
Doctoral Thesis

Design and Analysis of Allocation Methods

for Peer Assessment in Education

Hideaki Ohashi

March 2020

Department of Social Informatics

Graduate School of Informatics

Kyoto University



Doctoral Thesis

submitted to Department of Social Informatics,

Graduate School of Informatics,

Kyoto University

in partial fulfillment of the requirements for the degree of

DOCTOR of INFORMATICS

Thesis Committee: Masatoshi Yoshikawa, Professor

Keishi Tajima, Professor

Hisashi Kashima, Professor

Copyright c⃝ 2020 Hideaki Ohashi All Rights Reserved.



Design and Analysis of Allocation Methods

for Peer Assessment in Education∗

Hideaki Ohashi

Abstract

Peer assessment in education is a framework for reviewing submissions among

students, and its merits, such as pedagogical benefits and cognitive gains, have

been discussed for a long time. In recent years, online education has attracted

attention, especially on massive open online courses (MOOCs), where tens of

thousands of students may participate in a single class. As a result, the scalability

of peer assessment has been focused on in addition to the conventional usefulness.

As described above, peer assessment is regarded as an effective tool in education

from various aspects.

This research mainly focuses on the online peer assessment system, not the

traditional offline peer assessment. Online peer assessment in education has a

serious drawback as follows: There are many students who do not work because

they have negative opinions in peer assessment. Problems with peer assessment

where students are dissatisfied include the following: “Imbalance of the number of

reviews due to dropouts” and “Low reliability of of students’ reviewing results”.

Our research attempts to solve these issues in order to improve peer assessment

to a more attractive tool. In this study, we focus on student-submission allocation

because there are few studies that focus on student-submission allocation.

The objectives and impacts of our studies are described below. In the first

study, in order to solve the above first problem, we developed a new adaptive

allocation method which achieves that the submission of one student is reviewed

as many times as the same student reviews the submissions of others in most

cases. Additionally, we extended the proposed method to the method which can

consider the second problem. We theoretically analyzed the degree of imbalance

when using our first proposed method, and compared the imbalance between

proposed allocation methods and existing allocation methods through simulation.

∗Doctoral Thesis, Department of Social Informatics, Graduate School of Informatics, Kyoto

University, KU-I-DT6960-29-1489, March 2020.
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In the second study, we analyzed what kind of student-submission allocation is

effective for the existing score estimation method from multiple students’ scores,

which is developed to solve the above second problem. This analysis indicates

that some allocation methods which are considered to be used in actual peer

assessment has bad effect on estimation accuracy, and random allocation is su-

perior.

The above two studies recommend different student-submission allocation meth-

ods for two different objectives. In third study, we pointed out that, when using

the allocation method proposed in the first study, the estimation accuracy de-

creases under certain circumstances. Then, we proposed an allocation method

that considers the trade-off between two objectives. In addition, we discussed

the application possibility of the methodology used in the proposed allocation

method.

As described above, we developed and analyzed student-submission allocation

methods for peer assessment, which have been rarely focused on, for improving

the problems of peer assessment.

Keywords: Educational Technology, Peer Assessment, MOOCs, Algorithm,

Statistical Model
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CHAPTER 1

INTRODUCTION

In this chapter, we first give an overview of peer assessment in education. Next,

we discuss two problems of online peer assessment: imbalance of the number of

reviews due to dropouts and low reliability of reviews in peer assessment. After

that, we outline our research. Our research mainly focuses on student-submission

allocation in peer assessment, and develops and analyzes allocation methods to

improve the above problems. Finally, we describe the structure of this paper.

1.1 Background

1.1.1 Peer Assessment in Education

Peer assessment in education is a framework for reviewing submissions among

students. Peer assessment has been conducted for a long time and its usefulness,

such as pedagogical benefits and cognitive gains, has been discussed [1–3]. In

recent years, online education has attracted attention, especially on massive open

online courses (MOOCs), where tens of thousands of students may participate in

a single class [4,5]. As a result, the scalability of peer assessment has been focused

on in addition to the conventional usefulness [5, 6]. Scalability is a characteristic

that the number of reviewers increases by the number of submissions in peer

assessment, so that it is possible to review a large number of submissions that

1



1. INTRODUCTION

submission: 1

peer assessment system

submission: 2 submission: 3 submission: 4

ID: 1 ID: 2 ID: 3 ID: 4

(a) Collect submissions.

submission: 3

peer assessment system

submission: 2

submission: 4

submission: 1

submission: 4

submission: 2

submission: 3

submission: 1

ID: 1 ID: 2 ID: 3 ID: 4

(b) Allocate submissions.

peer assessment system

grade: 3

grade: 2

grade: 4

grade: 1

grade: 4

grade: 2

grade: 3

grade: 1

ID: 1 ID: 2 ID: 3 ID: 4

(c) Collect reviewing results.

peer assessment system

grade: 1

grade: 1

grade: 2

grade: 2

grade: 3

grade: 3

grade: 4

grade: 4

final grade: 1 final grade: 2 final grade: 3 final grade: 4

(d) Aggregate results.

final grade: 1

peer assessment system

final grade: 2 final grade: 3 final grade: 4

ID: 1 ID: 2 ID: 3 ID: 4

(e) Return final results.

Figure 1.1. The flow of peer assessment.

cannot be reviewed by few teachers or TAs. As described above, peer assessment

is regarded as an effective tool in education from various aspects.

This research mainly focuses on the online peer assessment system [7, 8], not

the traditional offline peer assessment [1, 2]. Peer assessment system generally

consists of five steps: “collect submissions”, “allocate submissions”, “collect re-

viewing results”, “aggregate results”, and “return final results” (see Figure 1.1).

In addition, the reviewing approach can be roughly classified into two types,

score-based reviewing and comment-based reviewing. Note that the “aggregate

results” step is not always necessary in comment-based reviewing.

We assume that:

1. Peer assessment deal with open-ended assignments, such as design problems

and essays, where answers are not uniquely determined

2. A teacher discloses reviewing criteria for students in advance

2



1. INTRODUCTION

Figure 1.2. Existing student-submission allocation and students’ dropout.

3. A submission is reviewed by multiple students

The reason for first assumption is that it is common to replace the manual review

for assignments where the answer is uniquely determined with automatic review

in online peer assessment system [9, 10]. The second assumption is because the

student’s reviewing ability is basically lower than the teacher’s reviewing ability,

so that supplementary materials are effective for making the reviewing results

consistent [11]. The reason for final assumption is that, as in second assumption,

it is preferable to use multiple reviewing results rather than a single result because

the reviewing ability of the students is low [5].

1.1.2 Problems of Peer Assessment

Online peer assessment in education has a serious drawback. There are many

students who do not work because they have negative opinions in peer assessment

[12–14]. Problems with peer assessment where students are dissatisfied include

the following [12]:

• Imbalance of the number of reviews due to dropouts

• Low reliability of of students’ reviewing results

Before discussing the first problem, we explain the relationship between student-

submission allocation and dropout in the conventional peer assessment with ref-

erence to Figure 1.2. In the graph on the left of this figure, nodes represent

students, and the dotted edges between nodes indicate student-submission allo-

cation. Note that each edge represents an allocation, drawing from a reviewer

3



1. INTRODUCTION

to a reviewee. For example, in the case of this figure, the student with ID 1

is allocated to the students’ submissions with ID 3 and ID 4. Each student is

allocated to two submissions, and each student’s submission is allocated to two

students in this figure.

The graph on the right shows the actual reviewing, where solid edges indicate

that the reviewing was actually performed. In this case, imbalance occurs in

the number of actual reviews. For example, a student with ID 1 reviews two

students, but his submission is reviewed by only one student. This imbalance

can be attributed to a student with ID 3 who drops out reviewing. Especially

when comment-based reviewing is performed, student dissatisfaction is likely to

increase due to imbalance in peer assessment allocation.

The second problem is mainly due to the student’s lack of reviewing ability.

The above-mentioned reviewing criteria and multiple reviewing are examples of

efforts to improve the reliability of reviewing results. However, lack of reviewing

ability is still a serious problem.

1.2 Overview of Our Research

Our research attempts to solve the above two issues in order to improve peer

assessment to a more attractive tool. As described above, there are five steps in

the peer assessment, however, there are only two steps that have a high possi-

bility of improvement: “allocate submissions” and “aggregate results”. In this

study, we focus on student-submission allocation because many studies deal with

score aggregation [5, 15], but few studies focus on improving student-submission

allocation. Further details on the position of our research in the existing studies

on peer assessment are described in Chapter 2.

The objectives and impacts of our studies are described below. In the first

study, in order to solve the above first problem, we develop a new adaptive

allocation method which achieves that the submission of one student is reviewed

as many times as the same student reviews the submissions of others in most cases.

Additionally, we extend the proposed method to the method which can consider

the second problem. We theoretically analyze the degree of imbalance when

using our first proposed method, and compare the imbalance between proposed

allocation methods and existing allocation methods through simulation.

In the second study, what kind of student-submission allocation is effective for

4



1. INTRODUCTION

the existing score estimation method from multiple students’ scores [5], which is

developed to solve the low reliability of student reviewing. This analysis indicates

that some allocation methods which are considered to be used in actual peer

assessment have bad effect on estimation accuracy, and random allocation is

superior.

The above two studies recommend different student-submission allocation meth-

ods for two different objectives. In third study, we point out that, when using the

allocation method proposed in the first study, the estimation accuracy decreases

under certain circumstances. Then, we propose an allocation method that consid-

ers the trade-off between two objectives. In addition, we discuss the application

possibility of the methodology used in the proposed method.

1.3 Dissertation Structure

The structure of this study is as follows. Chapter 2 introduces related work. In

Chapter 3, we develop an allocation method to solve imbalance of the number

of reviews due to dropouts. In Chapter 4, we analyze what kind of student-

submission allocation is effective for the existing score estimation method, which

is developed to solve low reliability of students’ reviewing results. In Chapter

5, we propose an allocation method that considers above two different objective

simultaneously. Finally, we discuss conclusion and future work.

5



CHAPTER 2

Related Work

In this chapter, we first outline MOOCs, to which peer assessment is effectively

applied. Next, we describe related work on peer assessment and mention the

position of our research.

2.1 MOOCs

MOOCs is an abbreviation of massive open online courses, which has three fea-

tures as follows:

1. Students can attend various lectures through the web

2. Many lectures are open to the public for free

3. The number of students attending a single lecture has sometimes reached

tens of thousands

As mentioned in Chapter 1, peer assessment has scalability, so it is robust against

the third feature of MOOCs. Peer assessment is regarded as the only method

that can review a large amount of submissions which cannot be automatically

reviewed.

Around 2012, representative MOOCs platforms such as edX [9], coursera [10],

and UDACITY [16] were opened [4]. In the following year, a study that first

6



2. Related Work

Analysis Design

No mathematical 

formulation

[1-3, 7, 8, 12-14, 22-27] [11, 32-37]

Mathematical

formulation

[28-31] + research 2 Score 

aggregation

[5, 15, 38-51]

Allocation

[52-58] + 

research 1, 3

Others

[64-66]

focusing on
including

Table 2.1. Classification of existing research for peer assessment.

analyzed MOOC data appeared. [17]. After that, a study evaluated the design

of MOOCs based on huge data [18] and a study proposed statistical models to

model student behavior [19].

However, Reich et al. [20] have pointed out that unless the data of MOOCs is

utilized more carefully, it will not lead to reliable research results. It has also been

pointed out that the number of students participating in MOOCs has decreased in

recent years. [21]. They state that the current MOOCs only support the existing

learning and are not fundamentally changing higher education.

From the above, it is considered that the existing mechanism of MOOCs is not

yet sufficient and improvement is essential. Improvement of peer assessment in

this study is expected to help improve MOOCs.

2.2 Peer Assessment

We classify research related to peer assessment according to whether research

focuses on analysis or design, and whether research includes mathematical for-

mulation or not (see Table 2.1). In recent years, the spread of online educational

systems represented by MOOCs has made it easier to track educational data, and

computer scientists have flowed into educational field, resulting in an increase the

research including mathematical formulation. Especially, research on score aggre-

gation has increased rapidly in recent years. This is because “aggregate results”

step (see Figure 1.1), which is often included in the conventional online peer as-

sessment system, is an important research target. In addition, the mathematical

problem definition for score aggregation is easy to set up. On the other hand,

there are few papers focusing on student-submission allocation, which is also in-

cluded in peer assessment system. In this study, we worked on studies focusing on

7



2. Related Work

both analysis and design for student-submission allocation. The existing stud-

ies are described below in the order of “research focusing on analysis and not

including mathematical formulation”, “research focusing on analysis and includ-

ing mathematical formulation”, “research focusing on design and not including

mathematical formulation”, and “research focusing on design and including math-

ematical formulation”.

2.2.1 Research focusing on Analysis and not including

Mathematical Formulation

The existing research classified here analyzes the conventional peer assessment

system from various directions without being limited to including mathematical

formulation, and the scope of the research is wide. Also, there are many studies

that motivate our research.

Topping et al. [1] published the first review paper for peer assessment in 1998.

After meta-analysis of 31 existing studies, they conclude that peer assessment

shows positive formative effects on student achievement and attitudes. Falchikov

et al. [2] later criticized Topping’s review for qualitative, and performed a new

quantitative meta-analysis on 48 studies. Some papers classified and organized

the characteristics of peer assessment, though they did not include meta-analysis

for a large amount of research as in the above-mentioned papers [3, 22]. The

advantages of peer assessment include cognitive gains, improvements in writing,

and possible savings of teachers’ time, while disadvantages include the reliability

and validity of students’ review. This drawback motivates our second and third

studies.

In recent years, some studies pointed out that peer assessment in online edu-

cation has the disadvantage that the number of participants is small [12–14, 23].

This drawback is considered to be due to the difficulty of student control in online

education compared to the conventional class-based peer assessment. Acosta et

al. [12] examined participants’ opinions on peer assessment, and obtain the points

of dissatisfaction such as lack of reviews and unreliable student reviews. These

points are the motivations for our research.

Some other studies discussed peer assessment in online education like MOOCs

[7, 8, 24]. In addition, there are research that conducted an experiment on the

relationship between thinking styles and feedback formats of students [25,26] and

8
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on relationship between self-grading and peer-grading [27].

2.2.2 Research focusing on Analysis and including Math-

ematical Definition

Our second studies fall into this category. Marsico et al. [28] examined whether

the topology of the student-submission allocation graph affects score estimation

in peer assessment and addressed research questions similar to those of our study.

However, Marsico et al. used a simple Bayesian-network-based model based on

scores assessed by teachers [29] and analyzed the effect of propagation based

on teachers’ scores in the student-submission allocation graph. By contrast, we

examine the accuracy of estimation for a general score estimation method [5],

which does not assume scoring by teachers.

Some studies developed a machine learning model that predicts student progress

and student participation using data obtained by peer assessment [30,31]. All of

these studies are considered to be studies analyzing whether rich data obtained

from online peer assessment is meaningful with machine learning techniques.

2.2.3 Research focusing on Design and not Including Math-

ematical Definition

This category include studies to improve the design of the existing peer assess-

ment without being bound by the mathematical formulation. Gehringer et al. [11]

have published a survey paper on methods for improving peer assessment, includ-

ing a method of giving students submission examples in advance and performing

pre-traning for reviewing (calibration), a method of using the quality of reviewing

comment (helpfulness ratings), and others. In addition, other studies proposed

unique approaches. In CrowdGrader [32], each student gets an overall crowd-

grade that combines three grades; consensus grade, accuracy grade and helpful-

ness grade. In Mechanical TA [33], human teaching assistants (TAs) is involved

as a way to assure review quality, and TAs promote students from supervised to

independent. In PeerStudio [34], there are many designs for rapid peer feedback.

Various peer assessment systems have been proposed and their usefulness has

been investigated [35–37].

9



2. Related Work

2.2.4 Research focusing on Design and including Mathe-

matical Definition

In this study, this category is further classified into existing research on score ag-

gregation, student-submission allocation, and other existing research. Although

only important studies on score aggregation are listed, but as mentioned earlier,

the number of studies on score aggregation is very large.

Score aggregation

Early on, only a few studies were conducted in attempts to improve the accuracy

of score estimation in peer assessment [38], but following a study by Piech et

al. [5], an increasing number of such studies have emerged. Piech et al. proposed

several statistical score estimation methods for peer assessment data. They first

proposed a basic statistical method (PG1) and then extended PG1 to a method

that exploits the estimation results for different assignments (PG2) and a method

based on the hypothesis that there is a correlation between a student’s reviewing

ability and the score of that student’s own submission (PG3). Subsequently, Mi

et al. proposed PG4 and PG5, which extend the relationship between a student’s

reviewing ability and the student’s own score to a probabilistic relationship [39].

In the above studies, peer assessment data were collected through absolute eval-

uation, but score estimation methods based on relative evaluation have also been

proposed [15, 40–42]. Research on relative evaluation has been motivated by the

hypothesis that relative evaluation is easier for humans than absolute evaluation

is. Other similar studies include research involving matrix factorization [43] and

work inspired by PageRank [44]. These studies were influenced by quality control

research in the context of crowdsourcing [45–47].

As mentioned above, various score estimation methods have been proposed, but

there are skeptical claims that there is actually little difference in accuracy among

these methods [48]. Similar discussions have been taking place recently with

respect to crowdsourcing, which is a field that is adjacent to peer assessment [49].

Therefore, in our second and third studies, we utilize PG1, which is a basic and

representative method, instead of a more complicated and advanced method.

There are also studies that have used data other than the score data to improve

the accuracy of score estimation. For example, Chan et al. used data on students’

social connections [50], and Sunahase et al. proposed a method using corrected

10
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parts in submissions [6]. In addition, a score estimation method for small private

online courses (SPOCs), in which online lessons and offline lessons are conducted

in parallel, is also under discussion [51].

Although we do not propose a new score estimation method here, we analyze

which allocation pattern is most appropriate when using the most basic estimation

method (PG1); thus, we contribute to improving score estimation performance

indirectly.

Student-submission allocation

Est’vez-Ayres et al. [52] proposed an allocation mechanism to avoid lack of re-

views due to dropout and confirmed its usefulness through a simulation. They

assumed that some students are willing to review other submissions even when

their reviewing number exceeded their reviewed number. We do not assume such

optimistic student characteristics in our first study.

Han et al. [53] proposed an allocation method that minimizes the differences

between the sums of the reviewing ability value of the reviewers allocated to

work, based on an algorithm called Longest Processing Time. They assumed

that a student’s reviewing ability value is given and, like our first work, aimed to

find allocations to achieve fair reviews. However, they did not consider dropout.

Chan et al. proposed a method of adaptively allocating students to submissions

while sequentially estimating scores based on the assumption that each student’s

reviewing ability is known in advance [54]. There are two general approaches

to student-submission allocation: one is nonadaptive allocation, as considered in

our second study, in which student-submission allocation is performed in advance,

and the other is adaptive allocation, as considered by Chan et al. and in our first

study, in which allocation is progressively performed. However, in crowdsourc-

ing research, it has been theoretically proven that when a given quality control

method is applied, conducting sequential worker-task allocation while progres-

sively estimating the task scores and the abilities of the workers is no better

than performing batch estimation after advance allocation [55]. Therefore, in our

second study, we analyze the relationship between student-submission allocation

and score estimation in the nonadaptive setting rather than the adaptive setting.

Additionally, few other studies focus on the student-submission allocation [56–59].

It has been pointed out that research on peer assessment and research on

crowdsourcing are closely related [60]. For example, as mentioned earlier, a score

11



2. Related Work

aggregation method influenced by crowdsourcing research is proposed in the con-

text of peer assessment. Some task allocation methods have been proposed for

crowdsourcing. [55, 61–63]; however, there have been few proposals for task al-

location methods in peer assessments. The difference between task allocations

for crowdsourcing and those for peer assessment is the strength of the incentive;

crowdsourcing can use clear incentives, such as money, that are unavailable in

peer assessment situations. Consequently, dropout is more likely to occur in peer

assessments; thus, peer assessment research must consider the effect of dropout.

Therefore, our first study focuses on the imbalance caused by dropout and worked

on solving this problem. As far as we know, there is only the research [52] that fo-

cuses on dropouts, and we do not assume the optimistic students’ characteristics

in this existing research.

Others

A NLP-based method of automatically assessing review comments (automated

meta-reviewing) that prompts the reviewer to correct and improve review com-

ments has been proposed. [64]. Other examples include research that finds sug-

gestions from review comments using machine learning [65] and research that

finds inconsistencies between numerical scores and textual feedback [66]. Both

are ambitious studies that formulate new problems in peer assessment, but they

are in an orthogonal position with our research.

12



CHAPTER 3

Adaptive Balanced Allocation

for Peer Assessments

In this chpater, we focused on the imbalance of the number of reviews due to

dropouts in peer assessment, and proposed an allocation algorithm RRB to

achieve fair peer assessment using an adaptive allocation approach. In addi-

tion, we extended RRB to ARRB that considers students’ reviewing ability. We

analyzed the RRB algorithm theoretically and show its robustness. We also con-

firmed the usefulness of the proposed allocation algorithms through experiments.

3.1 Motivation

Some reports indicate that students are not willing to participate in online peer

assessments; one reason is that students are disheartened by the lack of reviews

[12, 13]. Therefore, we need to develop methods of peer assessment that allow

students to receive sufficient feedback based on the number of reviews to increase

the number of students who participate in peer assessments.

A major reason for the existence of insufficient review numbers is that peers

dropout without reviewing allocated submissions [12,31]. In existing peer assess-

ment systems, each student is usually asked to review a predefined number of

submissions, and submissions are allocated to students before the peer assess-

13



3. Adaptive Balanced Allocation for Peer Assessments

ments start. If a certain number of students drop out of the review process, an

imbalance occurs between the number of submissions a student reviews (termed

the “reviewing number”) and the number of peers who review the submission of

the same student (termed the “reviewed number”). When the total imbalance

increases, students who diligently finish reviews may suffer from a lack of reviews

and be discouraged to participate in future peer assessments.

To address this problem, we develop a new adaptive allocation approach in

which students are allocated submissions only when requested. Students can

request one submission to review at any time; they can request second and sub-

sequent submissions to review only after they have finished the review of the

previously requested submission. This rule is more suitable for a realistic situa-

tion in which some students drop out during peer assessments.

Under the above approach, our goal is to reduce the sum of the absolute values

of the differences between the reviewing number and reviewed number of each

student, termed RR imbalance (reviewing-reviewed imbalance). We propose an

allocation algorithm called the RRB (reviewing-reviewed balanced) allocation

algorithm, which reduces the RR imbalance, which means that it is highly possible

that the submission of one student will be reviewed as many times as that same

student reviews the submissions of others. It can be expected that this algorithm

resolves dissatisfaction about the lack of reviews and incentivizes students to

review the submissions of their peers.

To demonstrate the usefulness of the RRB algorithm, we theoretically prove

that the RRB algorithm guarantees an upper bound of the RR imbalance, which

does not depend on the number of students; instead, it depends on the maximum

reviewing number among students. In practical situations, the maximum re-

viewing number usually does not increase, even if the number of students grows.

Therefore, our results show that the average difference between the reviewing

number of each student and the reviewed number decreases as the number of stu-

dents increases. This property is desirable in MOOC settings from the viewpoint

of fairness among students.

However, unfairness still remains up to the amount of the upper bound. To

reduce the RR imbalance, extra effort is required. For instance, in MOOC set-

tings, lecturers and TAs could perform extra reviews for students whose reviewing

number is above their reviewed number at the end of the peer assessment. In this

case, the obtained upper bound can be used to estimate the number of reviews

14
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Figure 3.1. Example of adaptive allocation behavior.

the lecturers and TAs need to perform.

In addition, we also consider students’s reviewing ability in addition to the

RR imbalance. We assume that a scalar reviewing ability value for each student

are given in advance, similar to the existing research [53, 54]. When the average

reviewing ability value of the reviewers allocated to a submission varies, it means

that the least (or most) skillful reviewers concentrate on only one submission.

Hence, we want to make this average value be balanced among submissions.

Therefore, we extend RR imbalance to a metric, called ARR imbalance (ability-

aware reviewing-reviewed imbalance), to measure the imbalance of the average

ability of the reviewers. We propose an allocation algorithm, called ARRB (the

ability-aware reviewing-reviewed balanced allocation algorithm) to minimize the

ARR imbalance.

To show the effectiveness of the proposed two algorithms, we experimentally

compare the performance with that of the existing nonadaptive allocation through

experiments using two types of data.

The remainder of this paper is organized as follows. We describe the problem

definitions in this research in Section 3.2. In Section 3.3, we describe the RRB

algorithm and ARRB algorithm. In Section 3.4, we prove the upper bound of

the RR imbalance by the RRB algorithm. We present the experimental results

in Section 3.5, and finally, we conclude this work and suggest future work in

Section 3.6.

3.2 Problem Setting

Initially, we explain our problem setting intuitively through Figure 3.1. In this

research, to deal with realistic situations in which some students drop out during

15



3. Adaptive Balanced Allocation for Peer Assessments

the peer assessment process, we propose an allocation algorithm that uses an

adaptive allocation approach. Under this approach, a new submission is allocated

to a student only when he or she requests one, and he or she can request an

additional submission to review only after he or she has finished the review of

the previous submission. In addition, we assume that students always complete

the requested review. This assumption is considered to be valid because students

who are not willing to review do not request a submission in the first place.

In Figure 3.1, we assume that there are five students, a, b, c, d, and e, and each

vertex represents a student. First, a requests a submission; then, the submission

of d is allocated to a. This allocation is denoted by the directed edge from a to

d. We assume that no one can review his or her own submission and that each

student can review a given submission only once. After the first allocation, the

next allocation occurs when another student requests a submission, and then, a

directed edge is drawn. These steps are repeated under an adaptive allocation

approach.

Let V be a set of students, Ei be the edge set and Gi be the graph created

up to the i-th allocation. Note that E0 = ∅. The RR imbalance (reviewing-

reviewed imbalance) in graph G1, which consists of single edge, is the sum of all

the absolute values of the differences between the reviewing number (outdegree)

and the reviewed number (indegree) as follows: |1− 0|+ |0− 0|+ |0− 0|+ |0−
1| + |0 − 0| = 2. Now, let us assume that there are seven allocations during

this peer assessment. The final RR imbalance in graph G7 is |2 − 2| + |2 −
0| + |1 − 0| + |1 − 2| + |1 − 3| = 6. In this study, we propose an allocation

algorithm that reduces the RR imbalance at the end of a peer assessment. We also

propose an allocation algorithm to minimize the ARR imbalance that considers

reviewing ability value in addition to RR imbalance. Note that, most of the

existing peer assessment utilize a nonadaptive approach, namely, determining

the number of reviews per student and allocating submissions to all students

before peer assessment begins. In our comparison experiments, we apply two

algorithms under such a nonadaptive approach as the compared methods.

Some definitions are provided below. Let a student doing the i-th request

under the adaptive allocation approach be xi ∈ V . A submission by a student

yi( ̸= xi) ∈ V is allocated to xi before a student xi+1 can request a submission.

This allocation is represented by a directed edge from xi to yi. In the graph Gi, let

the set of students whose submissions are allocated to student v ∈ V be Ni(v) and
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N̄i(v) = V \ {Ni(v)∪ {v}}; then, yi+1 ∈ N̄i(xi+1). Moreover, use N ′
i(v) to denote

the set of students who review the submission of student v ∈ V . The reviewing

number (outdegree) of student v in graph Gi is defined as δ+i (v)(= |Ni(v)|), and
the reviewed number (indegree) is defined as δ−i (v)(= |N ′

i(v)|).
We explain the above definitions using Figure 3.1. In Figure 3.1, we assume

five students, a, b, c, d, and e; thus, V = {a, b, c, d, e}. Initially, student a requests

a submission, and the submission of student d is allocated to a; therefore, x1 and

y1 are a and d, respectively. The edge set E1 of the graph G1(V,E1) contains only

one directed edge from a toward d. In addition, N1(a) = {d}, N̄1(a) = {b, c, e}
and N ′

1(a) = {}, and the node a has an outdegree of 1 and an indegree of 0;

consequently, δ+1 (a) = 1 and δ−1 (a) = 0.

Let the reviewing ability value of a student v ∈ V be a nonnegative real number

w(v), and a larger value represents a better reviewing ability. In this work, for

simplicity, we assume that the reviewing ability value is given as in [53,54]. Note

that estimating the reviewing ability value is out of the scope of this research.

In this study, we first aim at achieving fair assessment based on the number

of reviews. Our goal is to reduce the RR imbalance when the last allocation is

done during the peer assessment period. The RR imbalance is defined as the sum

of the absolute values of the difference between the reviewing number and the

reviewed number for all students. That is, when the t-th allocation is finished,

RR imbalance It(V ) can be calculated by the following equation:

It(V ) =
∑
v∈V

|δ+t (v)− δ−t (v)|

Next, we extend RR imbalance considering reviewing ability. We denote the

average of the reviewing ability values of the students who review v ∈ V ’s submis-

sion as Wt(v) and the average value of Wt(v) of all students as Ŵt(V ). Our goal is

to minimize ARR imbalance, the sum of the RR imbalance and the absolute sum

of the difference between Wt(v) and Ŵt(V ) for all students. The ARR imbalance

I ′t(V ) when the t-th allocation is finished is given by the following equation.

I ′t(V ) =
∑
v∈V

|δ+t (v)− δ−t (v)|+ λ ·
∑
v∈V

|Wt(v)− Ŵt(V )|

17
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Figure 3.2. Example of RRB behavior.

Note that

Wt(v) =
∑

v′∈N ′
t(v)

w(v′)/|N ′
t(v)|

Ŵt(V ) =
∑
v∈V

Wt(v)/|V |

Here, λ is a nonnegative real number parameter. To emphasize the number of

reviews rather than the review quality, λ should be decreased, while to emphasize

review quality over review quantity, λ should be increased.

3.3 Algorithm

In this section, we propose an allocation algorithm to reduce the RR imbalance,

termed RRB, and the algorithm to reduce the ARR imbalance, termed ARRB. A

theoretical analysis of the RRB algorithm is given in Section 3.4, and experiments

to evaluate the performance of the RRB and ARRB algorithms are presented in

Section 3.5.

3.3.1 RRB (reviewing-reviewed balanced allocation algo-

rithm)

The RRB algorithm adopts a greedy approach to reduce the RR imbalance. We

propose an algorithm that yi+1 is determined according to the following formula.

Note that yi+1 is selected randomly when multiple candidates exist.

yi+1 ∈ arg max
v∈N̄i(xi+1)

(δ+i (v)− δ−i (v))
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We provide an intuitive explanation of the above algorithm using Figure 3.2.

In this figure, it is assumed that there are five students, a, b, c, d, and e, whose

requesting order is ⟨a, d, b, a, c, d, c⟩. First, the difference between the reviewing

number and the reviewed number of each student is 0; therefore, the submission is

randomly allocated to a. Let us assume that the submission of e is randomly se-

lected. Next, because the difference between the reviewing number and reviewed

number of a is the maximum, the submission of a is allocated to d. Subsequently,

a’s difference between reviewing number and reviewed number becomes 0, while

for d, the difference becomes 1. Therefore, the submission of d is preferentially al-

located in the next step. In Figure 3.2, the above allocation is repeated, showing

intuitively how the RRB algorithm aims to reduce the RR imbalance.

3.3.2 ARRB (ability-aware reviewing-reviewed balanced

allocation algorithm)

Next, we extend the RRB to an algorithm that reduces the ARR imbalance.

Here, W ′
t(v) represents the average reviewing ability value of the reviewers who

reviews v ∈ V ’s submission and the reviewer xi+1. ŵ(V ) represents the average

reviewing ability values of all students. We propose an algorithm that allocates

yi+1 to xi+1 based on the following formula. Note that yi+1 is selected randomly

when multiple candidates exist.

yi+1 ∈ arg max
v∈N̄i(xi+1)

(δ+i (v)− δ−i (v)− λ · |W ′
i (v)− ŵ(V )|)

where

W ′
i (v) =

∑
v′∈N ′

i(v)∪{xi+1}

w(v′)/(|N ′
i(v)|+ 1)

ŵ(V ) =
∑
v′∈V

w(v′)/|V |

Ideally, instead of ŵ(V ), we would use Ŵt(V ) to obtain the ARR imbalance;

however, Ŵt(V ) can be determined only after all allocations are complete. Thus,

ŵ(V ) is used as an approximated value.
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3.4 Theoretical Analysis for the RRB Algorithm

In this section, we show that when the maximum outdegree of graph Gi is k

and the number of students exceeds k2 + k + 1, the RRB algorithm ensures that

the upper bound of the RR imbalance in the graph Gi is O(k2). The upper

bound does not depend on the total number of students n; it depends only on the

maximum number of reviews performed by any one reviewer. When an enormous

number of students exist, such as in an MOOC, k is expected to be considerably

smaller than n because one student cannot review submissions by everyone. In

other words, the proposed algorithm should be extremely effective on MOOCs.

Although we assume that the number of students is larger than k2 + k + 1, this

is equivalent to the assumption that the total number of students is larger than

the square of the reviewing number of any one student. It is natural to use this

assumption when many students are participating. In the following section, after

presenting two lemmas, we prove our assertion of the upper bound.

Lemma 1 For a vertex subset V ′ ⊆ V of graph Gi, suppose that the following

inequality holds for all vertices v ∈ V ′:

δ+i (v)− δ−i (v) ≤ 0

We define the set of edges from V \V ′ to V ′ as EI ⊆ Ei and the set of edges from

V ′ to V \ V ′ as EO ⊆ Ei. Then, the following equation is satisfied:

Ii(V
′) = |EI | − |EO|

Proof 1 From the assumption, |δ+i (v) − δ−i (v)| = δ−i (v) − δ+i (v) ≥ 0 is satisfied

for any v ∈ V ′. Therefore, the RR imbalance on V ′ is as follows:

Ii(V
′) =

∑
v∈V ′

δ−i (v)− δ+i (v) =
∑
v∈V ′

δ−i (v)−
∑
v∈V ′

δ+i (v)

Here, we define the edge set in V ′ as E ′ ⊆ Ei, and the following two equations

are satisfied: ∑
v∈V ′

δ−i (v) = |E ′|+ |EI |∑
v∈V ′

δ+i (v) = |E ′|+ |EO|

Hence, Ii(V
′) = (|E ′|+ |EI |)− (|E ′|+ |EO|) = |EI | − |EO| 2
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Lemma 2 The maximum outdegree maxv∈V {δ+i (v)} in Gi is defined as ki. As-

suming that n > k2
i + ki + 1, the case that the RR imbalance increases with the

i + 1-th allocation, or Ii+1(V ) > Ii(V ), is limited to the following case, and the

increment is 2.

δ+i (xi+1)− δ−i (xi+1) ≥ 0 and δ+i (yi+1)− δ−i (yi+1) = 0

Proof 2 We separate the cases as follows:

0. δ+i (xi+1)− δ−i (xi+1) < 0 & δ+i (yi+1)− δ−i (yi+1) > 0

1. δ+i (xi+1)− δ−i (xi+1) ≥ 0 & δ+i (yi+1)− δ−i (yi+1) > 0

2. δ+i (xi+1)− δ−i (xi+1) < 0 & δ+i (yi+1)− δ−i (yi+1) ≤ 0

3. δ+i (xi+1)− δ−i (xi+1) ≥ 0 & δ+i (yi+1)− δ−i (yi+1) < 0

4. δ+i (xi+1)− δ−i (xi+1) ≥ 0 & δ+i (yi+1)− δ−i (yi+1) = 0

Adding the edges (xi+1, yi+1) means that δ+i (xi+1) and δ−i (yi+1) are incremented

by 1. That is, δ+i (xi+1)−δ−i (xi+1) increases by 1 and δ+i (yi+1)−δ−i (yi+1) decreases

by 1. Therefore, it is obvious that the RR imbalance decreases for case 0. Next,

in cases 1 and 2, the RR imbalance does not change because either |δ+i (xi+1) −
δ−i (xi+1)| or |δ+i (yi+1)− δ−i (yi+1)| increases by 1, but the other decreases by 1. In

case 3, because the RRB algorithm chooses a yi+1 that meets δ+i (yi+1)−δ−i (yi+1) <

0, we require the condition that δ+i (v)− δ−i (v) ≤ δ+i (yi+1)− δ−i (yi+1) < 0 for any

v ∈ N̄i(xi+1). That is, |δ+i (v) − δ−i (v)| ≥ 1 for any v ∈ N̄i(xi+1). Here, because

|Ni(xi+1)| ≤ ki, |N̄i(xi+1)| ≥ n − ki − 1, the RR imbalance on N̄i(xi+1) satisfies

the following inequality:

Ii(N̄i(xi+1)) ≥ n− ki − 1 (3.1)

In contrast, the number of edges from Ni(xi+1) to N̄i(xi+1) is at most k2
i because

|Ni(xi+1)| ≤ ki; therefore, the following inequality holds by Lemma 1:

Ii(N̄i(xi+1)) ≤ k2
i (3.2)

From the above two inequalities (3.1 and 3.2), n − ki − 1 ≤ k2
i . However, this

contradicts the assumption of Lemma 2 n > k2
i +ki+1. Therefore, case 3 cannot

occur.

In addition, the RR imbalance increases by two in case 4. Thus, we complete

the proof of Lemma 2. 2
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Theorem 1 We assume that n > k2
i + ki + 1. After the i-th allocation based

on the RRB algorithm is completed, the RR imbalance in graph Gi satisfies the

following condition:

Ii(V ) ≤ 4k2
i − 4ki + 2

Proof 3 We provide an outline of the proof and prove Theorem 1 using mathe-

matical induction. First, using Lemma 2, we show two conditions where the RR

imbalance increases during the i + 1-th allocation. Then, we divide the student

sets into {xi+1}, Ni(xi+1) and N̄i(xi+1) and consider the number of edges between

sets and in each set to derive the upper bound of the RR imbalance.

We begin our proof of Theorem 1 by mathematical induction on the number

of allocations i. The proposition clearly holds when i = 1. We assume that the

proposition holds in the case of i = l(≥ 2). 1 ≤ kl ≤ kl+1; thus, the condition

when 4k2
l − 4kl+2 ≤ 4k2

l+1− 4kl+1+2 is satisfied. Then, when the RR imbalance

does not increase in the l + 1-th allocation—that is, when Il+1(V ) ≤ Il(V ) is

satisfied—the following condition is met:

Il+1(V ) ≤ Il(V ) ≤ 4k2
l − 4kl + 2 ≤ 4k2

l+1 − 4kl+1 + 2

Therefore, from Lemma 2, we should consider only the following equation:

δ+l (xl+1)− δ−l (xl+1) ≥ 0 & δ+l (yl+1)− δ−l (yl+1) = 0 (3.3)

In addition, if δ+l (xl+1) = kl, then kl+1 = kl +1 holds. From Lemma 2, the RR

imbalance increment is at most 2. Consequently, the following holds:

Il+1(V ) ≤ (4k2
l − 4kl + 2) + 2

≤ 4(kl + 1)2 − 4(kl + 1) + 2

= 4k2
l+1 − 4kl+1 + 2

Therefore, we need to consider only the following case:

δ+l (xl+1) ≤ kl − 1 (3.4)

Since the vertex set of graph Gl is {xl+1}⊕N̄l(xl+1)⊕Nl(xl+1) (see Figure 3.3),

Il(V ) = Il({xl+1}) + Il(N̄l(xl+1)) + Il(Nl(xl+1)). Subsequently, the values on the

right side of the expression can be calculated individually.
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Figure 3.3. Grouping for proof of Theorem 1.

1 Il({xl+1}): We consider the edge sets E1, E2, and E3 in Figure 3.3. From

conditions (3.3) and (3.4), the following condition holds:

Il({xl+1}) = |δ+l (xl+1)− δ−l (xl+1)|
= δ+l (xl+1)− δ−l (xl+1)

≤ δ+l (xl+1) ≤ kl − 1

2 Il(N̄l(xl+1)): We consider the edge sets E2, E4, and E5 and the edges in

N̄l(xl+1) in Figure 3.3. From condition (3.3), the RRB algorithm selects a

y+1 that meets δ+l (yl+1) − δ−l (yl+1) = 0. Then, because the RRB algorithm

chooses a v ∈ N̄l(xl+1) with the maximum δ+l (v) − δ−l (v), the following

condition holds:

∀v ∈ N̄l(xl+1), δ
+
l (v)− δ−l (v) ≤ 0 (3.5)

Therefore, from Lemma 1, the RR imbalance on N̄l(xl+1) is less than |E4|
(the number of edges from Nl(xl+1) to N̄l(xl+1)). From condition (3.4),

|Nl(xl+1)| ≤ kl − 1 holds. Then, because the maximum outdegree is kl, the

following is satisfied:

Il(N̄l(xl+1)) ≤ |E4| ≤ kl(kl − 1) (3.6)
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3 Il(Nl(xl+1)): We consider the edge sets E1, E3, E4, and E5 and the edges

in Nl(xl+1) in Figure 3.3. We utilize the fact that the RR imbalance on

Nl(xl+1) is less than the sum of the outdegree and indegree in Nl(xl+1)—

which can be written as follows:

Il(Nl(xl+1)) =
∑
v∈V

|δ+l (v)− δ−l (v)| ≤
∑
v∈V

(δ+l (v) + δ−l (v))

From condition (3.4), because |Nl(xl+1)| ≤ kl− 1, the outdegree is less than

kl(kl − 1), and the indegree is the sum of the edges from {xl+1}, Nl(xl+1)

and N̄l(xl+1).

(a) Edges from {xl+1} (E1): From condition (3.4), the number of edges is

less than kl − 1.

(b) Edges between Nl(xl+1): From condition (3.4), |Nl(xl+1)| ≤ kl − 1.

Then, the number of edges is less than (kl − 1)(kl − 2) because no

self-loop occurs.

(c) Edges from N̄l(xl+1) (E5): From condition (3.5) and Lemma 1, the

following is satisfied:

Il(N̄l(xl+1)) = |E4| − (|E2|+ |E5|) ≥ 0

Therefore, from condition (3.6), |E5| ≤ |E2|+|E5| ≤ |E4| ≤ kl(kl−1)
holds.

Hence, the sum of the indegree is less than (kl−1)+(kl−1)(kl−2)+kl(kl−
1) = 2k2

l − 3kl+1. Then, the sum of the outdegree and indegree is less than

kl(kl − 1) + 2k2
l − 3kl +1 = 3k2

l − 4kl +1, and Il(Nl(xl+1)) ≤ 3k2
l − 4kl +1.

Therefore, after the l-th allocation, the following condition holds:

Il(V ) ≤ kl − 1 + kl(kl − 1) + 3k2
l − 4kl + 1 = 4k2

l − 4kl

The RR imbalance increment is 2 from Lemma 2, and kl = kl+1 because of con-

dition (3.4); thus, the following condition is satisfied after the l+1-th allocation:

Il+1(V ) ≤ 4k2
l − 4kl + 2 = 4k2

l+1 − 4kl+1 + 2

which concludes the proof of Theorem 1. 2
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Based on the above proof, when using the RRB algorithm, the upper bound

of the RR imbalance in the graph Gi is O(k2), when the maximum outdegree of

graph Gi is k and the number of students exceeds k2+k+1. By Theorem 1, even

if the number of students is large, when k = 5, we can know beforehand that the

upper bound becomes 4 · 52 − 4 · 5 + 2 = 82.

3.5 Experiments

We experimentally compare the proposed algorithms under the adaptive alloca-

tion approach to algorithms under the existing nonadaptive allocation approach

using two types of data. First, we describe the data characteristics, and then, we

describe baselines and present the experimental results.

3.5.1 Simulation Data based on Real Data

We use the simulation data based on the data published by Canvas Network∗.

This data is comprised of de-identified data from March 2014 - September 2015 of

Canvas Network open courses. However, this data has the following two problems:

• Although the data includes the reviewing number for each student, it does

not include information concerning whose submissions the student reviewed.

• Moreover, the data does not include the reviewing order.

Therefore, in this experiment, we complement the data in several ways, as de-

scribed below.

In our experiments, we utilize those data whose class ID is 770000832960949

and whose assignment ID is 770000832930436 (denoted as real data 1) and those

data whose class ID is 770000832945340 and assignment ID is 770000832960431

(denoted as real data 2). Specifically, we extract the submission ID, the ID of the

student who commented on the submission (the reviewer ID), and the volume of

comments from the table called submission comment fact.

In this study, we regard that the more comments a reviewer writes, the higher

his reviewing ability is. Therefore, we define the reviewing ability as follows: We

take the average of the aggregated volume of comments for each reviewer and

∗https://dataverse.harvard.edu/dataset.xhtml?persistentId

=doi:10.7910/DVN/XB2TLU
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then set the reviewing ability value to 0.2, 0.4, 0.6, 0.8 and 1.0 based on the

ascending order of the aggregated average. Note that the numbers of reviewers

with each reviewing ability value are adjusted to be as equal as possible.

In the Canvas Network data, because the submission ID is not linked with

the ID of the student, it is impossible to determine whose submission a student

reviewed. This situation occurs because of the anonymization process to prevent

data disclosure. Thus, it is impossible to calculate the actual RR imbalance and

ARR imbalance using the real data. Therefore, in this research, we measure the

effectiveness of the proposed methods through simulations based on the real data.

In addition, it is not possible to read the strict reviewing order from the Canvas

Network data. Therefore, we construct the reviewing order using the following

two methods and measure:

Construct the reviewing order based on the time when the comments

were created

This method uses the timestamp in the table called submission comment dim for

when the comment was created, that is, when the review is completed. We need

the time when the review is started to construct the accurate reviewing order,

but in this method, we arrange the reviewer IDs in decreasing order based on the

available timestamp instead. The data complemented based on this method are

considered to be the most realistic data used in this experiment.

Construct the reviewing order based on reviewer transition model

We set the probability that reviewer xi+1 is the same as the previous reviewer

xi to P , and arrange the reviewing IDs according to this probability. Note that,

when the previous reviewer xi cannot review another submission, the reviewer

xi+1 is randomly selected regardless of xi. For example, when P = 0, reviewer

xi+1 is randomly chosen regardless of the previous reviewer xi, and when P = 1,

reviewer xi+1 is selected to be the previous reviewer xi.

Figure 3.4 shows a plot of the number of reviewers for each number of reviews

from the datasets real data 1 and real data 2. Note that, in real data 1, one

reviewer performed 25 reviews just before the end of peer assessment. We consider

this value as representing a lecturer or TA who reviewed the student submissions

whose reviewed number is insufficient. Thus, we replaced the reviewing number of
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Figure 3.4. The number of reviewers for each number of reviews from the real

data.
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Figure 3.5. The number of reviewers for each number of reviews from the synthetic

data.

this reviewer with 3, the mode value of the reviewing number from the real data 1

dataset. In addition, no information is available for reviewers who did not review

any submission from table submission comment fact. Therefore, we instead use

the value obtained by subtracting the total number of reviewer IDs from the total

number of submission IDs as the number of reviewers whose reviewing number is

0.

3.5.2 Simulation Data based on Synthetic Data

We use the simulation data based on the following two types of synthetic data.

The first dataset includes only those reviewers whose reviewing number is 3 (we
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term this the biased data), and the second dataset includes those reviewers whose

reviewing numbers are uniformly between 0 and 4 (we term this the flat data). In

both datasets, the total number of students is 1000 (see Figure 3.5). The biased

dataset can be regarded as an extreme example of data with the similar tendency

as that of real data 1, and the flat data can be regarded as an extreme example

of data with the similar tendency as that of real data 2. We set the reviewing

ability value to 0.2, 0.4, 0.6, 0.8, and 1.0 randomly as the numbers of reviewers

with each reviewing ability value are adjusted to be equal. The reviewing order

is simulated based on the reviewer transition model described in Section 3.5.1.

3.5.3 Comparison Methods

As comparison methods, we utilize two algorithms under a nonadaptive approach

in which the number of submissions that a student should review is typically fixed,

and submissions are allocated to students before assessment starts. Most of the

existing peer assessment methods adopt this approach. We assume that students

can request an additional submission after they complete reviewing the allocated

submissions like the existing work [52].

To utilize nonadaptive approach, we need to set the number of submissions

allocated to one student, but that actual number in each real data is not available.

For the simulation of real data 1, the most natural approach may be to set the

number of submissions allocated to a student to 3 in the comparison methods.

For the simulation of real data 2, it is difficult to determine a fixed number

of submissions that should be allocated to a student; however, we also set the

value to 3 in our experiments. Note that, we assume that students who review 4

submissions request an additional submission. In addition, each synthetic data is

an extreme case of each real data; hence we set the number of submissions that a

student should review to 3. In this case, the descending order of dropout rate is

considered to be the rate in the flat data, real data 2, real data 1 and biased data

datasets. In particular, no one dropout data exists in the biased data dataset.

The detail of the comparison methods are as follows:

Naive allocation algorithm in the nonadaptive approach

This algorithm adopts random allocations so that both the reviewing number and

the reviewed number for all students are 3. We denote this algorithm as Random.
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Table 3.1. Experimental results on the simulation based on real data 1 using the

time when the comments were created.
RRB ARRB Random LPT

RR imbalance 12 10 724 792

ARR imbalance 80.1 66.6 810.7 863.5

Table 3.2. Experimental results on the simulation based on real data 2 using the

time when the comments were created.
RRB ARRB Random LPT

RR imbalance 12 14 90 94

ARR imbalance 18.9 19.9 98.2 100.7

Ability-aware allocation algorithm in nonadaptive approach

This algorithm approximately allocates as the dispersion between the total re-

viewing ability values of the reviewers allocated to individual submissions becomes

small, and such that the reviewing number and the reviewed number for all stu-

dents are 3. This algorithm is based on an allocation algorithm called Longest

Processing Time [53]; hence, we denote this algorithm as LPT.

3.5.4 Experimental Results

Real data with the reviewing order in Section 3.5.1

We apply two algorithms and two comparison algorithms to the real data 1 and

real data 2 datasets whose reviewing order is constructed based on the creation

date and time of the reviewing comments. In this experiment, the parameter λ,

which is used for the ARR imbalance and ARRB, is set to 1. The results are shown

in Tables 3.1 and 3.2. Small values are preferable for both RR imbalance and

ARR imbalance; therefore, the above results show that the proposed algorithms

work more effectively than do the existing algorithms. In addition, because the

maximum reviewing number is 4 in the real data 1 and 2 datasets, the upper

bound of RR imbalance (as described in Section 3.4) is 50, and the results are

satisfied with this upper bound.

ARRB obtains results that are superior to RRB regarding both RR imbalance

and ARR imbalance on the real data 1 dataset. In contrast, RRB is superior
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to ARRB regarding both RR imbalance and ARR imbalance on the real data 2

dataset. These results do not consist with the aim of RRB and and ARRB. We

compare and examine RRB and ARRB in more detail in subsequent experiments.

Real data with the reviewing order in Section 3.5.1

We use the real data 1 and real data 2 datasets whose reviewing order is con-

structed based on the reviewer transition model, in which the probability P is 0,

0.2, 0.4, 0.6, 0.8, or 1. The parameter λ, which is used for ARR imbalance and

ARRB, is set to 1. For each method, we generate 100 reviewing order and apply

the algorithms to these data. We obtain the average value of RR imbalance and

the average value of ARR imbalance.

The results are shown in Figure 3.6. The vertical axis represents the RR im-

balance or the ARR imbalance, and the horizontal axis represents the probability

value P . The four types of lines plotted in each figure represent the following.

• RRB : Imbalance using RRB (blue)

• Random: Imbalance using Random (orange)

• ARRB : Imbalance using ARRB (green)

• LPT : Imbalance using LPT (red)

Figure 3.6 shows that the performance of the two proposed algorithms greatly

exceeds those of the two existing algorithms. We can confirm that the upper

bound of RR imbalance discussed in Section 3.4 is established. We can also see

that the performances of the two proposed algorithms deteriorate when the prob-

ability P is high—that is, the same reviewers continue reviewing. Although the

RRB algorithm tries to minimize the RR imbalance and the ARRB algorithm

tries to minimize the ARR imbalance, there is no discernable performance differ-

ence between the two algorithms from the results shown in Figure 3.6(a)(c)(d).

However, we can observe that ARRB is superior to RRB in Figure 3.6(b). This

experiment suggests that ARRB can reduce the ARR imbalance further than can

RRB while achieving an RR imbalance equally as good as that of RRB.
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(d) ARR imbalance on real data 2

Figure 3.6. Experimental results on real data complemented by the reviewer

transition model when λ = 1.

Synthetic data with the reviewing order in Section 3.5.1

We conducted an experiment similar to the second experiment but on the biased

data and the flat data. The result is shown in Figure 3.7. We can confirm that

the upper bound of the RR imbalance described in Section 3.4 is established.

In the case of flat data, the proposed algorithm greatly outperforms the existing

algorithm, but in the biased data the proposed algorithm’s performance is inferior

to that of the existing algorithm. This result occurs because all the submissions

allocated before assessment are reviewed, that is, there is no dropout; thus, the

RR imbalance is always 0. In fact, we can see from Figure 3.7(a) that the RR

imbalance remains at 0 with the Random algorithm. In addition, as shown in

Figure 3.7(b), the ARR imbalance is the smallest with LPT. However, when
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(a) RR imbalance on biased data
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(c) RR imbalance on flat data
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(d) ARR imbalance on flat data

Figure 3.7. Experimental results on synthetic data complemented by the reviewer

transition model when λ = 1.

many students have the same number of reviews and only a few students with

different reviewing numbers exist, as in real data 1 (see Figure 3.4(a)), the results

using Random and LPT become worse (see Figure 3.6(a)(b)). Therefore, under

nonadaptive allocation, the Random and LPT algorithms work effectively only

in certain special situations. In addition, in Figure 3.7(a)(c), little performance

difference between the two proposed algorithms can be observed, and as Figure

3.7(b) and (d) show, ARRB is superior to RRB.

Experiments for λ in ARR imbalance

We fixed the transition rate P to 0.5 and varied λ using the values 0, 0.5, 1.0, 1.5, 2.0,

and 2.5. We obtained the ARR imbalance values for the two real and two syn-
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(d) ARR imbalance on flat data

Figure 3.8. Experimental results on real data and synthetic data complemented

by the reviewer transition model when the transition rate is P = 0.5.

thetic datasets. The results are shown in Figure 3.8. In Figure 3.8(a)(b)(d), the

proposed algorithms are superior to the existing algorithms and ARRB is supe-

rior to RRB, similar to the previous experiments. In addition, as shown in Figure

3.8(c), the LPT algorithms work effectively in the biased data, but this occurs

only in special situation as mentioned in the third experiment. We also find that,

when λ is larger, the difference between ARR imbalance by ARRB and that by

RRB tends to become larger. This is because ARRB considers the fairness in the

reviewing ability and that is emphasized when λ is large.

The results from all four experiments suggest that the proposed algorithm out-

performs the existing algorithms in many cases. In addition, ARRB performs

comparably to RRB with respect to RR imbalance and achieves better perfor-
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mance with respect to ARR imbalance.

3.6 Conclusion

In this study, we propose the allocation algorithms RRB and ARRB to achieve

fair peer assessment with respect to the number and contents of reviews using

an adaptive allocation approach and considering a situation where dropout can

occur during peer assessment. We analyze the RRB algorithm theoretically and

show its robustness. We also confirm the usefulness of the proposed allocation

algorithms through experiments using both real and synthetic data. In future

work, we plan to study how to estimate the reviewing ability values from the

students’ past behavioral data.
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CHAPTER 4

Analysis of the Effect of

Student-Submission Allocation

on Peer Assessment Accuracy

In peer assessment, student reliability is regarded as a problem; consequently,

various methods of estimating highly reliable grades from scores given by multiple

students have been proposed. However, student-submission allocation for peer

assessment has not been well studied. In this chapter, we analyzed the effect of

student-submission allocation on score estimation in peer assessment. We deal

with three types of allocation methods; random allocation, circular allocation and

group allocation, which are considered to be commonly used in peer assessment.

Through simulation experiments, we show that circular allocation and group

allocation tend to yield lower accuracy than random allocation does.

4.1 Motivation

Peer assessment has a problem of low reliability because it relies on students’

reviews. Therefore, in peer assessment, a reviewing criterion called a rubric is

often used, and a single student’s submission is reviewed by multiple other stu-

dents [3, 7]. In addition, methods of using statistical models to estimate a sin-
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Figure 4.1. Allocation patterns.

gle reliable score by combining the scores given by multiple students have been

proposed [5, 6, 15, 41]. However, the related studies have not focused on student-

submission allocation. In this study, we analyze the effect of student-submission

allocation on score estimation.

In particular, this study focuses on student-submission allocation patterns that

satisfy the following conditions:

1. A student cannot grade his or her own submission.

2. A student cannot grade the same submission twice.

3. Each student reviews the same total number of submissions, and each sub-

mission is reviewed by the same total number of students.

We call these conditions the basic principles of student-submission allocation.

Note that we refer to the number of submissions a student reviews as the “re-

viewing number” and to the number of students who review a single submission

as the “reviewed number”. The first and second of the basic principles are obvi-

ous. The third is generally applied to avoid unfairness in the reviewing number

and the reviewed number among the students.

We analyze three allocation methods: random allocation, circular allocation,

and group allocation. In this study, we provide empirical evidence to the effec-

tiveness of these allocation methods. These allocation methods are depicted in

Figure 4.1. Each node represents a student; the left side of each bipartite graph

represents the reviewers, and the right side represents the reviewees. Note that
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nodes to which the same ID is assigned on the left side and the right side repre-

sent the same student. Each edge drawn from a reviewer to a reviewee represents

a student-submission allocation. For example, in Figure 4.1 (a), the student with

ID 1 reviews the submissions of the students with ID 4 and ID 5. In Figure 4.1,

each student’s reviewing number and reviewed number are 2, satisfying the third

condition described above.

Figure 4.1 (a) illustrates random allocation. Random allocation is a method

of simply allocating students to submissions randomly while satisfying the above

conditions.

Figure 4.1 (b) illustrates circular allocation. Circular allocation is a method in

which a certain order relation is assigned to the students (in this case, an order

relation based on ID), and each student is allocated to review the submissions of

the next k students, where k is the reviewing number. In this figure, the student

with ID 1 reviews the submissions of the students with ID 2 and ID 3, the student

with ID 2 reviews the submissions of the students with ID 3 and ID 4, and so on.

This allocation method can easily satisfy the basic principles and is often used in

actual peer assessment.

Figure 4.1 (c) illustrates group allocation. In group allocation, the students are

divided into several sets, and student-submission allocations are generated within

each set. In this figure, six students are divided into two sets of three students

each, and allocation is performed within each of these sets. This method is also

often applied to satisfy the basic principles. More specifically, if each student’s

reviewing number (and reviewed number) is k, the students are first divided into

sets, each of which consists of k + 1 students. Then, the basic principles can be

achieved by allocating each student to all submissions other than his or her own

within his or her assigned group. In addition, group allocation is often used in

an effort to divide a class in consideration of the students’ profiles [67].

In the experiments reported in this paper, we applied the above allocation

methods to artificial data and real data and applied a typical score estimation

method proposed by Piech et al. [5]. Then, we compared the allocation methods

using the root mean square error (RMSE) as the evaluation index. Our exper-

imental results show that circular allocation and group allocation tend to yield

lower accuracy than random allocation does.

The remainder of this work is organized as follows. Section 4.2 describes the

setting of our experimental analysis. In Section 4.3, we present the experimental
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results. Finally, we conclude this work and suggest future work in Section 4.4.

4.2 Setting

This study analyzes the effects of three types of student-submission allocation on

score estimation. This section first describes the three student-submission allo-

cation algorithms considered: random allocation, circular allocation, and group

allocation. Then, we introduce the existing score estimation method applied in

our experiments.

4.2.1 Allocation Algorithms

This study focuses on student-submission allocation patterns that satisfy the

basic principles described in Section 4.1. The number of students is n, and the

reviewing number and reviewed number are both k (< n). We consider a set of

students V = {v1, . . . , vn}. Additionally, we consider a graph with the student

set V as the node set, where the set of directed edges of this graph is denoted

by E. Note that a directed edge (vi, vj) indicates that student vi is allocated to

review student vj’s submission. The following algorithms take as input a student

set V and a reviewing number (reviewed number) k and output an edge set E

that represents the student-submission allocations.

Random Allocation

The random allocation algorithm (Algorithm 1) generates allocations that satisfy

the basic principles randomly and sequentially. Note that since the candidates to

which a given student vi can be allocated change during the sequential allocation

process, they are managed by the variable C(vi). Specifically, given a Graph

G(V,E), C(vi) is the set of students, excluding vi him- or herself, to whose sub-

missions vi has not yet been allocated and whose submissions have been assigned

to be reviewed by fewer than k students each, as follows:

C(vi) = {vj|vj ̸= vi, (vi, vj) /∈ E,R(vj) < k}

Here, R(vj) represents the number of students who are reviewing the submission

of vi.
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Algorithm 1 Random Allocation Algorithm

INPUT: V = {v1, . . . , vn} ▷ a set of n students

INPUT: k ▷ reviewing (reviewed) number

OUTPUT: E ▷ student-submission allocations

1: E ← {}
2: for i← 1 to n do

3: for t← 1 to k do

4: if C(vi) is empty then

5: go to 1

6: end if

7: vj is selected from C(vi) at random

8: E ← E ∪ {(vi, vj)}
9: end for

10: end for

Due to greedy allocation, the candidate set C(vi) may be empty. For example,

when vn is being assigned to submissions and the only candidate submission that

is not already being reviewed by vn is the submission of vn him- or herself, C(vn)

becomes empty. In this case, this algorithm terminates, as shown in the fifth line,

and the allocation process repeats from the beginning.

Circular Allocation

The circular allocation algorithm (Algorithm 2) allocates a given student to the

submissions of students with adjacent IDs.

Algorithm 2 Circular Allocation Algorithm

INPUT: V = {v1, . . . , vn} ▷ a set of n students

INPUT: k ▷ reviewing (reviewed) number

OUTPUT: E ▷ student-submission allocations

1: E ← {}
2: for i← 1 to n do

3: for j ← 1 to k do

4: E ← E ∪ {(vi, v((i+j) mod n))}
5: end for

6: end for
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This algorithm differs from the random allocation algorithm in that the output

is fixed to one type and there is no need to terminate.

Group Allocation

The group allocation algorithm (Algorithm 3) divides students into several groups

and then performs random allocation in each group. In the following algorithm,

the number of groups is represented by d. Note that the group allocation algo-

rithm considers only cases in which n/d is an integer for simplicity.

Algorithm 3 Group Allocation Algorithm

INPUT: V = {v1, . . . , vn} ▷ a set of n students

INPUT: k ▷ reviewing (reviewed) number

INPUT: d ▷ number of groups

OUTPUT: E ▷ student-submission allocations

1: E ← {}
2: l← n/d ▷ group size

3: for i← 1 to d do

4: V ′ ← {v(l·(i−1)+1), . . . , vl·i}
5: E ← E ∪RandomAllocationAlgorithm(V ′, k)

6: end for

If d and k are set such that n/d = k + 1, an algorithm that satisfies the basic

principles can be easily realized in a manner similar to the circular allocation

algorithm.

4.2.2 Estimation Method

In this study, we focus on the statistical estimation model known as PG1 [5].

We choose this model because it is the most basic model, as described in Section

2.2.4. The details of PG1 are as follows:
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(Reliability) τv ∼ G (α0, β0)

(Bias) bv ∼ N
(
0,

1

η0

)
(True score) su ∼ N

(
µ0,

1

γ0

)
(Observed score) zvu ∼ N

(
su + bv,

1

τv

)
G is a gamma distribution with fixed hyperparameters α0 and β0, while η0

and γ0 are the hyperparameters for the priors over the biases and true scores,

respectively. τv represents the reliability of student v, and bv represents the bias

of student v. su represents the true score of the submission created by student u,

and zvu represents the score of the submission of student u as reviewed by student

v. We estimate τv, bv, and su in accordance with this model given each student’s

reviewing scores zvu.

In the estimation process performed in this study, Gibbs sampling was used,

with α0, β0, η0, and γ0 all set to 1. The number of iterations was 3,000, and the

first 1000 iterations were used for burn-in. PyMC3 was used for the implemen-

tation.

4.3 Experiments

In this section, we first show the experimental results on the artificial dataset,

then we give the results on the real dataset. Note that since the size of the real

dataset is small, the experimental results on the real dataset is less reliable than

the results on the artificial dataset. The reason why we utilize the small dataset

is described in Section 4.3.2.

4.3.1 Simulation on the Artificial Dataset

We first explain the artificial dataset used in our experiments. Then we give an

experimental overview and compare the results obtained with the above three

algorithms.
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Table 4.1. RMSE results on the artificial dataset + random allocation simulation.

n PG1(3) PG1(5) PG1(10) avg(3) avg(5) avg(10) PG1/avg(3) PG1/avg(5) PG1/avg(10)

5 0.482 0.504 0.971

10 0.487 0.375 0.519 0.399 0.946 0.948

20 0.478 0.374 0.259 0.518 0.406 0.279 0.926 0.929 0.937

50 0.482 0.363 0.249 0.524 0.405 0.286 0.921 0.900 0.873

100 0.485 0.364 0.244 0.526 0.409 0.287 0.923 0.891 0.852

1000 0.483 0.361 0.241 0.527 0.408 0.289 0.918 0.885 0.835

Table 4.2. RMSE results on the artificial dataset + circular allocation simulation.

n PG1(3) PG1(5) PG1(10) avg(3) avg(5) avg(10) PG1/avg(3) PG1/avg(5) PG1/avg(10)

5 0.487 0.511 0.968

10 0.489 0.375 0.516 0.397 0.954 0.959

20 0.496 0.376 0.262 0.523 0.401 0.284 0.950 0.948 0.928

50 0.497 0.384 0.261 0.525 0.408 0.287 0.949 0.946 0.917

100 0.496 0.381 0.261 0.525 0.406 0.289 0.946 0.942 0.909

1000 0.500 0.385 0.263 0.527 0.408 0.289 0.948 0.943 0.910

Artificial Dataset

For the artificial dataset, τv was generated as a uniform random number from 1

to 2, bv was generated as a uniform random number from -1 to 1, and su was

generated as a uniform random number from 1 to 5. Then, zvu was generated in

accordance with the fourth equation of the PG1 model. Note that the range of

su was set to 1 to 5 to consider a five-level evaluation. In addition, we set τv and

bv such that zvu would vary within approximately one level below or above su. For

each simulation, we generated 500 data subsets in accordance with the specified

number of students n, reviewing number k, and allocation algorithm.

Experimental Overview

The simulation results on the artificial dataset are shown in Tables 4.1 and 4.2.

In these experiments, we performed 500 simulations and obtained the average

RMSEs of the estimated values while varying the number of students n, the

reviewing number k, and the allocation pattern as follows: random allocation

(Table 4.1) or circular allocation (Table 4.2).

The reason why we did not explicitly perform group allocation is as follows.

Group allocation is an allocation method in which the student set is divided into
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small groups and then random allocation is performed in each group. Therefore,

when there are two sets of allocations with the same reviewing number, but one

has a larger total number of students than the other, the former can be interpreted

as random allocation, while the latter can be interpreted as group allocation.

Accordingly, in this study, to evaluate the performance of group allocation, we

used the results of random allocation with a small number of students instead of

results obtained explicitly through group allocation.

Now, let us explain how to read the experimental result tables, using Table

4.1 as an example. The leftmost column represents the number of students n,

and each row represents the results obtained using data generated under the

assumption of n students. The second to fourth columns (PG1(k), k = 3, 5, 10)

show the average RMSEs of the estimated values when PG1 is applied to the

generated 500 subsets of data. The values in the second column (PG1(3)) are

the results for a reviewing number of 3, the values in the third column (PG1(5))

correspond to k = 5, and the values in the fourth column (PG1(10)) correspond

to k = 10.

The fifth to seventh columns (avg(k)) show the average RMSEs of the simple

average (ŝu =
∑

v z
v
u). These three columns similarly present the results for

k = 3, 5, 10.

The 8th to 10th columns (PG1/avg(k)) show the average values obtained by

dividing the RMSE obtained with PG1 by the RMSE obtained through simple

averaging for the 500 data subsets. The reason why we derive not only the

average RMSE value of PG1 (PG1(k)) but also the average value of the ratio

between the RMSEs of PG1 and simple averaging is as follows: When artificial

data generated from the same distribution are used, the expected RMSE value

of the simple average is independent of n. However, as seen from the avg(k)

columns in Table 4.1, the RMSE value is smaller when n is smaller. Therefore,

we consider that some kind of sampling error occurred due to the use of the

RMSE, and therefore, we need to normalize out this effect.

First, we will compare random allocation and circular allocation on artificial

data based on Tables 4.1 and 4.2. Next, we will compare random allocation and

group allocation using Table 4.1.
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Table 4.3. RMSE results on the real dataset + random allocation simulation.
n PG1(3) PG1(5) PG1(7) avg(3) avg(5) avg(7) PG1/avg(3) PG1/avg(5) PG1/avg(7)

4 1.555 1.467 1.080

6 1.547 1.349 1.466 1.231 1.066 1.105

8 1.582 1.392 1.299 1.493 1.276 1.175 1.066 1.096 1.108

10 1.565 1.394 1.258 1.496 1.283 1.153 1.050 1.092 1.096

Random Allocation vs. Circular Allocation

As seen by comparing the values in the corresponding cells in the PG1/avg

columns of Tables 4.1 and 4.2, the values in Table 4.1 are smaller in most cases.

In particular, as n increases, the difference becomes larger. This finding indicates

that random allocation is superior to circular allocation.

The cause of this difference in performance might be explained in the following

manner. When we ignore the direction of edges in allocation graph, the distances

between nodes in the circular allocation graphs generally tend to be larger than

the distances between nodes in the random allocation graphs. Since the PG1

model can be interpreted as recursively using adjacent values in the allocation

graph at the time of estimation, the greater the distance between nodes is, the

more adversely the estimation may be affected.

Random Allocation vs. Group Allocation

We compare random allocation and group allocation based on Table 4.1. As seen

from Table 4.1, the larger n is, the smaller the values of PG1/avg, indicating that

random allocation without division of the students is superior to group allocation.

Considering the recursive estimation method of the PG1 model, the available

information increases as the value of n increases; hence, PG1 may function more

effectively as a result.

4.3.2 Simulation on the Real Dataset

We explain the real dataset, then show an experimental results. The real dataset

used in our experiment is small, so the results on the real dataset is less reliable

than those on the artificial dataset. Note that we did not compare random

allocation with circular allocation using real dataset. This is because when the

number of students n is small (e.g. n = 5 or 10), considering the simulation results
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on artificial data, there is no significant difference between random allocation and

circular allocation (see the results in Section 4.3.1).

Real Dataset

For the real data, we used an open word pair similarity dataset [68]. Although

this dataset was collected in the context of crowdsourcing research, the situation

in which low-skilled workers review multiple tasks is similar to a peer assess-

ment setting; therefore, it seems reasonable to use it in this experiment. In this

dataset, workers can be interpreted as reviewers, and tasks can be interpreted as

submissions. Note that the set of reviewers and the set of reviewees who created

the submissions are not the same in this case, but this does not pose a problem

for PG1 because this estimation method does not assume that the reviewer set

and the reviewee set are the same. In addition, this dataset consists of a total

of 300 scores assigned to all 30 tasks by 10 workers. The data size is small, but

the allocation graph is very dense. When performing a simulation using the real

dataset, restoration extraction was performed 500 times from the data such that

the specified n and k were satisfied. Therefore, it was desirable for the allocation

graph of the original dataset to be tightly connected, but difficult to create large

data with such an allocation graph. Hence, we considered the word pair similarity

dataset to be suitable for our purposes, though the size is small.

Random Allocation vs. Group Allocation

We perform a comparison between random allocation and group allocation on

the real dataset. The results of the simulation are shown in Table 4.3. How to

read the table is the same as in simulation on the artificial dataset. We consider

the cases of n = 4, 6, 8, 10 and k = 3, 5, 7. The performance of PG1 is inferior

to the performance of the simple average because the data are too few, but the

ratio between PG1 and the simple average decreases as n increases. Therefore, it

is suggested that random allocation is superior to group allocation based on this

dataset.

All of the experimental results reported in Section 4.3 suggest that random

allocation is superior to both circular allocation and group allocation.
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4.4 Conclusion

In this chapter, we have demonstrated that circular allocation and group alloca-

tion, both of which are often used in peer assessment, have a bad effect on the

estimation results when using a typical statistical score estimation method. Since

our study offers only experimental results, we plan to further consider this issue

from a theoretical perspective in the future. In addition, it should be noted that

student reviewing is not always performed in accordance with the predefined allo-

cations due to dropout; therefore, we also plan to consider the effect of allocation

with dropout on scoring accuracy.
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CHAPTER 5

Adaptive Peer Assessment

Allocation considering

Fairness and Accuracy

Chapter 3 and Chapter 4 have discussed student-submission allocation in peer

assessment, each focusing on different objectives. In Chapter 3, we developed

an allocation method (RRB algorithm) to solve the imbalance of the number

of reviews due to dropout. In Chapter 4, we analyzed what kind of student-

submission allocation improves peer assessment accuracy. We concluded that the

different allocation methods are superior in each study due to the difference of

the objectives. In this chapter, we point out that the allocation method proposed

in Chapter 3 may adversely affect peer assessment accuracy in certain situations.

Then, we propose a method that considers the trade-off between fairness based on

RR imbalance and peer assessment accuracy. The proposed method is to replace

a part of the allocation in the RRB algorithm with random allocation. This study

asserts the usefulness of the proposed method through simulation. In addition,

we discuss the usefulness of the methodology of replacing part of the allocation

that worsens the estimation accuracy with random allocation.
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ID: 1

ID: 2

ID: 3

ID: 4

ID: 5

ID: 6

Figure 5.1. Circular allocation-like example where RRB is applied.

5.1 Motivation

In Chapter 3, we proposed an adaptive allocation method (RRB algorithm) to

solve the imbalance in the number of reviews due to dropouts. In the RRB algo-

rithm, students request to review a submission, then a submission is allocated to

the requesting student. Note that the submission of the student who contributes

the most at each point in time, that is, the student whose difference between his

or her reviewing number and reviewed number is the largest, is allocated with

priority. In Chapter 3, we proved that the sum of the absolute value of the dif-

ference between the reviewing number and the reviewed number (RR imbalance)

can be limited to a certain amount when using the RRB algorithm. However, this

allocation method does not take into account the effect on the peer assessment

accuracy as in Chapter 4. We point out that the RRB algorithm may have an

adverse effect on peer assessment accuracy.

When students review multiple submissions, students often review them collec-

tively. Therefore, when applying RRB algorithm to practical settings, students

are expected to make requests continuously.

We consider an extreme situation where all students request submissions in

succession. At this time, student-submission allocation is as shown in Figure

5.1. Note that each node represents a student, and each edge represents the

allocation from the reviewer to the reviewee. Also, in this figure, it is assumed

that the students request three submissions in succession in the clockwise order
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from the student with ID 1.

First, when the student with ID 1 requests submissions, the difference between

the reviewing number and reviewed number of all the student is 0 or less, so three

submissions of other students are randomly allocated to the student with ID 1.

In this figure, we omit the nodes which are selected randomly in RRB algorithm.

In addition, the submissions of students with IDs 1-6 are not subject to random

allocation. Subsequently, when the student with ID 2 requests the submission,

the difference between the reviewing number and the reviewed number of the

student with ID 1 is the largest (= 3), so the submission of the student with

ID 1 is allocated first to the student with ID 2, and then two other submissions

are randomly allocated. The student with ID 3 is allocated to the submissions

of ID 1 and ID 2 first, then one submission is randomly allocated. The student

with ID 4 is allocated to the submissions of ID 1, ID 2 and ID 3 with priority.

Then, after the student with ID 4, the requesting student is allocated to the three

submissions of students who request just before him- or herself.

In Chapter 4, we pointed out that the allocation method called circular allo-

cation has an adverse effect on peer assessment accuracy. Circular allocation is

a method that assigns some order relation to students and allocates next k stu-

dents’ submissions to students, where k is the reviewing number. The allocation

in Figure 5.1 is equal to the circular allocation except for students with IDs 1-3.

Therefore, it is considered that the allocation in Figure 5.1 also has an adverse

effect on peer assessment accuracy.

We propose a method that considers the trade-off of peer assessment accuracy

and RR imbalance. The proposed method is a simple method that replaces the

RRB algorithm allocation with a random allocation at specified intervals. In

this study, we conducted experiments to confirm the usefulness of the proposed

method using artificial reviewing order data and real reviewing order data. We

performs the evaluation of the proposed method while changing the frequency of

random allocation. As a result, it is confirmed that the peer assessment accu-

racy can be improved without impairing the RR imbalance by making a small

substitution to the random allocation.

The above experimental results suggest that the estimation accuracy can be im-

proved by replacing the allocation that adversely affect score estimation with ran-

dom allocation. Therefore, we confirm the results of applying the same method-

ology to group allocation explained in Chapter 4, and discuss the usefulness of
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partially replacing with random allocation.

The structure of this study is described below. Section 5.2 explains the pro-

posed method of our research. In Section 5.3, we present the experimental results.

In Section 5.4, we discuss the usefulness of the methodology used in the proposed

method. Finally, we conclude this work and suggest future work in Section 5.5.

5.2 Proposed Method

The proposed method is as follows:

Algorithm 4 RRB algorithm with partially random allocation

INPUT: V = {v1, . . . , vn} ▷ a set of n students

INPUT: S = ⟨vi1 , . . . , vim⟩ ▷ reviewing order

INPUT: h ▷ an interval of random allocation

OUTPUT: E ▷ student-submission allocation

1: E ← {}
2: for l← 1 to m do

3: if l mod h == 0 then

4: vj is selected from V \ {vil} at random
5: else

6: vj is selected according to RRB algorithm

7: end if

8: E ← E + (vil , vj)

9: end for

Here, V is a student set, S is a student’s reviewing order, and h is an interval

of random allocation. At every h request, the allocation in the RRB algorithm is

replaced with random allocation. This method has been inspired by the experi-

mental results in Chapter 4 where random allocation showed excellent results.

5.3 Experiment

In this experiment, we utilize the reviewing order based on the real data and

the artificial reviewing order, and create the studetnt-submission allocation using

the proposed method while changing the interval of random allocation h. Then,
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!!! !!!

(a) Order that students review continuously

!!! !!!

(b) Order that students review alternately

Figure 5.2. A part of real reviewing order.

!!! !!!

(a) Order that students review continuously

!!! !!!

shuffle shuffle shuffle shuffle

(b) Order that students review alternately

Figure 5.3. A part of artificial reviewing order.

according to the settings in Chapter 3 and in Chapter 4, the created allocations

are compared. This section first describes the details of the real reviewing order

and the artificial reviewing order, and then describes the experimental results.

5.3.1 Dataset

Real reviewing order

In this research, we utilize real data 1 and real data 2 in Section 3.5.1. We con-

struct the reviewing order using real data based on the time when the comments

were created in the same way in Section 3.5.1. Figure 5.2 shows the examples of

extracting part of the real reviewing order.
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Each node in Figure 5.2 represents a student who reviews a submission, and

nodes of the same color represent the same student. Real reviewing orders shown

in Figure 5.2 are both examples in which students tend to review submissions

collectively. Most of the requests are continuous in Figure 5.2(a), but the requests

are alternated in Figure 5.2(b). Such order in Figure 5.2(b) can occur when the

number of students who make requests at a specific time is large. This situation

occurs frequently in environments with a large number of participants, such as

MOOCs. In this study, the following two artificial orders are created to consider

two extreme cases.

Artificial reviewing order

The first artificial reviewing order is a sequence in which each student requests k

times consecutively, assuming that the reviewing number is k (Figure 5.3(a)).

Another artificial reviewing order is consisted by the following algorithm.

Algorithm 5 Create artificial order that students review alternately

INPUT: V = {v1, . . . , vn} ▷ a set of n students

INPUT: k ▷ reviewing number

OUTPUT: S ▷ reviewing order

1: S ← ⟨⟩
2: for i← 1 to k − 1 do

3: S.append(shuffle(⟨v1, . . . , vi⟩))
4: end for

5: for i← 1 to n− k + 1 do

6: S.append(shuffle(⟨vi, . . . , vi+k−1⟩))
7: end for

8: for i← n− k + 2 to n do

9: S.append(shuffle(⟨vi, . . . , vn⟩))
10: end for

Figure 5.3(b) shows the example of the reviewing order and how the algorithm

works. With this algorithm, except for the first and last k(k − 1)/2 students,

student set {vi, . . . , vi+k−1}(i = 1, . . . , n− k+1) are sorted randomly and review

submissions in order. This algorithm generates a sequence as shown in Figure

5.3(b), which can be regarded as an extreme case of the order that students review

alternately.
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(b) order that students review alternately

Figure 5.4. Experimental results with artificial reviewing order (n = 50, k = 5).

5.3.2 Experimental Results

We give experimental results on the artificial reviewing order, then we show the

results on the real reviewing order. For each reviewing order, we demonstrate

the RR-imbalance and estimation accuracy when using proposed adaptive allo-

cation method while changing an interval of random allocation h. We show the

estimation accuracy based on setting in Section 4.3.1. Note that we generate 100

subsets of data in this experiment instead of 500 subsets as in Chapter 4.

The results are shown in Figure 5.4, 5.5, 5.6 and 5.7. Each horizontal axis

indicates a parameter h-rate that adjusts the size of an interval of random allo-

cation h. Note that an interval of random allocation h = ⌈n · h-rate⌉, when n is

the number of students. For example, if n = 36 and h-rate = 0.2, then h = 7.

When h is larger than the length of the reviewing order, our proposed algorithm is

equal to the RRB algorithm. Therefore, we represent the results where the RRB

algorithm is applied in the rightmost in each figure. The vertical axis indicates

the PG1/avg and RR imbalance, with the blue line representing PG1/avg and

the orange line representing RR imbalance. Small values are preferable for both

PG1/avg and RR imbalance.

Artificial reviewing order

We describe the results when using artificial data. Figure 5.4, Figure 5.5, and

Figure 5.5 show the results when the number of students n = 50, n = 100 and

n = 1000, and all the reviewing number k = 5. In addition, each subfigure
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(b) order that students review alternately

Figure 5.5. Experimental results with artificial reviewing order (n = 100, k = 5).
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(b) order that students review alternately

Figure 5.6. Experimental results with artificial reviewing order (n = 1000, k = 5).

(a) shows the results with the order that students review continuously, and each

subfigure (b) shows the results with the order that students review alternately.

In most cases, the RR imbalance decreases and PG1/avg increases as h-rate

increases, that is, our proposed algorithm approaches the RRB algorithm. In

addition, the peer assessment accuracy (PG1/avg) is improved without imparing

the RR imbalance by making a small substitution to the random allocation in

some cases. For example, in Figure 5.4, RR-imbalance when h-rate is 0.5 is almost

the same as that when using RRB, but PG1/avg when h-rate is 0.5 is lower than

that when using RRB.
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(a) real data 1

0.1 0.2 0.5 RRB
h-rate

0.89

0.90

0.91

0.92

0.93

0.94

PG
1/

av
g

PG1/avg
RR imbalance

10

15

20

25

30

35

40

45

50

RR
 im

ba
la

nc
e

(b) real data 2

Figure 5.7. Experimental results with real reviewing order.

In each subfigure (a), except when h-rate is 0.1, the values of RR imbalance

are similar. However, in each subfigure (b), the RR imbalance when h-rate is

0.2 is clearly larger than that when h-rate is 0.5. Therefore, when we focus on

RR imbalance, the proposed method is considered to be more effective for the

order that students review continuously than for the order that students review

alternately. On the other hand, when we focus on the values of PG1/avg, it is

difficult to find the obvious difference between the two experimental results in

each figure, but both results show the same tendency that the PG1/avg increases

as h-rate increases.

Real reviewing order

In addition, we describe the experimental results when using real data (see Figure

5.7). Real data 2 shows a similar tendency to the result when using artificial

data, but real data 1 shows almost no change in estimation accuracy even if h-

rate changes. This suggests that the student-submission allocation on real data 1

created by the RRB algorithm contains enough randomness of allocation. This is

probably because real data 1 has a large number of students, and the reviewing

requests at a specific time are more crowded than the case where using Algorithm

5.
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Figure 5.8. Group allocation partially replaced with random allocation.

5.4 Discussion about Partially Replacing with

Random Allocation

The above experimental results suggest that replacing a part of student-submission

allocation with random allocation can improve the estimation accuracy. In this

section, to confirm this hypothesis, we perform a simple experiment for group

allocation described in Chapter 4.

Group allocation is an allocation that divides a student set into groups and

generates allocation in each group. There is an assertion that learning on a group

has some benefits [69], so group allocation in peer assessment may be adopted in

practical setting. It has already been pointed out in Chapter 4 that the estimation

accuracy deteriorates when using group allocation. Here, we consider allocation

that replaces a part of group allocation with random allocation (see Figure 5.8)

We obtain estimation accuracy (PG1/avg) using the settings in Chapter 4,

where r out of k allocations for each student are replaced with random allocation

in group allocation. When the number of students n = 100, the number of

groups d = 10, k = 9, and r = 0, 1, 2, 3, 4, the corresponding values of PG1/avg

are 0.997, 0.903, 0.880, 0.864, 0.854. It can be seen that the accuracy is improved

by inserting random allocations into group allocation. Therefore, it is suggested

that the methodology of partially replacing with random allocation is useful for

improving accuracy.
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5. Adaptive Peer Assessment Allocation considering Fairness and Accuracy

5.5 Conclusion

We propose a method that considers the trade-off between fairness based on RR

imbalance and peer assessment accuracy. The proposed method is to replace a

part of the allocation in the RRB algorithm with random allocation. This study

asserts the usefulness of the proposed method through simulation. In addition,

we discuss the usefulness of the methodology of replacing part of the allocation

that worsens the estimation accuracy with random allocation. In future work, we

plan to apply the above methodology to other student-submission allocation and

prove the usefulness of the methodology theoretically.
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CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

We developed and analyzed student-submission allocation methods for peer as-

sessment, which has been rarely focused on, and improved the problems of peer

assessment as follows:

• Imbalance of the number of reviews due to dropouts

• Low reliability of of students’ reviewing results

In the first study, in order to solve the first problem, we developed a new

adaptive allocation method which achieves that the student’s submission is re-

viewed as many times as the student reviews other submissions. Additionally,

we extend the proposed method to the method which can consider the students’

reviewing ability. We theoretically analyzed the degree of imbalance when using

our proposed method, and compared the imbalance between proposed allocation

methods and existing allocation methods through simulation.

In the second study, we analyzed what kind of student-submission allocation is

effective for the existing score estimation method from multiple students’ scores,

which is developed to solve the low reliability of student reviewing. This analysis

indicates that some allocation methods which are considered to be used in actual
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6. Conclusion and Future Work

peer assessment have bad effect on estimation accuracy, and random allocation

is superior.

The above two studies recommend different student-submission allocation meth-

ods for two different objectives. In third study, we pointed out that, when using

the allocation method proposed in the first study, the estimation accuracy de-

creases under certain circumstances. Then, we proposed an allocation method

that considers the trade-off between two objectives. In addition, we discuss the

usefulness of the methodology of replacing a part of student-submission allocation

with random allocation.

6.2 Future Work

The major issue in the future is as follows. In our research, simulation was often

used to confirm the usefulness of each student-submission allocation, so we would

like to confirm the usefulness of each allocation under practical conditions.

In the first study, we plan to study how to estimate the reviewing ability values

from the students’ past behavioral data and combine our proposed allocation

algorithm with the estimation algorithm.

In the second study, we plan to further consider the problem from a theoret-

ical perspective. In addition, it should be noted that student reviewing is not

always performed in accordance with the predefined allocations due to dropout;

therefore, we also plan to consider the effect of allocation with dropout on scoring

accuracy.

In the third study, we plan to apply the proposed methodology to other student-

submission allocation and prove the usefulness of the methodology theoretically.
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[21] Justin Reich and José A Ruipérez-Valiente. The mooc pivot. Science,

363(6423):130–131, 2019.

[22] Kwangsu Cho, Christian D Schunn, and Roy W Wilson. Validity and reli-

ability of scaffolded peer assessment of writing from instructor and student

perspectives. Journal of Educational Psychology, 98(4):891, 2006.

[23] Katy Jordan. Massive open online course completion rates revisited: Assess-

ment, length and attrition. The International Review of Research in Open

and Distributed Learning, 16(3), 2015.

[24] Thomas Staubitz, Dominic Petrick, Matthias Bauer, Jan Renz, and

Christoph Meinel. Improving the peer assessment experience on mooc plat-

forms. In Proceedings of the third ACM conference on Learning@ Scale, pages

389–398, 2016.

[25] Sunny SJ Lin, Eric Zhi-Feng Liu, and Shyan-Ming Yuan. Web-based peer

assessment: feedback for students with various thinking-styles. Journal of

computer assisted Learning, 17(4):420–432, 2001.

[26] Sarah Gielen, Elien Peeters, Filip Dochy, Patrick Onghena, and Katrien

Struyven. Improving the effectiveness of peer feedback for learning. Learning

and instruction, 20(4):304–315, 2010.

[27] Philip M Sadler and Eddie Good. The impact of self-and peer-grading on

student learning. Educational assessment, 11(1):1–31, 2006.

[28] Maria De Marsico, Luca Moschella, Andrea Sterbini, and Marco Temperini.

Effects of network topology on the openanswer’s bayesian model of peer as-

sessment. In European Conference on Technology Enhanced Learning, pages

385–390, 2017.

[29] Andrea Sterbini and Marco Temperini. Openanswer, a framework to support

teacher’s management of open answers through peer assessment. In IEEE

Frontiers in Education Conference (FIE), pages 164–170, 2013.

63



References

[30] Michael Mogessie Ashenafi, Marco Ronchetti, and Giuseppe Riccardi. Pre-

dicting student progress from peer-assessment data. In Educational Data

Mining, 2016.

[31] Erkan Er, Bote Lorenzo, L Miguel, Eduardo Gómez Sánchez, Yannis A Dim-

itriadis, Asensio Pérez, and Juan Ignacio. Predicting student participation

in peer reviews in moocs. In Proceedings of EMOOCs 2017, 2017.

[32] Luca De Alfaro and Michael Shavlovsky. Crowdgrader: A tool for crowd-

sourcing the evaluation of homework assignments. In Proceedings of the 45th

ACM technical symposium on Computer science education, pages 415–420,

2014.

[33] James R Wright, Chris Thornton, and Kevin Leyton-Brown. Mechanical

ta: Partially automated high-stakes peer grading. In Proceedings of the 46th

ACM Technical Symposium on Computer Science Education, pages 96–101,

2015.

[34] Chinmay E Kulkarni, Michael S Bernstein, and Scott R Klemmer. Peerstu-

dio: rapid peer feedback emphasizes revision and improves performance. In

Proceedings of the second ACM conference on Learning@ Scale, pages 75–84,

2015.

[35] Kwangsu Cho and Christian D Schunn. Scaffolded writing and rewriting in

the discipline: A web-based reciprocal peer review system. Computers &

Education, 48(3):409–426, 2007.

[36] Stephen P Balfour. Assessing writing in moocs: Automated essay scoring

and calibrated peer review. Research & Practice in Assessment, 8:40–48,

2013.

[37] Dave Clarke, Tony Clear, Kathi Fisler, Matthias Hauswirth, Shriram Krish-

namurthi, Joe Gibbs Politz, Ville Tirronen, and Tobias Wrigstad. In-flow

peer review. In Proceedings of the Working Group Reports of the 2014 on

Innovation & Technology in Computer Science Education Conference, pages

59–79, 2014.

64



References

[38] John Hamer, Kenneth TKMa, and Hugh HF Kwong. A method of automatic

grade calibration in peer assessment. In Proceedings of the 7th Australasian

conference on Computing education-Volume 42, pages 67–72, 2005.

[39] Fei Mi and Dit-Yan Yeung. Probabilistic graphical models for boosting car-

dinal and ordinal peer grading in moocs. In Twenty-Ninth AAAI Conference

on Artificial Intelligence, 2015.

[40] Nihar B Shah, Joseph K Bradley, Abhay Parekh, Martin Wainwright, and

Kannan Ramchandran. A case for ordinal peer-evaluation in moocs. In NIPS

Workshop on Data Driven Education, pages 1–8, 2013.

[41] Karthik Raman and Thorsten Joachims. Bayesian ordinal peer grading. In

Proceedings of the second ACM conference on Learning@ Scale, pages 149–

156, 2015.

[42] Tianqi Wang, Qi Li, and Jing Gao. Improving peer assessment accuracy by

incorporating relative peer grades. In Educational Data Mining, 2019.
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