
Nonintegrability of Dynamical Systems near Equilibria
and Heteroclinic Orbits

Shogo Yamanaka





Contents

1 Introduction 5

2 Local integrability of Poincaré-Dulac normal forms 11
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Chapter 1

Introduction

Integrability of dynamical systems is one of classical and important topics in the theory
of differential equations. The most commonly used notion of integrability is the Liouville
integrability for finite-dimensional Hamiltonian systems. An m-degree-of-freedom Hamil-
tonian system is called Liouville integrable if it has m Poisson commutative first integrals,
where m is a positive integer. Until the nineteen century, some integrable systems, such
as the harmonic oscillator, the two-body problem, and the integrable heavy tops stud-
ied by Euler, Lagrange and Kovalevskaya, were discovered. The general and restricted
three-body problems, whose nonintegrability was proved by Bruns [14] and Poincaré [73],
respectively, in the late nineteen century, are early examples of nonintegrable Hamilto-
nian systems. Although these results discouraged mathematicians from discovering them,
integrable systems have been an central topic in the theory of differential equations again
since the discovery of solitons in the KdV equations [61].

The techniques developed by Bruns and Poincaré are actually applicable to few dy-
namical systems. In the late twenty century, Ziglin [94] developed a technique to prove
nonintegrability of Hamiltonian systems. The method now called the Ziglin analysis
says that if non-resonant monodromy matrices of the variational equation along a par-
ticular solution are not commutative, then the Hamiltonian system is meromorphically
nonintegrable. Using this method, he succeeded in determining when the heavy top is
integrable. Ito [37] also proved nonintegrability of the Hénon-Heiles system using it ex-
cept in their known integrable cases and one particular case which seems nonintegrable.
Subsequently, Morales-Ruiz and Ramis [65] developed a new technique to prove nonin-
tegrability of Hamiltonian systems using the differential Galois group of the variational
equations. Their approach, which is now called the Morales-Ramis theory as the most
strong theory for proving nonintegrability, has almost completely uncovered the noninte-
grability of homogeneous Hamiltonian systems [56]. Moreover, Morales-Ruiz, Ramis and
Simo [66] improved the theory by using the differential Galois groups of higher variational
equations, which was applied to prove nonintegrability of the Hénon-Heiles system in the
remaining case.

Mishchenko and Fomenko [60] generalized the Liouville integrability when first inte-
grals may not be Poisson commutative and its number is not less than the number of
degrees of freedom. Subsequently, Bogoyavlenskij [9] introduced a more general notion
of integrability which admits any number of first integrals but needs a sufficient number
of commutative vector fields instead. He also gave a two-degree-of-freedom Hamiltonian
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system which has only one first integral and three commuting vector fields: it is not Li-
ouville integrable but integrable in his sense. It is especially important that his notion
of integrability is applicable to non-Hamiltonian systems. Ayoul and Zung [6] extended
the Morales-Ramis theory to the nonintegrability of non-Hamiltonian systems in the Bo-
goyavlenskij sense. Much work on nonintegrability of non-Hamiltonian systems has been
done since their work [6].

In spite of the powerfulness of the Morales-Ramis theory, there still exist many dynam-
ical systems whose nonintegrability is not determined and the implication of nonintegra-
bility on the dynamics of dynamical systems is largely unknown. The double pendulum
is a typical example which is believed to exhibit chaos but whose nonintegrability has
not been proved. The reason for the former problem is that, to prove nonintegrability
by the Morales-Ramis theory, we need a particular solution around which the variational
equation is so simple that its differential Galois group is computable. Even finding a
particular solution is a high hurdle when applying the Morales-Ramis theory. If such a
solution is not found, then the theory is not applicable.

For the latter problem, what motions dynamical systems exhibit is unclear even if
they are nonintegrable. Poincaré [73] concluded that the restricted three-body problem
is nonintegrable due to the complexity of intersections between the stable and unstable
manifolds. In fact, integrable systems are transformed to simple systems by the action-
angle coordinates as stated in the Liouville-Arnold theorem [59]. This implies that chaotic
dynamical systems are not integrable. On the other hand, the Morales-Ramis theory itself
does not give information about dynamics of dynamical systems. Even after proving
nonintegrability of dynamical systems, mathematicians often have to rely on numerical
simulations to know their chaotic dynamics. So it is a remaining important problem to
uncover a relationship between nonintegrability and chaotic dynamics.

An approach to solve the former problem is to use normal forms dating back to
Poincaré to prove nonintegrability near equilibrium points. The normal forms for general
differential equations and Hamiltonian systems are called Poincaré-Dulac normal forms
and Birkhoff normal forms, respectively. There are many applications of these normal
forms. For example, Arnold [3] used Birkhoff normal forms to prove the stability of the
Lagrange points in the restricted three-body problems. Poincaré-Dulac normal forms
were used to prove the existence of the Lorenz attractor based on numerical verification
methods by Tucker [80] and to analyze Painlevé equations by Chiba [16, 17].

One of the most important problems related to the normal form is on the existence
of analytic transformations. It is known that all differential equations with equilibrium
points can be transformed to the normal forms by formal transformations called normal-
izations, which may be divergent and may not be unique. Poincaré [73] gave conditions for
convergent normalizations of Poincaré-Dulac forms. We should also mention Bruno’s work
[10, 11], which gives the most general condition guaranteeing convergent normalizations.
Some relationships between integrability and existence of convergent normalizations have
been extensively studied [13, 38, 39, 78, 83, 97]. Vey [83] showed that n volume-preserving
commuting vector fields on the n + 1-dimensional plane are simultaneously analytically
transformed to Poincaré-Dulac normal forms. Bruno and Walcher [13] proved that two-
dimensional systems have covergent normalizations if and only if they have commuting
vector fields. Ito [38] showed that non-resonant Hamiltonian systems have convergent nor-
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malizations. He also extended his result when resonance degrees are less than two [39].
Subsequently, Zung [97] proved that analytically integrable systems in the Bogoyavlenskij
sense have analytic normalizations to Poincaré-Dulac normal forms. Moreover, he proved
that Liouville integrable Hamiltonian systems also have convergent symplectic normaliza-
tions to Birkhoff normal forms. The importance of Zung’s results is that no assumption is
needed on the dimension and resonance degrees of dynamical systems. Stolovitch [78] also
studied convergent normalizations when a sufficient number of commuting vector fields
exist.

Zung’s result [97] for Poincaré-Dulac normal forms is useful to study analytic inte-
grability of dynamical systems near equilibria. If there exist convergent normalizations,
then integrability of a given system is reduced to its normal form. If not, the system is
analytically nonintegrable. However, it seems difficult to determine integrability of nor-
mal forms and divergence of all normalizations. Integrability of a special class of Birkhoff
normal forms called 1 : 2 : ω resonance normal forms has been studied by Duistermaat
[28], van der Aa and Verhulst [1]. Christov [18] proved nonintegrability of this class by
using the Morales-Ramis theory. Ito [39, 40] dealt with convergent normalization and gave
some important information on superintegrable Birkhoff normal forms. To the author’s
knowledge, integrability of Poincaré-Dulac normal forms in the Bogoyavlenskij sense has
not been studied. Moreover, no dynamical system which does not have a convergent nor-
malization to Poincaré-Dulac normal forms has not been reported in the literature except
for the classical example dating back to Euler [30]. Some Hamiltonian systems whose
normalizations to Birkhoff normal forms are all divergent were also discovered by Gong
[32].

We now discuss relationships between dynamics and integrability. The most typical
mechanism of chaos comes from infinitely many intersections between stable and unstable
manifolds of some invariant sets. Though a one-degree-of-Hamiltonian system is always
integrable, if it has a homoclinic orbit to an equilibrium and is perturbed periodically, then
near the equilibrium there exists a periodic orbits whose stable and unstable manifolds
may intersect transversely. If they intersect transversely once, then infinitely many inter-
sections between them arise and a horseshoe map is embedded so that chaotic dynamics
occurs [68]. Such transverse intersections can be detected analytically by the Melnikov
method [58]. This method has been extended to several situations. Especially, Yagasaki
[89] extended the method to Hamiltonian systems with saddle-centers which may not be
nearly integrable. Here saddle-centers are equilibria at which the Jacobian matrices of
the Hamiltonian vector fields have some pairs of eigenvalues with positive and negative
real parts and some pairs of purely imaginary eigenvalues. Moreover, the method was
extended to heteroclinic orbits [75].

There are some studies about relationships between nonintegrability and chaotic dy-
namics. Lerman [50] considered two-degree-of-freedom Hamiltonian systems with saddle-
centers and homoclinic orbits. He gave a sufficient condition for the existence of horseshoe
dynamics although it seems difficult to check the condition directly. Grotta Ragazzo [34]
linked Lerman’s result to a scattering problem of a Shrödinger equation. He proved that
the sufficient condition equals a condition that the reflection coefficient is not zero and
rephrased it by using monodromy matrices of the variational equations. These results are
related to only sufficient conditions of chaos. Morales-Ruiz and Peris [64] showed that the

7



sufficient condition of nonintegrability by the Morales-Ramis theory is equivalent to the
sufficient condition of chaos given by Grotta-Ragazzo. This result is remarkable because
it reveals that Hamiltonian systems proved to be nonintegrable by the the Morales-Ramis
theory also exhibit chaotic motions, though a small error was contained as pointed out
in Chapter 3. Subsequently, Yagasaki [91] showed that the condition for nonintegrability
leads to existence of transverse homoclinic orbits for more general Hamiltonian systems
by using the extended Melnikov method [89].

In this thesis, we first study integrability and nonintegrability of Poincaré-Dulac nor-
mal forms around equilibria. We next consider general systems with heteroclinic orbits
and use the Morales-Ramis theory [6] to obtain sufficient conditions for their noninte-
grability by the monodromy groups of variational equations along the heteroclinic orbits.
Finally, we consider two-degree-of-freedom Hamiltonian systems with heteroclinic orbits
and use the extended Melnikov method [75] along with the result of Chapter 3 to obtain
some relationships between nonintegrability and chaos.

In Chapter 2, we consider dynamical systems in Poincaré-Dulac normal form having
an equilibrium at the origin. We give a sufficient condition for their integrability, and
prove that it is also necessary for existence of the maximal number of first integrals under
some condition. Moreover, we show that they are integrable if their resonance degrees are
zero or one and that they may be nonintegrable if their resonance degrees are greater than
one, as in Birkhoff normal forms for Hamiltonian systems. We demonstrate the theoretical
results for a normal form appearing in the codimension-two fold-Hopf bifurcation.

In Chapter 3, we consider general n-dimensional systems of differential equations hav-
ing (n − 2)-dimensional, locally invariant manifolds on which there exist equilibria con-
nected by heteroclinic orbits for n ≥ 3. The system may be non-Hamiltonian and have
no saddle-centers, and the equilibria are allowed to be the same and connected by a ho-
moclinic orbit. Under additional assumptions, we prove that the monodromy group for
the normal variational equation, which is represented by components of the variational
equation normal to the locally invariant manifold and defined on a Riemann surface, is
diagonalizable or infinitely cyclic if the system is real-meromorphically integrable in the
meaning of Bogoyavlenskij. We apply the theory to a three-dimensional volume-preserving
system describing the streamline of a steady incompressible flow with two parameters, and
show that it is real-meromorphically nonintegrable for almost all values of the two pa-
rameters.

In Chapter 4, we consider a class of two-degree-of-freedom Hamiltonian systems with
saddle-centers connected by heteroclinic orbits and discuss some relationships between
the existence of transverse heteroclinic orbits and nonintegrability. By the Lyapunov
center theorem there is a family of periodic orbits near each of the saddle-centers, and the
Hessian matrices of the Hamiltonian at the two saddle-centers are assumed to have the
same number of positive eigenvalues. We show that if the associated Jacobian matrices
have the same pair of purely imaginary eigenvalues, then the stable and unstable manifolds
of the periodic orbits intersect transversely on the same Hamiltonian energy surface when
the sufficient conditions obtained in Chapter 3 for real-meromorphic nonintegrability of
the Hamiltonian systems hold; if not, then these manifolds intersect transversely on the
same energy surface, have quadratic tangencies or do not intersect whether the sufficient
conditions hold or not. Our theory is illustrated for a system with quartic single-well
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potential and some numerical results are given to support the theoretical results.
Finally we provide concluding remarks and give some comments on future work in

Chapter 5.
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Chapter 2

Local integrability of Poincaré-Dulac
normal forms

2.1 Introduction

Consider n-dimensional dynamical systems of the form

ẋ = f(x), x ∈ Cn, (2.1.1)

where n ≥ 1, f : Cn → Cn is analytic and f(0) = 0, i.e., the origin is an equilibrium.
Throughout this chapter, we assume that f ̸≡ 0. The vector field f is assumed to have
the power series expansion

f(x) =
∞∑
i=1

f i(x),

where f i represents a homogeneous vector field of degree i for i = 1, 2, . . . . Let A = Df(0)
and write its SN decomposition as A = S+N , where S andN are semisimple and nilpotent
matrices, respectively. So we have the SN decomposition f 1(x) = f s(x) + fn(x), where
f s(x) = Sx and fn(x) = Nx. Throughout this chapter, we assume that A is in Jordan
normal form without loss of generality, so that

f s(x) =
n∑
i=1

λixiei, (2.1.2)

where λ1, . . . , λn ∈ C are the eigenvalues of A and ei ∈ Cn is the unit vector of which
the ith component is one and the others are zero.

Definition 2.1.1. Equation (2.1.1) and the vector field f are said to be in Poincaré-
Dulac normal form if the Lie bracket of f s and f , [f s, f ](x) = Df(x)f s(x)−Df s(x)f(x),
vanishes for any x ∈ Cn. Henceforth, we simply say “normal form” frequently instead of
“Poincaré-Dulac normal form”.

When equation (2.1.1) is an m-degree-of-freedom Hamiltonian system with Hamilto-
nian H : C2m → C, i.e.,

fj(x) =
∂H

∂xj+m
(x), fj+m(x) = −∂H

∂xj
(x), j = 1, . . . ,m, (2.1.3)
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where fj(x) is the jth-component of f(x) and n = 2m, we say that it is in Birkhoff normal
form if

{Hs, H} :=
m∑
i=1

(
∂Hs

∂xi

∂H

∂xi+m
− ∂Hs

∂xi+m

∂H

∂xi

)
= 0,

where Hs is the semisimple part of H, i.e., the vector field for Hs is the semisimple part
of (2.1.3).

We first review previous results for analytic integrability of Poincaré-Dulac and Birkhoff
normal forms. It is a well-known fact (e.g. [12]) that there exists a formal transformation
x = ϕ(y) = y +O(|y|2) under which equation (2.1.1) becomes

ẏ = g(y), g(y) = Dϕ(y)−1f(ϕ(y)),

in normal form. The transformation ϕ is not generally analytic since small denominators
may appear in its power series expansion. So it is an important problem to determine
when the formal transformation is analytic at least in a neighborhood of the origin,
i.e., equation (2.1.1) has an analytic normalization. Poincaré and Sigel gave well known
sufficient conditions for (2.1.1) to have an analytic normalization: Poincaré’s condition is
that the convex hull of the points λ1, . . . , λn does not contain 0 on C, and Sigel’s is that
there exist C0, µ > 0 such that∣∣∣∣∣

n∑
i=1

λipi − λj

∣∣∣∣∣ ≥ C0

|p|µ
, j = 1, . . . , n

for p ∈ Zn≥0 = {p ∈ Zn | pi ≥ 0, i = 1, . . . , n} and |p| ≥ 2, where |p| =
∑n

i=1 pi for
p = (p1, . . . , pn) ∈ Zn. See, e.g., [20, 77]. The former holds only when there are at most
finite number of p ∈ Zn≥0 with |p| ≥ 2 such that

λj =
n∑
i=1

piλi for some j = 1, . . . n, (2.1.4)

while the latter does only when λj ̸=
∑n

i=1 piλi for any j and p ∈ Zn≥0 with |p| ≥ 2.

Definition 2.1.2. We say that equation (2.1.1) is in case 1 if the interior of the convex
hull of the points λ1, . . . , λn does not contain 0 on C, and it is in case 2 otherwise.

When there exist an infinite number of p ∈ Zn≥0 with |p| ≥ 2 such that condition
(2.1.4) holds, Bruno [10, 11] obtained the following result (see also [12, 86]).

Theorem 2.1.1 (Bruno [10, 11]). Equation (2.1.1) has an analytic normalization if it is
in case 2 and the following two conditions hold:

(A2) Equation (2.1.1) is formally transformed to the normal form

ẏi = α(y)λiyi + β(y)λ̄iyi, i = 1, . . . , n, (2.1.5)

where α(y), β(y) are scalar valued power series of y ∈ Cn with α(0) = 1, β(0) = 0;
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(ω)
∑∞

k=1 2
−k logω−1

k <∞, where

ωk := min

{∣∣∣∣∣
n∑
i=1

piλi − λj

∣∣∣∣∣ : 1 ≤ j ≤ n, p ∈ Zn≥0,

1 <
n∑
i=1

pi < 2k,
n∑
i=1

piλi ̸= λj

}
.

Bruno [10] also gave sufficient conditions for (2.1.1) in case 1 to have an analytic
normalization.

On the other hand, for general dynamical systems which may not be Hamiltonian,
Bogoyavlenskij [9] introduced the following definition of integrability.

Definition 2.1.3 (Bogoyavlenskij [9]). Let m be an integer such that 1 ≤ m ≤ n. Equa-
tion (2.1.1) is called (m, n−m)-integrable if there exist m vector fields f1(= f), f2, . . . , fm
and n−m functions F1, . . . , Fn−m such that the following conditions hold:

(i) f1, . . . , fm are linearly independent and DF1, . . . , DFn−m are linearly independent
almost everywhere;

(ii) The vector fields f1, . . . , fm commute pairwise, i.e., [fi, fj] = 0 for i, j = 1, . . . ,m;

(iii) The functions F1, . . . , Fn−m are first integrals of f1, . . . , fm, i.e., LfiFj = 0 for
i = 1, . . . ,m and j = 1, . . . , n−m, where LfF (x) := DF (x)f(x) represents the Lie
derivative of F with respect to f .

We simply say that equation (2.1.1) is integrable if it is (m,n − m)-integrable for
some integer m. In particular, we say that equation (2.1.1) is analytically integrable and
meromorphically integrable if the vector fields f1, . . . , fm and functions F1 . . . , Fn−m are
analytic and meromorphic, respectively.

If a Hamiltonian system is Liouville integrable, then it is also integrable in the sense
of Bogoyavlenskij. Zung [97] obtained the following result.

Theorem 2.1.2 (Zung [97]). If equation (2.1.1) is analytically integrable, then it has an
analytic normalization.

This theorem means that an integrable system is transformed to an integrable nor-
mal form in the analytic framework. Zung [98] also proved that Liouville integrable
Hamiltonian systems are transformed to Birkhoff normal forms in the same framework.
However, normal forms may not be integrable, like Birkhoff normal forms of Hamiltonian
systems [98]: There exists an analytically Liouville nonintegrable Birkhoff normal form
with γH ≥ 2, while Birkhoff normal forms with γH ≤ 1 are always analytically Liouville
integrable [18, 28], where γH represents the resonance degree and is defined as

γH = dimQ spanQ

{
p ∈ Zm

∣∣∣∣∣
m∑
i=1

λipi = 0

}
for the Hamiltonian vector field (2.1.3) when we take λm+j = −λj, j = 1, . . . ,m, for the
eigenvalues of Df(0). We recommend [78, 79, 83, 84] and [38, 39, 40, 43] for related results
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on the analytic normalization of commuting vector fields and the analytic normalization
of Birkhoff normal form, respectively.

We now define the resonance degree for Poincaré-Dulac normal form. Let xp = xp11 ·
xp22 · · · xpnn for p = (p1, . . . , pn) ∈ Zn and x = (x1, . . . , xn) ∈ Cn. We easily see that the
normal form f can be expressed as

f(x) = Ax+
n∑
i=1

∑
p∈Ri

ci(p)x
pxiei, (2.1.6)

where ci(p) ∈ C is a constant and

Ri =

{
p ∈ Zni

∣∣∣∣∣
n∑
j=1

λjpj = 0

}
, Zni = {p ∈ Zn | pi ≥ −1, pj ≥ 0, j ̸= i, |p| ≥ 1}

for i = 1, . . . , n (see, e.g., [5, 12] and Lemma 2.3.2 below).

Definition 2.1.4. Let R and RF be subsets of Zn given by

R :=
n∪
i=1

Ri and RF :=

{
p ∈ Zn≥0

∣∣∣∣∣
n∑
i=1

λipi = 0, |p| ≥ 1

}
.

We call R and RF the resonance and F-resonance sets of (2.1.6), respectively, and refer
to

γ = dimQspanQR and γF = dimQspanQRF

as the resonance and F-resonance degrees of (2.1.6), respectively.

Note that RF ⊂ R and γF ≤ γ ≤ n. Moreover, we have γ ≤ n − 1 if A has at least
one non-zero eigenvalue. As we will see later, the number of first integrals of the normal
form is not greater than γF (see Corollary 2.3.4).

In this chapter, we study analytic integrability of Poincaré-Dulcac normal forms. We
give a sufficient condition for the normal form (2.1.6) to be integrable, and prove that the
condition is necessary for its (n − γF, γF)-integrability under some condition. Moreover,
we show that the normal form (2.1.6) with γ < 2 is analytically integrable and that there
exists an n-dimensional, analytically non-integrable normal form with n = γ+1 for γ ≥ 2,
as in Birkhoff normal form. We demonstrate the theoretical results for

d

dt

x1x2
x3

 =

 0
iωx2
−iωx3

+
∑
j, k≥0
j+2k≥1

xj1(x2x3)
k

ajkx1bjkx2
cjkx3

+
∑
l≥1

(x2x3)
l

dl0
0

 , (2.1.7)

where ajk, bjk, cjk, dl ∈ C are constants. Equation (2.1.7) is a normal form appearing in
the codimension-two fold-Hopf bifurcations [49] and satisfies γ = γF = 2.

The paper is organized as follows. In Section 2.2, we precisely state our main results.
We give preliminary results in Section 2.3 and prove the main theorems in Section 2.4.
In Section 2.5, we apply our theory to (2.1.7).
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2.2 Main results

We rewrite the normal form (2.1.6) as

f(x) =
n∑
i=1

λi + ∑
p∈RF

ci(p)x
p +

∑
q∈R̂i

ci(q)x
q

xiei +
n∑
i=2

ρixi−1ei, (2.2.1)

where ρi ∈ {0, 1}, i = 2, . . . , n, and R̂i = {q ∈ Ri | qi = −1}, i = 1, . . . , n. Note that
Ri = RF ∪ R̂i, i = 1, . . . , n, and that the linear part of (2.2.1) is in Jordan normal form
like (2.1.2).

Proposition 2.2.1. A monomial xr, r ∈ RF, is a first integral of the normal form (2.2.1)
if and only if the following condition holds:

(C)r



n∑
j=1

rjcj(p) = 0 for p ∈ RF;

rici(q) = 0 for q ∈ R̂i, i = 1, . . . , n;

riρi = 0 for i = 2, . . . , n.

Proof. For r ∈ RF we have

Lfx
r =

n∑
i=1

∑
p∈RF

rici(p)x
p+r +

∑
q∈R̂i

rici(q)x
q+r + riρix

r−ei+ei−1

 .

Noting that the coefficient of each monomial in the above equation is zero if and only if
condition (C)r holds, we obtain the desired result.

Suppose that ρi = 0, i = 2, . . . , n, in the normal form (2.2.1), i.e., A is diagonal in
(2.1.6). Let R′ be a subset of R such that ci(p) = 0, i = 1, . . . , n for p ∈ R\R′. Then
equation (2.2.1) becomes

f(x) =
n∑
i=1

λi + ∑
p∈RF∩R′

ci(p)x
p +

∑
q∈R̂i∩R′

ci(q)x
q

xiei. (2.2.2)

We state our first main result.

Theorem 2.2.2. Let R′ be a subset of R such that ci(p) = 0 for p ∈ R\R′, i = 1, . . . , n.
Assume that dimQ spanQR

′ = dimQ spanQ(RF ∩ R′) and let γ′ = dimQ spanQR
′. If condi-

tion (C)r holds for any r ∈ RF∩R′, then the normal form (2.2.1) is analytically (n−γ′, γ′)-
integrable.

Remark 2.2.1. Suppose that there exist R′
1 ⊂ R′

2 ⊂ R such that R′ = R′
1, R

′
2 satisfies

the hypotheses of Theorem 2.2.2. Let γj = dimQ spanQR
′
j, j = 1, 2. Then the normal

form (2.2.1) is analytically (n− γ′, γ′)-integrable for γ1 ≤ γ′ ≤ γ2.
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Suppose that equation (2.1.1) is in case 2 and satisfies conditions (A2) and (ω). Then
by Theorem 2.1.1 it is analytically transformed to the normal form (2.1.5), which is
rewritten as

ẏ =
n∑
i=1

(
λi +

∑
p∈RF

(λidp + λ̄id
′
p)y

p

)
ei, (2.2.3)

where α(y) = 1 +
∑

p∈Zn
≥0\{0}

dpy
p, β(y) =

∑
p∈Zn

≥0\{0}
d′py

p and dp, d
′
p ∈ C are con-

stants. For r ∈ RF equation (2.2.3) satisfies condition (C)r since
∑n

i=1 ri(λidp + λ̄id
′
p) =

dp
∑n

i=1 riλi + d′p
∑n

i=1 riλi = 0. We take R′ = RF and apply Theorem 2.2.2 to obtain the
following.

Corollary 2.2.3. If equation (2.1.1) is in case 2 and satisfies conditions (A2) and (ω),
then it is analytically (n− γF, γF)-integrable in a neighborhood of the origin.

This corollary means the condition of Theorem 2.1.2 is weaker than that of Theorem
2.1.1.

Let Ps be the set of polynomial first integrals of f s. Since Ps is a finitely generated
C-algebra, we can write Ps = C[ϕ1, . . . , ϕγP ] for some γP ≥ γF [78, 85]. We take the
smallest one as γP. As stated in Corollary 2.3.4 below, the normal form f generally has
γF functionally independent, analytic first integrals at most.

Theorem 2.2.4. Suppose that the normal form (2.2.1) satisfies γP = γF. If it has γF first
integrals, then condition (C)r holds for any r ∈ RF. In particular, if it is (n − γF, γF)-
integrable, then condition (C)r holds for any r ∈ RF.

Thus, the condition of Theorem 2.2.2 with R′ = R is necessary for the normal form
(2.2.2) to be analytically (n− γF, γF)-integrable if γP = γF = γ. Note that the condition
γF = γ is equivalent to dimQ spanQR

′ = dimQ spanQ(RF ∩R′) for R′ = R.
Finally, we give the following result on a relationship between resonance degrees and

integrability of Poincaré-Dulac normal forms as in Birkhoff normal form.

Theorem 2.2.5. If the resonance degree γ is less than two, then the normal form (2.2.1)
is integrable. For γ ≥ 2, there exists an n-dimensional, analytically non-integrable normal
form with n = γ + 1.

Proofs of Theorem 2.2.2, 2.2.4 and 2.2.5 are given in Section 2.4.

2.3 Preliminary results

In this section, we give some preliminary results on analytic commutative vector fields and
analytic first integrals for normal forms. These results play essential roles in the proofs
of the main theorems in Section 2.4.

The following result on a relationship between the normal form f and its semisimple
linear part f s for commutative vector fields and first integrals has often been used in
previous related studies (e.g., [85, 86]).

Proposition 2.3.1 (Proposition 1.8 of [85] and Proposition 2 of [86]). The following hold
when f is in normal form:
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(i) If an analytic vector field g is commutative with f , i.e., [f, g] = 0, then it is com-
mutative with the semisimple linear part f s of f .

(ii) If an analytic function H is a first integral of f , then it is a first integral of f s.

Suppose that f s has the expression (2.1.2).

Lemma 2.3.2. The vector field xpxiei, p + ei ∈ Zn≥0, is commutative with f s(x) if and
only if p ∈ Ri. Moreover, the monomial xq, q ∈ Zn≥0, is a first integral of f s if and only
if q ∈ RF.

Proof. It is easy to check that

[f s(x), xpxiei] =

(
n∑
j=1

pjλj

)
xpxiei (2.3.1)

and

Lfs(x)(x
p) =

(
n∑
i=1

piλi

)
xp

for p ∈ Zn
≥0. Hence, we obtain the result.

Let H(x) =
∑

p∈Zn
≥0
hpx

p, hp ∈ C, be an analytic first integral of f s. Then we have

(Lf sH)(x) =
∑
p∈Zn

≥0

hp

(
n∑
i=1

piλi

)
xp = 0

so that hp = 0 for p ∈ Zn≥0\RF. Thus, we obtain the following proposition.

Proposition 2.3.3. Any analytic first integral H(x) of f s is written as

H(x) =
∑
p∈RF

hpx
p,

where hp ∈ C is a constant.

From the definition of γF we immediately have the following corollary.

Corollary 2.3.4. The normal form f has γF functionally independent, analytic first
integrals at most.

We write A in Jordan normal form as

A =


Jn1(λ̄1) 0 . . . 0

0 Jn2(λ̄2) . . . 0
...

...
. . .

...
0 0 . . . Jnr(λ̄r)

 ,
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where λ̄1, . . . , λ̄r are eigenvalues of A and Ji(λ), λ ∈ C, represents the i× i Jordan block

Ji(λ) =



λ 0 0 . . . 0 0
1 λ 0 . . . 0 0
0 1 λ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ 0
0 0 0 . . . 1 λ


with r ≤ n and n1 + · · ·+ nr = n. Define the i× i matrix

µi(c̄) =



c1 0 0 . . . 0 0
c2 c1 0 . . . 0 0
c3 c2 c1 . . . 0 0
...

...
...

. . .
...

...
ci−1 ci−2 ci−3 . . . c1 0
ci ci−1 ci−2 . . . c2 c1


for c̄ = (c1, . . . , ci) ∈ Ci and the n× n matrix

µA(c) =


µn1(c̄

(1)) 0 . . . 0
0 µn2(c̄

(2)) . . . 0
. . .

0 0 . . . µnr(c̄
(r))


for c̄(i) ∈ Cni and c = (c̄(1), c̄(2), . . . , c̄(r)) ∈ Cn. For example, we have

µA(c) =


c1 0 0 0 0
c2 c1 0 0 0
c3 c2 c1 0 0
0 0 0 c4 0
0 0 0 c5 c4


for

A =


2 0 0 0 0
1 2 0 0 0
0 1 2 0 0
0 0 0 3 0
0 0 0 1 3

 .

Note that A itself can be written as µA(a) with some a ∈ Cn. We easily see that the
matrices µA(c) and µA(c

′) are commutative and µA(αc+α
′c′) = αµA(c)+α

′µA(c
′) for any

α, α′ ∈ C and c, c′ ∈ Cn.

Proposition 2.3.5. If b(1), b(2), . . . , b(k) ∈ Cn, k ≤ n, are linearly independent, then
µA(b

(1))x, µA(b
(2))x, . . . , µA(b

(k))x are so for almost all x ∈ Cn.
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Proof. Since µA(b)x = µA(x)b for any b, x ∈ Cn, we have

(µA(b
(1))x, µA(b

(2))x, . . . , µA(b
(k))x) = µA(x)(b

(1), b(2), . . . , b(k)).

If x1x2 · · · xn ̸= 0 for x = (x1, x2, . . . , xn) ∈ Cn, then detµA(x) ̸= 0. Hence the rank of
the matrix (µA(b

(1))x, µA(b
(2))x, . . . , µA(b

(k))x) is the same as that of (b(1), b(2), . . . , b(k)).
Thus we obtain the result.

In general, we consider (2.1.1). Zung [97] introduced the concept of a torus action and
proved Theorem 2.1.2. Define

Q =

{
b ∈ Zn

∣∣∣∣∣ ∑
i=1

λibi = 0 and bi = bj for λi = λj

}

and let (b(1), . . . , b(d)) ∈ Qd be a basis of SpanQQ. Let

Zℓ(x) =
n∑
j=1

b
(ℓ)
j xjej.

We refer to an action generated by the diagonal linear vector fields iZ1(x), . . . , iZd(x) as
a torus action for f . The number d = dimSpanQQ is also called the toric degree of f．
For any ℓ there exists a vector c ∈ Zn such that Zℓ(x) = µA(c)x. Hence, the vector fields
µA(c)x, c ∈ Cn, commute with the torus action. However, µA(c)x may not be tangent to
any orbits of the torus action if the toric degree is less than n.

Consider the normal form (2.2.1). The coefficient matrix of its linear part is expressed
as

A =



λ1 0 0 . . . 0 0
ρ2 λ2 0 . . . 0 0
0 ρ3 λ3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λn−1 0
0 0 0 . . . ρn λn


, (2.3.2)

where ρi ∈ {0, 1}, i = 2, . . . , n. We have the following result on commutative linear vector
fields and first integrals for the linear part Ax.

Proposition 2.3.6. Let R′ ⊂ R, γ′ = dimQspanQR
′ and n′ = n − γ′, and assume that

A ̸= 0. Then there exist n′−1 matrices B(1), . . . , B(n′−1) such that Ax,B(1)x, . . . , B(n′−1)x
are linearly independent for almost all x ∈ Cn and commutative, and the following hold:

(i) The monomial xp is a first integral of the n′ linear vector fields Ax,B(1)x, . . . ,
B(n′−1)x if p ∈ RF and ρi = 0 when pi ̸= 0 for i = 2, . . . , n.

(ii) The n′ linear vector fields Ax,B(1)x, . . . , B(n′−1)x commute with xqxkek for some
k ∈ {1, . . . , n} if q ∈ Rk, ρk+1 = 0 and ρi = 0 when qi + δik ̸= 0 for i = 2, . . . , n,
where δik denotes the Kronecker delta.

Proof. For the proof of Proposition 2.3.6 we need the following three lemmas.
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Lemma 2.3.7. Under the hypotheses of Proposition 2.3.6, there exist n′−1 linearly inde-
pendent b(1), . . . , b(n

′−1) such that Ax, µA(b
(1))x, . . . , µA(b

(n′−1))x are linearly independent
for almost all x ∈ Cn and

p ·∆(µA(b
(i))) = 0 for p ∈ R′, i = 1, . . . , n′ − 1, (2.3.3)

where p · q =
∑n

i=1 piqi for p, q ∈ Cn and ∆(B) = (b11, b22, . . . , bnn) for an n× n matrix
B = (bij).

Proof. Let p(1), . . . , p(γ
′) be linearly independent in the vector space V = spanCR

′ ⊂ Cn

and let π(c) = (p(1) · c, . . . , p(γ′) · c) ∈ Cγ′ for c ∈ Cn. Since the rank of the linear map
π ◦ ∆ ◦ µA : Cn → Cγ′ is not greater than γ′, there exist n′ independent solutions of a
system of linear equations (π ◦∆ ◦ µA)(x) = 0. The condition (π ◦∆ ◦ µA)(x) = 0 means
that p · ∆(µA(x)) = 0 for any p ∈ R′. Obviously, a vector a ∈ Cn satisfying A = µA(a)
becomes a solution of (π ◦ ∆ ◦ µA)(x) = 0. Thus, we get linearly independent vectors
b(1), . . . , b(n

′−1) satisfying (2.3.3).

Lemma 2.3.8. Let p ∈ Zn≥0 and let B = (bij) be a lower triangular matrix such that∑n
i=1 pibii = 0. A monomial xp is a first integral of the vector field Bx if bijpi = 0 for

i > j, j = 1, . . . , n− 1.

Proof. Since B is lower triangular, we have

Bx =
n∑
i=1

(
i∑

j=1

bijxj

)
ei.

Hence, we obtain

LBx(x
p) =

n∑
i=1

i∑
j=1

pibijxjx
p−δi =

(
n∑
i=1

pibii

)
xp = 0

under the assumptions.

Lemma 2.3.9. Let q ∈ Znk for some k ∈ {1, . . . , n}, and let B = (bij) be a lower trian-
gular matrix such that

∑n
i=1 qibii = 0. The vector fields Bx and xqxkek are commutative

if
(qi + δik)bij = 0 for i > j, j = 1, . . . , n− 1, (2.3.4)

and
bik = 0 for i > k. (2.3.5)

Proof. From conditions (2.3.4) and (2.3.5) we obtain

D(xqxkek)Bx =
n∑
i=1

n∑
j=1

(qi + δik)bijx
qxkx

−1
i xjek

=
n∑
i=1

i∑
j=1

(qi + δik)bijx
qxkx

−1
i xjek =

n∑
i=1

(qi + δik)biix
qxkek
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and

D(Bx)xqxkek = xqxk

n∑
i=1

bikei = xqxk

n∑
i=k

bikei = bkkx
qxkek,

respectively. Hence, we have

[Bx, xqxkek] = D(xqek)Bx−D(Bx)xqxkek

=
n∑
i=1

(qi + δik)biix
qxkek − bkkx

qxkek

=
n∑
i=1

qibiix
qxkek = 0,

which yields the result.

Remark 2.3.1. Letting R′ = ∅ and using Lemma 2.3.7, we see that the linear vector
field Ax is (n, 0)-integrable if A ̸= 0.

We now prove Proposition 2.3.6. By Lemma 2.3.7, we get the n′ − 1 vector fields
µA(b

(1))x, . . . , µA(b
(n′−1))x. By definition, if ρi = 0, then the (i, j)-element of the matrix

µA(b), b ∈ Cn, is zero for j < i. Under the hypotheses of Proposition 2.3.6 (i) and (ii),
µA(b) satisfies the hypotheses of Lemmas 2.3.8 and 2.3.9 along with conditions (2.3.4) and
(2.3.5), respectively. We complete the proof of the proposition.

Finally, we give a necessary and sufficient condition for a normal form to have the
maximal number γF of functionally independent, analytic first integrals (cf. Corollary
2.3.4).

Proposition 2.3.10. The normal form f with γP = γF has γF functionally independent
analytic first integrals in a neighborhood of x = 0 if and only if all elements of Ps are first
integrals of f .

Proof. The sufficiency is obvious by the definition of Ps. So we only have to show the ne-
cessity. Let γ′ = γF(= γP). Let F1(x), . . . , Fγ′(x) be γ

′ functionally independent, analytic
first integrals of f and let ϕ1(x), . . . , ϕγ′(x) be γ′ generators of Ps. From Propositions
2.3.1 and 2.3.3, any first integral of f is written as a formal summation of elements of Ps.
Since Ps is generated by ϕ1, . . . , ϕγ′ , we can write

Fi(x) = Gi(ϕ1(x), . . . , ϕγ′(x)),

where Gi(y1, . . . , yγ′), i = 1, . . . , γ′, are analytic power series. Letting

F (x) = (F1(x), . . . , Fγ′(x)),
G(y) = (G1(y), . . . , Gγ′(y)), x ∈ Cn, y = (y1, . . . , yγ′) ∈ Cγ′ ,
ϕ(x) = (ϕ1(x), . . . , ϕγ′(x)),

we have F (x) = (G ◦ ϕ)(x). Differentiating the above relation with respect to x, we get

DF (x) = DG(ϕ(x))Dϕ(x). (2.3.6)
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The rank of DF (x) is γ′ for almost all x ∈ Cn because F1, . . . , Fγ′ are functionally in-
dependent. Hence, by (2.3.6), the rank of the matrix DG(ϕ(x)) is γ′ and DG(ϕ(x)) is
invertible for almost all x ∈ Cn. On the other hand, we have

DF (x)f(x) = 0

in a neighborhood of x = 0 because F1, . . . , Fγ′ are first integrals of f . From (2.3.6) we
get

DG(ϕ(x))Dϕ(x)f(x) = 0.

Multiplying the above equation by the inverse ofDG(ϕ(x)) from the left, we haveDϕ(x)f(x) =
0 for almost all x ∈ Cn. Since ϕi(x), i = 1, . . . , γ′, and f(x) are analytic, we have
Dϕ(x)f(x) = 0 near x = 0. Thus, the generators ϕ1, . . . , ϕγ′ are first integrals of f and
consequently all element of Ps are so.

Remark 2.3.2. (i) Results similar to Proposition 2.3.10 for formal first integrals were
given in [27, 52] although their proofs contained some unclear parts.

(ii) As stated just before Theorem 2.2.4, we generally have γP ≥ γF. The inequality in
this relation holds for some normal forms. Actually, consider the linear vector field
Ax with

A =

1 0 0
0 1 0
0 0 −2

 .

We easily see that RF = {p ∈ Z3
≥0 | p1 + p2 + 2p3 = 0} and γF = 2. On the other

hand, by Proposition 2.3.3, we have Ps = C[x1x2x3, x21x3, x22x3] so that γP = 3 > γF.
This example was also discussed in [21].

2.4 Proofs of the main theorems

In this section we give the proofs of Theorems 2.2.2, 2.2.4 and 2.2.5. Now it is easy to
prove Theorems 2.2.2 and 2.2.4.

Proof of Theorem 2.2.2. By Proposition 2.2.1, there exist γ′ monomials xp
(i)
, i = 1, . . . , γ′,

which are first integrals of the normal form (2.2.2), where p(i) ∈ R′, i = 1, . . . , γ ′. Let
A = diag(λ1, . . . , λn) denote the linear part of (2.2.2). By Proposition 2.3.6, there ex-
ist n − γ′ − 1 commuting vector fields B(1)x, . . . , B(n−γ′−1)x such that they commute
with Ax. Since A is semisimple, they commute with the nonlinear terms of f by Propo-
sition 2.3.6 (ii). Moreover, the monomials xp

(i)
, i = 1, . . . , γ′, are also first integrals

of B(1)x, . . . , B(n−γ′−1)x by Proposition 2.3.6 (i). Thus, the normal form (2.2.2) is
(n− γ′, γ′)-integrable.

Proof of Theorem 2.2.4. By hypotheses, it follows from Proposition 2.3.10 that all mono-
mials xp, p ∈ RF, are first integrals of f . Hence, by Proposition 2.2.1, condition (C)p
holds for any p ∈ RF. Since (n − γF, γF)-integrable normal forms have γF independent
first integrals, we complete the proof.

In the rest of this section we prove Theorem 2.2.5.
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of Theorem 2.2.5. If γ = 0, then the normal form (2.2.1) only contains the linear part so
that it is (n, 0)-integrable by Remark 2.3.1. Thus, the conclusion holds for γ = 0.

We next prove the case of γ = 1. Note that 0 ≤ γF ≤ γ = 1. We may also
assume that the normal form (2.2.1) is not linear since non-trivial linear vector fields
are integrable as stated in Remark 2.3.1. Let A be the linear part of (2.2.1) given by
(2.3.2). By Proposition 2.3.6, there exist n − 2 commuting matrices B(1), . . . , B(n−2)

that commute with A. By Lemma 2.3.7, we can write A = µA(a), B
(1) = µA(b

(1)), . . . ,
B(n−2) = µA(b

(n−2)) with linearly independent vectors a, b(1), . . . , b(n−2) ∈ Cn. Note that
by (2.3.3)

r ·∆(µA(b)) = 0 for any r ∈ R and b ∈ spanC{a, b(1), . . . , b(n−2)}. (2.4.1)

We first consider the case of γF = 1.

Lemma 2.4.1. If γF = γ = 1, then A has distinct eigenvalues.

Proof. Assume that λi = λj for some i ̸= j. For p ∈ RF ⊂ R we have
∑n

l=1 λlpl+λi−λj =
0 and p+ ei− ej ∈ R by definition. On the other hand, since any element of p is positive,
p and ei− ej and hence p and p+ ei− ej are linearly independent. This means that γ ≥ 2
and gives a contradiction.

By Lemma 2.4.1, A is semisimple so that
∑n

i=1 ci(p)xiei = µA(c(p))x with c(p) =

(c1(p), . . . , cn(p)). Since R̂i = ∅, i = 1, . . . , n, the normal form (2.2.1) is written as

f(x) =
n∑
i=1

(
λi +

∑
p∈RF

ci(p)x
p

)
xiei = µA(a)x+

∑
p∈RF

xpµA(c(p))x.

Using Proposition 2.3.6 (ii), we see that B(1)x, . . . , B(n−2)x commute with f . If
∑n

i=1 ci(p)ri =
0 for all r, p ∈ RF, then by Propositions 2.2.1 and 2.3.6 (i) the monomial xr with r ∈ RF

is a first integral of f,B(1)x, . . . , B(n−2)x, so that the normal form (2.2.1) is (n − 1, 1)-
integrable. So we now assume that

∑n
i=1 ci(p)ri ̸= 0 for some r, p ∈ RF. Since

r ·∆(µA(c(p))) = r · c(p) ̸= 0,

we see that a, b(1), . . . , b(n−2), c(p) are linearly independent by (2.4.1) and consequently
Ax,B(1)x, . . . , B(n−2)x, f(x) are so for almost all x ∈ Cn by Proposition 2.3.5. Thus, the
normal form (2.2.1) is (n, 0)-integrable.

We next consider the case of γF = 0.

Lemma 2.4.2. Suppose that γF = 0 and γ = 1. Then R has only one element p̂ and there
exists an integer k ∈ {1, . . . , n} such that p̂ ∈ R̂k. Moreover, the following two statements
hold:

(i) If i ̸= k, then λi ̸= λk;

(ii) If p̂j + δjk ̸= 0 for some j, then λi ̸= λj for i ̸= j.
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Proof. Suppose that γF = 0 and γ = 1. Let p, q ∈ R. Then we see that p = rq for some
r ∈ Q and p ∈ R̂j, q ∈ R̂k for j, k ∈ {1, . . . , n} since RF = ∅. We see that j = k and
p = q.

Assume that λi = λk for some i ̸= k. Since p̂ ∈ R, we have
∑n

l=1 p̂lλl + λk − λi = 0,
so that p̂+ ek − ei ∈ Ri ⊂ R. This contradicts the fact that R contains only one element.
We obtain part (i).

Assume that p̂j + δjk ̸= 0 for some j ̸= k and λi = λj for i ̸= j. We have p̂j ≥ 1 and∑n
l=1 p̂lλl + λi − λj = 0, so that p̂ + ei − ej ∈ Rk ⊂ R. This yields a contradiction as in

the above. Thus, we obtain part (ii).

It follows from Lemma 2.4.2 that we have xkek = µA(ek)x and write f as

f(x) = Ax+ ck(p̂)x
p̂xkek = µA(a)x+ ck(p̂)x

p̂µA(ek)x, ck(p̂) ̸= 0

for p̂ ∈ R̂k. By Proposition 2.3.6 (ii) and Lemma 2.4.2, Ax,B(1)x, . . . , B(n−2)x commute
with the nonlinear part xp̂xkek of f . Since

p̂ ·∆(µA(ek)) = p̂ · ek = p̂k = −1 ̸= 0,

we see that a, b(1), . . . , b(n−2), ek are linearly independent by (2.4.1) and consequently
Ax,B(1)x, . . . , B(n−2)x, f(x) are so for almost all x ∈ Cn by Proposition 2.3.5. Thus,
the normal form (2.2.1) is (n, 0)-integrable and the conclusion holds for γ = 1.

Finally, we give nonintegrable normal forms for any γ ≥ 2. Let n ≥ 3 be an integer and
let λ1 = n, λ2 = n+1, . . . , λn−1 = 2n− 2 and λn =

∏n−1
i=1 λi. Consider the n-dimensional

normal form

f(x) = c0


λ1 . . . 0 0
...

. . .
...

...
0 . . . λn−1 0
0 . . . 0 λn

x+

(
n−1∑
i=1

cix
λn/λi
i x−1

n

)
xnen, (2.4.2)

where c0, c1, . . . , cn−1 ∈ C\{0} are constants. We easily see that
∑n

i=1 piλi ̸= 0 for p ∈ Znj ,
j = 1, . . . , n− 1 with |p| ≥ 2 so that R̂1 = · · · = R̂n−1 = ∅. Let

p(1) =

(
λn
λ1
, 0, . . . , 0,−1

)
, p(2) =

(
0,
λn
λ2
, 0, . . . , 0,−1

)
, . . . ,

p(n−1) =

(
0, . . . , 0,

λn
λn−1

,−1

)
∈ R̂n.

Noting that p(1), p(2), . . . , p(n−1) are linearly independent, we see that γ = n − 1. Since
λ1, . . . , λn are positive, we have RF = ∅ and γF = 0. Hence, there are no analytic first
integrals of f except constants by Corollary 2.3.4. Thus, the normal form (2.4.2) is not
(m,n−m)-integrable for 1 ≤ m < n.

Let g be an analytic vector field commuting with f . By Proposition 2.3.1 (i)

[f s, g] = 0, i.e., [f s, gm] = 0 for m = 1, 2, . . . ,
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where gm is a homogeneous part of degree m for g. Hence, the coefficient matrix Ã of g1

is diagonal and by Lemma 2.3.2 the nonlinear part of g is written as∑
q∈R̂n

c̃qx
q

xnen

for c̃q ∈ C, q ∈ R̂n.
From [f, g] = 0 we get[
n−1∑
i=1

cix
λn/λi
i x−1

n xnen, g
1

]
= 0, i.e.,

[
x
λn/λi
i x−1

n xnen, g
1
]
= 0 for i = 1, . . . , n− 1.

Using (2.3.1), we obtain
∑n

j=1 p
(i)
j ãjj = 0 for i = 1, . . . , n − 1, where ãjj denotes the

(j, j)-element of Ã for j = 1, . . . , n. So we have

Ã = c̃0


λ1 . . . 0 0
...

. . .
...

...
0 . . . λn−1 0
0 . . . 0 λn


for some c̃o ∈ C, so that

g(x) = c̃0


λ1 . . . 0 0
...

. . .
...

...
0 . . . λn−1 0
0 . . . 0 λn

x+

∑
q∈R̂n

c̃qx
qxn

 en.

This means that g(x) ∈ spanC{f s(x), en} for x ∈ Cn. Hence, the normal form (2.4.2) is
not (n, 0)-integrable. For γ ≥ 2, we take n = γ + 1 to obtain a nonintegrable normal
form. Thus we complete the proof.

Remark 2.4.1. (i) Although it is analytically nonintegrable for n ≥ 3, the normal
form (2.4.2) is rationally (2, n−2)-integrable since the semisimple part f s commutes
with f and n− 2 functionally independent, rational functions xλ21 /x

λ1
2 ,xλ31 /x

λ1
3 , . . . ,

x
λn−1

1 /xλ1n−1 are first integrals for both f and f s. Note that f and f s are linearly
independent almost everywhere.

(ii) Assume that equation (2.1.1) is (m,n−m)-integrable and let f1, . . . , fm and F1, . . . ,
Fn−m, respectively, denote the m commutative vector fields and n−m first integrals
satisfying conditions (i)-(iii) of Definition 2.1.3. Let gi be the linear part of fi
and let Gi be the lowest homogeneous part of Gi. Then we say that the vector
fields and first integrals (f1, . . . , fm, F1, . . . , Fn−m) are non-degenerate if them vector
fields g1, . . . , gm and n − m functions G1, . . . , Gn−m satisfy conditions (i)-(iii) of
Definition 2.1.3 and g1, . . . , gm are semisimple. Zung [99] called such an n-tuple a
non-degenerate integrable system and showed that it has several good properties.
However, many integrable normal forms do not have non-degenerate vector fields
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and first integrals. For example, any linear non-semisimple vector field Ax, which is
integrable as stated in Remark 2.3.1, does not satisfy the non-degenerate condition.
Another example is the two-dimensional vector field f(x) = x1e1+(2x2+cx

2
1)e2, c ∈

C \ {0}. Actually, although f is integrable by Theorem 2.2.5 since its resonance
degree is one, it is shown to have no first integral by using Corollary 2.3.4. Moreover,
if a vector filed f2 commutes with f , then it is also shown to be written as f2(x) =
c1x1e1+(2c1x2+c2x

2
1)e2 with c1, c2 ∈ C as in the proof of Theorem 2.2.5, so that the

linear parts of f and f2 are linearly dependent. Thus, f never has non-degenerate
vector fields and first integrals.

2.5 Example

We now demonstrate the main results for the concreste example given by (2.1.7). We
have R1 = {(j, k, k) ∈ Z3 | j ≥ −1, k ≥ 0, j + 2k ≥ 1} and R2 = R3 = {(j, k, k) ∈ Z3

≥0 |
j + 2k ≥ 1}, so that R = R1 and RF = R2, R3. Thus, γ = γF = 2 and the normal form
(2.1.7) may not be integrable by Theorem 2.2.5. Applying Theorems 2.2.2 and 2.2.4, we
obtain the following result.

Theorem 2.5.1. The normal form (2.1.7) is (1, 2)-integrable if and only if

ajk = dl = bjk + cjk = 0 for j + 2k ≥ 1, j, k ≥ 0 and l ≥ 0. (2.5.1)

Moreover, if condition (2.5.1) holds, then equation (2.1.7) is (2, 1)-integrable.

Proof. We first have R̂1 = {(−1, k, k) ∈ Z3 | k ≥ 1} and R̂2 = R̂3 = ∅. Since c1(j, k, k) =
ajk, c2(j, k, k) = bjk, c3(j, k, k) = cjk for j + 2k ≥ 1 and j, k ≥ 0 and c1(−1, l, l) = dl
for l ≥ 0 in the normal form (2.1.7), condition (2.5.1) holds if and only if (C)r holds for
r ∈ RF. Taking R′ = R and using Theorem 2.2.2, we see that under condition (2.5.1),
equation (2.1.7) is (1, 2)-integrable. On the other hand, it follows from Proposition 2.3.3
that Ps = C[x1, x2x3] so that γP = 2. Using Theorem 2.2.4, we see that if equation (2.1.7)
is (1, 2)-integrable, then condition (2.5.1) holds.

On the other hand, assume that condition (2.5.1) holds and take R′ = {(0, k, k) ∈ Z3 |
k ≥ 1}. We have dimQspanQR

′ = dimQspanQ(RF ∩ R′) = 1. Hence, applying Theorem
2.2.4, we show that equation (2.1.7) is (2, 1)-integrable.

Note that Theorem 2.5.1 does not necessarily mean analytic nonintegrability of (2.1.7)
when condition (2.5.1) does not hold: It may be analytically (2, 1)- or (3, 0)-integrable.
Moreover, even though it is not analytically integrable, it may be meromorphically inte-
grable. However, Yagasaki [93] used an extension of the Morales-Ramis-Simo theory [66]
due to Ayoul and Zung [6] to show that a similar system

d

dt

x1x2
x3

 =

µ0
0

+

 0
(ν + iω)x2
(ν − iω)x3

+

 ax21
bx1x2
cx1x3

+

dx2x30
0

 , (2.5.2)

where µ, ν, a, b, c, d are constants, is meromorphically nonintegrable near the x1-axis for
almost all parameter values. This result suggests that equation (2.1.7) may be meromor-
phically or rationally nonintegrable for almost all parameter unless if condition (2.5.1)
does not hold.
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Chapter 3

Nonintegrability of dynamical
systems with homo- and heteroclinic
orbits

3.1 Introduction

Nonintegrability of differential equations is one of the most important topics in dynamical
systems [31, 33, 62]. It is believed that complicated dynamical behavior such as chaos
may occur in general if differential equations are nonintegrable [33], although there are
several notions of integrability. However, it is difficult in general to determine whether
given differential equations are integrable or not.

For Hamiltonian systems, the notion of integrability has been established and called
the Liuoville integrability [51]: an n-degree-of-freedom Hamiltonian system is said to be
Liuoville integrable if it possesses n independent first integrals ‘in involution’. It is a well-
known result as the Liouville-Arnold theorem that if an n-degree-of-freedom Hamiltonian
system is integrable in this sense and a level set of n first integrals is compact, then the
flow on the level set is diffeomorphic to a linear flow on the n-dimensional torus Tn, i.e.,
it is quasiperiodic [4]. Much research has been done on nonintegrability of Hamiltonian
systems [31, 33, 62, 63], and two powerful techniques to prove their nonintegrability
have been developed: the Ziglin analysis [94] and Morales-Ramis theory [62, 65]. Both
the techniques rely on some properties of variational equations (VEs), i.e., linearized
equations, along particular solutions of the Hamiltonian systems. The former uses their
monodromy matrices and the latter uses their differential Galois groups [42, 23, 81].

For general differential equations which may be non-Hamiltonian, Bogoyavlenskij [9]
introduced a general striking definition of integrability, among several notions (see, e.g.,
[63]). Consider differential equations of the form

ẋ = f(x), x ∈ Rn, (3.1.1)

where f : Rn → Rn is analytic. His definition of integrability is stated for (3.1.1) as
follows.

Definition 3.1.1 (Bogoyavlenskij). Equation (3.1.1) is called (q, n−q)-integrable or just
integrable if there exist q (≥ 1) vector fields f1(x)(:= f(x)), f2(x), . . . , fq(x) and n − q
scalar-valued functions H1(x), . . . , Hn−q(x) such that the following three conditions hold:
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(i) f1, . . . , fq are linearly independent and DH1, . . . , DHn−q are linearly independent
almost everywhere;

(ii) f1, f2, . . . , fq commute, i.e., [fj, fk] := (Dfk)fj − (Dfj)fk = 0, for j, k = 1, . . . , q;

(iii) H1, . . . , Hn−q are first integrals of f1, f2, . . . , fq, i.e., (DHk)fj = 0 for j = 1, . . . , q
and k = 1, . . . , n− q.

If f1, f2, . . . , fq and H1, . . . , Hn−q are real-meromorphic, then equation (3.1.1) is said to
be real-meromorphically integrable.

Definition 3.1.1 is thought to be the most general at present since equation (3.1.1) can
be integrable even when it has only n − q (< n − 1) first integrals for some q > 1. In
particular, if a Hamiltonian system is Liouville integrable, then it is also integrable in the
meaning of Bogoyavlenskij. Ayoul and Zung [6] extended the Morales-Ramis theory to the
nonintegrability of non-Hamiltonian differential equations in this meaning. Their method
was successfully applied to prove the nonintegrability of the five-dimensional Karabut
system, which is non-Hamiltonian and appears in relation to a fluid of finite depth (e.g.,
[44]), in [19].

On the other hand, Morales-Ruiz and Peris [64] studied a class of two-degree-of-
freedom Hamiltonian systems with saddle-center equilibria connected by homoclinic or-
bits, and applied the Morales-Ramis theory to obtain a sufficient condition for their non-
integrability. Moreover, they used the results of [34, 50] to show that chaotic dynamics
occurs if the condition holds. Their result was extended to more general two-degree-of-
freedom Hamiltonian systems with saddle-centers connected by homoclinic orbits in [91],
based on the result of [89] as well as [64].

In this chapter we extend the result of the first part of [64, 91] to (3.1.1) with n ≥ 3 in a
general situation. Equation (3.1.1) is assumed to have equilibria connected by heteroclinic
orbits on an (n − 2)-dimensional, locally invariant manifold N , but it may be non-
Hamiltonian and the equilibria do not have to be saddle-centers. Here “local invariance”
means that the trajectory x(t) may pass through ∂N and escape N even if x(0) ∈ N .
The equilibria are also allowed to be the same and connected by a homoclinic orbit. Under
additional assumptions, we prove that the monodromy group for the normal variational
equation (NVE) of (3.1.1), which is represented by components of the VE normal to N
and defined on a Riemann surface is diagonalizable or infinitely cyclic if equation (3.1.1)
is real-meromorphically integrable. Our assumptions may seem to be more or less limited
but similar ones were assumed in the previous work on homoclinic orbits [64, 91] (see also
Remark 3.4.1). See Section 3.4 for precise statements of our assumptions and main result.
Our approach relies on a classification of algebraic subgroups of SL(2,C) [67] like [64] and
on the extension of the Morales-Ramis theory due to Ayoul and Zung [6]. Generalizations
of the second part of [64, 91] to non-Hamiltonian systems with homoclinic and heteroclinic
orbits will be pursued in subsequent work.

We apply the theory to a three-dimensional volume-preserving system

d

dt

x1x2
x3

 =

 αx3 − 8x1x2
11x21 + 3x22 + x23 + βx1x3 − 3

−αx1 + 2x2x3 − βx1x2

 , (3.1.2)
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which was introduced by Bajer and Moffatt [7] as a mathematical model which describes
the streamline of a steady incompressible flow, where α, β ∈ R are constants. The right
hand side of (3.1.2) satisfies the Stokes equation for a viscous fluid, and the unit sphere
is invariant under the flow of (3.1.2). Bajer and Moffatt [7] also carried out numerical
simulations and demonstrated that chaotic dynamics occurs for α = 0.01 with β = 0 and
for several values of α with β = 1. When α, β = 0, it has two first integrals H1 = x1x

4
3

and H2 = (x21 + x22 + x23 − 1)/x33 [7], so that it is (1, 2)-integrable. Neishtadt et al. [69]
and Vainshtein et al. [82] explained its chaotic dynamics by jumps in adiabatic invariants
when α > 0 is sufficiently small and β = 0. See also [70]. On the other hand, Nishiyama
[71, 72] showed that it has no meromorphic first integral when α > 0 and β = 1, or α = 1,
β > 0 and β /∈ {2

√
23, 8

√
5, 16

√
2}. His approach was similar to that of Maciejewski

and Przybylska [53] for the so-called ABC flow, based on the Ziglin analysis [94]. It is
still open to prove whether it is nonintegrable or exhibits chaotic dynamics for the other
parameter values. Here we show that it is real-meromorphically nonintegrable for almost
all values of the pair (α, β) (see Section 3.5).

The outline of this chapter is as follows: In Section 3.2, we state necessary infor-
mation on the differential Galois theory for linear differential equations, including their
monodromy groups. In Section 3.3, a key result for two-dimensional linear systems, which
is used to prove our main result, is given. In Section 3.4, we present our assumptions and
the main result. Finally, we illustrate our theory for the example (3.1.2) in Section 3.5. In
Appendix A, we give definitions of VEs and NVEs in a more general setting and outline
the extension of the Morales-Ramis theory due to Ayoul and Zung [6].

3.2 Differential Galois theory

Differential Galois theory deals with the problem of integrability by quadratures for dif-
ferential equations. In this section we briefly review a part of differential Galois theory
for linear differential equations, which is often referred to as the Picard-Vessiot theory,
including monodromy groups.

3.2.1 Picard-Vessiot extensions

Consider a system of linear differential equations

ẏ = Ay, A ∈ gl(n,K), (3.2.1)

where K is a differential field and gl(n,K) denotes the ring of n× n matrices with entries
in K. We recall that a differential field is a field endowed with a derivation ∂, which is
an additive endomorphism satisfying the Leibniz rule. By abuse of notation we write ẏ
instead of ∂y. The set CK of elements of K for which ∂ vanishes is a subfield of K and
called the field of constants of K. In our application of the theory in this chapter, the
differential field K is the field of meromorphic functions on a Riemann surface Γ endowed
with a meromorphic vector field, so that the field of constants becomes the field of complex
numbers C.

A differential field extension L ⊃ K is a field extension such that L is also a differential
field and the derivations on L and K coincide on K. A differential field extension L ⊃ K
satisfying the following conditions is called a Picard-Vessiot extension for (3.2.1).
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(PV1) There is a fundamental matrix Φ of (3.2.1) with entries in L.

(PV2) The field L is generated by K and entries of the fundamental matrix Φ.

(PV3) The fields of constants for L and K coincide.

The system (3.2.1) admits a Picard-Vessiot extension which is unique up to isomorphism.
An algebraic construction of the Picard-Vessiot extension was given in a general situation
by Kolchin (see, e.g., [47]).

We now fix a Picard-Vessiot extension L ⊃ K and fundamental matrix Φ with entries
in L for (3.2.1). Let σ be a K-automorphism of L, which is a field automorphism of L
that commutes with the derivation of L and leaves K pointwise fixed. Obviously, σ(Φ) is
also a fundamental matrix of (3.2.1) and consequently there is a matrix Mσ with constant
entries such that σ(Φ) = ΦMσ. This relation gives a faithful representation of the group
of K-automorphisms of L on the general linear group as

R : AutK(L) → GL(n,CL), σ 7→Mσ,

where GL(n,CL) is the group of n×n invertible matrices with entries in CL. The image of
R is a linear algebraic subgroup of GL(n,CL), which is called the differential Galois group
of (3.2.1) and denoted by Gal(L/K). This representation is not unique and depends on
the choice of the fundamental matrix Φ, but a different fundamental matrix only gives
rise to a conjugated representation. Thus, the differential Galois group is unique up to
conjugation as an algebraic subgroup of the general linear group.

Definition 3.2.1. A differential field extension L ⊃ K is called

(i) an integral extension if there exists a ∈ L such that ȧ ∈ K and L = K(a), where
K(a) is the smallest extension of K containing a;

(ii) an exponential extension if there exists a ∈ L such that ȧ/a ∈ K and L = K(a);

(iii) an algebraic extension if there exists a ∈ L such that it is algebraic over K and
L = K(a).

Definition 3.2.2. A differential field extension L ⊃ K is called a Liouvillian extension
if it can be decomposed as a tower of extensions,

L = Kn ⊃ . . . ⊃ K1 ⊃ K0 = K,

such that each extension Kj+1 ⊃ Kj is either integral, exponential or algebraic.

Let G ⊂ GL(n,CL) be an algebraic group. Then it contains a unique maximal con-
nected algebraic subgroup G0, which is called the connected component of the identity or
connected identity component. The connected identity component G0 ⊂ G is a normal al-
gebraic subgroup and the smallest subgroup of finite index, i.e., the quotient group G/G0

is finite. By the Lie-Kolchin Theorem [42, 23, 81], a connected solvable linear algebraic
group is triangularizable. Here a subgroup of GL(n,CL) is said to be triangularizable
if it is conjugated to a subgroup of the group of (lower) triangular matrices. The fol-
lowing theorem relates the solvability of the differential Galois group with a Liouvillian
Picard-Vessiot extension (see [42, 23, 81] for the proof).

Theorem 3.2.1. Let L ⊃ K be a Picard-Vessiot extension of (3.2.1). The connected
identity component of the differential Galois group Gal(L/K) is solvable if and only if the
extension L ⊃ K is Liouvillian.
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3.2.2 Monodromy group and Fuchsian equations

Let K be the field of meromorphic functions on a Riemann surface Γ. So the set of
singularitie in the entries of A is a discrete subset of Γ, which is denoted by S. We also
refer to a singularity of the entries of A as that of (3.2.1). Let t0 ∈ Γ \ S. We prolong
the fundamental matrix Φ(t) analytically along any loop γ based at t0 and containing no
singular point, and obtain another fundamental matrix γ∗Φ(t). So there exists a constant
nonsingular matrix M[γ] such that

γ ∗ Φ(t) = Φ(t)M[γ].

The matrix M[γ] depends on the homotopy class [γ] of the loop γ and is called the mon-
odromy matrix of [γ].

Let π1(Γ \ S, t0) be the fundamental group of homotopy classes of loops based at t0.
We have a representation

R̃ : π1(Γ \ S, t0) → GL(n,C), [γ] 7→M[γ].

The image of R̃ is called the monodromy group of (3.2.1). As in the differential Galois
group, the representation R̃ depends on the choice of the fundamental matrix, but the
monodromy group is defined as a group of matrices up to conjugation. In general, a
monodromy transformation defines an automorphism of the corresponding Picard-Vessiot
extension. We also just write Mγ for M[γ] below.

A singular point t = t̄ of (3.2.1) is called regular if for any sector a < arg(t − t̄) < b
with a < b there exists a fundamental matrix Φ(t) = (ϕij(t)) such that for some c > 0
and integer N , |ϕij(t)| < c|t − t̄|N as t → t̄ in the sector; otherwise it is called irregular.
Equation (3.2.1) is said to be Fuchsian if all singularities are regular. Any univalued
solution of a Fuchsian equation is meromorphic. This gives us the following result along
with the normality of the Picard-Vessiot extensions (see, e.g., Theorem 5.8 in [81] for the
proof).

Theorem 3.2.2 (Schlessinger). Assume that Equation (3.2.1) is Fuchsian. Then the
differential Galois group of (3.2.1) is the Zariski closure of the monodromy group.

3.3 Key result for two-dimensional linear systems

Now we give a key result for two-dimensional Fuchsian systems, which is used in the
proof of our main result in Section 3.4. Let K be the field of meromorphic functions on a
Riemann surface Γ, as in Section 3.2.2, and let n = 2. We assume that equation (3.2.1)
is Fuchsian and has regular singularities at t = tj ∈ Γ, j = 1, . . . , k. Let S = {t1, . . . , tk}
be the set of singular points of (3.2.1) and let γj ⊂ Γ \ S be an infinitesimal loop around
tj ∈ S for j = 1, . . . , k. Let G and M, respectively, denote the differential Galois group
and monodromy group of (3.2.1), and let G0 be the connected identity component of G.
If M ⊂ SL(2,C), then we can use the following lemma directly to discuss the relation
between G0 and M, as in [64] (see, e.g., [62] for the proof).

Lemma 3.3.1. Any algebraic group G ⊂ SL(2,C) is similar to one of the following types.

(i) G is finite and G0 = {I2};
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(ii) G = G0 =

{(
1 0
µ 1

)∣∣∣∣µ ∈ C
}
;

(iii) G =

{(
λ 0
µ λ−1

)∣∣∣∣λ is a root of 1, µ ∈ C
}

and G0 =

{(
1 0
µ 1

)∣∣∣∣µ ∈ C
}
;

(iv) G = G0 =

{(
λ 0
0 λ−1

)∣∣∣∣λ ∈ C∗
}
;

(v) G =

{(
λ 0
0 λ−1

)
,

(
0 −β−1

β 0

)∣∣∣∣λ, β ∈ C∗
}

and G0 =

{(
λ 0
0 λ−1

)∣∣∣∣λ ∈ C∗
}
;

(vi) G = G0 =

{(
λ 0
µ λ−1

)∣∣∣∣λ ∈ C∗, µ ∈ C
}
;

(vii) G = G0 = SL(2, C),

where I2 is the 2× 2 identity matrix.

However, M may not be an algebraic subgroup of SL(2,C) in general. Instead, we
prove the following result for (3.2.1). Let Mj =Mγj , j = 1, . . . , k.

Proposition 3.3.2. Suppose that Mj has λj, λ
′
j ̸= 0 as its eigenvalues for j = 1, . . . , k

such that (λj/λ
′
j)
qj ̸= 1 for any qj ∈ Z. If G0 is commutative, then so is M.

To prove this proposition, we use the following trick. Substituting

z = exp

(
−1

2

∫
trA(t)dt

)
y

into (3.2.1), we have

ż = Ã(t)z, Ã(t) = A(t)− 1

2
trA(t)I2, (3.3.1)

which is also Fuchsian. Note that tr Ã(t) = 0. Let G̃ and M̃, respectively, denote the
differential Galois and monodromy groups of (3.3.1), and let G̃0 be the connected identity
component of G̃.

Lemma 3.3.3. G̃ is an algebraic subgroup of SL(2,C).

Proof. Let Z(t) be a fundamental matrix of (3.3.1). Since detZ(t) ̸= 0 and

d

dt
detZ(t) = tr Ã(z) detZ(z) = 0,

we see that detZ(z) is a nonzero constant. On the other hand, analytic continuation of
Z(t) along a loop γ ⊂ Γ \ S yields

γ ∗ Z(t) = Z(t)M̃γ.

Taking the determinant of the above identity and noting that det(γ∗Z(t)) = detZ(t) ̸= 0,
we obtain det M̃γ = 1, so that M̃ ⊂ SL(2,C). Hence, it follows from Theorem 3.2.2 that
G̃ ⊂ SL(2,C), since equation (3.3.1) is Fuchsian.
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Thus, equation (3.3.1) is so nice that Lemma 3.3.1 can be applicable to it. So we
replace arguments of (3.2.1) with those of (3.3.1). We have the following two lemmas on
the relationship between them.

Lemma 3.3.4. G0 is triangularizable if and only if so is G̃0.

Proof. Obviously, the Picard-Vessiot extension of (3.2.1) is Liouvillian if and only if so is
that of (3.3.1). Using Theorem 3.2.1, we immediately obtain the result.

Lemma 3.3.5. We have
Mj = mjM̃j, j = 1, . . . , k, (3.3.2)

where M̃j is a monodromy matrix of (3.3.1) along γj and

mj = exp

(
1

2

∫
γj

trA(t)dt

)
̸= 0, j = 1, . . . , k.

Moreover, M is commutative if and only if so is M̃.

Proof. Choose fundamental matrices Y (t) and Z(t) of (3.2.1) and (3.3.1), respectively,
such that

Y (t) = κ(t)Z(t), (3.3.3)

where

κ(t) = exp

(
1

2

∫
trA(t)dt

)
.

We prolong Y (t), Z(t) and κ(t) analytically along γj to obtain

γj ∗ Y (t) = Y (t)Mj, γj ∗ Z(t) = Z(t)M̃j, γj ∗ κ(t) = κ(t)mj,

which yield

γj ∗ Y (t) = (γj ∗ κ(t))(γj ∗ Z(t)) = κ(t)Z(t)mjM̃j = Y (t)mjM̃j

along with (3.3.3). Hence, we have

Y (t)Mj = Y (t)mjM̃j,

which results in the first part since Y (t) is nonsingular. The second part immediately
follows from the first part since M is generated by Mj, j = 1, . . . , k.

Proof of Proposition 3.3.2. Let j be any integer such that 1 ≤ j ≤ k, and let λj = e2πiρj

and λ′j = e2πiρ
′
j . Let M̃j denote a monodromy matrix of (3.3.1) along γj. By the hypoth-

esis, we have ρj − ρ′j /∈ Q. Recall that M̃ ⊂ G̃ ⊂ SL(2,C) by Theorem 3.2.2 and Lemma

3.3.3. Hence, we have det M̃j = 1, so that by Lemma 3.3.5 m2
j = detMj = e2πj(ρj+ρ

′
j),

i.e., mj = eπj(ρj+ρ
′
j), and M̃j has e2πiρ/mj = eπi(ρj−ρ

′
j) and e2πiρ

′
/mj = e−πi(ρj−ρ

′
j) as its

eigenvalues.
Suppose that G0 is commutative. Then it is triangularizable and by Lemma 3.3.4 so

is G̃0. Thus, G̃ is not of type (vii) in Lemma 3.3.1. Since ρj − ρ′j /∈ Q, M̃j has no root of

1 as its eigenvalue for j = 1, . . . , k. Hence, G̃ is of type (iv), (v) or (vi) since its element
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Figure 3.1: Assumptions (A1) and (A2).

would have a root of 1 as its eigenvalue if it was of type (i), (ii) or (iii). If G̃ is of type
(v), then M̃ ⊂ G̃0 since M̃j, j = 1, . . . , k, have no roots of 1 as their eigenvalues, so that
the Zariski closure of M̃ does not coincide with G̃. This implies by Theorem 3.2.2 that
G̃ is not of type (v). If G̃ is of type (iv), then M̃ (⊂ G̃) is also commutative, and by the
second part of Lemma 3.3.5 so is M.

To complete the proof, we show that G̃ is not of type (vi) in Lemma 3.3.1 if G0 is com-
mutative. Suppose that G0 is commutative and G̃ is of type (vi). Then by Theorem 3.2.2
the monodromy matrices of (3.2.1) can be represented by

Ml = ml

(
λ̃l 0

µ̃l λ̃−1
l

)
, l = 1, . . . , k,

where λ̃l = λl/ml is not a root of 1 and µ̃l ∈ C for l = 1, . . . , k. One of µ̃l, l = 1, . . . , k, is
not zero at least since G̃ would not be of type (vi) by Theorem 3.2.2 if it is not true. We
assume that µ̃j ̸= 0. So the cyclic group Mj generated by Mj becomes{

ml
j

(
λ̃lj 0

µ̃jpl(λ̃j) λ̃−lj

)∣∣∣∣∣ l ∈ Z

}
and infinite, where

pl(λ) =
λl − λ−l

λ− λ−1
.

We see that Mj is infinite since pl(λ) = 0 if and only if l = 0. In particular, the nondiagonal
entries of its elements, µ̃jm

l
jpl(λ̃j), l ∈ Z, take an infinite number of values. Moreover, it

follows from Theorem 3.2.2 that

G0 ⊂
{(

λ 0
0 λ′

) ∣∣∣∣λ, λ′ ∈ C∗
}

or

{(
λ 0
µ λ

) ∣∣∣∣λ ∈ C∗, µ ∈ C
}

since it is commutative. If the former is true, then G0 is a subgroup of finite index
in G ⊃ Mj (see, e.g., Proposition 3.2.1 of [23]), which contradicts to the fact that the
nondiagonal entries of elements of Mj take infinitely many values. If the latter is true, then
we also have a contradiction since the ratios between two diagonal entries for elements of
Mj, λ̃

2l
j , l ∈ Z, also take infinitely many values and G0 is a subgroup of finite index in

G ⊃ Mj. Hence, G̃ is not of type (vi). Thus, we complete the proof.

3.4 Main result

In this section we give our main result. We consider (3.1.1) for n ≥ 3 and make the
following assumptions (see Fig. 3.1):
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Figure 3.2: Riemann surface Γ = x̂(U) ∪ C̃+ ∪ C̃−.

(A1) There exists an (n− 2) dimensional analytic locally invariant manifold with bound-
ary, N , such that its interior N \ ∂N contains a pair of equilibria x± and a
heteroclinic orbit x̂(t) with limt→±∞ x̂(t) = x±.

(A2) There exist one-dimensional analytic locally invariant manifolds with boundaries,
C±, such that x± ∈ C± \ ∂C± and x̂(t) ∈ C± for |t| ≥ T with T > 0 sufficiently
large.

When n = 3, assumption (A2) immediately follows from (A1) with C± = N . We also
allow that x+ = x− and x̂(t) is a homoclinic orbit.

Let λ±, µ± and ν± be eigenvalues of Df(x±) such that the eigenvectors associated with
λ± belong to the one-dimensional tangent spaces Tx±C± and the eigenvectors associated
with µ± and ν± belong to the two-dimensional complementary spaces of Tx±N . From
(A1) and (A2) we see that λ± ∈ R. We also assume some of the following:

(A3) λ± ̸= 0 and
µ± − ν±
λ±

/∈ Q;

(A4)
µ± + ν±
λ±

∈ Z;

(A5)
µ+

λ+
− µ−

λ−
∈ Z.

Consider the complexification of (3.1.1) which is defined in a neighborhood of Rn.
Suppose that (A1)-(A3) hold. Let C̃± and ˜N be the complexifications of C± and N ,
respectively, such that C̃± contain no other equilibria than x±. Let R > 0 be sufficiently
large and let U be a neighborhood of (−R,R) in C such that x̂(U) contains no equilibrium
and C̃± ∩ x̂(U) ̸= ∅. Obviously, x̂(U) is a one-dimensional complex manifold with bound-
ary. We take Γ = x̂(U) ∪ C̃+ ∪ C̃− and the inclusion map as immersion i : Γ → Cn. See
Fig. 3.2. If x+ = x− and x̂(t) is a homoclinic orbit, then small modifications are needed
in the definitions of Γ and i. Let 0± ∈ Γ denote points corresponding to the equilibria x±.

We now define the VE and NVE of (3.1.1) along Γ. See Appendix A.1 for a more
general treatment. Since i(Γ) is locally invariant, the vector field f can be written as

f |i(Γ) = h(s)
d

ds
,

where s is a local coordinate on Γ and h(s) is a holomorphic function. Let Â(s) = Df(i(s))
for s ∈ Γ. We take t and s± with s± = 0 at 0± as the local coordinates on x̂(U) and
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C̃±, respectively. Here t is the original independent variable of (3.1.1). The VE of (3.1.1)
along Γ is given by

dξ

dt
= Â(t)ξ, ξ ∈ Cn, (3.4.1)

on x̂(U) and

h±(s±)
dξ

ds±
= Â(s±)ξ, ξ ∈ Cn, (3.4.2)

on C̃±, where h±(s±) are holomorphic and satisfy h±(0±) = 0. Since ˜N is of dimension
n − 2, there exist local coordinates (y1, . . . , yn) = T (x) ∈ Cn for x ∈ ˜N such that ˜N is
represented by yn−1 = yn = 0 and T (x) is holomorphic on ˜N . Using the coordinates, we
have

Df̂(i(s)) =

(
A11(s) A12(s)

0 A22(s)

)
,

where f̂(y) = DT (T−1(y))f(T−1(y)). So the components of the VE given by (3.4.1) and
(3.4.2) normal to ˜N , i.e., the NVE of (3.1.1) to ˜N along Γ, are written as

dη

ds
= A(s)η, η ∈ C2,

on x̂(U) and

h±(s±)
dη

ds±
= A±(s±)η, η ∈ C2, (3.4.3)

on C̃±, where A(t) = A22(t) on x̂(U) and A±(s±) = A22(s±) on C̃±. These VE and NVE
of (3.1.1) along Γ, which are the same as those given by (A.1.3) and (A.1.7) in Appendix
A.1 for M = N and m = 2 (cf. Equations (A.1.4), (A.1.5), (A.1.8) and (A.1.9)), have
only two singular points 0± since there is no other equilibrium than x± on i(Γ).

Lemma 3.4.1. The NVE of (3.1.1) along Γ is Fuchsian with regular singularities at 0±.
Moreover the eigenvalues of monodromy matrices M± around 0± are given by e2πiµ±/λ±

and e2πiν±/λ±.

Proof. By (A1) and (A2), h±(s±) in (3.4.3) are written as h±(s±) = λ±s±+O(|s±|2) with
λ± ̸= 0. Recall that λ± are eigenvalues of Df(x±) such that the associated eigenvectors
belong to Tx±C±. Thus, the singular points 0± ∈ Γ are regular and the NVE is Fuchsian.
Since the eigenvalues of A±(0) are µ± and ν±, the characteristic exponents of (3.4.3) are
given by µ±/λ± and ν±/λ± and their difference is not an integer by (A3). Hence, we
compute the local monodromy matrices of (3.4.3) around s± = 0 as

exp

(
2πi

λ±
A±(0)

)
,

which means that the eigenvalues of M± are given by e2πiµ±/λ± and e2πiν±/λ± .

Let M be the monodromy group of the NVE of (3.1.1) along Γ, which is generated by
two elements M±. Now we state our main result.
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Theorem 3.4.2. Suppose that (A1) - (A3) hold and equation (3.1.1) is real-meromorphically
integrable. Then the monodromy matrices M± are simultaneously diagonalizable, i.e., M
is diagonalizable, and their eigenvalues are not roots of 1. Moreover, if (A4) and (A5)
hold, then

M+ =M−1
− or M+ =M−, (3.4.4)

so that M is infinitely cyclic.

Proof. To prove this theorem, we use the extension of the Morales-Ramis theory due to
Ayoul and Zung [6], which is briefly reviewed in Appendix A.2 (especially Corollary A.2.2).

Suppose that (A1)-(A3) hold and equation (3.1.1) is real-meromorphically integrable.
Then the complexification of (3.1.1) is meromorphically integrable on i(Γ). Let G be
the differential Galois group of the NVE of (3.1.1) along Γ. From Corollary A.2.2 we
see that the connected identity component G0 of G is commutative. By Lemma 3.4.1
the monodromy matrices M± have e2πi(µ±/λ±) and e2πi(ν±/λ±) as their eigenvalues, and by
(A3) µ±/λ± − ν±/λ± = (µ± − ν±)/λ± /∈ Q, which means that the eigenvalues of M± are
not roots of 1. Using Proposition 3.3.2, we obtain the first part.

We turn to the second part. Suppose additionally that (A4) and (A5) hold. Then by
(A4)

detM± = e2πi(µ±/λ±) · e2πi(ν±/λ±) = e2π(µ±+ν±)/λ± = 1.

Thus, M ⊂ SL(2,C), so that G ⊂ SL(2,C) by Theorem 3.2.2. Since G has an ele-
ment whose eigenvalues are not roots of 1 and G0 is commutative, G is of type (iv) in
Lemma 3.3.1, as in the proof of Proposition 3.3.2. Hence, we can write

M+ =

(
λ1 0
0 λ−1

1

)
, M− =

(
λ2 0
0 λ−1

2

)
,

where λ1, λ2 ∈ C are some constants which are not roots of 1. Since e2πi(µ+/λ+) =
e2πi(µ−/λ−) by (A5), M+ and M− have common eigenvalues. This means that λ1 = λ2
or λ1 = λ−1

2 , i.e., the second part holds.

Remark 3.4.1. Consider the situation in which equation (3.1.1) is a two-degree-of-
freedom Hamiltonian system and has a saddle-center equilibrium with a homoclinic orbit,
as in [64, 91]. So we take λ− = −λ+ = λ, µ± = ±iω and ν± = ∓iω with λ, ω > 0, so that

µ± − ν±
λ±

= ∓2iω

λ
/∈ Q,

µ± + ν±
λ±

= 0,
µ+

λ+
− µ−

λ−
= 0.

Hence, we can apply Theorem 3.4.2 to conclude that condition (3.4.4) holds if equa-
tion (3.1.1) is real-meromorphically integrable in the meaning of Liuoville. The second
case of (3.4.4) was overlooked in [64, 91]. Theorem 3.4.2 also says that for a large class of
integrable systems which may be non-Hamiltonian and have homo- or heteroclinic orbits
to equilibria which may not be saddle-centers, the same condition (3.4.4) holds.

3.5 Application

We now demonstrate the theoretical result of Section 3.4 for the three-dimensional system
(3.1.2). We first see that the x2-axis {(0, x2, 0)|x2 ∈ R} is invariant under the flow of
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(3.1.2), and that it contains equilibria at x± = (0,∓1, 0) and a heteroclinic orbit to them,

x̂(t) = (0,− tanh 3t, 0).

Thus, (A1) and (A2) hold with N = C± = {(0, x2, 0)| − 2 ≤ x2 ≤ 2}. Moreover, the
eigenvalues of Df(x±) are computed as

λ± = ∓6, µ± = ±3−
√

25− α(α∓ β), ν± = ±3 +
√

25− α(α∓ β).

Hence, (A3) is equivalent to √
25− α(α± β)

3
/∈ Q (3.5.1)

since λ± = ∓6. We also note that (A4) holds but (A5) does not necessarily since

µ± + ν±
λ±

= −1,
µ+

λ+
− µ−

λ−
=

√
25− α(α− β) +

√
25− α(α + β)

6
.

The formal NVE along x̂(t) is given by

η̇ =

(
8 tanh 3t α

−α + β tanh 3t −2 tanh 3t

)
η, η ∈ C2,

which is transformed to the NVE on the (trivial) Riemann surface C,

dη

ds
=

1

3(s2 − 1)

(
−8s α

−α− βs 2s

)
η, (3.5.2)

by the transformation s = − tanh 3t. Letting ζ = η1, we rewrite (3.5.2) as

d2ζ

ds2
+

4s

s2 − 1

dζ

ds
+
α(α + βs) + 8s2 − 24

9(s2 − 1)2
ζ = 0, (3.5.3)

which has regular singularities at s = ±1,∞ on the Riemann sphere P1. Let M±1 be the
monodromy matrices of (3.5.3) around s = ±1. The monodromy matrices M± of (3.5.2)
aroud s = ∓1 are simultaneously similar to M∓1.

We compute the characteristic exponents of (3.5.3) at s = −1, 1 and ∞ as (ϕ+, ϕ−),
(ψ+, ψ−) and (1/3, 8/3), respectively, where

ϕ± = −1

2
± 1

6

√
25− α(α− β), ψ± = −1

2
∓ 1

6

√
25− α(α + β).

Solutions of (3.5.3) are expressed by a Riemann P function (see, e.g.,[41]) as

P


−1 1 ∞
ϕ− ψ−

1
3

s
ϕ+ ψ+

8
3

 ,

which are transformed to

P


0 1 ∞
ϕ− ψ−

1
3

z
ϕ+ ψ+

8
3
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by the transformation z = (s+ 1)/2. Using the identity

z−ϕ−(z − 1)−ψ−P


0 1 ∞
ϕ− ψ−

1
3

z
ϕ+ ψ+

8
3


= P


0 1 ∞
0 0 1

3
+ ϕ− + ψ− z

ϕ+ − ϕ− ψ+ − ψ−
8
3
+ ϕ− + ψ−

 ,

we rerwite (3.5.3) as the hypergeometric equation

d2ζ

dz2
+

(a+ b+ 1)z − c

z(z − 1)

dζ

dz
+

ab

z(z − 1)
ζ = 0, (3.5.4)

where

a =
1

3
+ ϕ− + ψ−, b =

8

3
+ ϕ− + ψ−, 1− c = ϕ+ − ϕ−.

Hence, M−1 = e(ϕ−)M0 and M+1 = e(ψ−)M1, where M0,M1 are monodromy matrices of
(3.5.4) at z = 0, 1 and e(a) = e2πia. Thus,M−1 andM+1 are simultaneously diagonalizable
if and only if so are M0 and M1. We have the following lemma on monodromy matrices
of the hypergeometric equation (3.5.4).

Lemma 3.5.1. If c, c−a−b /∈ Z, then M0 and M1 are not simultaneously diagonalizable.

Proof. Assume that c, c− a− b /∈ Z. By Theorem 4.7.2 of Chapter 2 of [41], we obtain

M0 =

(
1 0
0 e(−c)

)
,

M1 =
1

ℓ11ℓ22 − ℓ12ℓ21

(
ℓ11ℓ22 − ℓ12ℓ21e(c− a− b) ℓ12ℓ22(e(c− a− b)− 1)
ℓ11ℓ21(1− e(c− a− b)) ℓ11ℓ22e(c− a− b)− ℓ12ℓ21

)
,

where

ℓ11 =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, ℓ12 =

Γ(2− c)Γ(c− a− b)

Γ(1− a)Γ(1− b)
,

ℓ21 =
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
, ℓ22 =

Γ(2− c)Γ(a+ b− c)

Γ(a− c+ 1)Γ(b− c+ 1)
.

Here Γ(a) represents the gamma function. If M0 and M1 are simultaneously diagonaliz-
able, then ℓ11ℓ21 = 0 and ℓ12ℓ22 = 0 because e(c), e(c− a− b) ̸= 1. Note that 1/Γ(x) = 0
if and only if x ∈ Z and x ≤ 0. Easy calculations yield that ℓ11ℓ21 ̸= 0 or ℓ12ℓ22 ̸= 0 under
the assumptions.

Applying Theorem 3.4.2, we obtain the following result.

Proposition 3.5.2. If condition (3.5.1) holds, then the system (3.1.2) is not real-meromorphically
integrable.
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Proof. Assume that condition (3.5.1) holds. It follows from the relations

ϕ+ =
µ+

λ+
, ϕ− =

ν+
λ+
, ψ+ =

µ−

λ−
, ψ− =

ν−
λ−

that
ϕ+ − ϕ− /∈ Q, ψ+ − ψ− /∈ Q.

Hence, we use Fuchs’ relation ϕ+ + ψ+ + ϕ− + ψ− + 3 = 1 to show that

c = 1− (ϕ+ − ϕ−) /∈ Z, c− a− b = ψ+ − ψ− /∈ Z.

This means that M−1 andM+1 are not simultaneously diagonalizable since so are M0 and
M1 by Lemma 3.5.1. Applying Theorem 3.4.2, we complete the proof.

Condition (3.5.1) holds when α = 1 and β ∈ {2
√
23, 8

√
5, 16

√
2} or when β = 0 and

α2 ̸= 24−9q2 for some q ∈ Q. The former case was excluded in [71] and the latter case was
studied in [82, 69]. Proposition 3.5.2 says that the system (3.1.2) is real-meromorphically
non-integrable in both the cases.
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Chapter 4

Heteroclinic orbits and
nonintegrability in
two-degree-of-freedom Hamiltonian
systems with saddle-centers

4.1 Introduction

Chaotic dynamics and nonintegrability of Hamiltonian systems are classical and funda-
mental topics in dynamical systems, as seen in the famous work of Poincaré [73], and they
have attracted much attention [48, 59, 62, 68, 76]. A Hamiltonian system is nonintegrable
if it exhibits chaotic dynamics (see, e.g., [68]), but the converse is not always true: it
may not exhibit chaotic dynamics even if it is nonintegrable. Chaotic dynamics is also
very often closely related to the existence of transverse homo- and heteroclnic orbits. For
example, if there exist transverse homoclinic orbits to periodic orbits, then a Poincaré
map appropriately defined is topologically conjugated to a horseshoe map, which has an
invariant set consisting of orbits characterized by the Bernoulli shift, i.e., chaotic dynamics
occurs [35, 68, 88]. Morales-Ruiz and Peris [64] and Yagasaki [91] discussed a relation-
ship between nonintegrability and chaos for a class of two-degree-of-freedom Hamiltonian
systems with saddle centers having homoclinic orbits. They showed that if a sufficient
condition for nonintegrability holds, then there exist transverse homoclnic orbits to peri-
odic orbits. Here we extend their results to a similar class of Hamiltonian systems with
saddle centers connected by heteroclinic orbits.

More concretely, we consider two-degree-of-freedom Hamiltonian systems of the form

ẋ = JDxH(x, y), ẏ = JDyH(x, y), (x, y) ∈ R2 × R2, (4.1.1)

where H : R2 × R2 → R is analytic and J represents the 2× 2 symplectic matrix,

J =

(
0 1
−1 0

)
.

We make the following assumptions.

(B1) The x-plane, {(x, y) ∈ R2 × R2 | y = 0}, is invariant under the flow of (4.1.1), i.e.,
DyH(x, 0) = 0 for any x ∈ R2.
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Figure 4.1: Assumptions (B2) and (B3).

(B2) There exist two saddle-centers at (x, y) = (x±, 0) on the x-plane such that the matrix
JD2

xH(x±, 0) has a pair of real eigenvalues λ±, −λ± and the matrix JD2
yH(x±, 0)

has a pair of purely imaginary eigenvalues iω±, −iω± (λ±, ω± > 0), where the upper
and lower signs in the subscripts are taken simultaneously.

Assumption (B2) implies that there exist one-parameter families of periodic orbits near
the saddle-centers (x±, 0) by the Lyapunov center theorem (see, e.g., [59]). In addition,
the system restricted on the x-plane,

ẋ = JDxH(x, 0), (4.1.2)

has saddles at x = x±. The reader may think that assumption (B1) is too restrictive but
quite a few important Hamiltonian systems satisfy this assumption. See, e.g., [75, 90] for
such examples.

(B3) The two saddles x = x± are connected by a heteroclinic orbit xh(t) in (4.1.2), as
shown in Fig. 4.1.

In (B3), if x− = x+, then x
h(t) becomes a homoclinic orbit.

In [75] a Melnikov-type technique (see, e.g., [35, 58] for its original version) was devel-
oped for (4.1.1) to detect the existence of transverse heteroclinic orbits connecting periodic
orbits near the saddle-centers (x, y) = (x±, 0), when H(x, y) is only Cr+1 (r ≥ 2). The
Melnikov function was defined in terms of a fundamental matrix to the normal variational
equation (NVE) along the heteroclinic orbit (x, y) =

(
xh(t), 0

)
,

η̇ = JD2
yH
(
xh(t), 0

)
η, η ∈ R2, (4.1.3)

and such transverse heteroclinic orbits were detected if it has a simple zero. See Sec-
tion 4.2.1 for more details. This is an extension of a technique developed in [89], which
enables us to show that there exist transverse homoclinic orbits to such periodic orbits
and chaotic dynamics occurs [35, 88], when x− = x+ and xh(t) becomes a homoclinic
orbit. Moreover, if there exist transverse heteroclinic orbits from periodic orbits near
(x−, 0) to those near (x+, 0) and vice versa, i.e., transverse heteroclinic cycles between the
periodic orbits, then so do transverse homoclinic orbits to those near (x+, 0) and (x−, 0),
so that the Hamiltonian system (4.1.1) exhibits chaotic dynamics and is nonintegrable.
We also point out that Grotta Ragazzo [34] obtained a concrete sufficient condition for
the occurrence of chaotic dynamics in a special class of (4.1.1) with x− = x+, using a
general result of [50], a little earlier.

On the other hand, Morales-Ruiz and Ramis [65] presented a sufficient condition for
meromorphic nonintegrability of general complex Hamiltonian systems. Their theory,
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which is now called the Morales-Ramis theory, states that complex Hamiltonian systems
are meromorphically nonintegrable if the identity components of the differential Galois
groups [23, 81] for their variational equations (VEs) or NVEs around particular noncon-
stant solutions such as periodic, homoclinic and heteroclinic orbits are not commutative.
See also [62]. Ayoul and Zung [6] used a simple trick called the cotangent lifting to show
that the Morales-Ramis theory is also valid for detection of meromorphic nonintegrability
of non-Hamiltonian systems in the meaning of Bogoyavlenskijj [9]. Moreover, Morales-
Ruiz and Peris [64] studied a special class of (4.1.1) with x− = x+ and showed that if
the Hamiltonian system (4.1.1) is determined by the Morales-Ramis theory to be real-
meromorphically nonintegrable, then chaotic dynamics occurs, using the results of [34].
See also [62]. Their result was extended to (4.1.1) with x− = x+ in [91], based on the result
of [89]. A further extension on sufficient conditions for real-meromorphic nonintegrability
to general dynamical systems having homo- or heteroclinic orbits was accomplished in
Chapter 3. See Section 4.2.2 for more details.

In this chapter, based on [75] and Chapter 3, we extend the results of [64, 91] and
show the following for (4.1.1) under assumptions (B1)–(B3).

• Assume that ω+ = ω−. If sufficient conditions obtained in Chapter 3 for real-
meromorphic nonintegrability near the heteroclinic orbit hold, then the stable and
unstable manifolds of periodic orbits on the same Hamiltonian energy surface near
the saddle-centers (x±, 0) intersect transversely, i.e., there exist transverse hetero-
clinic orbits connecting the periodic orbits.

• Assume that ω+ ̸= ω−. Then these manifolds intersect transversely, have quadratic
tangencies or do not intersect whether the sufficient conditions hold or not. More-
over, under an additional condition, if the sufficient condition does not hold, i.e., a
necessary condition for real-meromorphic integrability holds, then these manifolds
do not intersect. This may be surprising for the reader since they do not coincide
even if the Hamiltonian systems are integrable.

Here the associated Hessian matrices of the Hamiltonian are assumed to have the same
number of positive eigenvalues: otherwise there exist no periodic orbits near (x±, 0) on
the same energy surface, as shown in Proposition 4.3.1 below. Our theory is illustrated
for a system with quartic single-well potential and some numerical results by using the
computer software AUTO [24] are given to support the theoretical results.

The above results are remarkable since a relationship between the existence of trans-
verse heteroclinic orbits and nonintegrability for Hamiltonian systems, both of which are
important properties of dynamical systems, is addressed for the first time, to the au-
thors’ knowledge. If not only transverse heteroclinic orbits but also heteroclinic cycles
exist, then chaotic dynamics occurs (see the last paragraph of Section 4.2.1), so that the
Hamiltonian systems are nonintegrable. However, if transverse heteroclinic orbits exist
but heteroclinic cycles are not formed, then chaotic dynamics may not occur and it is
not clear that the systems are nonintegrable. See, e.g., an example in [95, Section 1.1.2].
We remark that in different settings the non-existence of first integrals when transverse
heteroclinic orbits to hyperbolic periodic orbits exist was discussed in [26, 95]. Moreover,
transverse heteroclinic orbits may not exist even if the systems are nonintegrable. Thus,
our problem is more subtle, so that our conclusions are more complicated as stated above,
compared with the previous one discussed for homoclinic orbits in [64, 91].

43



W u
r (γ

α
−
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ℓ
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−
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γ
α
−
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α+

+

Figure 4.2: The right branch of the unstable manifold of γ
α−
− and the left branch of the

stable manifold of γ
α+

+ , denoted by W u
r (γ

α−
− ) and W s

ℓ (γ
α+

+ ), on a Poincaré section.

The outline of this chapter is as follows. In Section 4.2 we briefly review the previous
results of [75] and Chapter 3 on the existence of transverse heteroclinic orbits to periodic
orbits near (x±, 0) and on necessary conditions for real-meromorphic integrability, i.e.,
sufficient conditions for real-meromorphic nonintegrability. We state the main theorems
and prove them in Section 4.3, and give the example stated above along with numerical
results in Section 4.4.

4.2 Previous results

4.2.1 Melnikov-type technique

We first review the result of [75] for the existence of transverse heteroclinic orbits in (4.1.1).
Suppose that assumptions (B1)–(B3) hold. As stated in Section 4.1, near the saddle-

centers (x±, 0), there exist one-parameter families of periodic orbits, which are denoted
by γ

α±
± , α± ∈ (0, ᾱ±], with ᾱ± > 0. As α± → 0, they approach (x±, 0) and their periods

approach 2π/ω±. Let W
u
r (γ

α−
− ) (resp. W s

ℓ (γ
α+

+ )) denote the right branch of the unstable
manifold of γ

α−
− (resp. the left branch of the stable manifold of γ

α+

+ ) near the heteroclinic
orbit

(
xh(t), 0

)
. See Fig. 4.2.

Let Ψ(t) denote the fundamental matrix of the NVE (4.1.3) along
(
xh(t), 0

)
. Let Φ±(t)

be the fundamental matrices of the NVEs around the saddle-centers (x±, 0),

η̇ = JD2
yH(x±, 0)η, (4.2.1)

with Φ±(0) = id2, where id2 represents the 2 × 2 identity matrix. We easily show that
the limits

B− = lim
t→−∞

Φ−(−t)Ψ(t), B+ = lim
t→+∞

Φ+(−t)Ψ(t) (4.2.2)

exist (cf. [89, Lemma 3.1]) and set B0 = B+B
−1
− . We define the Melnikov function M(t0)

as

M(t0) = m−(η0)−m+(B0Φ−(t0)η0), (4.2.3)

where η0 ∈ R2 with |η0| = 1 and

m±(η) =
1

2
η ·D2

yH(x±, 0)η. (4.2.4)

We have the following theorem (see [75, Appendix A] for the proof).
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Figure 4.3: Riemann surface Γ = xh(U) ∪W s
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Theorem 4.2.1. For some α± ∈ (0, ᾱ±], let γ
α±
± be periodic orbits sufficiently close to

(x±, 0) on the same energy surface. Suppose that M(t0) has a simple zero. Then the
right branch of the unstable manifold W u

r (γ
α−
− ) and the left branch of the stable manifold

W s
ℓ (γ

α+

+ ) intersect transversely on the energy surface, i.e., there exist transverse hetero-
clinic orbits from γ

α−
− to γ

α+

+ .

Remark 4.2.1. Theorem 4.2.1 is also valid when x+ = x−. In this situation, if M(t0)
has a simple zero, then the stable and unstable manifolds of periodic orbits near the
corresponding saddle-center intersect transversely on the energy surface, i.e., there exist
transverse homoclinic orbits to the periodic orbits and consequently chaotic dynamics
occurs (e.g., [35, 88]). See also [89].

Suppose that there also exists a heteroclinic orbit x̂h(t) from x+ to x− on the x-
plane and that the hypothesis of Theorem 4.2.1 holds for both of xh(t) and x̂h(t). Then
the unstable manifolds of γ

α∓
∓ intersect the stable manifolds of γ

α±
± transversely on the

energy surface and these manifolds form a heteroclinic cycle. This implies that there exist
transverse homoclinic orbits to γ± (see, e.g., [88, Section 26.1]), so that chaotic dynamics
occurs in (4.1.1).

4.2.2 Necessary conditions for integrability

We next briefly describe the result of Chapter 3 for integrability of (4.1.1) in our setting.
Suppose that (B1)–(B3) hold. Let ΓR =

{(
xh(t), 0

)
∈ R2 × R2 | t ∈ R

}
∪ {(x±, 0)}.

Consider the complexification of (4.1.1) in a neighborhood of ΓR in C4. Let W s,u
± be

the one-dimensional local holomorphic stable and unstable manifolds of (x±, 0) on the x-
plane. See [36] for the existence of such holomorphic stable and unstable manifolds. Let
R > 0 be sufficiently large and let U be a neighborhood of the open interval (−R,R) ⊂ R
in C such that xh(U) contains no equilibrium and intersects both W s

+ and W u
−. Here for

simplicity we have identified xh(U) ⊂ C2 with xh(U) × {0} in C4. Obviously, xh(U) is
a one-dimensional complex manifold with boundary. We take Γ = xh(U) ∪ W s

+ ∪ W u
−

and the inclusion map as immersion i : Γ → C4. See Fig. 4.3. If x+ = x− and xh(t) is a
homoclinic orbit, then small modifications are needed in the definitions of Γ and i. Let
0± ∈ Γ denote points corresponding to the equilibria x±. Taking three charts, W s,u

± and
xh(U), we rewrite the NVE (4.1.3) along Γ as follows (see Section 3.4 for the details).

In xh(U) we use the complex variable t ∈ U as the coordinate and rewrite the
NVE (4.1.3) as

dη

dt
= JD2

yH(i(t))η, (4.2.5)
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which has no singularity there. In W s
+ and W u

− there exist local coordinates s+ and s−,
respectively, such that s±(0±) = 0 and d/dt = h±(s±)d/ds±, where h±(s±) = ∓λ±s± +
O
(
|s±|2

)
are holomorphic functions. We use the coordinates s± and rewrite the NVE

(4.1.3) as

dη

ds±
=

1

h±(s±)
JD2

yH(i(s±))η, (4.2.6)

which have regular singularities at s± = 0. Let M± be monodromy matrices of the NVE
along Γ around s± = 0.

Let λ′+ = −λ+ and λ′− = λ−, and let µ± = ±iω± and ν± = ∓iω± be eigenvalues of
JD2

yH(x±, 0). Then we have

µ± − ν±
λ′±

= ∓2iω±

λ±
̸∈ Q,

µ± + ν±
λ′±

= 0 ∈ Z,

which mean that conditions (A3) and (A4) of Chapter 3 hold. Applying Theorem 3.4.2
of Chapter 3, we obtain the following result.

Theorem 4.2.2. Suppose that assumptions (B1)–(B3) hold and the Hamiltonian system
(4.1.1) is real-meromorphically integrable near ΓR. Then the monodromy matrices M± are
commutative. Moreover, if

µ+

λ′+
− µ−

λ′−
= − iω+

λ+
+

iω−

λ−
= 0, (4.2.7)

then

M+ =M−1
− or M+ =M−. (4.2.8)

Remark 4.2.2.

(i) Let UR and UC be, respectively, neighborhoods of ΓR in R4 and in C4. By real-
meromorphic integrablity we mean that the real Hamiltonian system (4.1.1) has an
additional first integral which is a restriction of some meromorphic function defined
in UC onto UR. If the Hamiltonian system (4.1.1) is real-meromorphically integrable
in UR, then its complexification is also meromorphically integrable in UC. Such real-
meromorphically nonintegrable Hamiltonian systems were also discussed by using a
different approach in [54, 55, 96].

(ii) Under the hypothesis of Theorem 4.2.2, the identity component G0 of the differen-
tial Galois group for the NVE (4.1.3) along Γ is commutative if and only if so is
M±. Moreover, if condition (4.2.7) holds, then condition (4.2.8) is necessary and
sufficient for G0 to be commutative.

(iii) If x+ = x−, then condition (4.2.7) automatically holds, so that conclusion (4.2.8) is
necessary for the real-meromorphic integrability of (4.1.1). We also note that the
latter case in (4.2.8) was overlooked in the early results of [64, 91].
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4.3 Main results

Let σ±
1 and σ±

2 be eigenvalues of D2
yH(x±, 0). We have σ±

1 σ
±
2 = ω2

±, so that σ±
1 and σ±

2

are of the same sign, where the upper and lower signs in super- and subscripts are taken
simultaneously. Recall that there are one-parameter families of periodic orbits γ

α±
± near

the saddle-centers (x±, 0), as stated in Section 4.2.1.

Proposition 4.3.1. If σ±
1 have the opposite signs, then there does not exist a pair (α+, α−)

with 0 < α± ≪ 1 such that the periodic orbits γ
α±
± around (x±, 0) are on the same energy

surface.

Proof. Since the saddle-centers (x±, 0) are connected by the heteroclinic orbit
(
xh(t), 0

)
,

we assume that H(x+, 0) = H(x−, 0) = 0 without loss of generality. Using the center
manifold theorem [35, 88], we see that there exist center manifolds of (x±, 0) on which
γ
α±
± =

(
x
α±
± (t), y

α±
± (t)

)
lie. Moreover, on the center manifolds, the relations x − x± =

O
(
|y|2
)
hold near (x±, 0). Hence,

H
(
γ
α±
±
)
=

1

2
y
α±
± (t) ·D2

yH(x±, 0)y
α±
± (t) + O

(
|yα±(t)|3

)
,

which implies that for α± > 0 sufficiently small there does not exist a pair (α+, α−) with
H
(
γ
α+

+

)
= H

(
γ
α−
−
)
if σ+

1 and σ−
1 have the opposite signs.

Henceforth we assume that σ±
1 have the same sign. From the proof of Proposition 4.3.1

we can take α+ ∈ (0, ᾱ+) for α− ∈ (0, ᾱ−) sufficiently small such that H
(
γ
α+

+

)
= H

(
γ
α−
−
)
,

i.e., there exist periodic orbits γ
α±
± near (x±, 0) on the same energy surface. Let M± be

the monodromy matrices of the transformed NVE (4.2.5) and (4.2.6) around s± = 0, as
defined in Section 4.2.1. We state our main theorems as follows.

Theorem 4.3.2. Assume that σ±
1 are of the same sign. Let α± > 0 be sufficiently small

and satisfy H
(
γ
α+

+

)
= H

(
γ
α−
−
)
. Then the following hold:

(i) If ω+ = ω− and the monodromy matrices M± are not commutative, then the right
branch of the unstable manifold W u

r

(
γ
α−
−
)
intersects the left branch of the stable

manifold W s
ℓ

(
γ
α+

+

)
transversely on the energy surface, i.e., transverse heteroclinic

orbits from γ
α−
− to γ

α+

+ exist.

(ii) If ω+ ̸= ω−, then W u
r

(
γ
α−
−
)
and W s

ℓ

(
γ
α+

+

)
intersect transversely on the energy sur-

face, have quadric tangencies or do not intersect. In particular, they do not coincide.

Theorem 4.3.3. Assume that σ±
1 are of the same sign and ω+/λ+ = ω−/λ−. Let α± > 0

be sufficiently small and satisfy H
(
γ
α+

+

)
= H

(
γ
α−
−
)
. Then the following hold:

(i) If ω+ = ω− and M+ ̸=M−1
− , then W u

r

(
γ
α−
−
)
intersects W s

ℓ

(
γ
α+

+

)
transversely on the

energy surface.

(ii) If ω+ ̸= ω− and M+ =M−1
− , then W u

r

(
γ
α−
−
)
does not intersect W s

ℓ

(
γ
α+

+

)
.

Remark 4.3.1.

(i) The hypothesis of Theorem 4.3.3(i) does not coincide with the sufficient condition
given in Theorem 4.2.2 for real-meromorphic nonintegrability while the hypothesis
of Theorem 4.3.2(i) does. Similarly, the hypothesis of Theorem 4.3.3(ii) does not
coincide with the necessary condition for real-meromorphic integrability.
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(ii) Assume that x− = x+ and xh(t) is a homoclinic orbit. Then ω+ = ω− and λ+ = λ−.
Hence, we apply Theorem 4.3.2(i) to recover the result of [91] with a necessary
correction stated in Remark 4.2.2(iii): If M+ ̸= M−1

− , then the stable and un-
stable manifolds intersect transversely on the energy surface. In particular, by
Theorem 4.2.2 and Remark 4.2.2(iii), we see that under the sufficient condition for
real-meromorphical nonintegrability, the same conclusion holds.

(iii) In Theorem 4.3.2(ii) and Theorem 4.3.3(ii), by saying that W u
r

(
γ
α−
−
)
and W s

ℓ

(
γ
α+

+

)
do not intersect, we mean that W u

r

(
γ
α−
−
)
and W s

ℓ

(
γ
α+

+

)
do not intersect near the

heteroclinic orbit (xh(t), 0) before going away from it. It is difficult to generally
exclude the case in which they intersect after that.

In the rest of this section we prove the main theorems. We first provide some necessary
properties of the Melnikov function M(t0). Using (4.2.4), we can rewrite (4.2.3) as

M(t0) =
1

2
(Φ−(t0)η0)

T
(
D2
yH(x−, 0)− BT

0 D
2
yH(x+, 0)B0

)
(Φ−(t0)η0), (4.3.1)

where the superscript T represents the transpose operator. Since the matrix D2
yH(x±, 0)

is symmetric, there exist a pair of orthogonal matrices P± such that

PT
±D

2
yH(x±, 0)P± =

(
σ±
1 0
0 σ±

2

)
(4.3.2)

and detP± = 1. Hence, we have

M(t0) =
1

2

(
PT
−Φ−(t0)η0

)T [(σ−
1 0
0 σ−

2

)
− B̃T

0

(
σ+
1 0
0 σ+

2

)
B̃0

] (
PT
−Φ−(t0)η0

)
=

1

2
η̃(t0)

TRη̃(t0), (4.3.3)

where B̃0 = PT
+B0P−, η̃(t0) = PT

−Φ−(t0)η0 and

R =

(
σ−
1 0
0 σ−

2

)
− B̃T

0

(
σ+
1 0
0 σ+

2

)
B̃0.

On the other hand, there exist a pair of nonsingular matrices Q± such that

Q−1
± JD2

yH(x±, 0)Q± =

(
iω± 0
0 −iω±

)
.

So we have

Φ±(t) = exp
(
JD2

yH(x±, 0)t
)
= Q±

(
eiω±t 0
0 e−iω±t

)
Q−1

± . (4.3.4)

Noting that R is symmetric and using (4.3.3) and (4.3.4), we immediately obtain the
following result.

Lemma 4.3.4.

(i) M(t0) has a simple zero if and only if detR < 0.
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(ii) M(t0) has no zero if and only if detR > 0.

(iii) M(t0) is not identically zero but has double zeros if and only if detR = 0 and
trR ̸= 0.

(iv) M(t0) is identically zero if and only if detR = 0 and trR = 0.

This lemma enables us to easily determine by detR and trR whether M(t0) is not
identically zero or not, whether it has a zero or not, and whether its zero is simple or
double if it has.

Denote

B̃0 =

(
b11 b12
b21 b22

)
.

Since Φ±(t) and Ψ(t) are fundamental matrices of linear Hamiltonian systems and Φ±(0) =
id2 (see Section 4.2.1), we have detB± = detΨ(0) by (4.2.2), so that

det B̃0 = detB0 = 1. (4.3.5)

Hence, we compute

trR = −
(
σ+
1 b

2
11 + σ+

1 b
2
12 + σ+

2 b
2
21 + σ+

2 b
2
22

)
+ σ−

1 + σ−
2

and

detR = (ω+ − ω−)
2 −

(
b11

√
σ+
1 σ

−
2 − b22

√
σ+
2 σ

−
1

)2

−
(
b12

√
σ+
1 σ

−
1 + b21

√
σ+
2 σ

−
2

)2

.

(4.3.6)

Here we have used the relations σ±
1 σ

±
2 = ω2

±.

Lemma 4.3.5. If ω+ = ω−, then M(t0) is identically zero or it has a simple zero.

Proof. Assume that ω+ = ω−. Obviously, detR ≤ 0 by (4.3.6). If detR = 0, then

b11

√
σ+
1 σ

−
2 = b22

√
σ+
2 σ

−
1 , b12

√
σ+
1 σ

−
1 = −b21

√
σ+
2 σ

−
2 ,

so that

trR = −
√
σ+
1 σ

+
2

(√
σ−
1

σ−
2

+

√
σ−
2

σ−
1

)
(b11b22 − b12b21) + σ−

1 + σ−
2

= −
√
σ−
1 σ

−
2

(√
σ−
1

σ−
2

+

√
σ−
2

σ−
1

)
+ σ−

1 + σ−
2 = 0.

Here we have used the relations σ+
1 σ

+
2 = σ−

1 σ
−
2 and det B̃0 = b11b22 − b12b21 = 1. Using

parts (i) and (iv) of Lemma 4.3.4 we obtain the result.

We also need the following result on the monodromy matrices M± defined in Sec-
tion 4.2.2.
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Lemma 4.3.6. The monodromy matrices can be expressed as

M+ = B−1
0 exp

(
−2πi

λ+
JD2

yH(x+, 0)

)
B0, M− = exp

(
2πi

λ−
JD2

yH(x−, 0)

)
(4.3.7)

for a common fundamental matrix.

Proof. Let
Ψ̃(t) = Ψ(t)B−1

− .

Then Ψ̃(t) is a fundamental matrix of (4.1.3) such that

lim
t→−∞

Φ−(−t)Ψ̃(t) = id2 and lim
t→+∞

Φ+(−t)Ψ̃(t) = B0.

For the transformed NVE on Γ, we take a fundamental matrix corresponding to Ψ̃(t).
Since by (4.3.4) its analytic continuation yields the monodromy matrices

exp

(
∓2πi

λ±
JD2

yH(x±, 0)

)
along small loops around 0±, we choose the base point near 0− to obtain (4.3.7).

Now we prove the main theorems.

Proof of Theorem 4.3.2. Assume that M(t0) is identically zero. It follows from (4.3.1)
that

D2
yH(x−, 0) = BT

0 D
2
yH(x+, 0)B0.

Since detB0 = 1, we have B0JB
T
0 = J , so that

JD2
yH(x−, 0) = B−1

0 JD2
yH(x+, 0)B0. (4.3.8)

Hence, JD2
yH(x−, 0) and JD2

yH(x+, 0) have the same eigenvalues, i.e., ω+ = ω−. This
implies that if ω+ ̸= ω−, then M(t0) is not identically zero. Using Lemma 4.3.4 and
Theorem 4.2.1, we obtain part (ii).

On the other hand, using Lemma 4.3.6 and (4.3.8), we see that if M(t0) is identically
zero, then

M+ = exp

(
−2πi

λ+
JD2

yH(x−, 0)

)
,

so that M± are commutative. Hence, if M± are not commutative, then M(t0) is not
identically zero. This yields part (i) by Lemma 4.3.5 and Theorem 4.2.1.

Proof of Theorem 4.3.3. Assume that ω+/λ+ = ω−/λ−. From Lemma 4.3.6 and (4.3.2)
we have

M+ = B−1
0 P+ exp

(
−2πi

λ+

(
0 σ+

2

−σ+
1 0

))
P−1
+ B0,

M− = P− exp

(
−2πi

λ−

(
0 σ−

2

−σ−
1 0

))
P−1
− .
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Using the relations σ±
1 σ

±
2 = ω2

±, we easily compute

exp

(
−2πi

λ±

(
0 σ±

2

−σ±
1 0

))
=

(
cosh 2πµ i

√
σ±
2 /σ

±
1 sinh 2πµ

−i
√
σ±
1 /σ

±
2 sinh 2πµ cosh 2πµ

)
,

where µ = ω+/λ+ = ω−/λ−. So the condition M+ =M−1
− is equivalent to

B̃0

(
cosh 2πµ i

√
σ−
2 /σ

−
1 sinh 2πµ

−i
√
σ−
1 /σ

−
2 sinh 2πµ cosh 2πµ

)
=

(
cosh 2πµ i

√
σ+
2 /σ

+
1 sinh 2πµ

−i
√
σ+
1 /σ

+
2 sinh 2πµ cosh 2πµ

)
B̃0,

so that

b11

√
σ+
1 σ

−
2 − b22

√
σ+
2 σ

−
1 = 0, b21

√
σ+
2 σ

−
2 + b12

√
σ−
1 σ

+
1 = 0.

Hence, if M+ =M−1
− , then by (4.3.6)

detR = (ω+ − ω−)
2.

Thus, we obtain part (ii) by Theorem 4.2.1 and Lemma 4.3.4. Moreover, when ω+ = ω−,
the above observation along with (4.3.6) shows that detR = 0 (if and) only ifM+ =M−1

− .
This implies part (i) by Theorem 4.2.1 and Lemma 4.3.5.

4.4 Example

To illustrate our theory, we consider the two-degree-of-freedom Hamiltonian system

ẋ1 = x2, ẋ2 = −x1 + x31 +
1
2
β1y

2
1 + β2x1y

2
1,

ẏ1 = y2, ẏ2 = −ω2y1 + β1x1y1 + β2x
2
1y1 − y31 (4.4.1)

with the Hamiltonian

H = 1
2

(
x22 + y22

)
+ 1

2

(
x21 + ω2y21

)
− 1

4

(
x41 + y41

)
− 1

2
β1x1y

2
1 − 1

2
β2x

2
1y

2
1,

where β1, β2, ω ∈ R are constants such that

ω2 − β2 > |β1|. (4.4.2)

We easily see that assumption (B1) holds, i.e., the x-plane is invariant under the flow
of (4.4.1). On the x-plane, the Hamiltonian system (4.4.1) has two saddles at x = (±1, 0)
with λ± =

√
2, and they are connected by a pair of heteroclinic orbits,

xh±(t) =

(
± tanh

(
t√
2

)
,± 1√

2
sech2

(
t√
2

))
,

satisfying
lim
t→+∞

xh±(t) = (±1, 0) and lim
t→−∞

xh±(t) = (∓1, 0).
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Thus, assumption (A3) holds for x± = (±1, 0) or (∓1, 0), where the upper and lower
signs are taken simultaneously. Moreover, by (4.4.2), the two equilibria in (4.4.1) are
saddle-centers, so that assumption (A2) holds. In the following, we describe the details
of computations for x± = (±1, 0) and xh+(t), from which the corresponding results for
x± = (∓1, 0) and xh−(t) also follow immediately.

Let x± = (±1, 0). Then

ω± =
√
ω2 ∓ β1 − β2, σ±

1 = 1, σ±
2 = ω2 ∓ β1 − β2 > 0.

We see that ω+ = ω− if and only if β1 = 0 and that σ±
1 are of the same sign. The NVE

(4.1.3) becomes

η̇1 = η2, η̇2 = −
(
ω2 − β1x

h
1+(t)− β2x

h
1+(t)

2
)
η1, (4.4.3)

which reduces to the second-order differential equation

η̈1 +
(
ω2 − β1x

h
1+(t)− β2x

h
1+(t)

2
)
η1 = 0, (4.4.4)

where xh1+(t) represents the x1-component of xh+(t), i.e., x
h
1+(t) = tanh

(
t/
√
2
)
. Letting

ρ± = −iω±/
√
2 and using the transformation

τ =
xh1+(t) + 1

2
, η1 = τ ρ−(1− τ)ρ+ξ, (4.4.5)

we rewrite (4.4.4) as the Gauss hypergeometric equation [41, 87]

τ(1− τ)
d2ξ

dτ 2
+ (c3 − (c1 + c2 + 1)τ )

dξ

dτ
− c1c2ξ = 0, (4.4.6)

where
c1 = χ+ + ρ+ + ρ−, c2 = χ− + ρ+ + ρ−, c3 = 2ρ− + 1

with χ± = 1
2

(
1 ±

√
1 + 8β2

)
. The equilibria x− and x+ correspond to τ = 0 and 1,

respectively. Singular points of (4.4.6) are τ = 0, 1,∞ and all of them are regular.
The necessary condition for real-meromorphic integrability given by Theorem 4.2.2

holds only in a limited case for (4.4.1) as follows.

Lemma 4.4.1. If the monodromy matrices M± are commutative, then

β1 = 0, β2 =
1
2
n(n− 1) for some n ∈ N (4.4.7)

and M+ =M−1
− .

Proof. Let M0 and M1 be the monodromy matrices of (4.4.6) around τ = 0 and τ = 1,
respectively. Using (4.4.5), we compute M− = e(ρ−)M0 and M+ = e(ρ+)M1, where
e(ρ) = e2πiρ for ρ ∈ C. It is a well known fact (see, e.g., [41, Chapter 2, Theorem 4.7.2])
that the monodromy matrices of (4.4.6) are given by

M0 =

(
1 0
0 e(−c3)

)
,

M1 =
1

ℓ0

(
ℓ11ℓ22 − ℓ12ℓ21e(c3 − c1 − c2) ℓ12ℓ22(e(c3 − c1 − c2)− 1)
ℓ11ℓ21(1− e(c3 − c1 − c2)) ℓ11ℓ22e(c3 − c1 − c2)− ℓ12ℓ21

)
,
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where ℓ0 = ℓ11ℓ22 − ℓ12ℓ21,

ℓ11 =
Γ(c3)Γ(c3 − c1 − c2)

Γ(c3 − c1)Γ(c3 − c2)
, ℓ12 =

Γ(2− c3)Γ(c3 − c1 − c2)

Γ(1− c1)Γ(1− c2)
,

ℓ21 =
Γ(c3)Γ(c1 + c2 − c3)

Γ(c1)Γ(c2)
, ℓ22 =

Γ(2− c3)Γ(c1 + c2 − c3)

Γ(c1 − c3 + 1)Γ(c2 − c3 + 1)
,

and Γ(ρ) represents the gamma function. Since c3 = 2ρ−+1 and c3− c1− c2 = 1−ρ+ are
not integers, we see that if M0 and M1 are commutative, then M1 must be diagonal and
consequently ℓ12ℓ22 = ℓ11ℓ21 = 0. Moreover, c1 and c2 are not integers, so that ℓ12, ℓ21 ̸= 0,
since 1/Γ(ρ) = 0 if and only if ρ ∈ Z and ρ ≤ 0. Hence, if M± are commutative, then
ℓ11, ℓ22 = 0.

If β1 ̸= 0, then c3−c1 and c3−c2 are not integers, so that ℓ11, ℓ22 ̸= 0 and consequently
M± are not commutative. On the other hand, if β1 = 0, then c3−c1 = 1−χ+ = c2−c3+1
and c3 − c2 = χ+ = c1 − c3 + 1, so that ℓ11, ℓ22 = 0 if and only if χ+ ∈ N. Hence, if M±
are commutative, then β1 = 0 and χ+ ∈ N, so that the second condition of (4.4.7) holds.
Moreover, if condition (4.4.7) holds, then ℓ11, ℓ22 = 0 and ρ+ + ρ− = 0, so that

M+ =

(
e(1− ρ+) 0

0 e(ρ+)

)
=

(
e(ρ−) 0
0 e(1− ρ−)

)−1

=M−1
− .

Thus, we obtain the desired result.

Obviously, the statement of Lemma 4.4.1 is also true for x± = (∓1, 0) and xh−(t). Let
γ
α±
± denote periodic orbits around the saddle-centers at x = (±1, 0) and let W s

r

(
γ
α−
−
)

and W u
ℓ

(
γ
α+

+

)
be the right and left branches of the stable and unstable manifolds of γ

α−
−

and γ
α+

+ , respectively. Note that ω+/λ+ = ω−/λ− holds if and only if β1 = 0. Using
Theorems 4.2.2, 4.3.2 and 4.3.3 and Lemma 4.4.1, we obtain the following proposition.

Proposition 4.4.2. Suppose that condition (4.4.7) does not hold. Then the Hamiltonian
system (4.4.1) is real-meromorphically nonintegrable near the heteroclinic orbits (x, y) =(
xh±(t), 0

)
. Moreover, let α± > 0 be sufficiently small and satisfy H

(
γ
α+

+

)
= H

(
γ
α−
−
)
.

If β1 = 0, then W u
r

(
γ
α−
−
)
and W u

ℓ

(
γ
α+

+

)
, respectively, intersect W s

ℓ

(
γ
α+

+

)
and W s

r

(
γ
α−
−
)

transversely on the energy surface, i.e., there exists a heteroclinic cycle. If β1 ̸= 0, then
W u

r

(
γ
α−
−
)
and W u

ℓ

(
γ
α+

+

)
, respectively, intersect W s

ℓ

(
γ
α+

+

)
and W s

r

(
γ
α−
−
)
transversely on

the energy surface, or these manifolds have quadratic tangencies or do not intersect.

Remark 4.4.1. The existence of such a heteroclinic cycle implies that chaotic dynamics
occurs in (4.4.1), as stated at the end of Section 4.2.1. From Proposition 4.4.2 we imme-
diately see that when β1 ̸= 0, the system (4.4.1) is real-meromorphically nonintegrable
near the heteroclinic orbits although there may not exist a heteroclinic cycle.

We next compute the Melnikov function M(t0) for (4.4.1). Let x± = (±1, 0). The
NVE (4.2.1) becomes

η̇1 = η2, η̇2 = −
(
ω2 ∓ β1 − β2

)
η1,

of which the fundamental matrix with Φ±(0) = id2 are given by

Φ±(t) =

(
cosω±t sinω±t/ω±

−ω± sinω±t cosω±t

)
. (4.4.8)
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Let F (c1, c2, c3; τ) be the Gauss hypergeometric function,

F (c1, c2, c3; τ) =
∞∑
k=0

c1(c1 + 1) · · · (c1 + k − 1)c2(c2 + 1) · · · (c2 + k − 1)

k!c3(c3 + 1) · · · (c3 + k − 1)
τ k.

Then
ξ = τ 1−c3F (c1 − c3 + 1, c2 − c3 + 1, 2− c3; τ)

is a solutions to (4.4.6) as well as ξ = F (c1, c2, c3; τ) (see, e.g., [41, Chapter 2, Section 1.3]
or [87, Section 14.4]). So we obtain the complex valued solution to (4.4.4),

η = η̄(t) :=

(
1 + tanh(t/

√
2)

2

)−ρ− (
1− tanh(t/

√
2)

2

)ρ+

× F

(
c1 − c3 + 1, c2 − c3 + 1, 2− c3;

1 + tanh(t/
√
2)

2

)
,

and the fundamental matrix of (4.4.3),

Ψ(t) =

(
Re η̄(t) Im η̄(t)/ω−
Re ˙̄η(t) Im ˙̄η(t)/ω−

)
. (4.4.9)

We easily see that(
1 + tanh(t/

√
2)

2

)−ρ−

→ 1 and

(
1− tanh(t/

√
2)

2

)ρ+

→ eiω+t

as t→ ∞ and(
1 + tanh(t/

√
2)

2

)−ρ−

→ eiω−t and

(
1− tanh(t/

√
2)

2

)ρ+

→ 1

as t→ −∞. Thus, we have

η̄(t) → eiω−t as t→ −∞ (4.4.10)

since
lim
τ→0

F (c1 − c3 + 1, c2 − c3 + 1, 2− c3; τ) = 1.

Using a well-known formula of the hypergeometric function (see, e.g., [41, Chapter 2,
equation (4.7.9)]), we obtain

τ 1−c3F (c1 − c3 + 1, c2 − c3 + 1, 2− c3; τ) = ℓ12F (c1, c2, c1 + c2 − c3 + 1; 1− τ)

+ ℓ22(1− τ)c3−c1−c2F (c3 − c1, c3 − c2, c3 − c1 − c2 + 1; 1− τ),

so that

η̄(t) → ℓ12e
iω+t + ℓ22e

−iω+t as t→ ∞. (4.4.11)
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Substituting (4.4.8) and (4.4.9) into (4.2.2) and using (4.4.10) and (4.4.11), we compute

B+ =

(
Re ℓ12 +Re ℓ22 (Im ℓ12 + Im ℓ22)/ω−

−ω+(Im ℓ12 + Im ℓ22) ω+(Re ℓ12 − Re ℓ22)/ω−

)
, B− = id2,

which yields

B0 = B−1
− B+ =

(
Re ℓ12 +Re ℓ22 (Im ℓ12 + Im ℓ22)/ω−

−ω+(Im ℓ12 + Im ℓ22) ω+(Re ℓ12 − Re ℓ22)/ω−

)
. (4.4.12)

Equation (4.2.4) becomes

m±(η) =
1
2

((
ω2 ∓ β1 − β2

)
η21 + η22

)
.

Using (4.2.3) and (4.4.12), we obtain the Melnikov function as

M(t0) = (−Re ℓ12 Re ℓ22 + Im ℓ12 Im ℓ22)ω
2
+ cos 2ω−t0

+ (Re ℓ12 Im ℓ22 + Im ℓ12 Re ℓ22)ω
2
+ sin 2ω−t0 +

1
2

(
ω2
− −

(
|ℓ12|2 + |ℓ22|2

)
ω2
+

)
= ω2

+|ℓ12||ℓ22| cos(2ω−t0 − ϕ0) +
1
2

(
ω2
− − (|ℓ12|2 + |ℓ22|2)ω2

+

)
,

where

tanϕ0 =
Re ℓ12 Im ℓ22 + Im ℓ12 Re ℓ22
−Re ℓ12 Re ℓ22 + Im ℓ12 Im ℓ22

.

Let

G(β1, β2, ω) :=
(
ω2
+|ℓ12||ℓ22|

)2 − 1
4

(
ω2
− −

(
|ℓ12|2 + |ℓ22|2

)
ω2
+

)2
= ω2

+ω
2
−|ℓ22|2 − 1

4
ω2
−(ω+ − ω−)

2.

Here we have used the relation |ℓ12|2− |ℓ22|2 = ω−/ω+ obtained from (4.3.5) and (4.4.12).
The Melnikov functionM(t0) has a simple zero (resp. no zero) if and only if G(β1, β2, ω) >
0 (resp. G(β1, β2, ω) < 0). Obviously, the above arguments are valid for x± = (∓1, 0) and
xh−(t). Applying Theorem 4.2.1, we obtain the following proposition.

Proposition 4.4.3. Let α± > 0 be sufficiently small and satisfy H
(
γ
α+

+

)
= H

(
γ
α−
−
)
.

If G(β1, β2, ω) > 0, then W u
r

(
γ
α−
−
)
and W u

ℓ

(
γ
α+

+

)
, respectively, intersect W s

ℓ

(
γ
α+

+

)
and

W s
r

(
γ
α−
−
)
transversely on the energy surface, i.e., there exists a heteroclinic cycles. If

G(β1, β2, ω) < 0, then W u
r

(
γ
α−
−
)
and W u

ℓ

(
γ
α+

+

)
, respectively, do not intersect W s

ℓ

(
γ
α+

+

)
and W s

r

(
γ
α−
−
)
.

Remark 4.4.2.

(i) As expected from Proposition 4.4.2, when β1 = 0, we see that G(β1, β2, ω) > 0 if
and only if the second condition of (4.4.7) does not hold, i.e.,

β2 ̸= 1
2
n(n− 1) for any n ∈ N. (4.4.13)

This follows from the fact that ℓ22 ̸= 0 if and only if condition (4.4.13) holds (see
the proof of Lemma 4.4.1).
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Figure 4.6: Stable and unstable manifolds of periodic orbits near the saddle-centers with
x = (±1, 0) on the Poincaré section

{
(x, y) ∈ R2 × R2 | y1 = 0

}
for β2 = 2, ω = 2 and

H = 0.28: (a) β1 = 5×10−3; (b) 1.32×10−2; (c) 2×10−1. These manifolds near
(
xh+(t), 0

)
and

(
xh−(t), 0

)
are plotted as solid and dashed lines, respectively, and blue and red colors

are used for the stable and unstable manifolds, respectively.

transversely, and there exists a heteroclinic cycle. In Fig. 4.6(b) for β1 = 1.32 × 10−2,
W u

r

(
γ
α−
−
)
and W u

ℓ

(
γ
α+

+

)
, respectively, seem to be quadratically tangent to W s

ℓ

(
γ
α+

+

)
and

W s
r

(
γ
α−
−
)
. In Fig. 4.6(c) for β1 = 2 × 10−1, W u

r

(
γ
α−
−
)
and W u

ℓ

(
γ
α+

+

)
, respectively, do

not intersect W s
ℓ

(
γ
α+

+

)
and W s

r

(
γ
α−
−
)
. We see that for (β2, ω) = (2, 2), G(β1, β2, ω) = 0 at

β1 ≈ 1.5×10−2 in Fig. 4.4, and predict by Proposition 4.4.3 that a heteroclinic cycle exists
or not, depending on whether β1 is less or greater than the value. Thus, the theoretical
prediction fairly agrees with the numerical observation in Fig. 4.6. The agreement becomes
better when the periodic orbits γ

α±
± are closer to the saddle-centers. In Fig. 4.6(c) we also

observe that W s(γ
α+

+ ) and W u
(
γ
α+

+

)
still intersect transversely. Hence, the Hamiltonian

system (4.4.1) exhibits chaotic dynamics and it is nonintegrable. This consists with the
results of Proposition 4.4.2.
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Chapter 5

Conclusions

5.1 Concluding remarks

In this thesis, we first studied integrability and nonintegrability of Poincaré-Dulac normal
forms around equilibria. We next considered general systems with heteroclinic orbits and
used the Morales-Ramis theory [6] to obtain sufficient conditions for their nonintegrability
by the monodromy groups of variational equations along the heteroclinic orbits. Finally,
we considered two-degree-of-freedom Hamiltonian systems with heteroclinic orbits and
used the extended Melnikov method [75] along with the result of Chapter 3 to obtain
some relationships between nonintegrability and chaos.

In Chapter 2, we considered dynamical systems in Poincaré-Dulac normal form having
an equilibrium at the origin. We introduced condition (C)r and proved that it is a sufficient
condition for their integrability as in Theorem 2.2.2. This implies that systems satisfying
conditions (A2) and (ω) for having convergent normalizations are integrable and that the
assumptions of Theorem 2.1.2 is weaker than those of Theorem 2.1.1. We also proved that
condition (C)r is also necessary for existence of the maximal number of first integrals under
some condition. Finally, we proved an analogous relationships between resonance degrees
and integrablity already known in Birkhoff normal forms for Hamiltonian systems. We
demonstrated the theoretical results for a normal form appearing in the codimension-two
fold-Hopf bifurcation.

In Chapter 3, we considered general n-dimensional systems of differential equations
having (n − 2)-dimensional, locally invariant manifolds on which there exist equilibria
connected by heteroclinic orbits for n ≥ 3. The system may be non-Hamiltonian and
have no saddle-centers, and the equilibria are allowed to be the same and connected by
a homoclinic orbit. Under assumption (A3), we proved that the monodromy group for
the normal variational equation, which is represented by components of the variational
equation normal to the locally invariant manifold and defined on a Riemann surface, is
diagonalizable if the system is real-meromorphically integrable in the meaning of Bogoy-
avlenskij. We can reagard the result as an extension of the Ziglin analysis [94] for general
dynamical systems. In fact, assumption (A3) corresponds to a non-resonant condition
of the Ziglin analysis. We applied the theory to a three-dimensional volume-preserving
system describing the streamline of a steady incompressible flow with two parameters,
and showed that it is real-meromorphically nonintegrable for almost all values of the two
parameters.
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In Chapter 4, we considered a class of two-degree-of-freedom Hamiltonian systems with
saddle-centers connected by heteroclinic orbits and discussed some relationships between
the existence of transverse heteroclinic orbits and nonintegrability. By the Lyapunov
center theorem there is a family of periodic orbits near each of the saddle-centers, and the
Hessian matrices of the Hamiltonian at the two saddle-centers are assumed to have the
same number of positive eigenvalues. We showed that if the associated Jacobian matrices
have the same pair of purely imaginary eigenvalues, then the stable and unstable manifolds
of the periodic orbits intersect transversely on the same Hamiltonian energy surface when
the sufficient conditions obtained in Chapter 3 for real-meromorphic nonintegrability of
the Hamiltonian systems hold; if not, then these manifolds intersect transversely on the
same energy surface, have quadratic tangencies or do not intersect whether the sufficient
conditions hold or not. Our theory was illustrated for a system with quartic single-well
potential and some numerical results are given to support the theoretical results.

5.2 Future work

In Chapter 2, we discussed integrability and nonintegrability of Poincaré-Dulac normal
forms. To complete the study of integrability for general systems around equilibria, we
need to show the existence of convergent normalizations. Especially, if all normalizations
for a given dynamical system are divergent, then it is analytically nonintegrable by Zung’s
result [97]. As stated in Chapter 1, there are only few studies on systems whose normal-
izations are all divergent. It is well known that Écalle’s theory [29, 74] is useful to study
normalizations for non-resonant cases. On the other hand, normalizations of resonant
systems are well studied only when its dimensions are two [57, 74]. So it is expected to
extend Écalle’s theory so that we can discuss normalizations for resonant systems whose
dimensions are greater than two.

To clarify a relationship between the divergence of normalizations and the Écalle
theory, we consider

d

dt

(
x1
x2

)
=

(
x21

x2 − F (x1)

)
, (5.2.1)

where F (x1) = x1
∑∞

n=0 anx
n
1 ∈ x1C{x1}. When F (x1) = 0, (5.2.1) is one of the normal

forms. When F (x1) = x1, (5.2.1) was discussed in some references [12, 22], and it is well
known that it has no convergent normalizations. Following the approach of [22], we can
easily show that (5.2.1) has no convergent normalization if

∑∞
n=0 an/n! ̸= 0. Moreover,

using the result of Chapter 2, we can show that (5.2.1) is analytically integrable if and
only if

∑∞
k=0 an/n! = 0 because its resonance degree is one.

On the other hand, Martinet and Ramis [57] studied analytic classification of differ-
ential equations of the form

d

dt

(
x1
x2

)
=

(
x21

A(x1, x2)

)
, (5.2.2)

A(0, x2) = x2,
∂2A

∂x1∂x2
(0, 0) = 0.

They also demonstrated their theory for Riccati-type equations, i.e., A(x1, x2) is a polyno-
mial over C{x1} of degree 2 with respect to x2 in (5.2.2). Sauzin [74] reformulated their
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result using the mould calculus and resurgence theory established by Écalle [29]. The
mould calculus enables us to calculate normalizations explicitly. The resurgence theory
deals with singular points of the Borel transformations of normalizations. He determined
an infinite number of constants {Cj}, j = −1, 1, 2, . . . , called Écalle invariants for (5.2.2).
For A(x1, x2) = x2−x1

∑∞
n=0 anx

n
1 , the invariants are computed as C−1 = −2πi

∑∞
j=0 an/n!

and Cj = 0, j ≥ 1. He also proved that two vector fields written in the form (5.2.2) are
analytically conjugate if and only if they have the same invariants. Hence we see that
(5.2.1) is analytically conjugate to the normal form with F (x1) = 0, i.e., (5.2.2) with
A(x1, x2) = x2, if and only if

∑
n=0 an/n! = 0. Moreover, when

∑
n=0 an/n! ̸= 0, the

normalization is divergent as stated in the above paragraph. To discuss a more general
case, we need to extend Écalle’s theory.

We next focus on a relationship between Theorem 3.4.2 and Theorem 4.3.3 (i). By
Theorem 3.4.2, under assumption (A5), a sufficient condition for nonintegrability (4.1.1) is
M+ ̸=M−1

− and M+ ̸=M−. By Theorem 4.3.3 (i), a condition for existence of transverse
heteroclinic orbits is M+ ̸= M−1

− when ω+ = ω−. So we conjecture that M+ = M−1
−

if (4.1.1) is integrable. In fact, this is true for our example (4.4.1). The condition of
Theorem 3.4.2 was obtained from classification of algebraic subgroups of SL(2;C), while
the condition of Theorem 4.3.3 was obtained from a geometric approach. Combining the
Morales-Ramis theory with a geometric method, we may be able to improve Theorem
3.4.2 as the condition M+ ̸=M− is not included for nonintegrable systems.

In Chapter 4, we study some relationships between nonintegrability and chaos for
Hamiltonian systems. It is a remaining problem to extend the result to non-Hamiltonian
systems such as reversible systems. Here dynamical systems are called reversible if they
are of 2n dimensions with n ∈ N and have linear involutions R : R2n → R2n such that
f(Rx) + Rf(x) = 0 and dim{x ∈ R2n | Rx = x} = n. The situation treated in Chapter
4 is almost the same for reversible systems: There exist families of periodic orbits near
saddle-centers by the Lyapunov theorem [25] and we can apply the result of Chapter 3.
To solve the remaining problem, we need to extend the Melnikov method [92] to detect
transverse heteroclinic orbits in reversible systems.
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Appendix A

Generalization of the Morales-Ramis
Theory

In this appendix, we review the extension of the Morales-Ramis theory [65] due to Ayoul
and Zung [6] for integrability of general differential equations in the meaning of Bogoy-
avlenskij. Throughout this section, we consider general complex differential equations of
the form

ẋ = g(x), x ∈ D, (A.0.1)

where D is a domain in Cn and g : D → Cn is holomorphic.

A.1 Variational equation

We begin with definitions of VEs and NVEs for (A.0.1). Let Γ be an abstract Riemann
surface such that there is an immersion i : Γ → D. We frequently identify i(Γ) with Γ.
Following [2, 65], we define VEs and NVEs of (A.0.1) along Γ as follows.

Let E be a meromorphic section of TCn|Γ. The VE of (A.0.1) along Γ is given by the
pullback by i of

LgX = 0, X ∈ E, (A.1.1)

and it is a linear differential equation whose coefficient matrix has only entries in K,
where Lg represents the Lie derivative with respect to g and K is a differential field of
meromorphic functions on Γ with derivation Lg. Since any meromorphic vector bundle
over a Riemann surface is trivial (see e.g., Appendix A of [62]), we have a basis {e1, . . . , en}
of E and write

X =
n∑
j=1

ξjej, Lgej =
n∑
k=1

bjkek,

where ξj, bjk ∈ K, j, k = 1, . . . , n, are uniquely determined. Hence, we obtain

LgX =
n∑
j=1

(Lgξj +
∑
k=1

bkjξj)ej,

so that the VE of (A.0.1) is written as

Lgξ +BTξ = 0, (A.1.2)
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where B = (bjk), ξ = (ξ1, . . . , ξn)
T and the superscript “T” represents a transpose opera-

tor.

We take

{
∂

∂x1
, . . . ,

∂

∂xn

}
as the basis {e1, . . . , en} of E, where x = (x1, . . . , xn)

T ∈ Cn.

Since

Lg
∂

∂xj
=

[
n∑
k=1

gk
∂

∂xk
,
∂

∂xj

]
= −

n∑
k=1

∂gk
∂xj

∂

∂xk
,

we have bjk = −∂gk
∂xj

, so that the VE (A.1.2) becomes

Lgξ = Â(t)ξ, t ∈ Γ (A.1.3)

where Â(t) := −BT = Dg(i(t)) and [ ·, · ] represents the Lie bracket, as in Definition 3.1.1.
Note that Â(t) is holomorphic in t. Let t = t0 be a point on Γ. If g(i(t0)) ̸= 0, then we

can choose a local coordinate s near t0 on Γ such that s(t0) = 0 and Lg =
d

ds
, and rewrite

(A.1.3) as
dξ

ds
= Â(s)ξ, (A.1.4)

which has no singularity near s = 0. Assume that g(i(t0)) = 0. Then there exist a

local coordinate s near t0 on Γ such that s(t0) = 0 and Lg = h(s)
d

ds
, where h(s) is a

holomorphic function on Γ with h(0) = 0. Hence, we rewrite (A.1.3) as

h(s)
dξ

ds
= Â(s)ξ, i.e.,

dξ

ds
=

1

h(s)
Â(s)ξ, (A.1.5)

which may have a singularity at s = 0.
Suppose that equation (A.0.1) has an (n−m)-dimensional locally invariant manifold

M containing i(Γ). Let Ē be a meromorphic section of (TCn/TM )|Γ. Since M is
invariant under the flow of (A.0.1), we have Lg : Ē → Ē. The NVE of (A.0.1) to M
along Γ is given by the pullback by i of

LgX̄ = 0, X̄ ∈ Ē. (A.1.6)

Letting {ē1, . . . , ēm} be a basis of Ē, we write

X̄ =
n∑
j=1

ηj ēj, Lgēj =
n∑
k=1

b̄jkēk,

so that equation (A.1.6) becomes

Lgη + B̄Tη = 0, (A.1.7)

where B̄ = (b̄jk) and η = (η1, . . . , ηm)
T. Since M is of n−m dimensions, there exists local

coordinates (y1, . . . , yn) in Cn such that M is represented by yk = 0, k = n−m+1, . . . , n.

We take

{
∂

∂y1
, . . . ,

∂

∂yn

}
as the basis {e1, . . . , en} of E and identify Ē with the vector
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bundle spanned by

{
∂

∂yn−m+1

, . . . ,
∂

∂yn

}
, so that ē1 =

∂

∂yn−m+1

, . . . , ēm =
∂

∂yn
. Using

the local invariance of M , we express (A.1.3)

Lg



ξ1
...

ξn−m
η1
...
ηm


=

(
A11(t) A12(t)

0 A22(t)

)


ξ1
...

ξn−m
η1
...
ηm


,

where Â(t) =

(
A11(t) A12(t)

0 A22(t)

)
and A11(t), A12(t) and A22(t) are, respectively, (n−m)×

(n−m), (n−m)×m and m×m matrices. Equation (A.1.7) is locally written as

Lgη = A(t)η, A(t) := A22(t), t ∈ Γ,

which is also represented by
dη

ds
= A(s)η (A.1.8)

and

h(s)
dη

ds
= A(s)η, i.e.,

dη

ds
=

1

h(s)
A(s)η, (A.1.9)

by the same coordinate s near t = t0 on Γ as (A.1.4) and (A.1.5) if g(i(t0)) ̸= 0 and
g(i(t0)) = 0, respectively. Notice that A(s) is holomorphic in s and the eigenvalues of
A(0) are the same as those of Dg(i(0)) for which the associated eigenvectors are normal
to M .

Let Ĝ and G be the differential Galois groups for the VE (A.1.3) and NVE (A.1.7),
respectively. As in Section 3.2, we denote their connected identity components by the
superscript “0”.

Proposition A.1.1. If Ĝ0 is commutative, then so is G0.

The proof of this proposition is found in that of Theorem 3.4 of [2].

A.2 Necessary condition for integrability

The Morales-Ramis theory [62, 65] is a powerful technique to prove nonintegrability of
Hamiltonian systems based on the differential Galois theory. Ayoul and Zung [6] extended
the theory to general dynamical systems. Their fundamental idea is as follows.

We first introduce a new state variable p ∈ Cn and define a Hamiltonian function

H(x, p) = pTg(x).

The associated Hamiltonian system is given by

ẋ = g(x), ṗ = −Dg(x)Tp. (A.2.1)
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We can apply the original Morales-Ramis theory to (A.2.1).
Let x̃(t) be a non-stationary solution to (A.0.1). We take an abstract Riemann surface

corresponding to the solution x̃(t) as Γ (see e.g. [62, 65, 46]). For example, x̃(t) is doubly
periodic, i.e. x̃(z + ω1) = x̃(z + ω2) = x̃(z), then Γ = C/{n1ω1 + n2ω2|n1, n2 ∈ Z} is a
complex torus and the associated immersion i : Γ → Cn is given by i(t) = x̃(t). If x̃(t) is a
homoclinic or heteroclinic orbit, then Γ is extended such that i(Γ) contain the associated
equilibria under some appropriate condition. See Section 4.1 of [62] or Section 4 of [65]
(see also Section 4). According to the recipes of Section A.1, we obtain the VE and NVE
of (A.0.1) along Γ and its differential Galois group Ĝ and G, respectively. In this situation
we state the result of Ayoul and Zung [6] for (A.0.1) as follows.

Theorem A.2.1. If equation (A.0.1) is meromorphically integrable on i(Γ), then Ĝ0 is
commutative.

A more general situation is treated in [6]. From Proposition A.1.1 we immediately
obtain the following result as a corollary of Theorem A.2.1.

Corollary A.2.2. If equation (A.0.1) is meromorphically integrable on i(Γ), then G0 is
also commutative.
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