d. Here, X1 := ∪i∈Iϕi(X).

Theorem 2.45 ([22] Theorem 4.9). Let S be a regular CIFS and mS be the hS-conformal
measure of S. We set r0 := dist(X, ∂V ). If there exist a sequence of {zj}∞j=1 in XS(∞)
and a sequence {rj}∞j=1 in (0, r0) such that

lim sup
j→∞

mS(B(zj , rj))

rhS
j

= ∞,

then we have HhS (JS) = 0.

Theorem 2.46 ([22] Lemma 4.3). Let S be a regular CIFS. If JS ∩ Int(X) ̸= ∅, then we
have PhS (JS) > 0.

Theorem 2.47 ([22] Lemma 4.10). Let S be a regular CIFS and mS be the hS-conformal
measure of S. Soppose that there exist L > 0, ξ > 0 and γ ≥ 1 such that for all b ∈ I and
r > 0 with γdiamϕb(X) ≤ r ≤ ξ, there exists y ∈ ϕb(V ) such that mS(B(y, r)) ≥ LrhS .
Then, we have PhS (JS) <∞.
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2.4 Families of conformal iterated function systems

We now consider families of CIFSs. Let CIFS(X, I) be the family of all CIFSs with X ⊂ C
and an infinite alphabet I. For each S ∈ CIFS(X,I), let πS : I

∞ → X be the coding map
of S. In this paper, for any sequence {Sn}n∈N in CIFS(X,I) and S ∈ CIFS(X,I), we write
λ({Sn}n∈N) = S if the following conditions are satisfied.

(L1) For every i ∈ I, limn→∞(||ϕni − ϕi||+ ||(ϕni )′ − (ϕi)
′||) = 0.

(L2) There exist C > 0, M ∈ N and a finite set F ⊂ I such that for all i ∈ I \ F and
n ≥M , | log ||(ϕni )′|| − log ||ϕ′i|| | ≤ C.

Here, we write Sn as {ϕni }i∈I and S as {ϕi}i∈I , and we set ||ϕ′i|| := supz∈X |ϕ′i(z)|,
||ϕni − ϕi|| := supz∈X |ϕni (z) − ϕi(z)| and ||(ϕni )′ − (ϕi)

′|| := supz∈X |(ϕni )′(z) − (ϕi)
′(z)|.

If a sequence {Sn}n∈N in CIFS(X,I) does not admit any S ∈ CIFS(X,I) for which the
above conditions are fulfilled, we declare that λ({Sn}n∈N) = ∅. A sequence {Sn}n∈N ∈
CIFS(X, I)N is called λ-converging if λ({Sn}n∈N) ∈ CIFS(X, I). We endow CIFS(X,I)
with the λ-topology ([29]).

Definition 2.48. Let Λ be an open and connected subset of C. Let {Sµ}µ∈Λ be a family
of elements of CIFS(X, I). We write Sµ as {ϕµi }i∈I . We say that {Sµ}µ∈Λ is plane-analytic
if for all x ∈ X and i ∈ I, µ 7→ ϕµi (x) is holomorphic in Λ.

Moreover, we say that plane-analytic {Sµ}µ∈Λ is regularly plane-analytic if there exists
µ0 ∈ Λ such that the following conditions are satisfied.

(i) Sµ0 is strongly regular.

(ii) There exists η ∈ (0, 1) such that for all w ∈ I∞ and µ ∈ Λ, |κµ0
w (µ)− 1| ≤ η. Here,

for each µ0 ∈ Λ and w = w1w2 · · · ∈ I∞, we set πµ := πSµ and

κµ0
w (µ) :=

(ϕµw1)
′(πµ(σw))

(ϕµ0
w1)

′(πµ0(σw))
(µ ∈ Λ).

Roy and Urbański showed the following results [29].

Theorem 2.49 ([29] Theorem 5.10). The Hausdorff dimension function h :
CIFS(X, I) → [0,∞), S 7→ hS , is continuous when CIFS(X, I) is endowed with the
λ-topology.

Theorem 2.50 ([29] Theorem 6.1). Let Λ be an open and connected subset of C. Let
{Sµ}µ∈Λ be a family of elements of CIFS(X, I). If {Sµ}µ∈Λ is regularly plane-analytic,
then µ 7→ hSµ is real-analytic in Λ.

Theorem 2.51 ([29] Theorem 6.3). Let Λ be an open and connected subset of C. Let
{Sµ}µ∈Λ be a family of elements of CIFS(X, I). If {Sµ}µ∈Λ is plane-analytic, then µ 7→
1/hSµ is superharmonic in Λ.

2.5 Conformal iterated function systems of generalized complex contin-
ued fractions

In this subsection, we prove some properties of the CIFSs of generalized complex continued
fractions [33]. Note that they are important and interesting examples of infinite CIFSs.
We introduce some additional notations. For each τ ∈ A0, we set πτ := πSτ , θτ := θSτ ,
ψn
τ (t) := ψn

Sτ
(t) (t ≥ 0, n ∈ N) and Pτ (t) := PSτ (t) (t ≥ 0).
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Proposition 2.52. For all τ ∈ A0, Sτ is a CIFS.

Proof. Let τ ∈ A0. Firstly, we show that for all b ∈ Iτ , ϕb(X) ⊂ X. Let Y := {z ∈
C| ℜz ≥ 1} and let f : Ĉ → Ĉ be the Möbius transformation defined by f(z) := 1/z. Since
f(0) = ∞, f(1) = 1, f(1/2 + i/2) = 2/(1 + i) = (1 − i), we have f(∂X) = ∂Y ∪ {∞}.
Moreover, since f(1/2) = 2, we have f(X) = Y ∪ {∞}. Thus, f : X → Y ∪ {∞} is a
homeomorphism. Let gb : X → Y be the map defined by gb(z) := z + b. We deduce that
ϕb = f−1 ◦ gb and ϕb(X) ⊂ f−1(Y ) ⊂ X. Therefore, we have proved ϕb(X) ⊂ X.

We next show that for each τ ∈ A0, Sτ satisfies the conditions of Definition 2.19.
1. Injectivity.

Since each ϕb is a Möbius transformation, each ϕb is injective.
2. Uniform Contractivity.

Let b = m+ nτ(= m+ nu+ inv) be an element of Iτ and let z = x+ iy and z′ = x′ + iy′

be elements of X. We have

|z + b|2 = |x+m+ nu+ i(y + nv)|2

= (x+m+ nu)2 + (y + nv)2 ≥ (0 + 1 + 0)2 + (−1/2 + 1)2 =
5

4
.

Therefore, we deduce that |z + b| ≥
√

5/4. We also deduce that |z′ + b| ≥
√

5/4. Finally,
we obtain that

|ϕb(z)− ϕb(z
′)| =

∣∣∣∣ 1

z + b
− 1

z′ + b

∣∣∣∣
=

|z − z′|
|z + b||z′ + b|

≤

(√
4

5

)2

|z − z′| = 4

5
|z − z′|.

Therefore, Sτ is uniformly contractive on X.
4. Open Set Condition.

Note that Int(X) = {z ∈ C| |z − 1/2| < 1/2}. Let τ ∈ A0 and let b ∈ Iτ . Since
f(∂X) = ∂Y ∪ {∞}, we deduce that for all b ∈ Iτ ,

gb(Int(X)) ⊂ {z = x+ iy ∈ C| x > 1} = f(Int(X)).

Moreover, if b and b′ are distinct elements, then gb(Int(X)) and gb′(Int(X)) are disjoint.
Therefore, we have that for all b ∈ Iτ ,

ϕb(Int(X)) = f−1 ◦ gb(Int(X)) ⊂ f−1 ◦ f(Int(X)) = Int(X).

And if b and b′ are distinct elements,

ϕb(Int(X)) ∩ ϕb′(Int(X)) = f−1(gb(Int(X)) ∩ gb′(Int(X))) = ∅.

Therefore, Sτ satisfies the Open Set Condition of Sτ .
5. Bounded distortion Property.

Let ϵ be a positive real number which is less than 1/12 and let V ′ := B(1/2, 1/2+ϵ) be the
open ball with center 1/2 and radius 1/2+ ϵ. We set τ := u+ iv. Then, for all (m,n) ∈ N2
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and z := x+ iy ∈ V ′, we have that

|ϕ′m+nτ (z)| =
1

|z +m+ nτ |2
=

1

(x+m+ nu)2 + (y + nv)2

≤ 1

(−ϵ+ 1 + 0)2 + (−1/2− ϵ+ 1)2

=
1

2ϵ2 − 3ϵ+ 5/4
=

1

2(ϵ− 3/4)2 + 1/8

≤ 1

2(1/12− 3/4)2 + 1/8
=

72

73
< 1

For each z ∈ V ′, we set

z′ :=

(|z − 1/2| − ϵ)
(z − 1/2)

|z − 1/2|
+ 1/2 (z /∈ X)

z (z ∈ X).

Then, we have that |z − z′| ≤ ϵ and |z′ − 1/2| < 1/2. It implies that z′ ∈ X. Thus, we
obtain that |ϕb(z)− ϕb(z

′)| ≤ (72/73)|z − z′| < ϵ and∣∣∣∣ϕb(z)− 1

2

∣∣∣∣ ≤ |ϕb(z)− ϕb(z
′)|+

∣∣∣∣ϕb(z′)− 1

2

∣∣∣∣ < 1

2
+ ϵ.

It follows that for all b ∈ Iτ , ϕb(V
′) ⊂ V ′. In addition, ϕb is injective on V ′ and ϕb is

holomorphic on V ′ := B(1/2, 1/2 + ϵ) since ϕb is holomorphic on C \ {−b}.
Let b be an element of Iτ and r0 := 1/2 + ϵ. Let fb be the function defined by

fb(z) :=
(ϕb(r0z + 1/2)− ϕb(1/2))

r0ϕ′b(1/2)
(z ∈ D := {z ∈ C||z| < 1}).

Note that fb is holomorphic on D and fb(0) = 0 and f ′b(0) = 1. By using the Koebe
distortion theorem, we deduce that for all z ∈ D,

1− |z|
(1 + |z|)3

≤ |fb(z)| ≤
1 + |z|

(1− |z|)3
.

Let r1 := (r0 + 1/2)/2. we deduce that there exist C1 ≥ 1 and C2 ≤ 1 such that for all
z ∈ B(0, r1/r0)(⊂ D),

C2 ≤
1− |z|

(1 + |z|)3
and

1 + |z|
(1− |z|)3

≤ C1.

Let C := C1/C2. Then, we have that for all z, z′ ∈ B(0, r1/r0),

|ϕ′b(r0z + 1/2)|
|ϕ′b(1/2)|

= |f ′b(z)| ≤
1 + |z|

(1− |z|)3

≤ C1 = CC2 ≤ C
1− |z′|

(1 + |z′|)3

≤ C|f ′b(z′)| ≤ C
|ϕ′b(r0z′ + 1/2)|

|ϕ′b(1/2)|
.

It follows that for all z, z′ ∈ B(0, r1/r0), |ϕ′b(r0z + 1/2)| ≤ C|ϕ′b(r0z′ + 1/2)|. Finally, let
V := B(1/2, r1) be the open ball with center 1/2 and radius r1. Then, V is an open and
connected subset of C with X ⊂ V and for all z, z′ ∈ V ,

|ϕ′b(z)| ≤ C|ϕ′b(z′)|.
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Therefore, Sτ satisfies the Bounded Distortion Property.
3. Conformality.

Let τ ∈ A0 and let b ∈ Iτ . Since ϕb is holomorphic on C \ {−b}, ϕb is C2 and conformal
on V . By the above argument, we have ϕb(V ) ⊂ V .

6. Cone Condition.
Since X is a closed disk, the Cone Condition is satisfied.

For the rest of the paper, let V := B(1/2, r1), where r1 is the number in the proof of
Lemma 2.52.

Lemma 2.53. Let τ ∈ A0. Then, there exists C ≥ 1 such that for all z ∈ V and b ∈ Iτ ,
we have C−1|b|−2 ≤ |ϕ′b(z)| ≤ C|b|−2.

Proof. Note that |ϕ′b(0)| = |b|−2. By using the BDP, there exists C ≥ 1 such that for all
z ∈ B(1/2, r1), we have C−1|ϕ′b(0)| ≤ |ϕ′b(z)| ≤ C|ϕ′b(0)|. We deduce that C−1|b|−2 ≤
|ϕ′b(z)| ≤ C|b|−2.

Lemma 2.54. For all τ ∈ A0, Sτ is a hereditarily regular CIFS with θτ = 1.

Proof. Let τ ∈ A0. For each non-negative integer p, we set K ′(p) := {b = m + nτ ∈
Iτ | (m,n) ∈ N2,m < 2p, n < 2p} and K(p) := K ′(p) \ K ′(p − 1). Note that for each
non-negative integer p, |K ′(p)| = (2p − 1)2. We deduce that for each p ∈ N, |K(p)| =
|K ′(p)| − |K ′(p− 1)| = (2p − 1)2 − (2p−1 − 1)2 = 3 · 4p−1 − 2 · 2p−1 = 2p−1(3 · 2p−1 − 2) and
4p−1 ≤ |K(p)| ≤ 3 · 4p−1.

Let b = m+ nτ = m+ n(u+ iv) ∈ K(p). We consider the following two cases.

(i) If m ≥ 2p−1 then we have

|b|2 = |m+ nu+ inv|2

= (m+ nu)2 + (nv)2

≥ (2p−1 + u)2 + v2

≥ (2p−1)2 + |τ |2 = 4p−1

(
1 +

|τ |2

4p−1

)
.

(ii) If n ≥ 2p−1 then we have

|b|2 = |m+ nu+ inv|2

= (m+ nu)2 + (nv)2

≥ n2(u2 + v2) ≥ 4p−1|τ |2.

Then for any t ≥ 0, we have∑
b∈Iτ

|b|−2t =
∑
p∈N

∑
b∈K(p)

{
|b|2
}−t

≤
∑
p∈N

|K(p)|4−t(p−1)

{
min{1 + |τ |2

4p−1
, |τ |2}

}−t

≤
∑
p∈N

3 · 4(p−1)(1−t)

{
min{1 + |τ |2

4p−1
, |τ |2}

}−t

.
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Hence, we deduce that

∑
b∈Iτ

|b|−2t ≤ 3
∑
p∈N

4(p−1)(1−t)

{
min{1 + |τ |2

4p−1
, |τ |2}

}−t

. (2.2)

Moreover, by the inequality |τ |2 ≥ 1 and the inequality 1 +
|τ |2

4p−1
≥ 1, we deduce that for

all p ∈ N,

3 · 4(p−1)(1−t)

{
min{1 + |τ |2

4p−1
, |τ |2}

}−t

≤ 3 · 4(p−1)(1−t). (2.3)

Also, by the inequality |b| ≤ |m|+ |n||τ | ≤ 2p(1 + |τ |) (p ∈ N, b ∈ K(p)), we have∑
b∈Iτ

|b|−2t =
∑
p∈N

∑
b∈K(p)

{
|b|−2

}t
≥
∑
p∈N

|K(p)|4−pt(1 + |τ |)−2t.

Thus, we deduce that ∑
b∈Iτ

|b|−2t ≥ 4−1
∑
p∈N

4p(1−t)(1 + |τ |)−2t. (2.4)

Finally, from Lemma 2.53, the inequality (2.2) and the inequality (2.4), it follows that
ψ1
τ (1) = ∞ and if t > 1, then ψ1

τ (t) < ∞. Therefore, we deduce that θτ = 1 and by
Theorem 2.42, we obtain that for all τ ∈ A0, Sτ is hereditarily regular. Hence, we have
proved our lemma.

Lemma 2.55. We have limτ→∞,τ∈A0 hτ = 1, i.e., for each ϵ > 0, there exists N > 0 such
that, for all τ ∈ A0 with |τ | ≥ N , we have |hτ − 1| < ϵ.

Proof. Let ϵ > 0 and t := 1 + ϵ > 1. Let {τn}n∈N be any sequence in A0 such that

|τn| → ∞ as n → ∞. Note that for all p ∈ N, we have

{
min{1 + |τn|2

4p−1
, |τn|2}

}−t

→ 0 as

n→ ∞. By the inequality (2.2) and the inequality (2.3), we deduce that the function

fn(p) := 3 · 4(p−1)(1−t)

{
min{1 + |τn|2

4p−1
, |τn|2}

}−t

(p ∈ N)

is dominated by the integrable function g(p) := 3 · 4(p−1)(1−t) (p ∈ N) with respect to
the counting measure on N. Then, by Lebesgue’s dominated convergence theorem, we

deduce that lim
n→∞

∑
b∈Iτn

|b|−2t = 0. By Lemma 2.53, we obtain lim
n→∞

ψ1
τn(t) = 0. It follows

that for any ϵ > 0, there exists N ∈ N such that for all τ ∈ A0 with |τ | ≥ N , we have
ψ1
τ (1 + ϵ) = ψ1

τ (t) < 1.
By Proposition 2.35, we obtain that ψn

τ (1 + ϵ) ≤ (ψ1
τ (1 + ϵ))n < 1. Therefore, we

deduce that Pτ (1+ ϵ) ≤ 0. Thus, for all ϵ > 0, there exists N ∈ N such that for all τ ∈ A0

with |τ | ≥ N , hτ ≤ 1 + ϵ.
Moreover, by Theorem 2.41 and Lemma 2.54, for all τ ∈ A0, we have 1 − ϵ < hτ .

Hence, we have proved our lemma.

Theorem 2.56. Let τ ∈ A0. Then we have 1 < hτ < 2.
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Proof. Let τ ∈ A0. By Theorem 2.42, we have 1 = θτ < hτ . We now show that hτ < 2.
We use the notations in the proof of Proposition 2.52. Note that∪

b∈Iτ

gb(X) ⊂ {z ∈ C| ℜz ≥ 1 and ℑz ≥ 0}.

Let U0 be an open ball such that U0 ⊂ {z ∈ C| ℜz ≥ 1 and ℑz < 0}. Since U0 ⊂
Y , we deduce that f−1(U0) ⊂ f−1(Y ) = Int(X). We set X1 := ∪b∈Iτϕb(X). Since
U0 ∩

∪
b∈Iτ gb(X) = ∅, we deduce that f−1(U0) ∩ X1 = f−1(U0 ∩

∪
b∈Iτ gb(X)) = ∅. It

follows that Int(X) \X1 ⊃ f−1(U0).
Therefore, we deduce that λ2(Int(X)\X1) > 0 where, λ2 is the 2-dimensional Lebesgue

measure. By Theorem 2.44, we obtain that hτ < 2. Hence, we have proved 1 < hτ < 2.

2.6 Appendix: the proof of the fact Jτ \ Jτ is at most countable

Rest of this section, we give the proof of the fact for each τ ∈ A0, Jτ \ Jτ is at most
countable and hτ = dimH(Jτ ) ([32, Theorem 6.11]).

Let {Sτ}τ∈A0 be the family of CIFSs of generalized complex continued fractions. We
set Xτ (∞) := XSτ (∞). H. Sugita showed the following result ([32]).

Theorem 2.57. Let {Sτ}τ∈A0 be the family of CIFSs of generalized complex continued
fractions. Then, we have that for all τ ∈ A0, Xτ (∞) = {0}. In particular, for each τ ∈ A0,

Jτ = Jτ ∪
∪

w∈I∗
ϕw({0}) ∪ {0} and Jτ \ Jτ ⊂

∪
w∈I∗

ϕw({0}) ∪ {0}.

Proof. We first show that for all τ ∈ A0, 0 ∈ Xτ (∞). We set I ′τ := {m + τ ∈ Iτ | m ∈
N} ⊂ Iτ and bm := m + τ ∈ I ′τ . Then, we have that |I ′τ | = ∞ and since 0 ∈ X,
ϕbm(0) ∈ ϕbm(X). Let ϵ > 0. Then, there exists M ∈ N such that M > 1/ϵ. Let
Fτ := {m+ τ ∈ Iτ | m ∈ N,m ≤ M} ⊂ I ′τ . We obtain that |Fτ | < ∞ and if bm ∈ I ′τ \ Fτ ,
then ϕbm(0) ∈ ϕbm(X) and

|ϕbm(0)| =
∣∣∣∣ 1

m+ τ

∣∣∣∣ < 1

m
<

1

M
< ϵ.

Thus, for all τ ∈ A0, 0 ∈ Xτ (∞).
We next show that for each τ ∈ A0, a ∈ Xτ (∞) implies a = 0. Suppose that there

exists a ∈ Xτ (∞) such that a ̸= 0. Then, there exist I ′τ ⊂ Iτ and {z′b}b∈I′τ such that
|I ′τ | = ∞, z′b ∈ ϕb(X) (b ∈ I ′τ ) and lim

b∈I′τ
z′b = a. Let δ := |a|/2 > 0. Then, there exists

F ′
τ ⊂ I ′τ such that |F ′

τ | < ∞ and for all b ∈ I ′τ \ F ′
τ , |z′b − a| < δ. In particular, for all

b ∈ I ′τ \ F ′
τ ,

|z′b| ≥ |a| − |z′b − a| > δ. (*)

Moreover, for each z ∈ X, τ ∈ A0 and b ∈ Iτ , we write z := x + yi, τ := u + iv and
b := m+ nτ . Note that

|z + b|2 = |x+m+ nu+ i(y + nv)|2

= (x+m+ nu)2 + (y + nv)2

≥ (0 +m+ nu)2 + (−1/2 + nv)2 ≥ m2 + (n− 1/2)2.

Let M := 1/δ. By using the above inequality, there exists Nδ ∈ N such that for all
m ∈ N, n ∈ N and x ∈ X, if m ≥ Nδ or n ≥ Nδ, then |z + b| > M = 1/δ. In particular,
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b ∈ Iτ \ Fτ (Nδ) implies that for all z ∈ X, |ϕb(z)| < δ. Here, Fτ (Nδ) := {b := m + nτ ∈
Iτ | n ≤ Nδ,m ≤ Nδ}.

By the inequality (*) and |Fτ (Nδ)| <∞, this contradicts that there exist b ∈ I ′τ \ (F ′
τ ∪

Fτ (Nδ)) and z
′
b ∈ ϕb(X) such that |z′b| > δ. Therefore, we have proved that for all τ ∈ A0,

Xτ (∞) = {0}.

Corollary 2.58. Let {Sτ}τ∈A0 be the family of CIFSs of generalized complex continued
fractions. Then, we have that for all τ ∈ A0, dimH(Jτ ) = hτ .

Proof. By Theorem 2.57, we obtain that Jτ \ Jτ is at most countable. Note that if A is at
most countable, then dimHA = 0. Thus,

dimH(Jτ ) = max{dimH Jτ ,dimH(Jτ \ Jτ )} = max{dimH Jτ , 0} = hτ

Therefore, we have proved Corollary 2.58.

3 The Hausdorff dimension function of the family of con-
formal iterated function systems of generalized complex
continued fractions

3.1 Proof of Main Theorem 1

We first show the following lemma.

Lemma 3.1. Let τ ∈ A0 and suppose that a sequence {τn}n∈N in A0 satisfies limn→∞ τn =
τ . Then, there exist K ∈ N, C1 > 0 and C2 > 0 such that for all k ≥ K, (m,n) ∈ N2 and
z, z′ ∈ X,

C1 ≤
|z′ +m+ nτk|2

|z +m+ nτ |2
≤ C2. (3.1)

Proof. We set τ = u+ iv and we set for each n ∈ N, τn = un + ivn. Since limn→∞ τn = τ ,
there exists K ∈ N such that for all k ≥ K, |u− uk| ≤ 1 and |v − vk| ≤ v/3. Then, for all
(m,n) ∈ N2 and z, z′ ∈ X,

|z′ +m+ nτk|2

|z +m+ nτ |2

≤ (1 +m+ nuk)
2 + (1/2 + nvk)

2

(m+ nu)2 + (−1/2 + nv)2

≤ (1 +m+ n(1 + u))2 + (1/2 + n(4/3)v)2

(m+ nu)2 + (−1/2 + nv)2

=
(1 +m+ n(1 + u))2

(m+ nu)2 + (−1/2 + nv)2
+

(1/2 + n(4/3)v)2

(m+ nu)2 + (−1/2 + nv)2

≤ max

{
(1 + (1 + u) + 1)2

12
,
(1 + (1 + u) + 1)2

u2 + (v − 1/2)2

}
+

(1/2n+ (4/3)v)2

(v − 1/2n)2

≤ max

{
(1 + (1 + u) + 1)2

12
,
(1 + (1 + u) + 1)2

u2 + (v − 1/2)2

}
+

(1/2 + (4/3)v)2

(v − 1/2)2
<∞
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and

|z′ +m+ nτk|2

|z +m+ nτ |2
≥ (m+ nuk)

2 + (−1/2 + nvk)
2

(1 +m+ nu)2 + (1/2 + nv)2

≥ m2 + (−1/2 + n(2/3)v)2

2(1 +m+ nmax{u, v})2

≥ 1

2

(
min

{
1

1 + 1 +max{u, v}
,

(2/3)v − 1/2

1 + 1 +max{u, v}

})2

> 0.

Therefore, we have proved our lemma.

We now prove Theorem 1.3.

Proof. By Lemma 2.54, for each τ ∈ A0, the value hτ is equal to the unique zero of
the pressure function of Sτ . Moreover, by Lemma 2.55 and Theorem 2.56, we have that
1 < hτ < 2 for each τ ∈ A0 and hτ → 1 as τ → ∞ in A0.

We next show that if a sequence {τn}n∈N in A0 satisfies limn→∞ τn = τ , then we
have λ({Sτn}n∈N) = Sτ . Since for all (m,n) ∈ N2, ϕz+m+nτ (z) = 1/(z + m + nτ) and
(ϕm+nτ )

′(z) = (−1)/(z +m+ nτ)2, condition (L1) is satisfied. Since X is compact, there
exist z0, zk ∈ X such that

log
(
||ϕ′m+nτ ||X/||ϕ′m+nτk

||X
)
= log(|ϕ′m+nτ (z0)|/|ϕ′m+nτk

(zk)|)
= log(|zk +m+ nτk|2/|z0 +m+ nτ |2).

By Lemma 3.1, there exist C > 0 and K ∈ N such that for each k ≥ K and (m,n) ∈ N2,∣∣ log (||ϕ′m+nτ ||X
)
− log

(
||ϕ′m+nτk

||X
) ∣∣ = ∣∣log (||ϕ′m+nτ ||X/||ϕ′m+nτk

||X
)∣∣ ≤ C.

Therefore, we have proved that if a sequence {τn}n∈N in A0 satisfies limn→∞ τn = τ , then
λ({Sτn}n∈N) = Sτ .

We next show that τ 7→ hτ is continuous in A0. By Theorem 2.49, Sτ 7→ hτ is
continuous with respect to the λ-topology. By Lemma 3.3 of [29], if λ({Sτn}n∈N) = Sτ ,
then limn→∞ hτn = hτ . Thus, if limn→∞ τn = τ , then limn→∞ hτn = hτ . Therefore, we
have proved that τ 7→ hτ is continuous in A0.

3.2 Proof of Main Theorem 2

We now prove Theorem 1.4.

Proof. We first show that τ 7→ hτ is subharmonic in Int(A0). Let z ∈ X and Let (m,n) ∈
N2. Note that since the real part of −(m+ z)/n is negative, −(m+ z)/n is not an element
of Int(A0). Therefore, we deduce that the function τ 7→ ϕm+nτ (z) = 1/(z + m + nτ)
is holomorphic in Int(A0). Hence, {Sτ}τ∈Int(A0) is plane-analytic. Therefore, by using
Theorem 2.51, we obtain that τ 7→ hτ is subharmonic in Int(A0).

We next show that τ 7→ hτ is real-analytic in Int(A0). Since for each τ ∈ A0, Sτ is
a hereditarily regular CIFS, we have that for each τ ∈ Int(A0), Sτ is a strongly regular
CIFS. We now show that for any τ0 ∈ Int(A0), there exists an open ball U ⊂ Int(A0)
with center τ0 and η ∈ (0, 1) such that for all τ ∈ U and w := (mi, ni)i∈N ∈ (N2)∞,
|κτ0w (τ)− 1| ≤ η, where we denote (ϕ′m1+n1τ (πτσw))/(ϕ

′
m1+n1τ0(πτ0σw)) by κ

τ0
w (τ).
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By Lemma 3.1, there exists an open ball U ′′ ⊂ Int(A0) with center τ0 such that |κτ0w |
is bounded in U ′′ uniformly on w ∈ (N2)∞. Note that κτ0w is holomorphic in Int(A0). By
using the Cauchy formula

(κτ0w )′(τ) =
1

2πi

∫
∂U ′′

κτ0w (ξ)

(ξ − τ)2
dξ (τ ∈ U ′′),

we deduce that there existsM > 0 such that for all τ ∈ U ′ and w ∈ (N2)∞, |(κτ0w )′(τ)| ≤M .
Here, U ′ is an open ball with center τ0 such that U ′ ⊂ U ′′. Then, we have that

|κτ0w (τ)− 1| = |κτ0w (τ)− κτ0w (τ0)|

=

∣∣∣∣∫ τ

τ0

(κτ0w )′(ξ)dξ

∣∣∣∣
≤
∫ τ

τ0

|(κτ0w )′(ξ)||dξ| ≤M |τ − τ0|.

It follows that there exist an open ball U(⊂ U ′) with center τ0 and an element η ∈ (0, 1)
such that for all τ ∈ U and w ∈ (N2)∞, |κτ0w (τ)− 1| ≤ η.

Thus, for any τ0 ∈ Int(A0), there exists an open ball U ⊂ Int(A0) with center τ0 such
that {Sτ}τ∈U is regularly plane-analytic. By Theorem 2.50, for any τ0 ∈ Int(A0), there
exists an open ball U ⊂ Int(A0) with center τ0 such that the map τ 7→ hτ is real-analytic
in U . Since τ0 is arbitrary, we deduce that the map τ 7→ hτ is real-analytic in Int(A0).
Combining this with Theorem 1.3 (Main Theorem 1), we obtain that the function τ 7→ hτ
is not constant on any non-empty open subset of A0.

3.3 Proof of Main Theorem 3

We now prove Corollary 1.5.

Proof. For each n ∈ N, let Bn := A0 ∩ {z ∈ C| |ℜz| ≤ n and |ℑz| ≤ n}. Note that for all
n ∈ N, the map τ 7→ hτ is subharmonic in Int(Bn) by Theorem 1.4. Let ϵ := (hi−1)/2 > 0,
where i =

√
−1. By Lemma 2.55, we deduce that there exists N ∈ N such that for all

τ ∈ A0 \ BN , |hτ − 1| < ϵ. It follows that (hi − 1)/2 > hτ − 1. Then, we obtain that for
all τ ∈ A0 \BN ,

hi > 2hτ − 1 = hτ + (hτ − 1) > hτ .

Since the function τ 7→ hτ is continuous in BN , there exists a maximum point of the
function τ 7→ hτ in A0 and

max{hτ | τ ∈ A0} = max{hτ | τ ∈ BN}.

Since the function τ 7→ hτ is subharmonic in Int(A0), there exists no maximum point
of the function τ 7→ hτ in Int(A0). Thus, we have proved Corollary 1.5.

4 The Hausdorff measures and the packing measures of the
limit sets of CIFSs of generalized complex continued frac-
tions

4.1 Proof of Main Theorem 4

In order to prove Theorem 1.7 (Main Theorem 4), we first show a basic estimate for the
conformal measure. Note that for each τ ∈ A0, there exists the unique hτ -conformal
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measure mSτ of Sτ by Proposition 2.43 since for each τ ∈ A0, Sτ is hereditarily regular.
We set mτ := mSτ .

Lemma 4.1. Let τ ∈ A0 and mτ be the hτ -conformal measure of Sτ . Then, there exists
K0 ≥ 1 such that for each b ∈ Iτ , we have ϕb(X) ⊂ B(0,K0|b|−1) and

mτ (ϕb(X)) ≥ K−hτ
0 |b|−2hτ .

Proof. By Lemma 2.53 with K = K0, we deduce that for all b ∈ Iτ and z ∈ V ,
ϕb(V ) ⊂ B(0,K0|b|−1) and K−1

0 |b|−2 ≤ |ϕ′b(z)| ≤ K0|b|−2. Therefore, we have ϕb(X) ⊂
B(0,K|b|−1) and

mτ (ϕb(X)) =

∫
X
|ϕ′b|hτdmτ ≥ (K−1

0 |b|−2)hτmτ (X) ≥ K−hτ
0 |b|−2hτ .

Thus, we have proved our lemma.

Recall that Xτ (∞) = {0}. By Lemma 4.1, for sufficiently small r > 0, b ∈ Iτ and
N > 0 with r/N < K0|b|−1 < r, we have ϕb(X) ⊂ B(0,K0|b|−1) ⊂ B(0, r) and

mτ (B(0, r))

rhτ
≥ mτ (ϕb(X))

rhτ
≥ K−hτ

0 |b|−2hτ

rhτ
≥ K−hτ

0

rhτ

(
r

NK0

)2hτ

≃ rhτ . (4.1)

This inequality (4.1) does not satisfies the assumption of Theorem 2.45 unfortunately.
However, since for all b, b′ ∈ Iτ with b ̸= b′, mτ (ϕb(X) ∩ ϕb′(X)) = 0, we have a sharper
estimate on the value of mτ (B(0, r)). To obtain this estimate, we set

Iτ (r) := {b ∈ Iτ | r/Nτ ≤ K0|b|−1 < r},

where Nτ is the number we introduce later. Then, we have

mτ (B(0, r))

rhτ
≥

∑
b∈Iτ (r)

mτ (ϕb(X))

rhτ
≥ |Iτ (r)|K−3hτ

0 N−2hτ
τ rhτ . (4.2)

Note that since Iτ (r) = {b ∈ Iτ | K0r
−1 < |b| ≤ NτK0r

−1}, we have |Iτ (r)| ≳ r−2

intuitively since we have a intuition that the number of the points b ∈ Iτ (r) in the slant
lattice Iτ is almost the same as the area of Iτ (r).

To prove this intuitive estimate rigorously, we introduce the following notations and
prove lemma 4.2, Proposition 4.3 and Lemma 4.4. We identify C with R2, Iτ with {t(a, b) ∈
R2 | a + ib ∈ Iτ} and N2 with {t(m,n) ∈ R2 | m,n ∈ N}, where for any matrix A, we
denote by tA the transpose of A. For each τ = u+ iv ∈ A0, we set

Eτ :=

(
1 u
0 v

)
and Fτ := tEτEτ =

(
1 u
u |τ |2

)
.

Note that EτN2 = Iτ , since det(Eτ ) = v ̸= 0, Eτ is invertible and by direct calculations,
there exist the eigenvalues λ1 > 0 and λ2 > 0 of Fτ with λ1 < λ2. Let v1 ∈ R2 be a
eigenvector with respect to λ1 and v2 ∈ R2 be a eigenvector with respect to λ2. Note that
since Fτ is a symmetric matrix, there exist eigenvectors v1 ∈ R2 and v2 ∈ R2 such that
Vτ := (v1, v2) is an orthogonal matrix.

For each R1 > 0 and R2 > 0 with R1/
√
λ1 < R2/

√
λ2, we set

D′
1(τ,R1, R2) := {t(x, y) ∈ R2 | R2

1/λ1 < x2 + y2 ≤ R2
2/λ2} and

D′
2(R1, R2) := {t(x, y) ∈ R2 | R2

1 < x2 + y2 ≤ R2
2}.
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Lemma 4.2. Let τ ∈ A0 and let R1 > 0 and R2 > 0 with R1/
√
λ1 < R2/

√
λ2. Then, we

have that Eτ (D
′
1(τ,R1, R2)) ⊂ D′

2(R1, R2). In particular, we have that

Eτ (N2∩D′
1(τ,R1, R2)) ⊂ Iτ ∩D′

2(R1, R2) and |N2∩D′
1(τ,R1, R2)| ≤ |Iτ ∩D′

2(R1, R2)|.

Proof. By the above observation of Fτ , we deduce that

Fτ = Vτ

(
λ1 0
0 λ2

)
tVτ .

Let t(x, y) ∈ D′
1(τ,R1, R2). We set (x′, y′) := (x, y) Vτ and (v, w) := (x, y) tEτ . Note

that since Vτ is an orthogonal matrix, we deduce that (x′)2 + (y′)2 = x2 + y2. Since
λ1 < λ2, we have

R2
1 < λ1(x

2 + y2) = λ1((x
′)2 + (y′)2) < λ1(x

′)2 + λ2(y
′)2

= (x′, y′)

(
λ1 0
0 λ2

)(
x′

y′

)
= (x, y) Vτ

(
λ1 0
0 λ2

)
tVτ

(
x
y

)
= (x, y) Fτ

(
x
y

)
= (x, y) tEτEτ

(
x
y

)
.

By the above inequality, we deduce that R2
1 < v2 + w2. Also,

R2
2 ≥ λ2(x

2 + y2) = λ2((x
′)2 + (y′)2) ≥ λ1(x

′)2 + λ2(y
′)2

= (x′, y′)

(
λ1 0
0 λ2

)(
x′

y′

)
= (x, y) Vτ

(
λ1 0
0 λ2

)
tVτ

(
x
y

)
= (x, y) Fτ

(
x
y

)
= (x, y) tEτEτ

(
x
y

)
.

By the above inequality, we deduce that v2 + w2 ≤ R2
2. Therefore, we have proved our

lemma.

For each R > 0, we set I(R) := {t(m,n) ∈ N2 | m2 + n2 ≤ R2}.

Proposition 4.3. Let R > 0. Then, for each R ≥ 6,

0 <
R2 − 7R+ 7

2
≤ |I(R)| ≤ R2.

Proof. For each a ∈ R, we denote by ⌊a⌋ the maximum integer of the set {n ∈ Z | n ≤ a}.
Let R ≥ 6. We set M := ⌊

√
R2 − 1⌋(≥ 1). For each m0 = 1, . . . ,M , we set N(m0) :=

⌊
√
R2 −m2

0⌋(≥ 1). Note that since M ≤
√
R2 − 1 < M + 1, we deduce that√

R2 − 1− 1 < M ≤
√
R2 − 1. (4.3)

Also, since N(m0) ≤
√
R2 −m2

0 < N(m0) + 1, we deduce that√
R2 −m2

0 − 1 < N(m0) ≤
√
R2 −m2

0. (4.4)

By using a geometric observation, we deduce that |I(R)| =
∑M

m0=1N(m0).
By the inequalities (4.3) and (4.4), we deduce that

|I(R)| ≤
M∑

m0=1

√
R2 −m2

0 ≤ RM ≤ R
√
R2 − 1 ≤ R2.
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We now show that |I(R)| ≥ (R2 − 7R + 7)/2. Since
√
R2 −m2

0 ≥ R − m0 for each
m0 = 1, . . . ,M , by the inequalities (4.3) and (4.4) again, we deduce that

|I(R)| ≥
M∑

m0=1

(√
R2 −m2

0 − 1

)
≥

M∑
m0=1

(R−m0 − 1) =M(R− 1)− M(M + 1)

2

=
M(2R− 3)−M2

2
≥

(√
R2 − 1− 1

)
(2R− 3)− (R2 − 1)

2

≥ (R− 2)(2R− 3)−R2 + 1

2
=
R2 − 7R+ 7

2
.

Therefore, we have proved our lemma.

For each τ ∈ A0, we set Nτ :=
√
2λ2/

√
λ1 + 1 (> 2). For each R > 0, we set

D1(τ,R) := D′
1(τ,R,NτR) and D2(τ,R) := D′

2(R,NτR). Note that since
√
λ2/

√
λ1 < Nτ ,

we have that R/
√
λ1 < (NτR)/

√
λ2.

Lemma 4.4. Let τ ∈ A0. Then, there exist Rτ > 0 and Lτ > 0 such that for all R > Rτ ,

|N2 ∩D1(τ,R)| ≥ LτR
2 − 7Nτ

2
√
λ2
R.

Proof. Let τ ∈ A0. We set Lτ := N2
τ /(2λ2)− 1/λ1. Note that since Nτ >

√
2λ2/

√
λ1, we

deduce that Lτ > 0. We set

Rτ := max{(6
√
λ2)/Nτ , 6

√
λ1}(> 0).

Let R ≥ Rτ . Note that NτR/
√
λ2 ≥ 6, R/

√
λ1 ≥ 6 and

N2 ∩D1(τ,R) = I

(
NτR√
λ2

)
\ I
(

R√
λ1

)
. (4.5)

Also, we have I
(
(NτR)/

√
λ2
)
⊃ I

(
R/

√
λ1
)
. By (4.5) and Proposition 4.3, we deduce

that

|N2 ∩D1(τ,R)| =
∣∣∣∣I (NτR√

λ2

)∣∣∣∣− ∣∣∣∣I ( R√
λ1

)∣∣∣∣
≥ 1

2

(
(NτR)

2

λ2
− 7

NτR√
λ2

+ 7

)
− R2

λ1
> LτR

2 − 7Nτ

2
√
λ2
R.

Therefore, we have proved our lemma.

Note that by Lemma 4.4, there exists Qτ > 0 and R′
τ > 0 such that for all R > R′

τ ,
we have

|N2 ∩D1(τ,R)| > QτR
2. (4.6)

We now give the proof of the main result Theorem 1.7.

Proof of Theorem 1.7. Let τ ∈ A0. Recall that there exists the unique hτ -conformal
measure mτ of Sτ . We set rτ := K0R

−1
τ (> 0) and Mτ := (7Nτ )/(2

√
λ2).

We first show that for all r ∈ (0, rτ ],

|Iτ (r)| = |{b ∈ Iτ | r/Nτ ≤ K0|b|−1 < r}| ≥ LτK
2
0r

−2 −MτK0r
−1. (4.7)
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Let r ∈ (0, rτ ]. We set R := K0r
−1. Note that r ≤ rτ if and only if R ≥ Rτ . Recall that

Iτ (r) := {b ∈ Iτ | r/Nτ ≤ K0|b|−1 < r} and

Iτ (r) = {b ∈ Iτ | K0r
−1 < |b| ≤ NτK0r

−1} = Iτ ∩D′
2(K0r

−1, NτK0r
−1).

Recall that R := K0r
−1, D1(τ,R) := D′

1(τ,R,NτR) and Mτ := (7Nτ )/(2
√
λ2). By

Lemmas 4.2 and 4.4, it follows that

|Iτ (r)| = |Iτ ∩D′
2(K0r

−1, NτK0r
−1)| = |Iτ ∩D′

2(R,NτR)| ≥ |N2 ∩D′
1(τ,R,NτR)|

= |N2 ∩D1(τ,R)| ≥ LτR
2 −MτR = LτK

2
0r

−2 −MτK0r
−1.

Thus, we have proved the inequality (4.15).
We next show that for all r ∈ (0, rτ ],

mτ (B(0, r)) ≥ LτK
2−3hτ
0 N−2hτ

τ r2hτ−2 −MτK
1−3hτ
0 N−2hτ

τ r2hτ−1. (4.8)

By Lemma 4.1 and the definition of Iτ (r), we have that for all b ∈ Iτ (r), ϕb(X) ⊂
B(0,K0|b|−1) ⊂ B(0, r). It follows that∪

b∈Iτ (r)

ϕb(X) ⊂ B(0, r). (4.9)

In addtion, if b, b′ ∈ Iτ with b ̸= b′, then mτ (ϕb(X) ∩ ϕb′(X)) = 0 by the definition of
the conformal measure (Proposition 2.43). Thus, by inequality (4.9) and Lemma 4.1, it
follows that

mτ (B(0, r)) ≥ mτ

 ∪
b∈Iτ (r)

ϕb(X)

 =
∑

b∈Iτ (r)

mτ (ϕb(X)) ≥
∑

b∈Iτ (r)

K−hτ
0 |b|−2hτ

≥
∑

b∈Iτ (r)

K−hτ
0

(
r

NτK0

)2hτ

= |Iτ (r)|K−3hτ
0 N−2hτ

τ r2hτ .

By the inequality (4.15), we obtain that

mτ (B(0, r)) ≥ LτK
2−3hτ
0 N−2hτ

τ r2hτ−2 −MτK
1−3hτ
0 N−2hτ

τ r2hτ−1.

Thus, we have proved inequality (4.8).
We now show that Hhτ (Jτ ) = 0. For each j ∈ N, we set zj := 0 and rj := rτ/j (∈

(0, rτ ]). Note that {rj}j∈N is a sequence in the set of positive real numbers and by Lemma
2.57, {zj}j∈N is a sequence in Xτ (∞). Thus, by the inequality (4.8), we deduce that for
each j ∈ N,

mτ (B(zj , rj))

rhτ
j

=
mτ (B(0, rj))

rhτ
j

≥ LτK
2−3hτ
0 N−2hτ

τ rhτ−2
j −MτK

1−3hτ
0 N−2hτ

τ rhτ−1
j

= LτK
2−3hτ
0 N−2hτ

τ rhτ−2
τ j2−hτ −MτK

1−3hτ
0 N−2hτ

τ rhτ−1
τ

(
1

j

)hτ−1

.

By Lemma 2.56, we have that 2− hτ > 0 and hτ − 1 > 0. It follows that

lim sup
j→∞

mτ (B(zj , rj))

rhτ
j

= ∞.

By Theorem 2.45, we obtain that Hhτ (Jτ ) = 0.
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4.2 Proof of Main Theorem 5

In this section, We show that 0 < Phτ (Jτ ) <∞ for each τ ∈ A0.

4.2.1 Proof of positiveness of the packing measures

Proof. Let τ = u + iv ∈ A0. We set b2 := 2 + τ ∈ Iτ . We use some notations in Lemma
2.52. For any z = x+ iy ∈ X,

gb2(z) = z + (2 + τ)

= (x+ 2 + u) + i(y + v) ∈ {z ∈ C | ℜz > 1} = Int(Y ).

Since f(∂X) = ∂Y ∪ {∞} and f : X → Y ∪ {∞} is bijective, we have

ϕb2(X) = (f−1 ◦ gb2)(X) ⊂ Int(X).

Therefore, we obtain that Jτ ∩ Int(X) ̸= ∅. Since Sτ is hereditarily regular and Jτ ∩
Int(X) ̸= ∅, we deduce that Phτ (Jτ ) > 0 by Theorem 2.46.

4.2.2 Proof of finiteness of the packing measures

To prove the finiteness of the packing measure, we prove the following lemmas.

Lemma 4.5. Let τ ∈ A0, x̃ ∈ R2 and R̃ > 0. Then, we have

Eτ (B(E−1
τ x̃, R̃/

√
λ2)) ⊂ B(x̃, R̃).

In particular, we have

Eτ (N ∩B(E−1
τ x̃, R̃/

√
λ2)) ⊂ Iτ ∩B(x̃, R̃).

Proof. Let t(x, y) ∈ B(E−1
τ x̃, R̃/

√
λ2). We set ỹ = t(ỹ1, ỹ2) :=

t(x, y)− E−1
τ x̃. Since Vτ is

orthogonal and |ỹ|2 = |t(x, y)− E−1
τ x̃|2 ≤ R̃2/λ2, we have

|Eτ
t(x, y)− x̃|2 = |Eτ ỹ|2 = tỹtEτEτ ỹ = tỹFτ ỹ

= tỹVτ

(
λ1 0
0 λ2

)
tVτ ỹ = λ1z

2
1 + λ2z

2
2 ≤ λ2|Vτ ỹ|2 = λ2|ỹ|2 ≤ R̃2,

where t(z1, z2) :=
tVτ ỹ. Therefore, since Eτ

t(x, y) ∈ B(x̃, R̃), we have proved our lemma.

Lemma 4.6. Let τ ∈ A0, let w ∈ R2 and R̄ > 0 with |w| > R̄. Then, for each M ≥ 2, we
have

B

(
w − R̄

M

w

|w|
,
R̄

M

)
⊂ B(0, |w|) ∩B(w, 2R̄/M) ⊂ B(0, |w|) ∩B(w, R̄).

In particular, by Lemma 4.5 with x̃ := w − R̄w/M |w| and R̃ := R̄/M , we have

EτB

(
E−1

τ

(
w − R̄

M

w

|w|

)
,

R̄√
λ2M

)
⊂ B(0, |w|) ∩B(w, R̄).

and since Iτ = Eτ (N2) and Eτ is injective, we have

Eτ

(
N2 ∩B

(
E−1

τ

(
w − R̄

M

w

|w|

)
,

R̄√
λ2M

))
⊂ Iτ ∩B(0, |w|) ∩B(w, R̄).
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Proof. Let τ ∈ A0, w ∈ R2, R̄ > 0 with |w| > R̄, M ≥ 2 and z ∈ B
(
w − R̄

M
w
|w| ,

R̄
M

)
.

Then,

|z| ≤
∣∣∣∣z − (w − R̄

M

w

|w|

)∣∣∣∣+ ∣∣∣∣w − R̄

M

w

|w|

∣∣∣∣
<

R̄

M
+

∣∣∣∣1− R̄

M |w|

∣∣∣∣ |w| = R̄

M
+

(
1− R̄

M |w|

)
|w| = |w|,

since R̄ < |w| and M ≥ 2, which deduce that 1 > 1/M > R̄/M |w|. In addition,

|z − w| ≤
∣∣∣∣z − (w − R̄

M

w

|w|

)∣∣∣∣+ ∣∣∣∣ R̄M w

|w|

∣∣∣∣ < R̄

M
+
R̄

M
=

2R̄

M

and since M ≥ 2, we have 2R̄/M ≤ R̄. Therefore, we have proved our lemma.

Note that by similar argument of Proposition 4.3, Lemma 4.4 and the equation (4.6),
we obtain the following lemma.

Lemma 4.7. Let τ ∈ A0, w ∈ R2, R̄ > 0 with |w| > R̄. Then, there exist Cτ > 0 and
Q′

τ > 0 such that for all R̄ ≥ Cτ , we have

|Iτ ∩B(0, |w|) ∩B(w, R̄)| ≥ Q′
τ R̄

2

We now prove the finiteness of the packing measure of Jτ .

Proof of the finiteness of packing measures in Theorem 1.8. To prove Main Theorem 5, it
suffice to show the assumption of Lemma 2.47 for each τ ∈ A0. Let τ ∈ A0. Let r0 <
min{1/8,K0 (R

′
τ )

−1}, where R′
τ is defined in the equation (4.6). Note that there exists

R̃ > max{Cτ , 1} such that for each R > R̃, (R − 1)/R ≥ 1/2, where Cτ > 0 is defined in
Lemma 4.7. We set L′

τ := min{Q′
τ/4, (R̃ + 1)−2} (> 0), where Q′

τ is defined in Lemma
4.7. We also set ξ := r20(> 0), γ := K(≥ 1) and

Lτ := min
{
L′(4K)−hτ , QτK

1−2hτ
0 N−2hτ

τ 22−2hτ

}
(> 0).

Let b := m+ nτ ∈ Iτ and r > 0 with γdiam(ϕb(X)) ≤ r ≤ ξ. We set x := 1/b = ϕb(0) ∈
ϕb(V ). We consider the following three cases.

1. r ≤ |x|/2.
Note that by the assumption, we have 0 < r (≤ |x|/2) < |x| and

|x|2 = K ·K−1|b|−2 ≤ γ · diamϕb(X) ≤ r (4.10)

We set f(z) := 1/z (z ∈ C \ {0}). We show that for each B(x, r) with r < |x|, we have

f(B(x, r)) = B

(
|x|2

|x|2 − r2
· 1
x
,

r

|x|2 − r2

)
.

Indeed, for each a ∈ C, |1/a − x/(|x|2−r2)| = r/(|x|2−r2) is equiavalent to |r2−x(x−a)| =
r|a| which is also equivalent to

r4 − r2(x(x− a) + x(x− a) + aa) + xx(x− a)(x− a) = 0. (4.11)
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Since (x(x−a)+x(x−a)+ aa) = xx+(x−a)(x− a), the equation (4.11) is equivalent to
(r2−|x−a|2)(r2−|x|2) = 0. Since r < |x|, we deduce that |1/a−x/(|x|2−r2)| = r/(|x|2−r2)
is equivalent to r = |x− a|. In addition, since f(x) = 1/x satisfies∣∣∣∣f(x)− |x|2

|x|2 − r2
· 1
x

∣∣∣∣ = r

|x|2 − r2
r

|x|
<

r

|x|2 − r2
,

we obtain that

f(B(x, r)) = B

(
|x|2

|x|2 − r2
· 1
x
,

r

|x|2 − r2

)
. (4.12)

We set

w :=
|x|2

|x|2 − r2
· 1
x

and R :=
r

|x|2 − r2
.

Note that |w| := |x|/(|x|2 − r2). We set

Iτ (x, r) := {b ∈ Iτ | ϕb(X) ⊂ B(x, r)} = {b ∈ Iτ | B(b+ 1/2, 1/2) ⊂ f(B(x, r))} (4.13)

and Iτ,1 := Iτ (x, r) ∩B(0, |w|).
We now show that b ∈ Iτ,1. Note that since |b| = 1/|x| ≤ |x|/(|x|2− r2) = |w|, we have

b ∈ B(0, |w|). Therefore, it is sufficient to show that |w− (b+1/2)| ≤ R−1/2. Indeed, we
set A := 1− |b|2r2 for simplicity. Since r ≤ |x|, we have A > 0. Then, since |b|2r − 1 ≥ 0,
which is equivalent to r ≥ |x|2, we have∣∣2|b|2r −A

∣∣2 − (2r2|b|2b−A
) (

2r2|b|2b−A
)

= 4|b|4r2 − 2A · 2|b|2r +A2 − (2|b|2r2)2 · |b|2 + 2|b|2r2A · (b+ b)−A2

= 4|b|4r2 − 4|b|6r4 − 4A|b|2r + 4|b|2r2A · ℜ(b) = 4|b|4r2(1− |b|2r2) + 4A|b|2r(rℜ(b)− 1)

= 4A|b|4r2 + 4A|b|2r(rℜ(b)− 1) = 4A|b|2r(|b|2r + rℜ(b)− 1) ≥ 0,

where ℜ(b) ≥ 0 is the real part of b. In addition, since |b|2r − 1 ≥ 0, we have

2|b|2r −A = |b|2r2 + |b|2r + |b|2r − 1 ≥ |b|2r − 1 ≥ 0.

Therefore, we have |2r2|b|2b−A| ≤ 2|b|2r −A. It follows that∣∣∣∣w −
(
b+

1

2

)∣∣∣∣ = ∣∣∣∣ |x|2

|x|2 − r2
1

x
− b− 1

2

∣∣∣∣ = ∣∣∣∣ b

1− |b|2r2
− b− 1

2

∣∣∣∣
=

|2b− 2b(1− |b|2r2)− (1− |b|2r2)|
2(1− |b|2r2)

=
|2b|b|2r2 −A|
2(1− |b|2r2)

≤ 2|b|2r −A

2(1− |b|2r2)
=

|b|2r
1− |b|2r2

− 1− |b|2r2

2(1− |b|2r2)
=

r

|x|2 − r2
− 1

2
= R− 1

2
.

Thus, we have proved B(b+ 1/2, 1/2) ⊂ B(w,R).
Note that by the inclusion (4.13) and (4.12) we have

Iτ,1 = Iτ (x, r) ∩B(0, |w|) = {b ∈ Iτ | B(b+ 1/2, 1/2) ⊂ f(B(x, r))} ∩B(0, |w|)
= {b ∈ Iτ | B(b+ 1/2, 1/2) ⊂ B(w,R)} ∩B(0, |w|)
⊃ {b ∈ Iτ | b ∈ B(w,R− 1)} ∩B(0, |w|) = Iτ ∩B(w,R− 1) ∩B(0, |w|) (4.14)

Recall that there exists R̃ > max{Cτ , 1} such that for each R > R̃, (R − 1)/R ≥ 1/2,
where Cτ > 0 is defined in Lemma 4.7.
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We next show that |Iτ,1| ≥ L′
τR

2 for each R > 0. To prove this, we consider the
following two cases.

1-1. R ≥ R̃+ 1.
Recall that since |x| > r, we have |w| > R(> R̃ > 0). By the inclusion (4.14) and Lemma
4.7 with R̄ = R− 1 (= R̃ > 0), we have

|Iτ,1| ≥ |Iτ ∩B(w,R− 1) ∩B(0, |w|)| ≥ Q′
τ (R− 1)2 ≥ Q′

τ

4
R2 ≥ L′

τR
2.

1-2. R̃+ 1 ≥ R.
Since Iτ,1 is not empty set and R̃ + 1 ≥ R, we have |Iτ,1| ≥ 1 ≥ (R/R̃ + 1)2 ≥ L′

τR
2.

Hence, we have proved |Iτ,1| ≥ L′
τR

2 for each R > 0.
We finally show Main Theorem 5 if r ≤ |x|/2. Since |x|2 − r2 ≥ 3|x|2/4 and therefore

|w| = |x|/(|x|2 − r2) ≤ 4/3|x|, and hτ < 2, we obtain that

mτ (B(x, r)) ≥ mτ

 ∪
b∈Iτ,1

ϕb(X)

 =
∑
b∈Iτ,1

∫
X
|ϕ′b|hτdmτ ≥

∑
b∈Iτ,1

K−hτ |b|−2hτmτ (X)

=
∑
b∈Iτ,1

K−hτ |x|2hτ ≥ |Iτ,1|K−hτ |x|2hτ ≥ L′
τ

(
r

|x|2 − r2

)2

K−hτ |x|2hτ

≥ L′
τ

r2

|x|4
K−hτ |x|2hτ = L′

τK
−hτ r2|x|2hτ−4 ≥ L′

τK
−hτ r2rhτ−2 ≥ Lτr

hτ .

By Threorem 2.47, we have proved Main Theorem 5 if r ≤ |x|/2.
2. |x|/2 ≤ r and r < 2|x|.

We set r̃ := r/4. Then, by the assumption, we have r̃ < |x|/2. In addition, since
|x|2 = K ·K−1|b|−2 ≤ γ · diamϕb(X) ≤ r ≤ ξ = r20, we have

|x|2 ≤ r0|x| ≤
1

8
· 2r = r̃.

Therefore, instead of r > 0, r̃ > 0 satisfies the assumption r ≥ |x|/2 and the inequality
(4.10) in the case 1. r ≤ |x|/2. Thus, by the similar argument discussed in the case 1.
r ≤ |x|/2, we have

mτ (B(x, r)) ≥ mτ (B(x, r̃)) ≥ L′
τK

−hτ r̃hτ

≥ L′
τK

−hτ 4−hτ rhτ ≥ L′
τ (4K)−hτ rhτ ≥ Lτr

hτ .

By Threorem 2.47, we have proved Main Theorem 5 if |x|/2 ≤ r and r < 2|x|.
3. 2|x| ≤ r.

We set r̃ := r/2. Note that B(0, r̃) ⊂ B(x, r) since, if y ∈ B(0, r̃), then |y−x| ≤ |x|+ |y| ≤
r/2 + r̃ = r. We set rτ := K0R

−1
τ (> 0), where Rτ is defined in the inequality (4.6). We

show that
|Iτ (r̃)| = |{b ∈ Iτ | r̃/Nτ ≤ K0|b|−1 < r̃}| ≥ QτK

2
0 r̃

−2. (4.15)

Indeed, note that r̃ = r/2 < r0 < rτ . We set R := K0r̃
−1. Note that r̃ ≤ rτ if and only if

R ≥ Rτ . Recall that Iτ (r̃) := {b ∈ Iτ | r̃/Nτ ≤ K0|b|−1 < r̃} and

Iτ (r̃) = {b ∈ Iτ | K0r̃
−1 < |b| ≤ NτK0r̃

−1} = Iτ ∩D′
2(K0r̃

−1, NτK0r̃
−1).

By Lemmas 4.2 and 4.4, we obtain that

|Iτ (r̃)| = |Iτ ∩D′
2(K0r̃

−1, NτK0r̃
−1)| = |Iτ ∩D′

2(R,NτR)| ≥ |N2 ∩D′
1(τ,R,NτR)|

= |N2 ∩D1(τ,R)| ≥ QτR
2 = QτK

2
0 r̃

−2.
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Thus, we have proved the inequality (4.15). Therefore, we obtain that

mτ (B(x, r)) ≥ mτ (B(0, r̃)) ≥ mτ

 ∪
b∈Iτ (r̃)

ϕb(X)

 =
∑

b∈Iτ (r̃)

mτ (ϕb(X))

≥
∑

b∈Iτ (r̃)

∫
X
|ϕ′b|hτdmτ ≥

∑
b∈Iτ (r̃)

K−1
0 |b|−2hτ ≥

∑
b∈Iτ (r̃)

K−1
0

(
r̃

KNτ

)2hτ

= |Iτ (r̃)|K−(1+2hτ )
0 N−2hτ

τ r̃2hτ ≥ QτK
1−2hτ
0 N−2hτ

τ r̃2hτ−2

= QτK
1−2hτ
0 N−2hτ

τ 22−2hτ r2hτ−2 ≥ QτK
1−2hτ
0 N−2hτ

τ 22−2hτ rhτ ≥ Lτr
τ .

By Threorem 2.47, we have proved Main Theorem 5 if 2|x| ≤ r. Hence, by the three cases,
we have proved Main Theorem 5.

5 Non-autonomous iterated function systems and the limit
sets

5.1 Basic properties

In this subsection, we consider non-autonomous iterated fucntion systems (for short,
NAIFS). Before we study the NAIFSs, we first consider some properties of sequences
generated by contractive mappings on complete metric spaces.

Definition 5.1. Let (X, ρ) be a complete metric space. We say that fj : X → X (j ∈ N)
is a sequence of contractive mappings on X with an uniform contraction constant c ∈ (0, 1)
if there exists c ∈ (0, 1) such that for all j ∈ N and x, y ∈ X,

ρ(fj(x), fj(y)) ≤ c ρ(x, y).

For each m,n ∈ N with m < n, we set g(m,n) : X → X defined by

g(m,n) := fm ◦ · · · ◦ fn−1 (5.1)

and g(m,m) := idX (We call {g(m,n)}∞n=m the non-autonomous right iterated sequence
of the contractive mappings on X with {fj}j∈N ).

Note that since X is complete, for each j ∈ N, there exists the unique fixed point
zj of the fj . We set Z := {zj ∈ X | j ∈ N}. For each r > 0 and A ⊂ X, we set
Ar := {y ∈ X | ∃a ∈ A, ρ(y, a) ≤ r}.

Lemma 5.2. Let fj : X → X (j ∈ N) be a sequence of contractive mappings on a complete
metric space (X, d) with an uniform contraction constant c ∈ (0, 1). Suppose that Z is
bounded. Then, there exists rZ > 0 such that for each r ≥ rZ and j ∈ N, fj(Zr) ⊂ Zr.

Proof. We set M := diam Z < ∞. We set rZ := cM/(1 − c). Let r ≥ rZ , j ∈ N and
x ∈ Zr. Then, there exists j0 ∈ N such that d(x, zj0) ≤ r. In addition, we have

ρ(fj(x), zj) = ρ(fj(x), fj(zj)) ≤ cρ(x, zj)

≤ c(ρ(x, zj0) + ρ(zj0 , zj)) ≤ c(r +M) ≤ r

since cM/(1− c) ≤ r. Therefore, we have proved our lemma.
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The following lemma shows that if we consider a sequence of contractive mappings
defined on a bounded set in some sense, then there exists the sequence of limit points
generated by contractive mappings and it is bounded.

Lemma 5.3. Let {fj}j∈N (j ∈ N) be a sequence of contractive mappings on a complete
metric space (X, ρ) with an uniform contraction constant c ∈ (0, 1). Suppose that Z is
bounded. Then, for each m ∈ N, there exists xm(∞) ∈ X such that for all x ∈ X, the
sequence {g(m,n)(x)}∞n=m converges to xm(∞). In addition, {xm(∞) ∈ X | m ∈ N} is
bounded and for each m1,m2 ∈ N with m1 ≤ m2, we have

g(m1,m2)(xm2(∞)) = xm1(∞).

Proof. Let m ∈ N and x ∈ X. We set xm(n) := g(m,m + n)(x) (n ∈ N). Note that
by Lemma 5.2, there exists r ≥ rZ such that x ∈ Zr and for each k ∈ N, fm+k(x) ∈
fm+k(Zr) ⊂ Zr. Then, for all n1, n2 ∈ N with n1 < n2,

ρ(xm(n1), xm(n2))

≤
n2−1∑
k=n1

ρ(xm(k), xm(k + 1)) =

n2−1∑
k=n1

ρ(g(m,m+ k)(x), g(m,m+ k + 1)(x))

=

n2−1∑
k=n1

ckρ(x, fm+k(x)) =

n2−1∑
k=n1

ckdiam Zr.

Therefore, we deduce that {xm(n)}n∈N is a Cauchy sequence on the complete metric space
X and there exists xm(∞) ∈ X such that xm(n) −→ xm(∞) as n −→ ∞. In addition,
Let m ∈ N and y ∈ X. We set ym(n) := g(m,m+ n)(y) (n ∈ N). By the same argument,
there exists ym(∞) such that ym(n) −→ ym(∞) as n −→ ∞. Then, for all n ∈ N,

ρ(xm(∞), ym(∞)) ≤ ρ(xm(∞), xm(n)) + ρ(xm(n), ym(n)) + ρ(ym(n), ym(∞))

≤ ρ(xm(∞), xm(n)) + cnρ(x, y) + ρ(ym(n), ym(∞))
n−→∞−→ 0.

Let x ∈ X. Since Z is bounded, so is Zr. Since there exists r ≥ rZ such that xm(n) ∈ Zr

for all m,n ∈ N, {xm(∞) ∈ X | m ∈ N} is included by the closure of Zr. Therefore,
{xm(∞) ∈ X | m ∈ N} is bounded. Finally, let m1,m2 ∈ N with m1 ≤ m2. Then, for all
n ∈ N and x ∈ X,

g(m1,m2 + n)(x) = g(m1,m2) ◦ g(m2,m2 + n)(x) = g(m1,m2)(xm2(n)).

Since xm1((m2 − m1) + n) = g(m1,m2 + n)(x)
n−→∞−→ xm1(∞), xm2(n)

n−→∞−→ xm2(∞)
and g(m1,m2) is continuous, we have g(m1,m2)(xm2(∞)) = xm1(∞). Therefore, we have
proved our lemma.

Corollary 5.4. Under the assumption of Lemma 5.3, for all m ∈ N and x ∈ X, the
sequence {g(m,n)(x)}∞n=m convrges to xm(∞) exponentially fast with the rate c.

Proof. Let x ∈ X. There exists r > rZ such that x ∈ Zr and {xm(∞) ∈ X |m ∈ N} ⊂ Zr
ρ
,

where Zr
ρ ⊂ X is the closure of Zr ⊂ X. Then, for all m,n ∈ N with m ≤ n, we have

ρ(xm(∞), g(m,n)(x)) ≤ ρ(g(m,n)(xn(∞)), g(m,n)(x))

≤ cn−mρ(xn(∞), x) ≤ cn−mdiamZr
ρ
.

Since Zr
ρ
is bounded, we have proved our corollary.
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We now present the general definition of NAIFSs. Let I be a set and (X, ρ) be a
complete metric space.

Definition 5.5. We say that ({fi}i∈I , {Jn}n∈N) satisfy the setting (NAIFS) if

(i) {Jn}n∈N is a sequence in {J ⊂ I | J is finite}, and

(ii) {fi : X → X}i∈I is a family of contractive mappings on X with the uniform con-
traction constant c ∈ (0, 1), that is, there exists c ∈ (0, 1) such that for all i ∈ I and
x, y ∈ X,

ρ(fi(x), fi(y)) ≤ c ρ(x, y).

Note that for each i ∈ I, there exists zi ∈ X such that zi is the unique fixed point of
fi since X is complete and fi is contractive on X.

Let K(X) be the set of non-empty compact subsets in a complete metric space (X, ρ).
For each ϵ > 0 and set A ⊂ X, we set Aϵ := {x ∈ X | ∃a ∈ A, s.t. ρ(a, x) ≤ ϵ}. Let dH be
the Hausdorff distance on K(X) which is defined by

dH(A,B) := inf{ϵ > 0 | A ⊂ Bϵ, B ⊂ Aϵ} (A,B ∈ K(X)).

Let Fn : K(X) → K(X) (n ∈ N) be mappings defined by

Fn(A) :=
∪
i∈Jn

fi(A),

which is well-defined since fi is continuous and Jn is finite. Each mapping Fn is often
called the Barnsley operator.

Note that since (X, ρ) is complete, (K(X), dH) is also complete (For example, see [17]).
In addition, if {Ln}n∈N is a Cauchy sequence in (K(X), dH), then {Ln}n∈N tend to

L :=
∩
n∈N

∪
k≥n

Lk

ρ

∈ K(X) (5.2)

as n tends to infinity, where A
ρ
is the closure of A ⊂ X with respect to the metric ρ. Note

that {Fn}n∈N is the sequence of the contractive mappings on (K(X), dH) with an uniform
contraction constant c ∈ (0, 1) since for all A,B ∈ K(X) and n ∈ N,

dH

(∪
i∈Jn

fi(A),
∪
i∈Jn

fi(B)

)
≤ max

i∈Jn
dH(fi(A), fi(B)) ≤ max

i∈Jn
c dH(A,B) = c dH(A,B).

Note that since K(X) is complete and Fn is contractive on K(X) for each n ∈ N, there
exists An ∈ X such that An is the unique fixed point of Fn for each n ∈ N. We set

ZH := {An ∈ K(X) | n ∈ N, An is the unique fixed point of Fn}.

To apply Lemma 5.3, we consider a sufficient condition to show ZH is bounded in K(X).
Recall that for each i ∈ I, there exist the unique fixed points zi of fi.

Lemma 5.6. Let ({fi}i∈I , {Jn}n∈N) satisfy the setting (NAIFS). Suppose that Z := {zi ∈
X | i ∈ I} is bounded. Then, ZH is bounded.
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Proof. By Lemma 5.2, there exists rZ > 0 such that for all r ≥ rZ and i ∈ I, fi(Zr) ⊂ Zr.
We set r ≥ rZ . Let A ∈ K(X) with A ⊂ Zr. (for example, we can take A as set of
one point in Z). Since fi(A) ⊂ fi(Zr) ⊂ Zr for each i ∈ I, we have for each n ∈ N,∪

i∈Jn fi(A) ⊂ Zr, i.e. Fn(A) ⊂ Zr. We deduce that for any m ∈ N,

F (m)
n (A) ⊂ F (m−1)

n (Zr) ⊂ Zr,

where F
(m)
n is the m-th composition of Fn (i.e. F

(m)
n (A) := (

m︷ ︸︸ ︷
Fn ◦ · · · ◦ Fn)(A) A ∈ K(X)).

In addition, for each n ∈ N, {F (m)
n (A)}m∈N is a Cauchy sequence in (K(X), dH) and

F
(m)
n (A) tend to the unique fixed point An in K(X) as m −→ ∞ by the Banach fixed

point theorem. Therefore, we have for each n ∈ N,

An =
∩
m∈N

∪
l≥m

F
(m)
n (A)

ρ

⊂ Zr
ρ
.

We set R := diamZr
ρ
= diamZr < ∞. We show that for all n ∈ N and m ∈ N,

dH(An, Am) ≤ R. Let x ∈ Am. For any y ∈ An, d(x, y) ≤ diamZr
d
= R since Am ⊂ Zr

d

and An ⊂ Zr
d
. We deduce that Am ⊂ (An)R. By the same argument, we have An ⊂

(Am)R. Therefore, dH(An, Am) ≤ R. Thus, we have proved our lemma.

Theorem 5.7. Let ({fi}i∈I , {Jn}n∈N) satisfy the setting (NAIFS). Suppose that Z :=
{zi ∈ X | i ∈ I} is bounded. Then, there exists a sequence {Km}m∈N ⊂ K(X) such that
for each m ∈ N and A ∈ K(X), G(m,n)(A) converges to Km as n tends to infinity, where
for each m,n ∈ N with m < n, G(m,n) := Fm ◦ · · · ◦ Fn−1.

In addition, {Km ∈ K(X) | m ∈ N} is a bounded set in (K(X), dH), for each m1,m2 ∈
N with m1 ≤ m2, we have G(m1,m2)(Km2) = Km1 and for all m ∈ N and A ∈ K(X),
{G(m,n)(A)}∞n=m convrges to Km exponentially fast with the rate c.

Proof. By Lemma 5.6, we have that ZH is bounded. Therefore, by applying the Lemma
5.3 and Corollary 5.4. Thus, we have proved our theorem.

By Theorem 5.7, we define the limit set (or the sequence of the limit sets) as the limit
of the sequence in K(X) which is constructed by the Barnsley operators of an NAIFS
defiend on a bounded set. Note that if the set of the unique fixed point of the contractive
mappings is bounded, then we deduce to the case that we consider NAIFSs defined on a
bounded set. This is the same case of [29]. However, we consider NAIFSs with the weaker
assumption in Main Theorem 6 and Main Theorem 7.

We next consider the sequence of the limit sets and the sequence of the limt measures
generated by NAIFSs with weights ({fi}i∈I , {Jn}n∈N, {pn}n∈N) (for short, wNAIFSs). Let
I be a set and (X, ρ) be a complete separable metric space.

Definition 5.8. We say that ({fi}i∈I , {Jn}n∈N, {pn}n∈N) satisfy the setting (wNAIFS) if

(i) {Jn}n∈N is a sequence in {J ⊂ I | J is finite},

(ii) {fi : X → X}i∈I is a family of contractive mappings on X with an uniform contrac-
tion constant c ∈ (0, 1), that is, there exists c ∈ (0, 1) such that for all i ∈ I and
x, y ∈ X,

ρ(fi(x), fi(y)) ≤ c ρ(x, y), and
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(iii) for each n ∈ N, pn is [0,∞)-valued functions on I with pn(i) > 0 if and only if i ∈ Jn,
and pn satisfies ∑

i∈Jn

pn(i) = 1.

Let P1(X) be the set of Borel probability measures defined on a complete separable
metric space (X, ρ) for which there exists a ∈ X such that the function x 7→ ρ(a, x) is
integrable. Note that for each b ∈ X and P ∈ P1(X), we have

∫
X ρ(b, x)P (dx) <∞ since∫

X
ρ(b, x) P (dx) ≤

∫
X
ρ(b, a) P (dx)+

∫
X
ρ(a, x) P (dx) = ρ(b, a)+

∫
X
ρ(a, x) P (dx) <∞.

Let Lip1(X) be a set of R-valued functions f on X with |f(x) − f(y))| ≤ ρ(x, y) for
all x, y ∈ X. Let dMK be the Monge-Kantrovich distance on P1(X) which is defined by

dMK(µ, ν) := sup

{∫
X
fdµ−

∫
X
fdν | f ∈ Lip1(X)

}
(µ, ν ∈ P1(X)).

Let Mn : P1(X) → P1(X) (n ∈ N) be mappings defined by

Mn(µ)(B) :=
∑
i∈Jn

pn(i) µ(f
−1
i (B)) (B ∈ B(X)),

where B(X) is the set of the Borel sets in X. Note that for each n ∈ N, Mn is well-defined
since ∫

X
ρ(x, a) dMn(µ) =

∑
i∈Jn

pn(i)

∫
X
ρ(x, a) d(µ ◦ f−1

i )

=
∑
i∈Jn

pn(i)

∫
X
ρ(fi(x), a) dµ ≤

∑
i∈Jn

pn(i)

∫
X
ρ(fi(x), fi(zi)) + ρ(fi(zi), a) dµ

=
∑
i∈Jn

pn(i)

{∫
X
c ρ(zi, x) dµ+ ρ(zi, a)

}
<∞.

Each mapping Mn is often called the Foias operator.
Note that (P1(X), dMK) is a complete separable metric space since (X, ρ) is complete

and separable (For example, [18], [34]). In addition, {Mn}n∈N is the sequence of the
contractive mappings on (P1(X), dMK) with an uniform contraction constant c ∈ (0, 1).
Indeed, since (f ◦ fi)/c ∈ Lip1(X) for each i ∈ I, for all µ, ν ∈ P1(X), f ∈ Lip1(X) and
n ∈ N, ∫

X
fdMn(µ)−

∫
X
fdMn(ν) ≤

∑
i∈Jn

pn(i)

(∫
X
fi ◦ fdµ−

∫
X
fi ◦ fdν

)
≤
∑
i∈Jn

pn(i) c dMK(µ, ν) = c dMK(µ, ν).

Note that for each n ∈ N, there exists µn ∈ P1(X) such that µn is the unique fixed
point of Mn since P1(X) is complete and for each n ∈ N, Mn is contractive on P1(X).
Later, we consider the limit sets and the limit measures gnerated by the wNAIFSs under
some assumption.
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5.2 Proof of Main Theorem 6

To prove the existence of the limit (1.1) and the equation (1.2) in Main Theorem 6, we
first prove the following lemma.

Lemma 5.9. Let {fj : X → X}j∈N be a sequence of contractive mappings on a complete
metric space (X, ρ) with an uniform contraction constant c ∈ (0, 1). For each j ∈ N, let
zj ∈ X be the unique fixed point of fj . If there exists x

′ ∈ X such that
∑

j∈N c
jρ(x′, zj) <

∞, then for each x ∈ X, we have
∑

j∈N c
jρ(x, zj) <∞.

Proof. Let x ∈ X and Let x′ ∈ X satisfy the inequality
∑

j∈N c
jρ(x′, zj) <∞. Then,∑

j∈N
cjρ(x, zj) ≤ ρ(x, x′)

∑
j∈N

cj +
∑
j∈N

cjρ(x′, zj) <∞

since
∑

j∈N c
j is finite. Therefore, we have proved our lemma.

Remark 5.10. By Lemma 5.9 if there exists x′ ∈ X such that
∑

j∈N c
jρ(x′, zj) = ∞,

then for each x ∈ X, we have
∑

j∈N c
jρ(x, zi) = ∞.

Lemma 5.11. Let {fj}j∈N be a sequence of contractive mappings on a complete metric
space (X, ρ) with an uniformly contractive constant c ∈ (0, 1). For each j ∈ N, let zj ∈ X
be the unique fixed point of fj . Suppose that there exists x′ ∈ X such that∑

j∈N
cjρ(x′, zj) <∞. (5.3)

Then, for all m ∈ N, there exists xm(∞) ∈ X such that for all x ∈ X, g(m,m + n)(x)
converges to xm(∞) as n tends to infinity. In addition, for all m1,m2 ∈ N with m1 ≤ m2,

g(m1,m2)(xm2(∞)) = xm1(∞).

Proof. Let m ∈ N and x ∈ X. For each n ∈ N, we set xm(n) := g(m,m + n)(x). Note
that by Lemma 5.9, ∑

j∈N
cjρ(x, zj) <∞.

Then, for all n1, n2 ∈ N with n1 < n2,

ρ(xm(n1), xm(n2)) ≤
n2−1∑
k=n1

ρ(xm(k), xm(k + 1))

=

n2−1∑
k=n1

ρ(g(m,m+ k)(x), g(m,m+ k + 1)(x))

=

n2−1∑
k=n1

ckρ(x, fm+k(x)) ≤
n2−1∑
k=n1

ck(ρ(x, zm+k) + ρ(zm+k, fm+k(x)))

= c−m
n2−1∑
k=n1

ck+m(ρ(x, zm+k) + ρ(fm+k(zm+k), fm+k(x)))

≤ c−m(1 + c)

n2−1∑
k=n1

ck+mρ(x, zm+k). (5.4)
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Therefore, we deduce that {xm(n)}n∈N is a Cauchy sequence in X and there exists
xm(∞) ∈ X such that xm(n) converges to xm(∞) as n tends to infinity. In addition,
let m ∈ N and y ∈ X. For each n ∈ N, we set ym(n) := g(m,m + n)(y). By the same
argument, there exists ym(∞) ∈ X such that ym(n) converges to ym(∞) as n tends to
infinity. Then, for all n ∈ N,

ρ(xm(∞), ym(∞)) ≤ ρ(xm(∞), xm(n)) + ρ(xm(n), ym(n)) + ρ(ym(n), ym(∞))

≤ ρ(xm(∞), xm(n)) + cnρ(x, y) + ρ(ym(n), ym(∞)) −→ 0

as n tends to infinity. Finally, let m1,m2 ∈ N with m1 ≤ m2. Then, for all n ∈ N,

xm1((m2 −m1) + n) = g(m1,m2 + n)(x) = g(m1,m2)(xm2(n)).

Since xm1((m2 − m1) + n) converges to xm1(∞) as n tends to infinity, xm2(n) con-
verges to xm2(∞) as n tends to infinity and g(m1,m2) is continuous on X, we have
g(m1,m2)(xm2(∞)) = xm1(∞). Therefore, we have proved our lemma.

To prove the existence of the limit (1.1) and the equation (1.2) in Main Theorem 6,
we give the following lemma without proof.

Lemma 5.12 (Collage theorem, Inverse collage theorem [18]). Let f : X → X be a
contractive mapping on a complete metric space (X, ρ) with a contraction constant c ∈
(0, 1). Let z ∈ X be the unique fixed point of f . Then, for each a ∈ X, we have

ρ(f(a), a) ≤ (1 + c) ρ(z, a) and ρ(z, a) ≤ ρ(f(a), a)

1− c
.

We now show the limit (1.1) and the equation (1.2) in Main Theorem 6.

Proof of the limit (1.1) and the equation (1.2). Let x0 ∈ X satisfy the assumption in
Main Theorem 6. Recall that Am ∈ K(X) be the unique fixed point of Fm for each m ∈ N.
Note that {x0} ∈ K(X) and Fn({x0}) = ∪i∈Jn{fi(x0)} for each n ∈ N. By Lemma 5.12,
we have

dH({x0}, An) ≤
dH(Fn({x0}), {x0})

1− c
=
dH(∪i∈Jn{fi(x0)}, {x0})

1− c
.

In addition, by the properties of the Hausdorff distance and Lemma 5.12, we have

dH(∪i∈Jn{fi(x0)}, {x0}) = max
i∈Jn

ρ(fi(x0), x0) ≤ max
i∈Jn

(1 + c)ρ(x0, zi).

Therefore, for each n ∈ N, we have

dH({x0}, An) ≤
1 + c

1− c
max
i∈Jn

ρ(x0, zi). (5.5)

By the assumption of Main Theorem 6, we deduce that
∑

n∈N dH({x0}, An) < ∞. By
Lemma 5.11, we have proved our theorem.

To prove the rest of Main Theorem 6, we prove the following lemma and corollary.

Lemma 5.13. Let {fj}j∈N be a sequence of contractive mappings on a complete metric
space (X, ρ) with an uniform contraction constant c ∈ (0, 1). For each j ∈ N, let zj ∈ X
be the unique fixed point of fj . Suppose that there exist x′ ∈ X, r ∈ [c, 1) and C ′ > 0
such that for all j ∈ N,

cjρ(x′, zj) ≤ C ′rj (5.6)
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Then, for all m ∈ N, there exists xm(∞) ∈ X such that for all x ∈ X, we have g(m,n)(x)
converges to xm(∞) as n tends to infinity exponentially fast with the rate r. In addition,
for all m1,m2 ∈ N with m1 ≤ m2,

g(m1,m2)(xm2(∞)) = xm1(∞).

Proof. Let m ∈ N and x ∈ X. For each n ∈ N, we set xm(n) := g(m,m + n)(x). Note
that by the assumption (5.6), for each i ∈ N,

ciρ(x, zi) ≤ ρ(x, x′)ci + ciρ(x′, zi) ≤ C(x) ri,

where C(x) := C ′ + ρ(x, x′). Then, for all n1, n2 ∈ N with n1 < n2,

ρ(xm(n1), xm(n2)) ≤
n2−1∑
k=n1

ρ(xm(k), xm(k + 1))

=

n2−1∑
k=n1

ρ(g(m,m+ k)(x), g(m,m+ k + 1)(x))

=

n2−1∑
k=n1

ckρ(x, fm+k(x)) ≤
n2−1∑
k=n1

ck(ρ(x, zm+k) + ρ(zm+k, fm+k(x)))

= c−m
n2−1∑
k=n1

ck+m(ρ(x, zm+k) + ρ(fm+k(zm+k), fm+k(x)))

≤ c−m(1 + c)

n2−1∑
k=n1

ck+mρ(x, zm+k) ≤ c−mC(x)(1 + c)

n2−1∑
k=n1

rk+m (5.7)

Therefore, we deduce that {xm(n)}n∈N is a Cauchy sequence in X and there exists
xm(∞) ∈ X such that xm(n) converges to xm(∞) as n tends to infinity. In addition,
let m ∈ N and y ∈ X. For each n ∈ N, we set ym(n) := g(m,m + n)(y). By the same
argument, there exists ym(∞) ∈ X such that ym(n) converges to ym(∞) as n tends to
infinity. Then, for all n ∈ N,

ρ(xm(∞), ym(∞)) ≤ ρ(xm(∞), xm(n)) + ρ(xm(n), ym(n)) + ρ(ym(n), ym(∞))

≤ ρ(xm(∞), xm(n)) + cnρ(x, y) + ρ(ym(n), ym(∞)) −→ 0

as n tends to infinity. In addition, as n2 tends to infinity in the inequality (5.7), we have

ρ(xm(n1), xm(∞)) ≤ c−mC(x)(1 + c)
∞∑

k=n1

rk+m =
(r
c

)m C(x)(1 + c)

1− r
rn1

for all n1 ∈ N. Therefore, we deduce that for each m ∈ N, g(m,m + n)(x) converges to
xm(∞) as n tends to infinity exponentially fast with the rate r. Finally, let m1,m2 ∈ N
with m1 ≤ m2. Then, for all n ∈ N,

xm1((m2 −m1) + n) = g(m1,m2 + n)(x) = g(m1,m2)(xm2(n)).

Since xm1((m2 − m1) + n) converges to xm1(∞) as n tends to infinity, xm2(n) con-
verges to xm2(∞) as n tends to infinity and g(m1,m2) is continuous on X, we have
g(m1,m2)(xm2(∞)) = xm1(∞). Thus, we have proved our lemma.
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Note that the constant C(x) > 0 depends on x ∈ X. However, if X is bounded, then
instead of C(x) > 0, we can take the constant C > 0 which does not depend on x ∈ X.
Indeed, we set C := diamx,y∈Xρ(x, y) + C ′(<∞) and we have C(x) = d(x, x′) + C ′ ≤ C.

Corollary 5.14. Let {fj}j∈N be a sequence of contractive mappings on a complete metric
space (X, ρ) with an uniformly contraction constant c ∈ (0, 1). For each j ∈ N, let zj ∈ X
be the unique fixed point of fj . Suppose that there exists x′ ∈ X,

a := lim sup
j−→∞

j

√
ρ(x′, zj) <

1

c
.

Then, for all m ∈ N and r ∈ {r > 0 | c ≤ r < 1, ac < r}, there exists xm(∞) ∈ X such
that for all x ∈ X, g(m,m+n)(x) converges to xm(∞) as n tends to infinity exponentially
fast with the rate r. In addition, for all m1,m2 ∈ N with m1 ≤ m2,

g(m1,m2)(xm2(∞)) = xm1(∞).

Proof. Let r ∈ {r > 0 | c ≤ r < 1, ac < r}. Then, by the assumption (5.14), there exists
M ∈ N such that for all j ≥M , we have c j

√
ρ(x′, zj) < r, which is equivalent to

cjρ(x′, zj) < rj .

We set C ′′ := max{cjρ(x′, zj)/rj | j < M} ∪ {1}(> 0). Then, we have for all j ∈ N,

cjρ(x′, zj) ≤ C ′′rj .

By Lemma 5.13, our statement of corollary holds.

We now prove the rest of Main Theorem 6.

Proof of the rest of Main Theorem 6. Let r ∈ {r > 0 | c ≤ r < 1, ac < r}. Let x0 ∈ X
satisfy the assumption in Main Theorem 6. Recall that Am ∈ K(X) be the unique fixed
point of Fm for each m ∈ N. By the argument in the proof of Corollary 5.14, there exists
C ′′′ > 0 such that for all n ∈ N,

max
i∈Jn

d(x0, zi)c
n ≤ C ′′′rn.

By the similar argument to deduce the inequality (5.5), we have

dH({x0}, An)c
n ≤ 1 + c

1− c
max
i∈Jn

d(x0, zi)c
n ≤ C ′′′ 1 + c

1− c
rn (5.8)

for each n ∈ N. By Lemma 5.13, the statement of our corollary holds.

5.3 Examples of the sequence of contractive mappings

Let ({fi}i∈I , {Jn}n∈N) satisfy the setting (NAIFS). If we do not assume that there exists
x′ ∈ X such that

∑
j∈N c

jρ(x′, zi) < ∞, conculusion in Lemma 5.11 does not hold in
general. To show this, we give the following counterexample.

Example 5.15. Let fj : R → R (j ∈ N) is defined by

fj(x) := c(x− aj) + aj = cx+ (1− c)aj (x ∈ R),
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where c ∈ (0, 1) and aj ≥ 0. Note that for each j ∈ N, aj ≥ 0 is the unique fixed point of
fj i.e. zj = aj . Then, for all m, k ∈ N and x ∈ R, we have

g(m,m+ k)(x) = ckx+ (1− c)

k−1∑
l=0

clam+l. (5.9)

Indeed, we show this by induction with respect to k ∈ N, let m ∈ N. Since

g(m,m+ 1)(x) = fm(x) = cx+ (1− c)am,

we deduce the equation (5.9) if k = 1.
Assume that g(m,m+ k)(x) = ckx+ (1− c)

∑k−1
l=0 c

lam+l holds with k ∈ N. Then, we
have

g(m,m+ k + 1)(x) = g(m,m+ k)(fm+k(x)) = ckfm+k(x) + (1− c)

k−1∑
l=0

clam+l

= ck (cx+ (1− c)am+k) + (1− c)

k−1∑
l=0

clam+l = ck+1x+ (1− c)

k∑
l=0

clam+l.

Thus, we deduce that the equation (5.9) holds with k + 1 ∈ N.
If c = 1/2, ai = 2i+1 and x ∈ R, then for each k ∈ N, the equation (5.9) is the following.

g(m,m+ k)(x) =
1

2k
x+

1

2

k−1∑
l=0

1

2l
2m+l+1 =

1

2k
x+ k2m,

which deduce that for each m ∈ N and x ∈ R, g(m,m+k)(x) does not converge as k tends
to infinity.

In addition, there exists the example of the setting (NAIFS) in which the condition
(5.3) holds but the set Z of the unique fixed point of fj and {xm(∞) ∈ X | m ∈ N} are
not bounded. To show this, we give Example 5.16.

Example 5.16. In the previous Exmaple 5.15, we set c = 1/2, ai = i and x = 0. Then,
we first show that

∞∑
i=0

ci|zi| =
∞∑
i=0

i

2i
<∞. (5.10)

To prove this, let k ∈ N and we set Sk :=
∑k

i=1 i/2
i. Then, we have

Sk −
1

2
Sk =

k∑
i=1

i

2i
−

k∑
i=1

i

2i+1
=

1

2
+

k−1∑
i=1

i+ 1

2i+1
−

k−1∑
i=1

i

2i+1
− k

2k+1

=
1

2
+

k−1∑
i=1

1

2i+1
− k

2k+1
=

1

2
+ 2

(
1

22
− 1

2k+1

)
− k

2k+1

= 1− 1

2k
− k

2k+1
.

Therefore, we deduce that
k∑

i=1

i

2i
= 2− 1

2k−1
− k

2k
.
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Thus, we have proved the inequality (5.10). Note that {zi | i ∈ N} = N is not bounded.
In addition, for all m, k ∈ N and x ∈ R, we have

g(m,m+ k)(x) =
x

2k
+

k−1∑
l=0

m+ l

2l
.

Therefore, we have xm(∞) = 2m+ 2 for all m ∈ N since

k∑
l=0

m+ l

2l
=

k∑
l=0

1

2l
m+

k∑
l=0

l

2l
= 2(1− 1/2k+1) m+

k∑
l=1

l

2l
−→ 2m+ 2

as k tends to infinity. Thus, we deduce that Z is also unbounded.

5.4 Proof of Main Theorem 7

Definition 5.17. Let ({fi}i∈I , {Jn}n∈N) satisfy the setting (NAIFS). For each k, l ∈ N
with 1 ≤ k < l <∞, we set

J (k,l) := Πl−1
j=kJj , J (k,∞) := Π∞

j=kJj .

For each m ∈ N and n ∈ N ∪ {∞} with 1 ≤ m < n ≤ ∞ and w ∈ J (m,n), we write w
as wm · · ·wn−1 (wk ∈ Jk, k = m, . . . , n − 1). For each m ∈ N and n ∈ N ∪ {∞} with
1 ≤ m < n ≤ ∞ and w ∈ J (m,n), we set |w| := n−m. For each m ∈ N and n ∈ N ∪ {∞}
with 1 ≤ m < n ≤ ∞, w ∈ J (m,n) and s ∈ N with 1 ≤ s ≤ |w|, we set

w|s := wm · · ·wm+s−1 ∈ Πm+s−1
j=m Jj .

For each m ∈ N and n ∈ N∪{∞} with 1 ≤ m < n−1 ≤ ∞, the shift map σ : J (m,n) →
J (m+1,n) is defined by

σ(w) := wm+1wm+2 · · ·wn−1 ∈ J (m+1,n) (w = wmwm+1 · · ·wn−1 ∈ J (m,n)).

For each m ∈ N and n ∈ N ∪ {∞} with 1 ≤ m < n − 1 ≤ ∞ and wm ∈ Jm, the map
σwm : J (m+1,n) → J (m,n) is defined by

σwm(w) := wmwm+1 · · ·wn−1 ∈ J (m,n) (w = wm+1wm+2 · · ·wn−1 ∈ J (m+1,n)).

Note that the definition of σ depends on m ∈ N. However, we omit m ∈ N from the
representation of the map. For each m ∈ N, we introduce a metric d(m,∞) on J

(m,∞) which
is defined by

d(m,∞)(w, τ) :=
∞∑

n=m

dn(wn, τn)/2
n (w = wmwm+1 · · · , τ = τmτm+1 · · · ∈ J (m,∞)),

where for each n ∈ N, dn is the metric on Jn defined by

dn(wn, τn) :=

{
0 if wn = τn

1 otherwise
.

For eachm,n ∈ N withm < n and w = wm · · ·wn−1 ∈ J (m,n), we set fw := fwm◦· · ·◦fwn−1 .
We show the following lemma holds even if Z is not bounded.
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Lemma 5.18. Let ({fi}i∈I , {Jn}n∈N) satisfy the setting (NAIFS). For each n ∈ N, let
An ∈ K(X) be the unique fixed point of Fn. Suppose that there exists A ∈ K(X) such
that ∑

n∈N
dH(A,An)c

n <∞.

Then, for each m′ ∈ N and n1 ∈ N ∪ {0}, we have

dH (Am′(n1),Km′) ≤ c−m′
(1 + c)

∞∑
k=m′+n1

ckdH(A,Ak),

where Am′(n1) := Fm′ ◦ · · · ◦ Fm′+n1−1(A) if n1 ≥ 1 and Am′(0) := A.

Proof. Let m′ ∈ N and A ∈ K(X). By the same argument of the inequality (5.4) in
Lemma 5.11, we have

dH(Am′(n1), Am′(n1 + n2)) ≤ c−m′
(1 + c)

n1+n2−1∑
k=n1

cm
′+kdH(A,Am′+k) (5.11)

for each n1, n2 ∈ N. Since Am′(n1+n2) converges to Km′ as n2 tends to infinity by Lemma
5.11, we have

dH (Am′(n1),Km′) ≤ c−m′
(1 + c)

∞∑
k=n1

cm
′+kdH(A,Am′+k)

as n2 tends to infinity in the inequality (5.11). Therefore, we have proved our lemma.

Lemma 5.19. Let ({fi}i∈I , {Jn}n∈N) satisfy the setting (NAIFS). For each n ∈ N, let
An ∈ K(X) be the unique fixed point of Fn. Suppose that there exists A ∈ K(X) such
that ∑

n∈N
dH(A,An)c

n <∞.

Then, for each m ∈ N and w ∈ J (m,∞), we have diam(fw|n(Km+n)) tends to zero as n

tends to infinity uniformly with respect to w ∈ J (m,∞) and there exists the unique element
a(m,w) ∈ Km such that

a(m,w) ∈
∩
n∈N

fw|n(Km+n),

where we wirte w as wmwm+1 · · · and fw|n := fwm ◦ fwm+1 ◦ · · · ◦ fwm+n−1 .

Proof. Let m ∈ N and w ∈ J (m,∞). We first show that
∩

n∈N fw|n(Km+n) ̸= ∅. Note that
by Lemma 5.11, for each m1,m2 ∈ N,

G(m1,m1 +m2)(Km1+m2) = Km1 ,

where G(m1,m1 +m2) := Fm1 ◦ · · · ◦ Fm1+m2−1. Especially, for each n ≥ m and wn ∈ Jn,
we have

fwm+n(Km+n+1) ⊂ G(m+ n,m+ n+ 1)(Km+n+1) = Km+n.

Therefore, for each n ∈ N, we have

fwm ◦ fwm+1 ◦ · · · ◦ fwm+n(Km+n+1) ⊂ fwm ◦ fwm+1 ◦ · · · ◦ fwm+n−1(Km+n).
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Since {fw|n(Km+n)}n∈N is a decreasing sequence of non-empty compact sets, we have∩
n∈N

fw|n(Km+n) ̸= ∅.

We next show that
∩

n∈N fw|n(Km+n) is a single set. It is sufficient to show

lim
n→∞

diam(fw|n(Km+n)) = 0. (5.12)

Indeed, admitting (5.12), if z, w ∈
∩

n∈N fw|n(Km+n), then d(z, w) ≤ diam(fw|n(Km+n))
for each n ∈ N, which deduce that z = w as n tends to infinity.

In order to prove (5.12), let m ∈ N, w ∈ J (m,∞) and z ∈ X. Note that for each n ∈ N,

diam(fw|n(Km+n)) ≤ 2cndH({z},Km+n). (5.13)

Indeed, for each n ∈ N and x, y ∈ fw|n(Km+n),

ρ(x, y) ≤ ρ(x, fw|n(z)) + ρ(fw|n(z), y) ≤ 2 sup
y∈fw|n (Km+n)

ρ(fw|n(z), y)

≤ 2cn sup
y∈Km+n

ρ(z, y) ≤ 2cndH({z},Km+n).

Therefore, we have proved the inequality (5.13).
Note that by the assumption and Lemma 5.9, we have∑

n∈N
dH({z}, An)c

n <∞.

Moreover, by Lemma 5.18 with A := {z}, n1 := 0 and m′ := m+ n, we have

diamfw|n(Km+n) ≤ 2cndH({z},Km+n) ≤ 2cnc−(m+n)(1 + c)

∞∑
k=m+n

ckdH({z}, Ak)

= 2c−m(1 + c)

∞∑
k=m+n

ckdH({z}, Ak).

We have proved diam(fw|n(Km+n)) converges to zero as n tends to infinity uniformly with

respect to w ∈ J (m,∞). Hence, we have proved our lemma.

Definition 5.20. Let ({fi}i∈I , {Jn}n∈N) satisfy the setting (NAIFS). For each n ∈ N, let
An ∈ K(X) be the unique fixed point of Fn. Suppose that there exists A ∈ K(X) such
that ∑

n∈N
dH(A,An)c

n <∞.

Then, for each m ∈ N, the projection map π : J (m,∞) → Km is defined by

π(w) := a(m,w) (w ∈ J (m,∞)).

Note that the definition of π depends on m ∈ N. However, we omit m ∈ N from the
representation of the map.
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Lemma 5.21. Let ({fi}i∈I , {Jn}n∈N) satisfy the setting (NAIFS). For each n ∈ N, let
An ∈ K(X) be the unique fixed point of Fn. Suppose that there exists A ∈ K(X) such
that ∑

n∈N
dH(A,An)c

n <∞.

Then, for each m ∈ N, we have π : J (m,∞) → Km is uniformly continuous and surjective,
and for each wm ∈ Jm,

π = fwm ◦ π ◦ σ, fwm ◦ π = π ◦ σwm .

Proof. We first show that π is uniformly continuous. Let ϵ > 0 and m ∈ N. By Lemma
5.19, there exists M ∈ N such that diamfw|M (Km+M ) < ϵ uniformly with respect to

w ∈ J (m,∞). We set δ := 2−(M+m).
We deduce that for each w, τ ∈ J (m,∞) with d(m,∞)(w, τ) < δ, wn = τn for each n =

m, . . .m +M . Therefore, we have π(w), π(τ) ∈
∩M+1

n=1 fw|n(Km+n) =
∩M+1

n=1 fτ |n(Km+n).
Especially, we have π(w), π(τ) ∈ fw|M (Km+M ). We deduce that

ρ(π(w), π(τ)) ≤ diamfw|M (Km+M ) < ϵ.

Thus, we have proved that π is uniformly continuous.
We next show that π is surjective. Let m ∈ N and zm ∈ Km = Fm(Km+1). By the

definition of Fm, there exists wm ∈ Jm such that zm ∈ fwm(Km+1). We deduce that there
exists zm+1 ∈ Km+1 = Fm+1(Km+2) such that zm = fwm(zm+1). By the definition of
Fm+1, there exists wm+1 ∈ Jm+1 such that zm+1 ∈ fwm+1(Km+2). We deduce that there
exists zm+2 ∈ Km+2 = Fm+2(Km+3) such that zm+1 = fwm+1(zm+2).

By induction with respect to n ∈ N, there exists w = wmwm+1 · · · ∈ J (m,∞) and
zm+n ∈ Km+n (n ∈ N) such that for all n ∈ N,

zm = fwm ◦ · · · ◦ fwm+n−1(zm+n) ∈ fw|n(Km+n).

Since zm is the unique element of
∩

n∈N fw|n(Km+n), we deduce that zm = π(w). Therefore,

we have proved that π : J (m,∞) → Km is surjective.
We finally show for each wm ∈ Jm, we have π = fwm ◦ π ◦ σ and fwm ◦ π = π ◦ σwm .

Let w ∈ J (m,∞). Note that π(σ(w)) ∈
∩

n∈N fwm+1 ◦ · · · ◦ fwm+n(Km+1+n). Then, we have

fwm(π(σ(w))) ∈ fwm

(∩
n∈N

fwm+1 ◦ · · · ◦ fwm+n(Km+1+n)

)
⊂
∩
n∈N

fwm ◦ fwm+1 ◦ · · · ◦ fwm+n(Km+n+1).

Since fwm(π(σ(w))) is the unique element of
∩

n∈N fw|n(Km+n), we have fwm(π(σ(w))) =
π(w).

Let w ∈ J (m+1,∞) and wm ∈ Jm. Note that π(w) ∈
∩

n∈N fwm+1 ◦ · · · ◦ fwm+n(Km+1+n)
and π(σwm(w)) ∈

∩
n∈N fwm ◦ · · · ◦ fwm+n−1(Km+n). Then, we have

fwm(π(w)) ∈ fwm

(∩
n∈N

fwm+1 ◦ · · · ◦ fwm+n(Km+1+n)

)
⊂
∩
n∈N

fwm ◦ · · · ◦ fwm+n−1(Km+n).

Since fwm(π(w)) is the unique element of
∩

n∈N f(σwm (w))|n(Km+n), we have fwm(π(w)) =
π(σwm(w)) . Therefore, we have proved our lemma.
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We now prove the Main Theorem 7.

Proof of Main Theorem 7. Let x0 ∈ X satisfy the assumption in Main Theorem 7. By
the assumption (1.3) and the inequality (5.5), we have∑

n∈N
dH(A,An)c

n <∞.

Therefore, by Lemma 5.19, Definition 5.20, Lemma 5.21 and the inequality (5.8), we have
proved our Theorem.

5.5 Proof of Main Theorem 8

We now show the limit (1.4) and the equation (1.5) in Main Theorem 8.

Proof of the limit (1.4) and the equation (1.5). Let x0 ∈ X be a element of X in the as-
sumption of Main Theorem 8. Note that δx0 ∈ P1(X). By Lemma 5.12, for each n ∈ N,
we have

dMK(δx0 , µn) ≤
dMK(Mn(δx0), δx0)

1− c
=
dMK(

∑
i∈Jn pn(i) δx0 ◦ f−1

i ,
∑

i∈Jn pn(i) δx0)

1− c
.

In addition, by Lemma 5.12, for each f ∈ Lip1(X) and n ∈ N, we have∫
X
f
∑
i∈Jn

pn(i)dδx0 ◦ f−1
i −

∫
X
f
∑
i∈Jn

pn(i)dδx0 =
∑
i∈Jn

pn(i)

(∫
X
fdδx0 ◦ f−1

i −
∫
X
fdδx0

)
=
∑
i∈Jn

pn(i) (f ◦ fi(x0)− f(x0)) ≤
∑
i∈Jn

pn(i)ρ(fi(x0), x0)

=
∑
i∈Jn

pn(i)(1 + c)ρ(zi, x0) = (1 + c)max
i∈Jn

ρ(zi, x0)

and we have

dMK(δx0 , µn) ≤
1 + c

1− c
max
i∈Jn

ρ(x0, zi). (5.14)

By assumption, we deduce that
∑

n∈N dMK(δx0 , µn)c
n < ∞. By Lemma 5.11, we have

proved our theorem.

We next prove the rest of Main Theorem 8.

Proof of the rest of Main Theorem 8. Let r ∈ {r > 0 | c ≤ r < 1, ac < r} and µm ∈ P1(X)
be the unique fixed point of Mm for each m ∈ N. Let x0 ∈ X satisfy the assumption in
Main Theorem 8. By the same argument in the proof of Corollary 5.14, there exists
C ′′′ > 0 such that for all n ∈ N,

max
i∈Jn

ρ(x0, zi)c
n ≤ C ′′′rn.

In addition, by the inequality (5.14), we have

dMK(δx0 , µn)c
n ≤ 1 + c

1− c
max
i∈Jn

ρ(x0, zi)c
n ≤ C ′′′ 1 + c

1− c
rn

for each n ∈ N. By lemma 5.13, the statement of our theorem holds.
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5.6 Proof of Main Theorem 9

In this subsection, we show the support of the limit measures equals the corresponding
limit sets when ({fi}i∈I , {Jn}n∈N, {pn}n∈N) satisfies the setting (wNAIFS) (Main Theorem
9). To prove Main Theorem 9, we first show the following lemmas. Note that since (X, ρ)
is complete and separable, for for each finite Borel measures µ on X, supp(µ) ∈ B(X)
is the minimum closed set F in X such that µ(F ) = µ(X), which is equaivalent to the
maximum open set O in X such that µ(O) = 0. In addition, if x ∈ X \ supp(µ), there
exists ϵ > 0 such that µ(B(x, ϵ)) = 0.

Lemma 5.22. Let (X, ρ) be a complete separable metric space and let µ be a finite Borel
measure with a compact support. If f : X → X is continuous on X, then supp(µ ◦ f−1) is
also compact in X and we have supp(µ ◦ f−1) = f(supp(µ)).

Proof. Let µ be a finite Borel measure with a compact support and f : X → X is contin-
uous on X. Since supp(µ) ⊂ f−1 ◦ f(supp(µ)), we have

(µ ◦ f−1)(f(supp(µ))) = µ(f−1 ◦ f(supp(µ))) ≥ µ(supp(µ)) = µ(X).

Since f(supp(µ)) is compact, we have supp(µ ◦ f−1) ⊂ f(supp(µ)) and supp(µ ◦ f−1) is
also compact.

We next show supp(µ ◦ f−1)c ⊂ f(supp(µ))c. Let x ∈ supp(µ ◦ f−1)c. Note that there
exists ϵ > 0 such that µ ◦ f−1(B(x, ϵ)) = 0, which is equivalent to µ(f−1(B(x, ϵ))) = 0.

We now assume that x ∈ f(supp(µ)). Then, there exists z ∈ supp(µ) such that
x = f(z). Since f is continuous on X, we have there exists δ > 0 such that f(B(z, δ)) ⊂
B(f(z), ϵ), which is equivalent to B(z, δ) ⊂ f−1(B(x, ϵ)).

Since if z ∈ supp(µ), then for each δ > 0, µ(B(z, δ)) > 0, we deduce that µ(B(z, δ)) ≤
µ(f−1(B(x, ϵ))) = 0, which contradicts z ∈ supp(µ). Therefore, We have proved our
lemma.

Lemma 5.23. Let (X, ρ) be a complete separable metric space and µ, ν be a Borel mea-
sures on X. Then, for each c > 0, supp(cµ) = supp(µ) and supp(µ + ν) = supp(µ) ∪
supp(ν).

Proof. Since for each open subset U ⊂ X, cµ(U) = 0 is equivalent to µ(U) = 0. Therefore,
we have supp(cµ) = supp(µ). We now show supp(µ + ν)c = supp(µ)c ∩ supp(ν)c. Let
x ∈ supp(µ + ν)c. Then, there exists δ > 0 such that µ(B(x, δ)) + ν(B(x, δ)) = 0.
Therefore, we have µ(B(x, δ)) = ν(B(x, δ)) = 0. It follows that x ∈ supp(µ)c ∩ supp(ν)c.

Conversely, let x ∈ supp(µ)c ∩ supp(ν)c. Then, there exists δ1, δ2 > 0 such that
µ(B(x, δ1)) = 0 and ν(B(x, δ2)) = 0. We set δ := min{δ1, δ2} > 0. Then, we have

(µ+ ν)(B(x, δ)) ≤ µ(B(x, δ1)) + ν(B(x, δ2)) = 0.

We deduce that x ∈ supp(µ+ ν)c. Therefore, we have proved our lemma.

Lemma 5.24. Let ({fi}i∈I , {Jn}n∈N, {pn}n∈N) satisfy the setting (wNAIFS). For each
n ∈ N, let νn ∈ P1(X) be a limit measure of the setting (wNAIFS) in Main Theorem 8.
Let n ∈ N. Then, for each L ∈ N, w ∈ J (n,∞) and B ∈ B(X), we have

νn(fw|L(B)) ≥
L−1∏
j=0

pn+j(wn+j)νn+L(B).
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Proof. Let n ∈ N and w = wnwn+1 · · · ∈ J (n,∞). We show the statement of our lemma by
induction with respect to L ∈ N. Since νn =Mnνn+1 for each B ∈ B(X), we have

νn(fwn(B)) =Mnνn+1(fwn(B)) =
∑
i∈Jn

pn(i)νn+1(f
−1
i ◦ fwn(B))

≥ pn(wn)νn+1(f
−1
wn

◦ fwn(B)) ≥ pn(wn)νn+1(B).

Therefore, we have proved the statement of our lemma if L = 1.
We assume that the statement of our lemma holds if L ∈ N. Then, for each B ∈ B(X),

we have

νn(fw|L+1
(B)) = νn(fw|L(fwn+L(B))) ≥

L−1∏
j=0

pn+j(wn+j)νn+L(fwn+L(B)).

Since νn+L =Mn+Lνn+L+1, we deduce that for each B ∈ B(X),

νn+L(fwn+L(B)) =Mn+Lνn+L+1(fwn+L(B)) =
∑

i∈Jn+L

pn+L(i)νn+L+1(f
−1
i ◦ fwn+L(B))

≥ pn+L(wn+L)νn+L+1(f
−1
wn+L

◦ fwn+L(B)) ≥ pn+L(wn+L)νn+L+1(B).

Therefore, for each B ∈ B(X), we have

νn(fw|L+1
(B)) ≥

L−1∏
j=0

pn+j(wn+j)pn+L(wn+L)νn+L+1(B) =

L∏
j=0

pn+j(wn+j)νn+L+1(B)

and the statement of our Lemma holds when L + 1 ∈ N. Thus, we have proved our
lemma.

Note that by Lemmas 5.22 and 5.23, if µ ∈ P1(X) has a compact support, then we
have proved then supp(Mn(µ)) = Fn(supp(µ)). We now prove the equation (1.6) in Main
Theorem 9.

Proof of the limit (1.6). Let x0 ∈ X satisfy the assumption in Main Theorem 9, n ∈ N
and µ ∈ P1(X) with compact support. Note that supp(Mn(µ)) = Fn(supp(µ)) for each
n ∈ N. We set µl :=Mn ◦ · · · ◦Mn+l(µ) and

Bl := supp(µl) = supp(Mn ◦ · · · ◦Mn+l(µ)) = Fn ◦ · · · ◦ Fn+l(supp(µ))

for each n ∈ N and l ∈ N. By Theorem 1.11 and the equation (5.2), we have Bl converges
to Kn as l tends to infinity in (K(X), dH) and Kn = ∩m∈N∪l≥mBl

ρ
since {Bl}l∈N is a

Cauchy esquence in (K(X), dH).
We first show that νn(Kn) = 1. Let m, l ∈ N with l ≥ m. Then, we have

1 = µl(supp(µl)) ≤ µl(∪l≥mBl
ρ
).

By the Portmanteau theorem (for example, see [16]), we have

1 ≤ lim sup
l→∞

µl(∪l≥mBl
ρ
) ≤ νn(∪l≥mBl

ρ
).

Since ∪l≥mBl
ρ
is a decresing sequence with respect to m ∈ N, we obtain that

1 ≤ lim
m→∞

νn(∪l≥mBl
ρ
) = νn(∩m∈N∪l≥mBl

ρ
) = νn(Kn).
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Therefore, we have νn(Kn) = 1. Thus, we have supp(νn) ⊂ Kn and supp(νn) is compact.
We next show Kn ⊂ supp(νn). Let a ∈ Kn and ϵ > 0. By Theorem 1.12, there

exists w ∈ J (n,∞) such that {a} = ∩l∈Nfw|l(Kn+l). In addition, since diamfw|l(Kn+l)
converges to zero as l tends to infinity by Theorem 1.12, there exists L ∈ N such that
fw|L(Kn+L) ⊂ B(a, ϵ). By lemma 5.24 with B = Kn+L and the equation νn+L(Kn+L) = 1,
we have

νn(B(a, ϵ)) ≥ νn(fw|L(Kn+L)) ≥
L−1∏
j=0

pn+j(wn+j)νn+L(Kn+L) =

L−1∏
j=0

pn+j(wn+j) > 0.

Therefore, we obtain that a ∈ supp(νn) and supp(νn) = Kn for each n ∈ N. In addition,
we have

lim
l→∞

supp(Mn ◦ · · · ◦Mn+l(µ)) = lim
l→∞

Bl = Kn = supp(νn) in K(X).

Thus, we have proved the limit (1.6).

We now prove the rest of Main Theorem 9.

Proof of the rest of Main Theorem 9. By the argument of the proof of the limit (1.6), for
each n ∈ N and l ∈ N, we have

Bl := supp(Mn ◦ · · · ◦Mn+l(µ)) = Fn ◦ · · ·Fn+l(supp(µ)).

By Theorem 1.11 and the equation (5.2), for each r ∈ {r > 0 | c ≤ r < 1, ac < r}, we
have Bl converges to Kn as l tends to infinity in (K(X), dH) exponentially fast with the
rate r and Kn = ∩m∈N∪l≥mBl

ρ
since {Bl}l∈N is a Cauchy esquence in (K(X), dH). By

the similar argument in the proof of the limit (1.6), we have supp(νn) is compact and
supp(νn) = Kn for each n ∈ N. Therefore, for each n ∈ N, we have

Fn ◦ · · ·Fn+l(supp(µ)) = Bl −→ Kn = supp(νn) in K(X)

as l tends to infinity exponentially fast with the rate r. Thus, we have proved the rest of
Main Theorem 9.

6 The entopy of iterated function systems and the Haus-
dorff dimension of the limit sets

In this section, we introduce the notion of entropy of general (finite) iterated function
systems and we estimate the Hausdorff dimension of the limit sets of general (finite)
iterated function systems.

Let (X, ρ) be a complete metric space, let I be a finite set with |I| = m and let {fi}i∈I
be a (finite) family of contractive mappings fi : X → X with a contraction constant ci ∈
(0, 1). The family of the contractive mappings {fi}i∈I is called a (finite) iterated function
systems on X (for short, IFS on X). Note that by Hutchinson’s idea (for example, see
[17]), there exists the non-empty compact set K in X uniquely such that K = ∪i∈Ifi(K).
The compact set K is called the limit set of an IFS {fi}i∈I .

For each l ∈ N and w = w1w2 · · ·wl ∈ I l, we set fw := fw1 ◦ fw2 ◦ · · · ◦ fwl
and |w| := l.

In addition, for each k, l ∈ N, w = w1w2 · · ·wk ∈ Ik and w′ = w′
1w

′
2 · · ·w′

l ∈ I l, we set

ww′ := w1w2 · · ·wkw
′
1w

′
2 · · ·w′

l ∈ Ik+l.

We now define the compact covering of the limit set of IFSs.
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Definition 6.1. Let K be the limit set of an IFS {fi}i∈I on complete metric space X and
let l ∈ N. The compact covering of K with the level l is defined by αl := {fw(K) | w ∈ I l}
and the minimun covering number of αl is defined by

N(αl) := min{k ∈ N | ∃w1, w2, . . . , wk ∈ I l s.t. K ⊂ ∪k
i=1fwi(K)}.

We set H(αl) := logN(αl).

Note that by the definition of the limit set, for each l ∈ N, N(αl) ≤ ml.

Lemma 6.2. Let K be the limit set of an IFS {fi}i∈I on complete metric space X. Let
N(αl) is the minimum covering number of compact covering αl of K. Then, H(αl)/l
converges to inf l∈NH(αl)/l as l tend to infinity.

Proof. By the general theory of subadditive sequence (for example, see [35]), we suffice to
show that for each k, l ∈ N, N(αk+l) ≤ N(αk)N(αl).

Let k, l ∈ N. By the definition of N(αk), there exists w1, w2, . . . , wN(αk) ∈ Ik such that

K ⊂ ∪N(αk)
i=1 fwi(K). In addition, by the definition of N(αl), for each i = 1, . . . , N(αl),

there exist w′
1, w

′
2, . . . , w

′
N(αl)

∈ I l such that K ⊂ ∪N(αl)
j=1 fw′

j
(K). Therefore, we have

K ⊂
N(αk)∪
i=1

fwi(K) ⊂
N(αk)∪
i=1

N(αl)∪
j=1

fwi(fw′
j
(K)) =

N(αk)∪
i=1

N(αl)∪
j=1

fwiw′
j
(K).

Since fwiwj (K) (wiwj ∈ Ik+l) is elements in αk+l, K is covered by the elements of the set

α′ := {fwiwj (K) | i = 1, . . . , N(αk), j = 1, . . . , N(αl)}.

In addition, we have |α′| = N(αk)N(αl), where |α′| is the cardinality of α′. Therefore, we
deduce that N(αk+l) ≤ N(αk)N(αl). Thus, we have proved our lemma.

We set h({fi}i∈I) := liml→∞H(αl)/l = inf l∈NH(αl)/l. Note that the definition of
h({fi}i∈I) is derived from the definition of the entropies in the ergodic theory (for example,
see [35]). In addition, we have 0 ≤ h({fi}i∈I) ≤ logm since for each l ∈ N, H(αl)/l ≥ 0
and h({fi}i∈I) ≤ H(α1)/1 ≤ logm.

6.1 Proof of Main Theorem 10

We now prove Theorem 1.17 (Main Theorem 10).

Proof of Main Theorem 10. We first show that if h({fi}i∈I) = logm, then fw (w ∈ I∗ :=
∪i∈NI

i) is distinct. We assume that there exist ω, τ ∈ I∗ such that fω = fτ . Without loss
of generality, we assume that |ω| ≥ |τ |. We consider the following two cases.

1. |ω| = |τ | = l for some l ∈ N.
By the assumption, we have K ⊂ ∪w∈Il\{τ}fw(K). We deduce that N(αl) ≤ ml − 1.
Therefore, we obtain that

h({fi}i∈I) ≤ H(αl)/l ≤
log(ml − 1)

l
< logm.

2. l = |ω| > |τ | = l′ for some l, l′ ∈ N with l > l′.
We set τI l−l′ := {τw′ ∈ I l | w′ ∈ I l−l′}. Note that |τI l−l′ | = ml−l′ . Since fτw′(K) ⊂
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fτ (K) = fω(K) for each w′ ∈ I l−l′ , we deduce that K ⊂ ∪w∈Il\τIl−l′fw(K). Therefore, we
obtain that

h({fi}i∈I) ≤ H(αl)/l ≤
log(ml −ml−l′)

l
< logm.

Therefore, we have proved if h({fi}i∈I) = logm, then fw (w ∈ I∗ := ∪i∈NI
i) is distinct.

we next show that dimH(K) ≤ h({fi}i∈I)/(− logmaxi∈I ci). We set c := maxi∈I ci.
Note that K is bounded and for each l ∈ N and w ∈ I l, diamfw(K) ≤ cldiamK since
d(fw(x), fw(y)) ≤ cld(x, y) for each x, y ∈ X.

Let ϵ, δ > 0. We set sϵ := h({fi}i∈I)/(− log c) + ϵ. Note that there exists L ∈ N such
that for all l ≥ L, cldiamK ≤ δ. Since diamfwi(K) ≤ δ for all i = 1, . . . , N(αl), we have

logHsϵ
δ (K) ≤ log

N(αl)∑
i=1

(diamfwi(K))sϵ

 ≤ log

N(αl)∑
i=1

(cldiamK)sϵ


= log

(
N(αl)(c

ldiamK)sϵ
)
≤ logN(αl) + sϵ(l log c+ diamK)

≤ −l
{
−1

l
H(αl) + (−sϵ)

(
log c+

diamK

l

)}
.

Since liml→∞−1
lH(αl) = −h({fi}i∈I) and

lim
l→∞

(−sϵ)
(
log c+

diamK

l

)
= (−sϵ) log c = h({fi}i∈I)− ϵ log c,

we have

lim
l→∞

−1

l
H(αl) + (−sϵ)

(
log c+

diamK

l

)
= −ϵ log c > 0.

Therefore, we obtain that logHsϵ
δ (K) = −∞, which is equivalent to Hsϵ

δ (K) = 0. Thus,
we have dimH(K) ≤ sϵ = h({fi}i∈I)/(− log c) + ϵ for each ϵ > 0. Hence, we have proved
our theorem.
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