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Abstract

Reconstruction of an unknown discrete-valued vector from its linear measurements is
a common problem in communication systems. When the number of measurements is
greater than or equal to the dimension of the unknown vector, the low complexity linear
methods, such as minimum mean-square-error (MMSE) method, might achieve satis-
factory reconstruction performance. In the underdetermined case with an insufficient
number of measurements, however, their performance is severely degraded. On the other
hand, although the maximum likelihood (ML) approach with the exhaustive search can
achieve an excellent performance, it requires huge computational complexity in large-
scale problems. This thesis proposes an efficient algorithm for the discrete-valued vector
reconstruction and provides asymptotic performance analyses for some reconstruction
methods.

Chapter [l describes the discrete-valued vector reconstruction and its application
in communication systems. Moreover, the conventional methods are briefly reviewed.
Finally, the outline of this thesis is explained.

In Chapter 2, we focus on the reconstruction of the binary vector as the simplest
example of the discrete-valued vector reconstruction. We extend the conventional sum
of absolute values (SOAV) optimization to the weighted SOAV (W-SOAV) optimization
so that we can use the prior information of the unknown vector. We then propose an
iterative approach named iterative weighted SOAV (IW-SOAV), where we iterate the W-
SOAV optimization and the update of the weight parameters in the objective function.
The W-SOAV optimization can be efficiently solved with proximal splitting methods
for convex optimization. Simulation results show that the reconstruction performance
of the proposed IW-SOAV is better than several conventional methods in massive over-
loaded multiple-input multiple-output (MIMO) signal detection and the decoding of
non-orthogonal space-time block codes.

In Chapter B, we propose an algorithm for the reconstruction of a complex discrete-
valued vector. The proposed method can be considered as an extension of the conven-
tional SOAV optimization in the real-valued domain. The proposed approach in the
complex-valued domain can utilize the dependency between the real part and the imag-
inary part of the unknown vector. It is shown that an optimization algorithm based on
alternating direction method of multipliers (ADMM) can provide a sequence converging
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to the solution of the optimization problem. We have shown via computer simulations
that the proposed method can achieve good performance in MIMO signal detection and
channel equalization.

Chapter 4 proposes a possibly nonconvex optimization problem for the discrete-
valued vector reconstruction. The proposed sum of sparse regularizers (SSR) optimiza-
tion problem can be regarded as a generalization of the convex SOAV optimization.
For the proposed SSR optimization, two optimization algorithms based on ADMM
and primal-dual splitting are proposed. Simulation results show that the proposed al-
gorithms using nonconvex optimization can achieve better reconstruction performance
than several conventional approaches using convex optimization.

In Chapter B, we analyze the asymptotic performance of the SOAV optimization. We
firstly propose the Box-SOAYV optimization by adding a box constraint to the conventional
SOAV optimization. By using convex Gaussian min-max theorem (CGMT), we evaluate
the asymptotic performance of the estimate obtained by the Box-SOAV optimization.
We also propose an approach to optimize the parameters of the Box-SOAV optimization
on the basis of the theoretical result.

In Chapter 6, we analyze the performance of the SOAV optimization from a different
perspective. We firstly propose a message passing-based algorithm using the idea of
the SOAV optimization. Although the proposed method requires some assumptions on
the measurement matrix, it can achieve good performance with low computational com-
plexity. Moreover, we evaluate the asymptotic performance of the proposed algorithm
on the basis of the state evolution. We also obtain the required measurement ratio for
the perfect reconstruction in the noise-free case.

In Chapter [1, we present the conclusion of the thesis.
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Chapter 1

Introduction

Discrete-valued vector reconstruction from its linear measurements is a common problem
in signal processing for communications systems, e.g., multiple-input multiple-output
signal detection [1-3] and multiuser detection in machine-to-machine (M2M)
communications [4]. In some applications such as overloaded MIMQ systems [5—9] and
Faster-than-Nyquist (FTN) signaling [[10], the number of measurements is less than that
of the unknown variables. In such underdetermined problems, simple linear methods,
such as [inear minimum mean square error (LMMSE) method, have poor performance.
Although the maximum likelihood (ML) method with the exhaustive search can achieve
good performance in terms of the error rate, the computational complexity increases
exponentially along with the problem size. Thus, a low-complexity algorithm is required
for the underdetermined discrete-valued vector reconstruction, especially in large-scale
problems.

This chapter provides a short introduction of the discrete-valued vector reconstruc-
tion. Section [L 1l describes the reconstruction of the discrete-valued vector from its linear
measurements. In Section [L.2, we briefly review several examples of the discrete-valued
vector reconstruction in communication systems. Section [L3 presents conventional ap-
proaches for the discrete-valued vector reconstruction. Finally, Section [L4 explains the
outline of this thesis.

In this thesis, we use the following notations. We denote the set of all real numbers
by R and the set of all complex numbers by C. Re{-} and Im{-} indicate the real part and
the imaginary part, respectively. We represent the imaginary unit by j, the transpose by
(-)7, the Hermitian transpose by (-)", the N x N identity matrix by Iy, the vector whose
elements are all 1 by 1, and the matrix whose elements are all 0 by 0. For a vector u =
[ -+ uny]" € KY (K = R or C), we define the ¢, and ¢> norms of w as ||l = ZnNzl ity

and ||ul|, = ,/Zﬁ:’:l |un|?, respectively. We also define ||ul|, as the number of nonzero

elements in u. We represent the sample mean of the elements of u by (u) = ﬁ ZnNzl Uuy,.
[u],, denotes the nth element of w. diag(uy, . . ., uy) € K¥*V denotes the diagonal matrix
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whose (n, n) element is u,,. We represent the Kronecker product as ® and the sign function
as sign(-). For alower semicontinuous function ¢ : KV — RuU{co}, we define the Moreau
envelope and the proximity operator as env,(«) = mingcgn {{ (s)+ % I|s — U||%} and

. . 2
prox,(u) = arg min sn {2(s)+ % 1Is - ull%}, respectively. pg(z) = \/% exp (_%)

and Pg(z) = f_ ZDO pc(z')d7 are the probability density function (PDF) and the tumulafive

distribution function (CDF) of the standard Gaussian distribution, respectively. When
a sequence of random variables {Z,} (n = 1,2,...) converges in probability to Z, we

P
denote Z, — Z as n — oo or plim Z,=7.

n—oo

1.1 Discrete-Valued Vector Reconstruction from Linear
Measurements

1.1.1 Real-Valued Case

We consider the reconstruction of a discrete-valued vector & = [x; - - - xN]T e RN c RN
from its linear measurement given by

y=Ax+veRM, (1.1)

In this thesis, we mainly focus on the underdetermined case with M < N. Here,
R = {r1,...,rp} is the set of possible values that the elements of the unknown vector
x take, where L < N. The distribution of x, is assumed to be known and given by
Pr(x,=r¢) = pr (€ = 1,...,L), where Zg;lpg = 1. A € RM*N j5 a measurement
matrix and v € R is an additive Gaussian noise vector with mean 0 and covariance
matrix 021y

1.1.2 Complex-Valued Case

We consider the reconstruction of complex discrete-valued vector & = X - - - )ZN]T €
CN c CV from its linear measurement given by

g=A%+0eCH, (1.2)
where M < N. Here, C = {cy,...,cp} is the set of possible values for the elements of
the unknown vector &. The distribution of & is givenby Pr (%, = c¢,) = ps (€ =1,...,L),

where Z§:1 pe = 1. A € CMN js a measurement matrix and & € C¥ is an additive
Gaussian noise vector with mean 0 and covariance matrix o2 .

The discrete-valued vector reconstruction algorithm in the real-valued domain is
not appropriate for (IL2) in general. When the real part and the imaginary part are
independent on C, e.g., C = {1 +j,—1+j,—1—j,1—j}, we can convert the signal
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model (IL.2) in the complex-valued domain into the equivalent model in the real-valued
domain as

v

g =AZ + v, (1.3)

where we define § = [Re{'g}T Im{g}T]T e RM & = [Re{:i:}T Im{:T:}T]T e RV,
b = [Re{#}T Im{5}"|" € R?M, and

X Re{A} -Im{A

A: { ~} {~ } ERZMXZN. (14)
Im{A} Re{A}

In this case, we can reconstruct the original complex-valued vector & via the recon-

struction of the real-valued vector . When the real part and the imaginary part

are dependent, however, such approach is inappropriate. For example, when C =

2N
1oL _

LLo0-k -1

Hence, we cannot use the dependency between the real part and the imaginary part in

the reconstruction. It would be better in such cases to directly reconstruct the vector &

in the complex-valued domain.

{e/=Dr/4 | ¢ =1,...,8}, weneed to estimate the real-valued vector in {

1.2 Applications in Communication Systems

In this section, we present several applications of discrete-valued vector reconstruction
in communication systems.

MIMO Signal Detection

MIMO communications use multiple antennas at both the transmitter and the receiver as
in Fig. L1 to achieve high spectral efficiency and reliability. As the required data rate and
throughput have been significantly increasing, massive MIMQ using tens or hundreds
of antennas are gathering attention as one of key technologies in the pth generation (5G)
mobile communication systems [, 2].

MIMQ signal detection is to estimate the transmitted symbols from the received
signals, which is distorted by the channel and the additive noise. Since the transmitted
symbols belong to an finite-sized alphabet in digital communications, MIMQO signal
detection with N; transmit antennas and N; receive antennas can be modeled as the
discrete-valued vector reconstruction with N = N; and M = N;. The unknown vector
& € CM is composed of the transmitted symbols from N, transmit antennas, where C is
the alphabet of transmitted symbols. For guadrature phase shift keying (QPSK}, we have
(cr,e,¢c3¢c4) =(1+j,-1+j,—-1—j,1—j)and py = 1/4 (€ = 1,...,4). For B-phase
Khift Keying (8PSK), we have ¢, = ¢/((~D7/4 and pe=1/8( =1,...,8). For simplicity,
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n o
an, 1
Transmitter . Receiver
ai,n, N
an,, N, i

Figure 1.1: System model of MIMQO communications

precoding is not considered and the number of transmitted streams is assumed to be equal
to that of transmit antennas in this thesis. The measurement vector 9 € C™ denotes the
received signals at N, receive antennas and A € CNM represents the channel matrix
between the transmitter and the receiver.

The distribution of the channel matrix A depends on the channel model. In un-
correlated flat Rayleigh fading channels, the channel matrix is given by A = Ajiq,
where Apig € CNM is composed of iidl circular complex Gaussian variables with
zero mean and unit variance. For spatially correlated N Channels with equally

spaced linear arrays, the channel matrix can be modeled as A = ‘I’ Ai_l_d_]‘l’z [lL1].
Here, the (i1, i2) element of W and ¥, are given by [W¥;];, ;, = Jo (|i1 —i2| - 27d;/Ay) and
[Wili i, = Jo(liy —i2| - 2mdi/ Aw), respectively. The function Jo(-) is the zeroth-order
Bessel function of the first kind. We denote the wavelength by A, and the antenna
spacing at the receiver and the transmitter by d; and d,, respectively. For other channel
models, see [[11].

In some MIMQ systems, sufficient number of receive antennas may not be available
due to the limited size, weight, cost and/or power consumption of the receiver. Such
MIMOQ systems, where the number of receive antennas /V; is less than that of transmitted
streams NV;, are known as overloaded (or underdetermined) MIMQ systems [5,7]. In
overloaded MIMQ systems, A € CNN (N < N,) is a fat matrix and hence the signal
detection problem becomes underdetermined.

Error Recovery of MIMO Signal Detection

To improve the performance of the MIMQ signal detection, some error recovery method
have been discussed [12,13]. In these methods, the system model (IL2) is converted
into the linear equation of the error vector. Let & € CV be a tentative estimate of &
obtained by some simple detection method such as the LMMSE method. We then obtain
24 = Qc(2) € CV, where the element-wise function Q¢ (-) maps each element into its
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ToT PC
Terminal Z; P Y
A1)
Base
A LN ' Station
Yn,
IoT 5 z
Terminal mNt P Y A(Nl‘th)

Figure 1.2: Uplink MU-MIMO OEDM  system for [oT environment

closest symbol in C, i.e., it provides the hard decision of &. The key point is that the
error vector € = & — &4 is sparse, i.e., € has many zero elements, if the tentative estimate
is reliable enough. Moreover, the error vector € also has the discreteness. For example,
when we use QPSK with (¢, ¢z, ¢3,¢4) = (1 + j,—1 + j,—1 — j, 1 — j), the real part and
the imaginary part of the error vector contain only 2, 0, and —2. The transformation into
the equation of & can be performed by subtracting A4 from both sides of (IL2) as

Ja=9—-Adg=A

(& —&q)+ D (1.5)
= Aé+ v

(1.6)

From (IL6), we can reconstruct the error vector € via some algorithm for the sparse
discrete-valued reconstruction algorithm. Denoting the estimate of the error vector € as
é, we can obtain the improved estimate of & as £4 + é.

Signal Detection for MU-MIMO OFDM/SC-CP

We consider uplink communications of [nternet of things (Io') environments, which is
modeled as a precoded multi user multiple-input multiple-output (MU-MIMO) prthog
pnal frequency division multiplexing (OFDM) system. Figure [L.2 shows the system
model, where the number of transmit terminals is N;, the number of receive antennas
at the base station is N;, and the number of subcarriers is Q.. Given that the number
of transmit terminal is typically large in [oT environments, we focus on the overloaded
scenario and assume N; < N hereafter. The symbol alphabet and the frequency domain
transmitted OFDM) symbol vector from the n-th transmit [oT terminal are denoted by C
and &,,, respectively. Here, taking [oT environment specific feature into consideration,
we assume only N, [oT terminals out of N, terminals are active meaning that only Ny
terminals transmit signal blocks. Non-active N; — N, terminals actually keep
silent, but we can regard they transmit all zero signal block Og,. We thus have &, € C%
when the n-th terminal is active, and otherwise &, = 0p,. When we use the cyclic prefix
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with the length greater than or equal to the channel order, the received signal vector after
the removal of the cyclic prefix is given by

g{,OFDM ALDPp o AN P [, ﬁ{
,glfé)FDM AND P oo AN Pl |2 N ﬁ]f\,r

where 'gf;rOFDM € C2 is the frequency domain received OFDM signal block at the 1,-th

receive antenna [14]. The diagonal matrix A" = diag (/15"“"‘), . /lg'c"”t)) € COexCe
is composed of the channel frequency responses with the order of L, — 1 between the
ni-th [aT terminal and the n,-th receive antenna. The diagonal elements can be written

as

(ne,ne)
(nem) hy
S :
| =vVoD| i) (1.8)
e h%_1
Qc OQC—LP
where D € C2*% is a Q.-point unitary discrete Fourier transform (DFT) matrix defined
as
1 1 e 1
T S "
VO, |: : : '
2 2ax(Qc—1)x1 _ 2 2ax(Qc—DX(Qc-1)
1 e J Oc e e J Oc
and h(O"r’”‘), cees h(Ly;rfl‘) denotes the impulse response of the frequency selective channel

between the n-th IGT terminal and n,-th receive antenna. P € C2*C¢ is a precoding
matrix. v,ﬁr € C% is the frequency domain additive white noise vector at the n,-th receive
antenna with mean 0p, and covariance matrix 021, .

Here, we show a non-precoded MIUI-MIMQ Fingle carrier block transmission with
cyclic prefix (SC-CP) signal model. Assuming the length of cyclic prefix is greater than
or equal to the channel order L, — 1, the time domain received signal block at the n,-th
receive antenna of the base station is written as

Ny
GLSC-CP Z DA™ Dz, + oL, (1.10)

nr
nt:1
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where 0, € C2 is the time domain additive white noise vector at the n,-th receive
antenna having mean Op, and covariance matrix O'VZIQC [15,16]. By stacking from

QE’SC'CP to QR,?C'CP in (L10), and multiplying a unitary matrix of
0o --- 0
0 D © | € CNXQN: (1.11)
: .0
O --- 0 D

from the left of both sides, we have the frequency domain received non-precoded SC-CP
[T signal vector at the base station as

,gf,sc-CP D 0 --- 0 ,gt,SC-CP
1 . 1
=1 P A (1.12)
_,SC-CP : .0 37Lsc-c1>
Ne 0 .- 0 DY
[ALMYD ... AUND] & ot
= : : N e I (1.13)
ANDD .. ANND| | £ N, {,]fv
where grfl,rsocp € C% is the frequency domain received signal vector at the n,-th
base station antenna and ﬁflr = Dﬁ}lr (n; = 1,...,Ny). It should be noted here that this

received signal model can be regarded as a special case of ([LZ), where the precoding
matrix P is set to be D. Thus, if DET matrix D is appropriate for the precoding
matrix of overloaded MU-MIMQO OFDM system with the convex optimization-based
signal detection, then the choice of non-precoded signaling is extremely suited
for [aT environments because this approach requires neither the inverse discrete Fourierd
transform (IDFT) operation nor the precoding operation at the IoT node (transmitter
side).

Channel Equalization

Channel equalization in the single carrier block transmission [[15] can also be mod-
eled as the complex discrete-valued vector reconstruction. We here consider a
system with N, transmit antennas and N, receive antennas. When we use the cyclic
prefix to remove inter-block interference, the resultant channel matrix A € CM2*MQo
corresponding to an information block can be written as a block circulant matrix given
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by
[ 1© 0o --- 0 - ... O ]
-2 e SO N(7SS))
A= |rG-) - o |, (1.14)
0
: .. .. .. . 0
0 i 0 TW D) 1%-2 ... 10

where Qy, is the information block length,
(i) (@)
. Yir o YN
ro=|: - [ecwM (1.15)
(@) (i)
YN T VNN
and {yf,’r)n[} (@ =0,...,L, — 1) is the impulse response of the channel between the nth
transmit antenna and the n;threceive antenna (n¢ = 1,..., Neandn, = 1,..., N;) [17,[18].
In the Rayleigh fading channels, y,(l?nt is a circular complex Gaussian variable with
zero mean. It should be noted that the channel equalization problem also becomes
underdetermined in overloaded MIMQ systems.

Decoding of NO-STBC

For MIMQ communications, pon-orthogonal space-time block code (NO-STBC) has
been studied to achieve both high rate and high diversity order [19]. In [20], for example,
a NO-STBQA has been proposed by using cyclic division algebra (CDA), which can
achieve both the full diversity and the information losslessness under the MLl decoding.
Moreover, the rate of the code is equal to the number of transmit antennas.

We consider MIMQ communications using gpace-time block code (STBC) with N;
transmit antennas and N; receive antennas. By using a STB(O, we send Kyg complex
data symbols X, ..., Xk, € C during Ty time slots. We define the STBO matrix as
B = [51 BTd] e CMTa where b, = [l;l,t EN[,,]T e CM (¢t = 1,...,Ty) indicates
the transmitted signal vector at the tth time slot and Ent,t is the transmitted symbol from
the n¢th transmit antenna (n; = 1, ..., V). In linear dispersion STBQs, the matrix
B is given by

Ka
B= Z Ci i, (1.16)
k=1
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where C; € CN*Td i5 a weight matrix corresponding to the data symbol §;. In [20], for
example, the NO-STBQ matrix

= = nt = (Nt—l)nt ]
X0, (S‘x/\’t—l,”lt(“L)Nl 6x1,”lthl
- — ne = (Ni—Dyny
X1,n, X0,n, th 6x2,nt le
N[—l = - n¢ - (Nt—l)n[
- X2, X1 W e 0X3.p, 0
B= Z ' L M o (1.17)
ntzo : : : :
— - n R (M—=1)ny
le—Z,m xN[—3,n[wN[ le_lsnth[
— - n = (M=Dmy
N1 AN2n @y Ko Wy

has been proposed by using CDA|, where X, ,; = XpnNn+1 € C (1, ng=0...,N—1)
21
are the complex data symbols to be sent, and wy, = ¢/ M . Since we use Ty = N, time slots

tosend Kq4 = Nt2 symbols in (IL_17), the rate of this NO-STBRQ is K4/Tq = N;. Moreover,

when ¢ = ¢¥%/ and p = e/, the full diversity is also achieved under MLl decoding [20)].

The decoding of [21-24] to estimate the transmitted symbols can also
be regarded as the discrete-valued vector reconstruction. The received signal matrix
Y e C¥*Tu corresponding to B during Ty time slots is given by

Y=HB+V, (1.18)
where H € CN*M ig the channel matrix and V' € CNT4 ig the zero mean additive white

Gaussian noise matrix. From (I_I6) and (I_IR), we have Y = Zfil HC % + V and
hence 4 := vec(Y") € CNTd can be written as

Kq
g = Z(ITd ® H)vec(Cp)iy + vec(V) (1.19)
k=1
=(Ir,® H)C% + % (1.20)
= AZ + 9, (1.21)

where & = [% -+ F,|T € CK9, § = vec(V) € CNTo, C = [vec(C)) - -+ vec(Ck,)| €
CMIaxKa and A = (I, ® H)C € CMToxKa [D1]. Note that the size of the effective
channel matrix A € CM7e*Ks j5 much larger than that of H € CMM_ When we
use the NO-STBQ given by (IL17) and assume the overloaded scenario with N, < N,
the decoding is an underdetermined problem because K = NTyq > N;T4 and hence A

becomes a fat matrix.

Multiuser Detection

Multiuser detection is an important issue in M2M communications, where a number of
transmit node simultaneously transmit signals with low data rates [4,25,26]. We here
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consider the following received signal model

Ne
Y(6) = > haxasa(t) + () (1.22)
n=1

in the transmission period [0, Tp], where x,, € {1,0,—1} and s,(¢) are the transmitted
symbol and the signature waveform of the nth transmit node, respectively. #, is the
channel gain between the nth node and the receiver, and v(n) is the
Gaussian noise (AWGN) with zero mean. Note that x, = 0 means that the nth node is
not active in the transmission period.

Multiuser detection to reconstruct the transmitted symbols x,, can be considered as
the discrete-valued vector reconstruction. When we use M filters ¢,,(t) (m = 1, ..., My)

at the receiver, the output of the filter is y,, = /OTP y(t)em(T — t)dt. Letting s,,, =
/OTP Su(t)m(T — t)dt and v, = /()Tp v(t)pm(T — t)dt, we have

y=SHzx +v, (1.23)

where y = [y1 ny]T eRM H = diag(hy, ..., hn,) € RNXM e = [x1 th]T €
(1L, =1} v = [y -~ vy ]" € RM, and

Sl,l .« o sl,M
S=|: .. i |eRM (1.24)
SMpl  * 0 SMgN,
FTN Signaling

To achieve high speed data transmission, FTN signaling has attracted much attention [[10,
27-29]. In ETN signaling, the transmitter transmits signals beyond the Nyquist rate. For
example, when we consider the pinary phase shift keying (BPSK] signals xi, ..., xy, €
{1, =1}, the modulated signal in the transmission period [O, Tp] can be written as

N

X(1) = ) Xaan(t), (1.25)

n=1

where N is the number of transmitted symbols, 7, is the interval of one period, and a(1)
(n =1,...,Ny) is the modulation pulse. Hence, the received signal through the AWGN
channel is given by

Ns

() = ) Xaan(t) + vi(2), (1.26)

n=1
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where v(¢) is the AWGN with zero mean.

Detection of the transmitted symbols x,, from the received signal y(¢) results in the
discrete-valued vector reconstruction. Let ¢,,(f) (m = 1, ..., M) be an orthogonal basis
in the time-frequency space to which x(¢) belongs. We also define y,, = (y(¢), ¢m(?)),
Amn = (an(t), om(t)), and vy, := (v(¢), p,u(?)), where (-, -) denotes the inner product. We
then obtain

y=Ax + v, (1.27)
T My T N T
where y = [y1 -+ yu | €RY, @ =[x - ay] e {L-1}M v =[v v €
RMo and
al,] .o al,Ns
A=| .. | eRMXN (1.28)
aMb,l .. aMb,Ng

Since we have M}, < N; in FTN signaling, the detection problem can be regarded as the
underdetermined discrete-valued vector reconstruction.

1.3 Conventional Methods

In this section, we briefly review several conventional approaches for the discrete-valued
vector reconstruction.

LMMSE Method

Linear reconstruction methods obtain the estimate of the unknown vector & as & = Wy,
where W € CV*M is a weight matrix. In the LMMSE method, for example, the weight
matrix Wrmmse is determined by

Winmse = arg min E [||ng - i:ll%] (1.29)
WechM
~ - - -1
- R A" (ARXAH + a&IM) : (1.30)

where Ry = E [ii}"'] Although the linear reconstruction methods have low compu-
tational complexity, the reconstruction performance becomes poor in underdetermined
problems.
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Maximum Likelihood Method

The ML method obtains the vector s € CV that maximizes the likelihood function

. ll7 - As;
p(g|&=s)xexp|— —Qa | (1.31)
V
This approach is equivalent to the minimization problem
minimize ||g - As”; . (1.32)

seCN

The ML method can achieve the optimal performance in terms of the fymbol error ratg
when the distribution of the unknown vector x is uniform. However, since the op-
timization in (L32) is a combinatorial optimization problem, the required computational
complexity becomes prohibitive in large-scale problems. Although some complexity
reduction methods such as sphere decoding [30,31] and slab sphere decoding [5] have
been proposed, their complexity is still huge for tens or hundreds of N.

Local Neighborhood Search

In the context of MIMQ signal detection and the decoding of STBQ, several recon-
struction methods have been proposed on the basis of local neighborhood search. These
algorithms starts from an initial estimate and updates each element in an iterative manner.
The likelihood ascent search (LAS) [21],32,33] simply updates the element so that we
have a larger likelihood. The feactive tabu search (RTS) [34] incorporate the tabu search
technique to escape from the local optima. Since the performance of these methods
severely degrade for overloaded scenario because of many local optima, the eEnhanced
feactive tabu search (ERTS) has been proposed in [Z]. ERTS is an extension of
and employs RTS iteratively while randomly varying the initial point of the search until
a certain condition is satisfied. It is shown in [7] that ERTS can achieve comparable
performance to the optimal ML detection with affordable computational complexity for
overloaded systems with around 30 transmit antennas. If the number of anten-
nas further increases, however, ERTS requires prohibitive computational complexity to
achieve such performance because the required number of RTSs significantly increases.

Message Passing-Based Methods

Low complexity algorithms have been proposed for the discrete-valued vector reconstruc-
tion on the basis of pelief propagation (BP) [35,36]. For binary vector reconstruction,
approximated BP has been proposed with application to code division multiple access
multiuser detection [B7]. A similar algorithm named ppproximate message
passing (AMP) [38,39] has also been proposed for compressed sensing [40,41], and then
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applied to discrete-valued vector reconstruction [42] and more general scenario [43]. The
IAMP-based methods can be used for complex-valued vectors and its asymptotic perfor-
mance in the large system limit can be predicted by state evolution technique [BS8,44].
However, the empirical performance of the [AMB algorithm is degraded for small-scale
problems because of the cycles in the factor graph considered in the original BP [45,46].
Moreover, we require an assumption of the iLi.dl zero mean Gaussian measurement ma-
trix in the derivation of the algorithm. In fact, the performance of the AMP algorithm
might severely degrade for general measurement matrices. For example, the convergence
of the AMP algorithm becomes unstable for nonzero mean Lidlmatrix [47]. To improve
the stability of the AMP algorithm, several techniques such as adaptive damping, mean
removal, and sequential update have been proposed [47,48]. The convergence of gen
eralized approximate message passing (GAMP) [43] with the appropriate damping have
also been discussed in [49] for general measurement matrices under several assumptions
for the distributions of the unknown vector and the measurement noise. To overcome
this unstability of the IAMP algorithm, other message passing-based approaches, e.g.,
Expectation propagation (EP) [5(], vector approximate message passing (VAMP) [51]],
and prthogonal approximate message passing (OAMP] [57], have also been proposed.
The asymptotic performance of these algorithms has been theoretically analyzed for uni-
tary invariant measurement matrices [51,53], which is a wider class than iL.id] Gaussian
matrices.

Convex Optimization-Based Methods

Although the ML method can achieve excellent performance, the required computational
complexity becomes prohibitive when the problem size is large. To tackle this problem,
several convex optimization-based approaches have been proposed for the discrete-
valued vector reconstruction in the real-valued domain.

The box-relaxation method [54,55] is a convex relaxation of the MIl method under
the hypercube containing all possible discrete-valued vectors. In the real-valued case,
the box relaxation method uses the box constraint s € [ry, 7.]" as

minimize ||y — Asll% (1.33)

se[rr ]V

because the unknown vector satisfies € RY < [ry,r.]". Since both of the objective
function and the feasible region are convex, the optimization problem can be solved
with several convex optimization techniques. The asymptotic of the box relax-
ation method has been derived in [56] by using the convex Ganssian min-max theorem
(CGMT) framework.




14 Chapter 1

In [57], the regularization-based method given by

L
minimize Z |ls — rel||; subjectto y = As (1.34)
=1

seRN

has been proposed for the discrete-valued vector reconstruction in the noise-free case.
This method uses the regularizer Zé:l |s — r¢1]||; for the unknown discrete-valued vector.
The idea of the regularizer comes from compressed sensing [4(,41] for the reconstruction
of the sparse vector and the fact that the vector  — ry1 has some zero elements. As
described in [57], the optimization problem ([L.34) can be solved as linear programming.
As for the theoretical analysis, the SER of the regularization-based method has been
derived for the binary vector reconstruction. Some methods based on a similar idea have
also been proposed for the noisy measurement case [58,59]. However, these methods
cannot utilize the knowledge of the distribution of the unknown vector.

The pum of absolute values (SOAV) optimization [6Q] for the reconstruction of x is
given by
L
minim{\ilze Z qclls — rel||; subjectto y = As (1.35)
seR
=1

in the noise-free case, and

L
A
minimize s—red|; + = ||ly — As|3 1.36
nimi {;qfn Al + 5 lly ||2} (1.36)

in the noisy case, where g, (= 0) is a parameter and set as g, = p¢ in [60]. A (> 0) is
also an parameter to control the balance between two terms in the objective function.
Although the optimization is based on a similar idea as that of the regularization-
based method ([L.34), it includes the parameter g, in the objective function. By tuning
these parameters, we can take the probability py, . . ., pr into account. Since the objective
function of the optimization is convex, we can obtain a sequence converging to the
optimal solution by several convex optimization algorithms such as proximal splitting
methods [61]]. For example, an algorithm based on Beck-Teboulle proximal gradient
algorithm [62] has been proposed in [26]]. Some theoretical results about the
optimization have been derived in [26] by using festricted isometry property (RIP) [63].

1.4 Outline of the Thesis

As described in the previous sections, we need a low-complexity algorithm for the large-
scale discrete-valued vector reconstruction. Although the LMMSEHE method and the local
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neighborhood search have low complexity, their reconstruction performance severely
degrades for underdetermined problems. The message passing-based algorithms can
achieve good performance with low complexity. However, it requires some assumptions
on the measurement matrix and the large system limit. Since the measurement matrix has
various structures in the applications described in Section .2, we require an algorithm
which can achieve good performance without any assumptions on the measurement
matrix. We thus propose novel reconstruction algorithms in this thesis by extending the
conventional convex optimization-based methods, which does not require any explicit
assumptions on the measurement matrix.

Another issue on the discrete-valued vector reconstruction is the performance analy-
sis of the algorithms. For message passing-based methods, the asymptotic performance
has been analyzed under some assumptions on the measurement matrix. For box-
relaxation method and the regularization-based method, the theoretical results have
also been provided in the large system limit. However, the theoretical aspects of the
optimization has not been understood sufficiently. In this thesis, we thus analyze
the asymptotic performance of the optimization and the corresponding message
passing-based algorithm. The result of the analysis enables us to optimize the parameters
in the objective function. Moreover, we can derive the required number of measurements
for the perfect reconstruction in the noise-free case.

The remainder of this thesis is organized as follows. Figure L3 shows the overview
of the thesis.

Chapter 2: Binary Vector Reconstruction via Iterative Convex Optimization

In Chapter 2, we consider the binary vector reconstruction as the simplest case of the
discrete-valued vector reconstruction. We extend the conventional optimization
to the weighted sum of absolute values (W-SOAV) optimization so that we can use the
prior information of the unknown vector. Moreover, we propose an iterative approach
referred to as [terative weighted sum of absolute values IW-SOAV) to solve the W-SOAV]
optimization with the update of the parameters in the objective function. Simulation
results show that the bit error rate (BER) performance of the proposed method is better
than that of conventional schemes, especially in the large-scale overloaded MIMO signal
detection and the large-scale decoding of NO-STBC.

Chapter 3: Reconstruction of Complex Discrete-Valued Vector via Convex Opti-
mization with Sparse Regularizers

In Chapter B, we propose a method for the reconstruction of a complex discrete-valued
vector from its linear measurements. We propose a reconstruction approach of solving an
optimization problem called fum of complex sparse regularizers (SCSR) optimization.
The sum of sparse regularizers in the objective function can directly utilize the discrete
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Figure 1.3: Overview of the thesis

nature of the unknown vector in the complex-valued domain. We also propose an
algorithm for the SCSR optimization problem on the basis of plternating direction
imethod of multipliers (ADMM). For the proposed convex regularizers, we analytically
prove that the sequence obtained by the proposed algorithm converges to the optimal
solution of the problem. To obtain better reconstruction performance, we further propose
an iterative approach named fterative weighted sum of complex sparse regularizers (IW-
SCSR), where we update the parameters in the objective function in each iteration
by using the tentative estimate in the previous iteration. Simulation results show that
can reconstruct the complex discrete-valued vector from its underdetermined
linear measurements and achieve good performance in the applications of overloaded
signal detection and channel equalization.

Chapter 4: Discrete-Valued Vector Reconstruction by Optimization with Sum of
Sparse Regularizers

In Chapter 4, we propose a possibly nonconvex optimization problem to reconstruct a
discrete-valued vector from its underdetermined linear measurements. The proposed
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sum of sparse regularizers (SSR) optimization uses the sum of sparse regularizers as
a regularizer for the discrete-valued vector. We also propose two proximal splitting
algorithms for the optimization problem on the basis of ADMM and primal-dual
splitting (PDS). The ADMM-based algorithm can achieve faster convergence, whereas
the PDS-based algorithm does not require the computation of any inverse matrix. More-
over, we extend the ADMM]-based approach for the reconstruction of complex discrete-
valued vectors. Note that the proposed approach can use any sparse regularizer as long
as its proximity operator can be efficiently computed. Simulation results show that
the proposed algorithms with nonconvex regularizers can achieve good reconstruction
performance.

Chapter 5: Asymptotic Performance Analysis of Discrete-Valued Vector Recon-
struction with Sum of {; Regularizers

In Chapter B, we analyze the asymptotic performance of a convex optimization-based
discrete-valued vector reconstruction from linear measurements. We firstly propose a
box-constrained version of the conventional optimization, which uses a weighted
sum of £ regularizers as a regularizer for the discrete-valued vector. We then derive the
asymptotic performance of the box-constrained sum of absolute values (Box-SOAV)
optimization theoretically by using CGMT. We also derive the asymptotic distribution
of the estimate obtained by the Bax-SOQAV] optimization. On the basis of the asymptotic
results, we can obtain the optimal parameters of the optimization in terms
of the asymptotic SERl. Moreover, we can also optimize the quantizer to obtain the
final estimate of the unknown discrete-valued vector. Simulation results show that the
empirical performance of and the conventional is very close to
the theoretical result for Box-SOAV| when the problem size is sufficiently large. We also
show that we can obtain better SER| performance by using the proposed asymptotically
optimal parameters and quantizers compared to the case with some fixed parameter and
a naive quantizer.

Chapter 6: Discreteness-Aware Approximate Message Passing for Discrete-Valued
Vector Reconstruction

Chapter B considers the reconstruction of a discrete-valued random vector from possibly
underdetermined linear measurements using optimization. The proposed algo-
rithm, referred to as discreteness-aware approximate message passing (DAMP), is based
on the idea of IAMB, which has been originally proposed for compressed sensing. The
DAMP algorithm has low computational complexity and its performance in the large
system limit can be predicted analytically via state evolution framework, where we pro-
vide a condition for the exact reconstruction with DAMP in the noise-free case. From the
analysis, we also propose a method to determine the parameters of the SOAV optimiza-
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tion. Moreover, on the basis of the state evolution, we provide Bayes optimal DAMP,
which has the minimum mean-square-error at each iteration of the algorithm. Simulation
results show that the DAMP algorithms can reconstruct the discrete-valued vector from
underdetermined linear measurements and the empirical performance agrees with our
theoretical results in large-scale systems. When the problem size is not large enough,
the SOAVI optimization with the proposed parameters can achieve better performance
than the DAMP algorithms for high signal-to-noise ratio.

Chapter 7: Conclusion

In Chapter [1, we provide the summary and future work of this thesis.



Chapter 2

Binary Vector Reconstruction via
Iterative Convex Optimization

2.1 Introduction

In this chapter, we consider the binary vector reconstruction as the simplest example of the
discrete-valued vector reconstruction. We firstly formulate the optimization [60]
for the binary vector reconstruction in the noisy observation case. We then extend the
SOAV] optimization to the W-SOAV! optimization, where the prior information on the
unknown vector can be used, and propose an iterative approach, referred to as [IW-SOAVI.
In TW-SOAV], we iterate the optimization and the update of the parameters in
the objective function. can reconstruct the unknown binary vector with low
computational complexity because the optimization problem can be efficiently
solved with proximal splitting methods [61]]. Simulation results show that [W-SOAVI
has better BER performance than several conventional methods in signal detection and
the decoding of NO-STB(Cs in overloaded MIMQO systems.

The rest of this chapter is organized as follows. In Section 2.2, we present the pro-
posed [IW-SQAV ! for the binary vector reconstruction. Section 2.3 gives some simulation
results to demonstrate the performance of the proposed scheme. Finally, Section 2.4
presents some conclusions.

2.2 Proposed Method

2.2.1 SOAYV Optimization for Binary Vector Reconstruction

In this chapter, we consider the reconstruction of the binary vector = € {1, —1}" from
its linear measurements given by ([L1). We assume that the probability distribution is
uniform, i.e., Pr(x, = 1) = Pr(x,, = —1) = 1/2. From the symmetry of the distribution,
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Algorithm 2.1 Douglas-Rachford algorithm for (2.2)
: Fixe € (0,1),y >0, and zp € RN
:fort=0,1,...do

S = PTOXy¢2(Zt)

0, € [&,2 — €]

Zt+1 = 2 t Qz(Proxy¢l(23t —21) = 81))
end for

—

A A

the SOAV optimization ([L.36) in this case can be written as
1 1 A
minimize {= ||s = 1|, + = ||s + 1||; + = ||y — As]||3}, 2.1
nimi {2 s =1+ 5 lls+ 10l + 5 lly ||2} @1

where A (> 0) is the parameter. The solution of (2_1]) can be obtained with the following
theorem [61]].

Theorem 2.2.1. Let ¢y, ¢» : R¥Y — (—c0, 0] be lower semicontinuous convex functions
and (ri dom ¢1) N (ri dom ¢;,) # 0, where ri and dom denote the relative interior of the
set and the domain of the function, respectively. In addition, ¢;(s) + ¢(s) — oo as
||s]|, — oo is assumed. A sequence {s;} (t =0, 1,...) converging to the solution of

minimize {¢1(s) + da(s)} 22)

can be obtained by using the following Douglas-Rachford algorithm in Algorithm D_1I.

The Douglas-Rachford algorithm is one of the proximal splitting methods [61],
which can solve the optimization problem with the form of (2.2) by using the proximity
operator, which can be considered as an extension of the projection onto nonempty
closed convex sets for the convex function. In fact, for the indicator function t¢¢(w)
(te(uw) = 0if w € C, and (c(u) = oo otherwise) with such a convex set C, prox,.(u) is
the projection of u onto C.

In order to apply the theorem to our problem, we rewrite (2_1) as

minir@\i{ze {f(s)+g(s)}, (2.3)

where f(s) = A ||y — Asll% /2and g(s) = ||s — 1||; /2+]|s + 1]||; /2. Note that f(s)and
g(s) are lower semicontinuous convex functions due to the continuity and the convexity of
¢1 and £, norms. Moreover, we have (ri dom £)N(ri dom g) = (ri RV)N@ri RY) = RN £ 0
and f(s)+g(s) — oo as ||s||% — oo. Thus, we can calculate the solution of (2_1I) or (2.3))
by using Algorithm 21 with ¢;(s) = f(s) and ¢,(s) = g(s). The proximity operators
of v f(s) and yg(s) can be obtained as

-1
prox, ((u) = (I + ﬂyHTH) (u + /lyHTy) , (2.4)
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and

up+y (up <-1-7y)

-1 (-1-y<u,<-1)

[proxyg(u)]n =3u, (-1<u, <1) (2.5)
1 (1 <u, <1+vy)

up =7y (1+y <up)

respectively, where u, indicates the nth element of u.
The computational complexity of the algorithm is O(N?), which is dominated by the

o . -1, . . Co
matrix inversion (I + AyH TH ) in (2.4)). Note that the calculation of the inversion is
required only once, and thus the corresponding computational cost does not grow with
the number of iterations in the algorithm.

2.2.2 IW-SOAV

In this section, we consider to further improve the performance of the optimization
by extending the optimization into the optimization. Moreover, we also
propose the iterative approach named [IW-SOQAV|, where we iterate the W-SOAVI and the
update of the parameter in the objective function.

We firstly extend the optimization in (2_1) to the so that we can use
the prior information about x as

N
. . _ A
£ = arg min {Z (qr Isn— 1+ q, |sn + 1)) + 3 ly — Asll%}, (2.6)

seRN | 5
where we can choose the different parameters g and ¢, for each n. If there is no prior
information about x, i.e., g, = g, = 1/2, the optimization problem (2-6) is equivalent
to (2-1). If g; > g, then arg min (g |s, — 1| + g, |s, + 1]) = 1 and hence the solution

spER
of s, in (P.6) tends to take the value close to 1, and vice versa. Hence, if we have the

prior information about the unknown vector, we can incorporate them by tuning the
parameters ¢, and g, properly. The optimization problem (2_6l) can also be solved by
using the Douglas-Rachford algorithm. The proximity operator of

=

yew(w) =y ) (aylun = 11 + g5 luy + 1]) 2.7)

n=1
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Algorithm 2.2
Input: y € RY, A ¢ RM*N
Output: & e RV

1: Letx =0.

2: for k =1 to Kj;; do

3: Update ¢, and g, from &.

4 Fixee(0,1),y >0, and 29 € RV.

5: for t = 0to T; do

6: S; = proxygw(z,)

7: 0, € |&,2 — €]

8: Zir1 = 2 + Ht(proxyf(zst —2;) = 81))
9: end for

10: & = gl

11: end for

12: & = sl

can be written as

[prox,,,_(w)],
Up +y (up < =1-1y)
-1 (-1=y <u, <-1-dyy)
=qu, +dyy (—1—dyy <u,<1-dyy), (2.8)
1 (1-dyy<u,<1+vy)
up =y (I+y <uy)

where d, = ¢ — ¢,. By solving the optimization problem in (2.f]) via the Douglas-
Rachford algorithm with prox,, , and prox a new estimate of the unknown vector x
can be obtained.

V8w’

To implement the idea of W-SOQAV|, we propose an iterative approach summarized
in Algorithm D2, referred to as [W-SOAVI. In each iteration of [IW-SOAV], we use the
estimate obtained in the previous iteration as the prior information. By calculating the
weights ¢, and ¢, from the estimate and solving the optimization problem,
we can obtain an improved estimate of . We discuss the method of the weight update
in the next subsection.

The computational complexity of is the same order as that of the Douglas-
Rachford algorithm for the SQAVI optimization because it is dominated by the matrix
inversion (I + /lyHTH)_l in (2-4).
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Figure 2.1: g, and ¢,, in the simple approach

2.2.3 Weight Update Rule in IW-SOAV

As a candidate for the weight update rule, we can consider the simple method given by

0 (X, < -1)
1+3%,
g =15 (l<h<l) 2.9)
1 (1<%
and
1 (%, < —1)
- + 1_jen ~
g, =1-¢q" = 5 (-1<%,<1). (2.10)
0 (1<%

Figure D1 shows ¢, and ¢g,, as a function of £,. ¢, is large when %, is large, whereas g,
is large when %, is small.

Although the above approach is very simple, it does not use the previous estimate of
other symbols x; (i # n) to obtain the weight ¢, and ¢, . As a more reasonable approach,
we here propose the [og Tikelihood ratio (LLR)-based approach. We firstly consider to
approximate the posterior LLR of x,, defined as

plxn=+11y)
px,=-1]y)
n = 1
zlogp(ylx )
Py | x,=-1)

A, =log (2.11)

(2.12)
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by using the current estimate £. To reduce the computational complexity, we firstly
approximate A, as

M
Hp(ym | x, = +1)
m=1
A, =log I (2.13)
HP(Ym | x, = —1)
m=1
M
m n = +1
:ngp(y % = 1) (2.14)
m=1 p(ym | Xn = — )
by assuming that the observations yy, ..., yy are independent, which means p(y | x, =

+1) = Hnﬁlep(ym | X, = +1) and p(y | x, = —1) = Hnﬂlep(ym | x, = —=1). By
using the similar idea to the Gaussian approximation in the BP-based detection [64], we
rewrite y,, as

N

Ym = QmpXn + Z Amk Xk + Vi (2.15)
o

= AmpXn + &) (2.16)

where &), = Z;{v: | k#n @mkXk + V. Since & is the sum of N — 1 independent random
variables and Gaussian noise, we can approximate it as a Gaussian random variable from
the central limit theorem when N is large. We thus calculate (2-14) as

M M
m n — +1 2amn m "
Zlog p(ym | x - 1) N Z , (yz ﬂ-fm)’ 2.17)

where pgn and o?,, represent the mean and the variance of &), respectively, which are
given by ’

N

pep, = > amiB[x], (2.18)
k=1
k#n
N

ok =) a2, (1 —E[xk]z) +o2. (2.19)
ik

Since E [xi] is not available in general, we approximate per and 0'.,;2_,, using the current
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estimates X, ..., Xy as

N
per & fler = ) anmi, (2.20)

Ton ® O = Z Uy (1 - (fk)z) + oy, 2.21)
where

=38 (-1<%,<1) (2.22)

is bounded in [—1, 1] so that 1 — (fk)z in (2.21)) is not negative. From (2.14), (2.17),
(220) and (2.21), the posterior LLRI of x,, can be approximated as

M
Ao Agi= . (2.23)

From the approximated posterior LLR A,, we use the approximation of the posterior
probabilities Pr(x, = +1 | y) and Pr(x, = —1 | y) as ¢,; and g,,, respectively, and update
A
+ e - 1
q, = —, ¢, = —. (2.24)
A P VR A
It should be noted that the LLR-based approach can be combined with the channel
decoder as shown in Sec. 3.2,
Since the computational complexity of (2223) is O(M N), the complexity for the direct
calculation of Ay, ..., Ay will be O(MN?). However, we can reduce the complexity to
O(MN) by calculating and storing

N

fin = ) A, (2.25)
k=1

o=y (1= 2 + o, (2.26)

k=1
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in advance. Since (2-25) and (2.26) can be calculated with the complexity of O(N), we
can obtain all of fi,, and 62 (m = 1,..., M) with O(MN). By using fi,, and &,, (2-20)
and (R21]) are rewritten as

figy = fim = amanky, (2.27)
6% = 67—, (1 — (&, 2), (2.28)

which can be obtained with O(1). With (2.25)—(2.28), (2.23)) can be rewritten as

~ i 2am,rz {ym - (ﬁm - am,nﬁilz)}

A, =
A gl -ad, (- (3)?)

(2.29)

and hence the complexity needed for the calculation of each A, is reduced to just
O(M). As aresult, we can obtain Ay, ..., Ay with the complexity of O(M N), while the
complexity of the Douglas-Rachford algorithm for the SOAV optimization is O(N?).

2.2.4 Extension to Non-Binary Vector

Although we have focused on the binary vector reconstruction in this chapter, we can
extend the proposed approach to the reconstruction of non-binary vectors. The W-SOAVI

optimization in (2-6) can be extended for the reconstruction of « € {ry,..., rL}N as
N L 1
& = arg min {(Z Z qen |Sn — rg|) + 3 |y — As||%}, (2.30)
seRN (=1 r=1

where g¢,, (> 0) is the parameter. We have proposed a method for the error recovery
of MIMQ signal detection with QPSK]|, where we reconstruct the discrete-valued vector
in {-2,0, 2}N [65]. In [65], the parameter g, , is determined on the basis of the relaxed
maximum a posteriori (MAP) estimation with approximated LLRIs.

2.3 Simulation Results

In this section, we show the performance of [IW-SOAV] in two applications in communi-
cation systems via computer simulations. As the weight update rule, we use the proposed
LLR-based approach.

2.3.1 Overloaded MIMO Signal Detection

As discussed in Section [L2, massive overloaded MIMQ) signal detection can be regarded
as the discrete-valued vector reconstruction. When we use [QPSK| with (cy, ¢, ¢3,¢4) =
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Figure 2.2: BER performance for MIMQ with (N, N;) = (50, 32)
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Figure 2.3: BER performance for MIMQ with (N, N;) = (100, 64)

(1+j,—-1+j,—1—j, 1—j) as the modulation method, the signal detection problem results
in the binary vector reconstruction in the real-valued domain after the transformation
to the model (L3). We here present several simulation results for massive overloaded
MIMOQ signal detection via [W-SOAVI.

Figures 2.2 and shows the BER performance versus fignal-to-noise ratio (SNR)
for overloaded MIMQ systems with (N, N;) = (50,32) and (N, N;) = (100, 64), respec-
tively. In the figures, we assume flat Rayleigh fading channels and set A=A,
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Table 2.1: The value of A in (2_€)
SNR per receive antenna (dB) | 0-10 12.5-20 225 25-30

P |oor 01 03 1

which is composed of Lidlcomplex Gaussian random variables with zero mean and unit
variance. We denote the LMMSH detection by “MMSE”, the BP-based detection named
eraph-based iterative Gaussian detector (GIGD) [64] by “GIGD,” the detection with a
quadratic programming [58] by “Quad-min”, and the massive overloaded MIMQ signal
detection proposed in [7] by “ERTS”. The parameters of ERTS are the same as those
in [7], e.g., the maximum number of RTSs is Ngrg = 500 and the maximum number
of iterations in is Nix = 300. “ITW-SOAV” denotes the convex optimization-based
in Algorithm 2.2. The parameters of the Douglas-Rachford algorithm are set
aszp=0,e=0.1,y=1,and 6, =19 (t =0,1,...,T;), which give fast convergence.
The number of iterations in the Douglas-Rachford algorithm is fixed to 7, = 50, which
is sufficiently large for the convergence of the algorithm. The parameter A in (2-f) is
selected as shown in TABLE D_1I, which is determined from simulation results. In the
figures, Tj is the number of iterative optimizations in [W-SOAV!. In Fig. .2,
where N; = 50, the performance of is inferior to that of ERTS. In Fig.
with Ny = 100, however, the performance of ERTS has degraded and TW-SOAV| has
better performance in high SNR. The reason for the performance degradation of ERTS
is that, if the number of transmit antennas is large, often fails to find the true
transmitted signal vector due to the huge number of candidates of the transmitted vec-
tor. Although we may get better performance with ERTS by increasing the number of
RTS5s, the computational complexity could be prohibitive to achieve comparable perfor-
mance as [W-SOAVI. Specifically, the computational complexity of ERTS is given by
O(NS’) + O(NrTsN?) in the worst case, and since the number of all candidates of the
transmit signal vector increases exponentially with the number of transmit antennas, the
required Nrrs to keep good performance will increase more rapidly than »;. On the
other hand, the computational complexity of IW-SOAV! is O(N?).

Figure 24 shows the BER performance versus the number of receive antennas N; for
N; = 150 and the SNR per receive antenna of 20 dB. We can observe that with
L = 5 requires less antennas than other schemes to achieve a certain BER performance.
For BER = 10~%, IW-SOAV can reduce more than ten receive antennas compared to
ERTS.

In Fig. .5, we also show the BER performance for spatially correlated MIMQO
channels with (M, N;) = (100,64). We assume a linear array with equally spaced
antennas in both the receiver and the transmitter, and set to d; = d; = 0.54, in the
simulations, where d; and d; are the antenna spacing at the receiver and the transmitter,
respectively, and Ay, is the wavelength. From Fig. D5, we can see that the proposed
scheme can achieve better performance compared to the conventional schemes even in
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Figure 2.4: BER performance versus N; for MIMQ with N; = 150 and the SNRI per
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Figure 2.5: BER performance for spatially correlated MIMQ with (N, N;) = (100, 64)

the spatially correlated MIMQ) channels, while the performance of GIGD and ERTS is
degraded significantly.

To compare the computational complexity, we evaluate the average computation time
to detect a transmitted symbol vector versus N; and the corresponding BER performance
for the fixed ratio N;/N; = 2/3 and the SNR per receive antenna of 17.5 dB in Figs. 2.6
and R, respectively. The simulation is conducted by using a computer with 2 GHz
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Intel Core i7-3667U and 8 GB memory. The channel matrix is composed of iid]
Gaussian variables. In the figures, “PVC” represents the signal detection scheme called
pre-voting cancellation (PVC) [A], which is intended for small-scale overloaded MIMQ
systems. Although can achieve a comparable BER| performance to M1 detection
for small-scale MIMQ systems, its average computation time rapidly increases along
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Figure 2.8: Model of coded MIMO systems

with M. In Fig. 27, the BER performance of ERTS severely degrades for large V.
This is because the maximum number of RTSs is limited as Ngrs = 500 to avoid the
prohibitive computational complexity, while the number of candidates of the transmitted
signal vector exponentially increases along with »;. Compared to the conventional
detection schemes, the proposed can achieve better BER performance with
lower complexity in large-scale overloaded MIMQ systems.

2.3.2 Signal Detection in LDPC-coded Overloaded MIMO Systems

Next, we evaluate the performance of the proposed in MIMQ systems with [ow]
density parity check (LDPC) codes [66, 67]. Since the proposed W-SOAV] optimization
can use the posterior LLRIs of transmitted symbols as the prior information, we can
integrate it with soft channel decoding schemes, e.g., codes or turbo codes. We
thus consider a joint detection and decoding scheme using the optimization
for coded massive overloaded MIMQ systems.

Figure D_8 shows the system model of the coded MIMQ with N; transmit antennas
and N; (< N,) receive antennas. In the transmitter, Q information bits are encoded into
P coded bits by a channel encoder with the code rate R = Q/P. For simplicity, P is
assumed to be a multiple of 2V;. P coded bits are then modulated into P/2 QPSK]
symbols and sent from N, transmit antennas over T = P /2N, symbols time.

The received signal vector at time 7 € {1,...,T} is given by

G0 = ADgO 4 ), 2.31)
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where A, 2, and 8 are the channel matrix, the transmitted signal vector, and the
noise vector at time 7, respectively. We can convert (2.31]) into the real signal model

g = AOZO 4 0, (2.32)

In the proposed detection and decoding, we iteratively perform the detection with the
W-SOAVI optimization and the channel decoding to update LLRIs of transmitted symbols.
The detector obtains the estimate &) of ¥ with the W-SOAVI optimization using the
information from the channel decoder except for the first iteration. Specifically, by using
the posterior LLRI obtained at the output of the channel decoder as

p(af) =119

A" = log - , (2.33)
P (xn =-1 | y(l))
the weight parameters of the optimization are given by
FI0)
sy _ e ] 2.34
n R (2.34)

as in (2-24). After the detection via the W=SOAV optimization with the above g, @ and

A A " T A
q.®, we calculate the posterior LLRIs A(t) = [A(f) A(ztj)vt] , where A,(f) is given by
A

(229). Using all LLRIs f\(l), ..., A" " as the input, the decoder performs the soft channel
decoding and outputs new posterior LLRis AV, ..., AT to the MIMQ detector, where

T
A0 = [/lgt) - /1(22&] . After a certain number of the iterations of the detection and

decoding, the decoder outputs the decoded bits as the final estimate of the transmitted
information bits.

Figures 2.9 and 210 show the BER performance of the proposed signal detection
and decoding for coded MIMQ with (N, N;) = (100, 64). The parameters of the
algorithm are set as Tj; = 30 and A = 0.01. The code rate is R = 1/2, and the column
and row weights of the parity check matrix are three and six, respectively. In the figures,
the code length are N, = 4000 and 8000, respectively. We represent the proposed
joint detection and decoding by “Joint det./dec.”, where K.« indicates the maximum
number of iterative optimizations. Even before the K.« th iteration, the
decoder outputs the final estimate of the information bits if the decoded bits satisfy all
parity check constraints. From the figures, we can see that, as the iteration proceeds, the
performance of the joint detection and decoding is considerably improved via LLR update
between the optimization and the decoding. For comparison, we also
plot the performance of the independent detection and decoding (“Independent
det./dec.”), where [IW-SOAV] with Kj;; = 5 is used as the detection scheme. Moreover,
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Figure 2.9: BER performance for coded MIMQ with (N, N;) = (100,64), R = 1/2
and N = 4000
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Figure 2.10: BER performance for coded MIMQ with (N, N;) = (100,64), R =
1/2 and N = 8000

“GIGD+LDPC” shows the performance of the joint detection and decoding with
and decoding, which are integrated in the same manner as in Fig. 2.8. The
number of outer iterations between the detector and the decoder is set to 5. We can see
that the proposed joint detection and decoding achieves much better performance than
the scheme with and the independent approach. Each element of the estimate
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Figure 2.11: BER performance in iLidl channels with NO-STBQ (N; = 9, N; = 6)

& obtained by with Kj; = 5 is almost hard decision, i.e., close to 1 or —1,
and hence decoding in the independent approach has poor performance even
compared to the case with Kj; = 1. The figures also show that the performance is
improved as the code length increases.

2.3.3 Decoding of NO-STBC

Next, we show some numerical results for the decoding of NO-STBQ discussed in
Section 2. We use and given by (ILI7) with 6 = ¥/ and p = /.
The parameters in [IW-SOAV| are ¢ = 0.1, y = 1, 290 = 0, Tjy = 50, and 6; = 1.9
t=0,...,Tiy).

Figures 211 and show the BER performance for overloaded NO-STBCs. In
the figures, we assume Li.dl channels as H = H,;,, where the elements of H, ;4
are iLid| circular complex Gaussian variables with zero mean and unit variance. We
denote the LMMSE decoding by “LMMSE”, the RTS-based decoding [22] by “RTS”,
and the proposed scheme by “Proposed”. We also plot the performance of
ERTS [7], which has been proposed for signal detection in uncoded overloaded MIMQO
systems with tens of antennas. The parameters of RTS and ERTS are the same as those
in [22] and [[7], respectively. For the proposed [IW-SOAV], the parameter A is determined
as in TABLE 1. Figure D11 shows the performance for more number of antennas
(Ny, N;) = (9, 6), where the size of the measurement matrix A in the resultant real-valued
model is 108 162. In this case, we estimate the transmitted symbol vector in {1, —1}162,
which is equivalent to the signal detection for uncoded massive overloaded MIMQ with
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Figure 2.12: BER performance in iLi.d| channels with (N =12, N; = 8)
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Figure 2.13: BER performance in spatially correlated channels with (NV; =
12, N; = 8)

(Ny, N;y) = (81,54). Although ERTS achieves better performance than the proposed
for SNRs around 15 dB, its complexity is much larger than the proposed
with Kj = 3 according to Fig. 6. In Fig. D12, where (N, N;) = (12, 8) with
A of size 192 x 288, the proposed outperforms the conventional schemes for
all SNRis.

Figure shows the BER performance in spatially correlated channels. We assume
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(N, Ny) = (12,8) and a linear array with equally spaced antennas at the receiver and
transmitter. We denote the antenna spacing at the receiver and the transmitter by d, and
dy, respectively, and set d; = d; = 0.5, in the simulations, where A, is the wavelength.
Figure shows that the performance of the proposed in spatially correlated
channels is comparable to that in iidl channels, while the BER of ERTS significantly
degrades.

2.4 Conclusion

In this chapter, we have proposed the binary vector reconstruction method named WA
SOAV, which iteratively solves the convex W-SQAV| optimization problem with updating
weights in the objective function. The W-SOAV optimization can be efficiently solved
with the proximal splitting methods. A similar approach can be applied to the recon-
struction of non-binary vectors as in [65]. Simulation results show that can
achieve better performance than conventional methods in large-scale overloaded MIMO
signal detection and the decoding of NO-STBCs.



Chapter 3

Reconstruction of Complex
Discrete-Valued Vector via Convex
Optimization with Sparse Regularizers

3.1 Introduction

As shown in Section L2, we need to perform the discrete-valued vector reconstruction
in the complex-valued domain in many applications of communication systems. Several
message passing-based methods [42,50,53] can be used for complex-valued vectors
and its asymptotic performance in the large system limit can be theoretically predicted.
For arbitrary measurement matrices, however, the performance has not been verified
theoretically. Moreover, the assumption of large system limit remains in the derivation
and the analysis, and hence the performance may degrade for finite-scale problems. On
the other hand, as described in Section [L3, several convex optimization-based methods
have been proposed for the discrete-valued vector reconstruction [54,57,6(]. However,
they reconstruct the discrete-valued vector in the real-valued domain and cannot be
directly used for the reconstruction of complex discrete-valued vectors in general. When
the real part and the imaginary part of the unknown vector are independent each other,
we can use the reconstruction methods by converting the original model in the complex-
valued domain into the equivalent model in the real-valued domain as shown in (IL3).
When they are not independent, however, this approach is not appropriate because we
cannot take advantage of the dependency between them. In such cases, we should
directly use the discrete nature of the unknown vector in the complex-valued domain.
In this chapter, we extend the optimization for the reconstruction of complex
discrete-valued vectors. This extension enables us to directly reconstruct the complex
discrete-valued vector even when the real part and the imaginary part are not indepen-
dent. We provide an optimization algorithm for the proposed SCSRI optimization on the
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basis of ADMM [61,68-71]. To obtain better reconstruction performance, we further
extend the optimization to the weighted sum of complex sparse regularizers (W-
SCSR) optimization and propose [W-SCSRI, which iterates the optimization
with updating parameters in the objective function in each iteration. We also discuss
the selection of the parameter in the W-SCSRI optimization and the computational com-
plexity reduction scheme for the proposed algorithm. Moreover, we prove that the
sequence obtained by the proposed algorithm converges to the optimal solution of the
optimization problem without any explicit assumptions on the measurement
matrix. Simulation results show that the proposed can achieve better per-
formance than AMP- and EP-based algorithms for overloaded MIMQ signal detection
with around tens of antennas. For sparse discrete-valued vector, [IW-SCSRI| outperforms
the £; optimization, which uses only the sparsity of the unknown vector. The proposed
also achieves good performance for channel equalization in the single car-
rier block transmission using cyclic prefix, where the measurement matrix becomes a
block circulant matrix. These results suggest that the proposed [W-SCSRI has wider
range of applicability than some existing message passing-based methods, especially for
communications applications.

The remainder of this chapter is organized as follows. We present the proposed SCSR
optimization and [W-SCSRJ in Section B.2. In Section B.3, we show some simulation
results to demonstrate the validity of the proposed approach. Section B4 gives some
conclusions.

3.2 Proposed Method

In this section, we present the optimization and the proposed algorithm based
on ADMM. We also propose [W-SCSRI and discuss the convergence of the proposed
algorithm for the W-SCSRI optimization.

3.2.1 SCSR Optimization

A straightforward approach to reconstruct the discrete-valued vector & in (IL2) is the
ML method in (IL32) under the additive Gaussian noise. The problem (IL32) is a
combinatorial optimization problem and hence the required computational complexity
can be prohibitive when the problem size (N, M) is large. We thus require a low-
complexity method for the large-scale discrete-valued vector reconstruction.

We extend the SOAV| optimization [6(] in (L36), which reconstructs the discrete-
valued vector in the real-valued domain, to the reconstruction of the complex discrete-
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valued vector. The proposed SCSR optimization is given by

L
minimize {Z qegr(s—cel)+ A ||g - As”z} , (3.1)

N
seC =

where 4 and g, > 0 (¢ = 1,..., L) are the parameters. The function g : cN 5 R
is a sparse regularizer and thus the first term Zfﬁzl qe8r (s — c¢1) can be considered as
a regularizer for x* € CV, which uses the fact that  — ¢,1 has some zero elements.
When g;(+),. .., gr(-) are all convex, the optimization can be regarded as a convex
relaxation of the ML method in (.32).

The SCSR optimization (B_1) is an optimization problem in the complex-valued
domain CV. As described in Section [T, the conventional optimization in the
real-valued domain might be inappropriate for the complex discrete-valued vectors in
general. On the other hand, the optimization problem can directly consider the
reconstruction in the complex-valued domain.

3.2.2 Choice of Sparse Regularizers

In this paper, we consider £; regularization-based two convex sparse regularizers hil)(-)
and hill(-) given by

Y (w) = lull, 3.2)
= i VRe{u, }2 + Im{u, }2, (3.3)

o
i) (w) = [Re{u}l; + lImu} ], (3.4)
= i(lRe{un}l + [Im{u, }) (3.5)

as the candidates of g¢(-). The first regularizer hil) () is based on the modulus for complex
numbers, whereas hilz(-) handles the real part and the imaginary part separately. When
the real part and the imaginary part are independent on C, the optimization with
hg() is equivalent to the corresponding SOAV optimization in the real-valued domain
for (L3).

We need to choose the regularizers h(*l)(-) and hill -) appropriately for C. For
example, in Fig. B, we show the contour plot of Zﬁz 1 qe&e (s — c¢) in the op-
timization (B.1) for (cy, ¢z, ¢3,¢4) = (1 +j,—-1+j,—1—j,1—j) and (91,92, 93, q4) =
(0.25,0.25,0.25,0.25). Figs. B_1(a) and B_1(b) show the contours for g,(-) = h{"(-) and

gr() = hg(-) (¢ =1,...,4), respectively. We can see that the contours are quite different.
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Figure 3.1: Contour plot of the function 2?21 qe8e (s —ce): (cr,c0,¢c3,¢4) = (1 +j, -1+
J,—1—j,1—=j)and (q1, 92, 43, q4) = (0.25,0.25,0.25,0.25). The crosses indicate c;.
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Figure 3.2: Contour plot of the function 2221 qe&e (s —cp): (c1,c0,¢3,¢c4,05) = (0,1 +
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indicate c;.

The function Z‘{}:l qc8e (s — c¢) has the minimum value only at s = O when g¢(-) = hil)(-),
whereas it has the minimum value on {s | Re{s} € [-1, 1] and Im{s} € [-1, 1]} when
gr(-) = hg(-). From the perspective of using the discreteness of & € C", the function
Z?:l qc&e (s — c¢) should have the minimum value atleastonC = {1 + j, -1 + j,—-1 —j, 1 — j}
and hence hil,Z() is preferable in this case. As another example, we also show the
contour for (C], C2, C3, C4, C5) = (O, 1+j,-1+j,-1-j,1-j) and (q1, 92, 93, 4, q5) =
(0.8,0.05,0.05,0.05,0.05) in Fig. B2. The regularizers are selected as g;(-) = hg)(-)
and g¢(-) = h{)() (¢ = 2,...,5) in Fig. BX(a), and g,() = h)() (¢ = 1,...,5) in
Fig. B2(b). When we use the regularizer in Fig. B.2(b), either the real part or the
imaginary part of s can be zero because the regularizer treats them independently. This
property is not suitable for C = {0, 1 + j,—1 + j,—1 — j, 1 — j}, where the real part be-
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comes zero only when the imaginary part is zero. We thus should use the regularization
with g((-) = hil)(-) and g,(-) = hill(-) (¢ =2,...,5) in Fig. B2(a) for discrete-valued
vectors in {0, 1 + j, -1+ j,—-1—j,1 —j}N.

3.2.3 Proposed Algorithm for SCSR Optimization

We propose an algorithm for the SCSR| optimization (B-1l) on the basis of ADMMI. The
optimization problem (B_1l) can be rewritten with new variables z1, ..., 2y € CN as

L
minimize {Z qe8e(ze —cel) + A ||i'7 - AS”i}
=

8,21,...,21 ECN

subjectto s =2z, ((=1,...,L). (3.6)
The problem (B.6) is further rewritten as the standard form of ADMM, i.e.,

minimize S)+g2(z
minimize {f () + ¢ (2)}

subject to ®s = z, (3.7)

where z = [2] - 2]]" € CIV, f(s) = A||g - As|. g (2) = T, qege (= - o),

1 L
and ® = [Iy --- Iy]" € RENXV,
We derive the update equations of the proposed algorithm for the optimization

problem (B.7). The augmented Lagrangian function for (B7) is given by

Ly(5,2,0) = f(s) + g(2) + 2Re{0"(®@s — 2)} + p||®s - 2|3, (3.8)
where 8 € CIN and p > 0. The update equations of ADMM are given by
s = arg min £,(s,2',0"), (3.9)
seCN
2! = arg min £p(st+1,z, 0", (3.10)
zeCLN
0t+1 — 0[ +p((I)St+1 _ zH—l)’ (311)

where  is the iteration index. From the identity 2Re{0Hu}+pl|u||§ = p||u+'w||§—p||w||%

(u € CEN and w = 6/p), we have
s = arg min {f (s)+p|®s -2+ wt”;} , (3.12)
seCN
2! = arg min {g (2) + p||@s™ -z + w’”i} , (3.13)
zeCLN

wt+1 — wl + (I)Sl‘+1 _ ZH-I, (314)
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where w' = §'/p € CIV,
The update of s’ in (3_12) can be written as

s =argmin {a]|g - As[; + p[|@s - 2"+ w[} . (3.15)
N

seC

The Wirtinger derivative [[72] of the objective function in (B_13) is given by

0 Ty 2
] {/1 17 - As|, + p|l®s - 2" + wtuz}
L
- (pLIN +/1AHA) s - (pz (2} — wh) +/1AH37), (3.16)
=1
where w), € CN (£ = 1,.. ., L) are subvectors of w' defined as w' = [(w))" --- (w})"]".
We can thus rewrite (B12) as
R _
s = (pLIN + AAHA) P> (= —w)) + 1AMg). (3.17)
=1

The update of 2z in (B.13) can be written with the proximity operator of i g()as

t+

21 = prox | (cbs’“+wf). (3.18)
Zpg

Let g (z¢) = §e(z¢—cel) and uw = [u] --- uT|" € CLV (u; € CV). The proximity

operator of ﬁ g(+) can be written as

prox, (w1)
prox 1, (u) = : (3.19)
Zpg
proxy, (ur)
al+ prox;’—},& (ug —c11)

= : (3.20)

crl +proxa, (up —cpl)
| 20 8L

because the function g(-) is separable as g (z) = Zfz 1 e8¢ (z¢). From (B.19) to (B20),
we have used g/ (z¢) = g, (z¢ — c¢1) and the property of proximity operator for transla-
tion [61]].

We thus need to calculate the proximity operator about hil) (-) and hg(-) in (B3)
and (B5), respectively, which are candidates of g,(-). From the result in [Z1], the
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proximity operator of yh&l)(-) (y > 0) is given by

[u],
(lwlal =) (lwlal = ¥)
[prox o ()] =T gl ST (3.21)
* n
0 ([ulal <)
where u € CV. We can transform the proximity operator of yhill() as
Prox ,m (u)
_ : (1) 1 2
=argmin {yh,/(s)+ = |[s —u|l; (3.22)
seCN 2

. 1 2 1 2

= arg min {(’Y llsrlly + 3 llsr — uR||2) + (7 lIs1ll; + 3 llst — u1||2)},
s=sR+j31€CN
(sr.s1€RY)

(3.23)

where ug := Re{u} € R and u; := Im{u} € R are the real and the imaginary parts
of u € CV, respectively. The minimization with respect to s € CV in (3223) can be
divided into the minimization with respect to sg € RY and s; € RY. We can thus write
prox ,a (u) with the proximity operator of the ¢; norm in the real-valued domain as

[proxy 0 (u)]n
= |prox, .y, (ur)| + 7+ [prox,y, ()| (3.24)
= sign ([ur],) max ([[ur],] =¥, 0) +j - sign ([wi],) max ([[wi],] = ¥,0), (3.25)

where [ug], and [ug], are the nth element of ug and wy, respectively. By using (B.21)
or (B.25), we can compute the proximity operator of zlp g(+) in (B20).

We summarize the proposed algorithm for the optimization (B7) in Algo-
rithm B1l. The order of the computational complexity is O (N 3) because it is dominated

by the inverse matrix (pLIy + /lAHA)_I. It should be noted that the computation is
required only once in the algorithm. Once we obtain the inverse matrix, the update
equations of the proposed algorithm can be performed with O(N?). Note that the pro-
posed algorithm does not require the proximity operator of Z?Zl qe&r (s — c¢1), which
depends on the selection of g,(-). We can implement the proposed algorithm only with
prox e g(»(') given by prox h(*l)(') in (B21)) or prox_ hill(‘) in (B.25).

3.24 IW-SCSR

The SOAV] optimization has been extended to W-SOAV! optimization to use the prior
information about the unknown vector in Chapter Q. In Chapter @, an iterative approach
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Algorithm 3.1 Proposed Algorithm for Optimization (B.7)
Input: § € CM, A e CM*N

Output: & e CV

: Fix p >0, 29 e CLN and w® e CLN

2: fort =0to Ty, — 1 do

—

v s = (pLIy+ AAMA) T (p 3L (2 - w)) + 2A%g)
4: z}” =cpl+ ProXac g, (s’+1 +w) - Cgl) t=1,...,L)
5: wz,” =w2+st+1—z2+1 (¢=1,...,L)

6: end for

7. & = gl

named has also been proposed to obtain better performance. The

iterates the optimization with updating parameters in the objective function.
Assuming that the sparse regularizer g,(-) is element-wise as hil)(~) or hill() we

here extend the optimization problem (B_1)) to the optimization given by

L N
minimize {Z Z Gn.e8e (Sp—co) + A ||g - As”z} , (3.26)

N
seC =1 n=1

which is equivalent to

L N
minimize {Z Z qne8e (zne —co) + A ”37 - AS”;}

8,21,....2,€CN

=1 n=1
subjectto s=z;, ((=1,...,L). (3.27)
Here, g, ¢ is the parameter and z, ¢ is the nth element of z;, (n = 1,...,N and ¢ =
1,..., L). Note that we can use different parameters g, ¢ for each element s, of s, whereas

a common parameter g, is used for all s,, in (B_1l). The optimization problem (3.27) can
be further rewritten as

minimize {f(s) + gw (2)}
seCN, zeCLN

subject to ®s = z, (3.28)

where gy (2) = X5 XN gue8e (2 — c¢). The optimization algorithm for (328) can
be obtained by replacing prox L g(-) in (B.20) with prox Lg (-). By using the same
0 p SV
approach as in (3.20), prox ig (w) is given by
p OV

[proxﬁgW (u)] =cr+ prOqun_igf (tne — ct) (3.29)

(t=1)N+n
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Algorithm 3.2

Input: § € C¥, A e CM*N

Output: & € CV
1: Initialize ¢,y (n=1,...,Nand € =1,...,L).
2: for k = 1 to Kj, do

3: Fix g, > 0, p > 0, 29 € CLV, and w® e CLN
4: 1= Z§7/=1 pe Z§=1 ZnNzl qne&e(ce — cr)
' B:May
5: forr =0to Ty — 1 do
6: s = (pLIy + /IAHA)_l (p >k (z{’f - wz,) + /IAHg)
7: zﬁ:fl =cr+ prox%g[ (s,’fl + w;’[ - Cg) (m=1,...,Nand¢=1,...,L)
8: wé;” ='wé+s“rl —zé” (¢t=1,...,L)
: end for
10: dy = Tm—cf‘(n_1 L Nandl=1,...,L)
—l
11: qnt = (n=1,...,Nand¢=1,...,L)
Z(” 1 nf’
12: end for
13: & = glir
where u,, ; denotes the nthelementofu, ({ = 1,...,Landn = 1,..., N). The coefficient

qn.e/2p of g¢(-) depends not only on ¢ but also on z in (B.29) unlike prox u« g€(~) in (B320).

We propose an iterative approach called in Algorithm B2, where we
iteratively calculate the solution of the optimization (B28) with the update of
the parameter g, ¢. In such an iterative approach, the parameter g, can be updated by
using the estimate at the previous iteration £P™® = [V ... £}°
propose a parameter update given by

T In this paper, we

d—l
Gne = =, (3.30)
Zf/ 1 dn Vi
where d,, = |Ap °_ Cg| is the distance between % Ap ® and ¢,. The denominator of (3.30)
has a role for the normalization of g, ¢, i.e., Z i1 qne =1m=1,...,N). If d, ¢ is small,

then the corresponding ¢, ¢ becomes large and the estimate of x, will be close to c;.

3.2.5 Selection of Parameter 1

The performance of the optimization (3.27), (B28) depends on the selection
of the parameter A, which controls the balance between f (s) and g (z) = g (®s). The
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value of f (s) for the true vector & is given by f (&) = A4 ||gj — Azﬁ”; =A ||17||§ and hence
the optimal value of A depends on the noise variance o2 in general. We thus need to
choose a good value of A depending on the noise variance. To tackle this problem, we
propose an adaptive parameter selection method taking the noise variance into account.
Specifically, we determine A so that the ratio E [g (®&)] /E[f (£)] becomes a constant
B (> 0),ie.,
Ee@a]_ g (331)
E[f (@)]
where E [-] represents the expectation with respect to the distributions of & and ©. Note
that we use the expectation E [ f (€)] and E [ (®&)] instead of f (&) and g (®&) because
the true vector & and the noise vector ¥ are unknown. Since we can calculate the left
side of (B.31l) as

E[g(®F)]  Xfioy Prr Diey Zney dnede(ce = co)

= ) 3.32
ELf @) M7 (32
the proposed A is given by
L L N ~
/— ’ — _ n Cpr — C
1= 2ipr=1 PO gy 2y ne8e(ce f). (333)

IBrMO-\%

Once we fix the value of S;, the proposed A in (B.33) adaptively changes in accordance
with the noise variance o:2. The proposed A becomes large when the noise variance o2

is small, and vice versa.

3.2.6 Computational Complexity Reduction

The order of the computational complexity of is dominated by the inverse
matrix (oLIy + AAHA)_I, which requires the complexity of O(N?). If we update
the parameter A at each outer iteration k, we need to compute Kj, inverse matrices
as a whole. However, the calculation of these inverse matrices can be eliminated by
computing the fingular value decomposition (SVD) of A before executing the algorithm.
In the underdetermined case with M < N, the of Ais givenby A = UEVH, where
E = [diag(é1,. ... ém) Opxv-my| € RM*V is a rectangular diagonal matrix with the
singular values &,...,&y of A. U € C¥*M and V' € CV*V are unitary matrices
composed of the left and right singular vectors, respectively. With the SVD of A, we
can rewrite the inverse matrix as

(pLIN + MHA)_l

1 1 1

T T T v (3.34)
pL + A& pL + A&, pL pL

= Vdiag (
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Once we obtain the SVDI of A, we do not need to directly compute the inverse matrix

(oLIn + /IAHA)_] at each outer iteration ¢ even if the parameter A is updated in the
algorithm. It should be noted that the order of the overall computational complexity of
is still O(M N min(M, N)) because we require the of the measurement
matrix A.

When the measurement matrix A has some special structure, we can compute the
inverse matrix more efficiently. As an example, we consider the channel equalization in
Section 2. Taking advantage of the block circulant structure of A in (I_I4), we can
efficiently compute the inverse matrix (oLIy + AAHA)_I. The matrix A in (I_14) can
be decomposed as

A=(D"eIy)B(Dely), (3.35)

where D € C2*2 denotes the normalized DET matrix. The matrix B is block diagonal
given by

B 0
B = € CNOoxNDy (3.36)
0 By,
where
Ly—1
By = ) Ty e coM (3.37)
i=0

and w = €2/ (g =1,...,0p). From (B33), the inverse matrix in [IW-SCSRI can be
rewritten as

(pLIN + AAHA)_I

= (pLIv+A(D" o 1) B'B (Do Iy)) | (3.38)
(D" e Iy)(pLIy+1B"B)  (DelIy (3.39)
(D"s 1) ) (Dely)
R} 0
= ( DHe IN{) (D®Iy), (3.40)
0 R,

where R, = pLIy, + /quHBq € CM*N The size of the inverse matrices is reduced to
Ny X N, in (B-40) and the required computational complexity becomes O(N;Qp), which is
significantly smaller than the original direct calculation with O(N?) = O(Nt3 Qg). Note
that we can compute the inverse matrix R;l in the same way as (B34) with the of
B,. The property in (B.33) is also used in [[18] to propose an equalization method in the
frequency domain.
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3.2.7 Convergence Property

Here, we investigate the convergence of the proposed algorithm for the W-SCSRI op-
timization problem (B.28). By extending the result for ADMM in the real-valued do-
main [70], residual convergence, objective convergence, and dual variable convergence
have been proved for ADMM in the complex-valued domain [71]]. However, the conver-
gence of {st} to the optimizer of the problem has not been discussed in [71]. We thus
prove the following theorem about the convergence of {st } for (B.28).

Theorem 3.2.1. Assume that the Lagrangian function £ (s, 2,0) = f(s) + g(z) +
2Re{0" (®s — 2z)} for (B2R) has a saddle point, i.e., there is (s*, z*, %) such that

L (s, 2%,0) < L(s*,25,0") < L(s, 20 (3.41)

holds for any s, z,0. Also, assume that the sparse regularizer g(-) is hil)(-) or hil*)(-).
Then, the sequence {sf} (t = 1,2,...) obtained by the proposed algorithm for (B28)
converges to the optimal solution of (B.28).

Proof. The functions f (s) and g (2z) are proper, closed, and convex. From Theorem 16
in [Z1], we have the residual convergence ®s’ — z' — 0 and the objective convergence
f(s')+8(2") = f(s*)+g(z*) (t > ). Note that s* and z* are the optimal values
of s and z in (B.28), respectively, and satisfy ®s* = z*.

In order to see the convergence of {s[ } to one of the optimizers of (B.28), we evaluate
|2 (®@s") — & ()|, which is upper bounded as

L N
& (@) =& ()] < D > ane [ge (s — o) = & (2l — )| (3.42)
(=1 n=1
When g,(-) = h&l)(-), we have
‘gf (sy, —ce) — 8¢ (Z;,[ - 05)‘
= ||si = ce| = |2k — cc (3.43)
< |sn = 2, (3.44)
—0 (t— ) (3.45)

because s’ — z;, — 0. When g,(") = hill(-), we can also obtain
‘gz (s, —ce) — & (z,’w - Cf)‘
= [(IRefst - co}| + [im{st - cr}) = (|Refeh,e = o} + [imfel, = ec}])|  B46)

< ‘Re{s; - sz}’ + ‘Im{sﬁl - z;’g}) (3.47)
-0 (t—> ). (3.48)
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From (B.42)), (3.49), and (3-48), we have | (®s') — g (2')| > 0 (k — o0) and

1f (8') + & (®@s') = (f (s7) + & (®s7))
<|f(s") +8(2') - (f(s) + & (z)] + g (@s') - & (2') (3.49)
50 (f— o). (3.50)

Hence, f (s') + & (®s') converges to the optimal value of the objective function. Since
the objective function is continuous, we conclude that {st } converges to one of optimizers
of (B28). ]

3.3 Simulation Results

In this section, we evaluate the performance of the proposed method by computer
simulations. We consider MIMQ signal detection and channel equalization described in
Section [L.2. In both cases, the additive noise vector ¥ is assumed to be circular complex
Gaussian distributed with mean 0 and covariance matrix o2 1.

3.3.1 MIMO Signal Detection

We first compare the performance of the proposed optimization and the
optimization in the real-valued domain. Figure B3 shows the average of SERI defined
as [|Q (&) — &||y /N for QPSK with C = {1+ j,-1+j,—-1—j,1—j}, where & is the
estimate of € and Q (£) = arg min ,,w~ |8 — &||;. The result is obtained by averaging
the SERl over 1, 000 independent realizations of the measurement matrix. The problem
size is (N, M) = (50,40). We assume iLid] flat Rayleigh fading channels and hence the
measurement matrix A = A; ;4 € CM*N jg composed of iLi.d!circular complex Gaussian
variables with zero mean and unit variance. The SNR is defined as E [||i:||%] /ol In
the figure, we denote the LMMSE method by ‘LMMSE, the optimization in the
real-valued domain by ‘SOAYV,” the SCSR optimization with g,(-) = hil)(-) €=1...,4
by ‘SCSR (h"(-)),’ and the optimization with g,(-) = A')() (¢ = 1,...,4) by
‘SCSR (hg(-)).’ The parameter of the optimization is fixed as g, = 1/4. The
parameter A is determined from (B33) with S8, = 15, which achieves good performance
in the simulation. The parameter p in the proposed algorithm is p = 0.1 and the number
of inner iterations is 7j; = 100. From the figure, we can see that the SCSR optimization
with hg(-), which treats the real and imaginary part separately, can achieve the same
performance as the optimization in the real-valued domain.

We then investigate the convergence of the proposed algorithm for the SCSR! opti-
mization. In Fig. B.4, we show the convergence curve of the algorithm for p = 0.01, 0.1,
and 0.3. The problem size is (N, M) = (50,40) and C = {1+ j,-1+j,-1—j,1—j}.
The SNR is 17.5 dB. The regularizeris g,(-) = A{')(-) (¢ = 1, ..., 4) and we fix g, = 1/4
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(N, M) = (50,40), SNR = 17.5 dB, 8; = 15)

and B; = 15. We can see that these three curves converge to almost the same if the
number of iterations is large enough. Since p = 0.1 achieves the fastest convergence of
the three and 100 iterations are enough to convergent in the figure, we use these values
hereafter.

In Figs. BS and B.6, we compare the SERI performance of the proposed
and some conventional methods for QPSK] with (N, M) = (50, 40) in iid] and correlated
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Figure 3.6: in correlated MIMQ channels (QPSK, (N, M) = (50, 40), B; = 15)

MIMOQOI channels, respectively. The result is obtained by averaging the over more
than 3, 000 independent realizations of the measurement matrix hereafter. In the figures,
‘I0-LAMA’ represents individually-optimal [arge MIMO AMP (I0-LAMA) [42], which
is MIMQ signal detection method based on |AMB. ‘EP-based algorithm’ denotes the EB-
based method [573] for discrete-valued vector reconstruction. ‘IW-SCSR’ indicates the
proposed method in Algorithm B2 and Kj, denotes the number of iterations of the
outer loop. For [W-SCSR|, the parameter is initialized as g,, = 1/4, the regularizer
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Figure 3.7: KERI in correlated MIMQ channels (RPSKI, (N, M) = (50, 48), B: = 15)

is g¢(v) = hill() (¢ = 1,...,4), and the parameter is determined from (B33) with
Br = 15. From Fig. B.5, we can see that the performance of is improved
by the weight update and with Kj; = 5 outperforms the other methods
in high SNR region. The message passing-based methods, i.e., [Q-LAMAl and the
EB-based algorithm, assume large-scale problems and hence they have severe error
floors in this case. Fig. B.@ shows the performance in correlated MIMQI channels

A = ‘I’r% Ai.i,d.‘l’t% described in Section [L2. We set d;/Ay = di/Aw = 1/2 in the
simulation. In Fig. B.6, the performance of [O-LAMAI severely degrades because
the algorithm assumes Lid! measurement matrix. On the other hand, the assumption is
not required for convex optimization-based [W-SCSRI and hence the performance does
not severely degrade compared to [O-LAMAI Although the EB-based algorithm also
works well in the low SNR region, it has the error floor in the high SNR region. We
can see that the proposed can achieve good performance even in correlated
channels.

Figure B2 shows the performance in correlated channels for RPSKI with C =
{e/=Dr/3 | ¢ =1,...,8}. Note that the optimization in the real-valued domain is
not appropriate in this case because the real part and the imaginary part are dependent on
C. The problem size is (N, M) = (50, 48). The parameter g, , of [IW-SCSR!is initialized
as gne = 1/8. We use (B33)) with S, = 15 for the parameter A in [IW-SCSRI. In Fig. B.7,
the EP-based algorithm outperforms the other methods in the low SNR region. In the
high SNR region, however, the EP-based algorithm has the error floor and
with Kj; = 5 can achieve better performance than the EB-based algorithm. In Figs. B
and B2, we observe that the proposed [W-SCSRI for uniformly distributed unknown
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vectors is more effective when the cardinality of C is smaller.

In Fig. B8, we show the performance versus M in correlated channels
with 8PSK, N = 50, and SNR = 30 dB. The parameters of are the same
as those in Fig. B7. From the figure, we can see that the performance of [W-SCSR|
improves as the number of measurements M increases. When M is greater than 44,
with hil)(-) achieves better performance than the EP-based algorithm.

Figures. 3.9 and B_10 show the SER| performance for C = {0, 1+j, —1+j,—1—j, 1—j}.

The SOAV optimization in the real-valued domain is not suitable in this case as well as
in the case of Fig. B2. The problem size is (N, M) = (50, 30) in Fig. B9 and (N, M) =
(200, 120) in Fig. B-10, and the measurement matrix is correlated as in Figs. B-6 and B 7.
In the simulation, we assume that & is a discrete-valued sparse vector with ||Z||, = 0.2N
and the nonzero elements are uniformly distributed on {1 + j,—1 + j,—1 — j, 1 — j}.
The parameter of [W-SCSR| is initialized as g,; = 0.8 and g, = -+ = ¢g,5 = 0.05.
The sparse regularizer g,(-) is set as gi(-) = hil)(-) and g,(+) = hg() (¢=2,...,5as
in Fig. B2(a). We denote the {; optimization by ‘¢;,” which uses only the sparsity and
solves

. Y]
mlgégll\llze ||s||1+/l||y—As||2. (3.51)

The parameter A in (B.51)) is fixed as the same value in with Kji; = 1, which is
determined from (B33) with 8, = 10. In the figures, with Kj = 1 can achieve
a bit better performance than the ¢; optimization. We also observe that the performance
of [IW-SCSRI is further improved when Kj; = 5. Although the EB-based algorithm has
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the error floor in Fig. B.9, it achieves the best performance for the larger-scale problem
in Fig. B.10.

We then show the SERI performance versus the sparsity of the unknown discrete-
valued vector in Fig. B.11. Weassume C = {0,1 + j,—1 + j,—1 — j, 1 — j} and represent
the sparsity of the unknown vector by € := 1 — |||, /N. The nonzero elements are
assumed to be uniformly distributed on {1+ j, -1+ j,—1—j,1—j} as in Figs. B9
and B_10. The problem size is (N, M) = (50,40), the SNR is 17.5 dB, and we define
Br = 10. The parameter g, ¢ is initialized as g,; = €and g2 = -+ = g5 = (1 —&)/4. In
Fig. B_11], the ¢; optimization has a poor performance for non-sparse vector with small
g, whereas and the EB-based algorithm have better performance because
they use the discreteness of the unknown vector . We can also see that the proposed
outperforms the EP-based algorithm for € > 0.5.

3.3.2 Channel Equalization

In Figs. B.12 and B.13, we evaluate the SERl performance for channel equalization
described in Section [.2.  Unlike MIMQ signal detection in flat fading channel, the
measurement matrix becomes a block circulant matrix in this problem. In Figs.
and B13, we assume QPSK| with C = {1 +j,-1+j,-1-j,1—j}, L, =5, and Oy, =
32. We also assume (N, N;) = (4,3) in Fig. B12 and (N, N;) = (8,6) in Fig. B13.
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The impulse response {y,(l?m} (@ =0,...,Ly) is composed of Lidl circular complex

Gaussian variables with zero mean and unit variance. The SNR is here defined as
(L,N/N)E [ll.’i’ll%] /2. For IW-SCSR), we use the same regularizers and parameters as
those in Figs. B3 and BA. In Figs. and B_13, we observe that the performance of
is better than that of the conventional methods. Unlike in the case of MIMQ
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signal detection in Fig. B_10, the performance of the EP-based algorithm is worse than
IW-SCSRI even in the larger-scale problem with (N, M) = (256, 192). This is possibly
because the measurement matrix in channel equalization has the specific structure as
in (IL14).

Figure B_14 shows the performance for with C = {ej (t=D)m/4 |[€=1,..., 8},
(N, Nt) = (2,2), L, = 5, and Qy = 32. The regularizers and parameters of
is same as those in Fig. B7. In the high SNR region, outperforms the other
methods. From Figs. and B_14, we can see that the proposed achieves
good performance in channel equalization as well as in MIMQ signal detection.

3.4 Conclusion

In this chapter, we have proposed the optimization for the reconstruction of
complex discrete-valued vector by extending the SOAV optimization in the real-valued
domain. The SCSR optimization uses the discreteness of the unknown vector in the
complex-valued domain by including the sum of sparse regularizers in the objective
function. As the sparse regularizer for complex-valued vectors, we have presented two
regularizers hil)(-) and hill() which should be appropriately chosen in accordance with
the distribution of the unknown vector. We have also proposed the iterative approach
named [W-SCSR]|, which iterates the optimization with updating the parameters
in the objective function. We have proved that the sequence obtained by the proposed

algorithm converges to the optimal solution of the W-SCSRI optimization problem.
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Simulation results show that the proposed [IW-SCSRI works well for the underdetermined
discrete-valued vector reconstruction, whereas the conventional message passing-based
algorithms have error floors in the high BNR region. The proposed method can also
reconstruct the discrete-valued vector even for the correlated measurement matrix, which
appears in MIMQ signal detection in correlated channels. For discrete-valued sparse
vectors, [W-SCSRI have better performance than the £; optimization, which utilizes only
the sparsity of the unknown vector. We have also shown that the proposed
can achieve good performance for channel equalization in frequency-selective fading
channels.
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Discrete-Valued Vector Reconstruction
by Nonconvex Optimization with Sum
of Sparse Regularizers

4.1 Introduction

As introduced in Section [L3, low-complexity approaches for the discrete-valued vector
reconstruction have been proposed on the basis of convex optimization [54,57,60]. These
optimization problems also take advantage of the discrete nature of the unknown vector
as a prior knowledge. However, since all these methods consider convex optimization
problems obtained by convex relaxation techniques, the discreteness has not been taken
full advantage of.

In this chapter, to obtain better reconstruction performance without any explicit
assumption on the measurement matrix, we propose a possibly nonconvex optimization
problem named optimization. By using the discreteness of the unknown vector and
the idea of compressed sensing [40,41]], we utilize the sum of some sparse regularizers
as a regularizer for the discrete-valued vector in the proposed SSR optimization. The
[SSR optimization can be considered as a generalization of the SOAV| optimization, and
is equivalent to the optimization when we use the convex ¢; norm as the sparse
regularizer. Other than the ¢; norm, we can also use nonconvex regularizers such as
the £, norm (0 < p < 1) [[3-76], the {y norm, and the ¢; — ¢, difference [77,[78]. For
the SSR optimization, we propose an algorithm on the basis of ADMM [61), 68-7(],
which is known to achieve fast convergence in general, regardless of the convexity of
the cost function. However, the ADMM-based algorithm involves the computation of
an inverse matrix, which may require prohibitive computational complexity in very
large-scale problems. We thus also propose a [79, B0O]-based algorithm, which
can avoid the computation of the inverse matrix. Moreover, we extend the proposed
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approach to the reconstruction of discrete-valued vectors in the complex-valued domain,
which commonly emerges in the filed of communications. Simulation results show that
the proposed algorithms with nonconvex regularizers can achieve better performance
than that with the convex ¢; regularizer, which corresponds to the conventional
optimization.

The rest of this chapter is organized as follows. We propose the optimization
problem in Section and derive two optimization algorithms in Section B3. In
Section B4, we extend the proposed approach to the reconstruction of complex discrete-
valued vector. Section 4.5 gives some simulation results. Finally, we present some
conclusions in Section B.6.

4.2 Proposed SSR Optimization Problem

For the reconstruction of & from y and A in (ILl), we propose the SSR optimization
problem

L
minimize {Z qege (s —rel) + A |y — As||%} , 4.1)
SERN 1 2

where A (> 0) is the parameter and 2521 qe = 1 (g¢ > 0). The function g(-) is a sparse
regularizer and we assume that its proximity operator can be computed efficiently. The
employment of sparse regularizers in the optimization is based on the fact that
the vector & — ry1 has some zero elements, which has been utilized in the SOAV
optimization [6(0]. We can thus consider Z?:l qrgc (s — rel) in the objective function as
a regularizer for discrete-valued vectors in RY.

We show some examples of the sparse regularizer g,(-) and the corresponding prox-
imity operators, which are required for the proposed algorithms in Section £3. Note
that we consider both convex and nonconvex regularizers in this paper, and we can use
any sparse regularizer as far as its proximity operator can be computed. Although the
proximity operator is usually defined for proper closed convex functions, the minimizer
in the definition of the proximity operator can also be obtained formally for the following
nonconvex regularizers. We thus use the term ‘proximity operator’ for both convex and
nonconvex functions henceforth.

Example 4.2.1 (¢, Norm). For the £; norm-based convex regularizer h'V(u) = ||u||, =
ZnNzl |un| (w = [u; --- uy]" € RM), the proximity operator prox, ,m(+) is given by

[proxyh(l)(u)]” = sign(u,) max (|u,| — y,0). (4.2)

The SSR optimization with the £; regularizer is equivalent to the SOAV/ optimization [60].
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Figure 4.1: (h(s + 1)+ h(s — 1))/2

Example 4.2.2 (£, Norm). The nonconvex regularizer /% (u) = ||ul|, based on the £,
norm, i.e., the number of nonzero elements of w, has the proximity operator given by

0 (ll <v29)
[prox, o (w)], = 110} (Jual = v27) - 43)
() (jl > v29)

Example 4.2.3 (£, Norm (0 < p < 1)). We also consider the nonconvex regularizer
hP)(u) = ||u||§ = nNzl |un|” with the €, norm (0 < p < 1). In Fig. &1, we compare the
regularizer (hP)(s + 1) + h'P)(s — 1))/2 in the binary case with R = {—1, 1} for different
values of p. From the figure, we can see that the sums of nonconvex regularizers with
R1/2(.) and h?/3)(-) can promote the discrete nature more effectively compared to the
convex one with A1)(-), because the sums of nonconvex regularizers do not have their
minimum values for s € (-1, 1) but only for s = +1. The proximity operator of the
¢, norm-based regularizers has been discussed in [74-76]. For arbitrary p € (0, 1),
we can numerically compute the proximity operator, while the proximity operator for
p = 1/2,2/3 can be written explicitly. Figure B2 shows the proximity operators of
yh (), yh#3 ), yh12(), and yhO(-) (y = 0.5). As we can see from the figure, the
proximity operators of the nonconvex regularizers are not continuous.

Example 4.2.4 (£ — ¢, Difference). The nonconvex regularizer h' =2 (w) = ||ul|, - |lull,
based on the £; — ¢, difference has been proposed for compressed sensing [77,78]. The
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Figure 4.2: prox,,,(u) (y = 0.5)

proximity operator of 2!=?)(-) can be computed with Lemma 1 in [78] or Proposition
7.11n [R1].

4.3 Proximal Splitting Algorithms for SSR Optimization

In this section, we propose two algorithms for the optimization. The first one is
based on ADMM ) and the second one is based on PDS.

4.3.1 ADMM-Based Algorithm

We can rewrite the optimization problem of the SSR optimization (4_1) with new vari-
ables z,...,z; € RN ag

L
. A
minimize {Z qege (ze —rel) + 3 ||y — As||§}
=1

8,21,...2L€ERN
subjectto s =z, ((=1,...,L), (4.4)

which is further rewritten as

minimize {f(s)+ g(z)} subjectto ®s = z. 4.5)

SE€RN zeRLN
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.
Here, z = [2] -+ 2]| e RN, @ =[Iy --- Iy]", f(s) = 4 |ly — As|)3, and g(z) =

Yoy qege (zc = ).
We derive the proposed algorithm based on ADMMI. The update equations of ADMM]
for (4.3) are given by

s = arg min {f (s) + b |[®s - 2"+ wt”;} , (4.6)
seCN 2

2™ = arg min {g (2) + b ||q)st+1 -z + wt”i} , 4.7)
zeCLN 2

,wt+1 —w' + (I)SHI _ ZHI, (4.8)

where ¢ is the iteration index, p (> 0) is a parameter, and w’ € R, From the equation

0

55T {f(s) + g ||(I)s -zl + wt”;} = 0, the update of s’ in (4.6) can be written as
s

st = (pLIy + /IATA)_I (p S (2 - wg) + /lATy), where 2, € R and w} € RV

t tT t T T t tT t T T
(¢ = 1,...,L) are subvectors of 2z’ = [zl 14 ] and w' = w; occewp |,
respectively. The update of z’ in (4.7) can be written as
2t = Prox., (CI)st+1 + w’) (4.9)
rl+ proXai,, (s + w' —ri1)
= : , (4.10)

rl +proxas, (™! +w!) —rp1)

P gL(

because the function g(-) is separable as g (z) = Zfﬁzl qege (z¢ — rel). We also use the
property of proximity operator for translation [61] in (4-10).

We summarize the ADMM-based algorithm for the optimization (B.1]) as
IADMM-SSR in Algorithm E.1, where Q(-) denotes the element-wise quantization
operator which maps the input to its nearest value in R. One of the advantages of
ADMM-SSR is that we do not require the proximity operator of the whole regularizer
> ;721 qcge (s — rel) and we can implement ADMM-SSR as long as the proximity opera-
tor of g¢(-) can be calculated as in Examples &2 1-4 2 4. The computational complexity
is dominated by the inverse matrix (pLIy + AATA)_I, which usually requires O(N?)
complexity [R2, Ch. 11].

4.3.2 PDS-Based Algorithm

As we have mentioned in the previous subsection, ADMM-SSR requires the computation
of the inverse matrix, which may require prohibitive computational complexity for very
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Algorithm 4.1 ADMM-SSR: ADMM-Based Algorithm for (4_1I)
Input: y € RY, A ¢ RM*XN
Output: & € RY

1: Fix p >0, 2% e RVL and w° € RVE

2: fort =0to Ty, — 1 do

3: sl = (pLIy + /?LATA)_1 (p o (zé - wé) + /lATy)
4 zé” =r/l+ prox%g[ (s”l + 'wz, - 1’51) ¢=1,...,L)
5: w}” :w2+s’+1—z2+1 ¢=1,...,L)

6: end for

7. & = Q(sTiv)

large-scale problems. To overcome this problem, we also propose an algorithm based
on primal-dual splitting [8(0], which can avoid the computation of the inverse matrix.
We first rewrite the optimization problem (&.1) as

mini%l}\ilze {f(s) + g(®s)}, (4.11)

where f(-) and g(-) are defined below (E.5). is applicable to the problem of the
form (4_11)) and is given by

s =5 = py (Vf (s) + @Tw'), 4.12)
2 = w' + pr® (23”1 - st) , (4.13)
wt! = PIOX .- (zt+1) ’ (4.14)

where p1, po (> 0) are the parameters, V f(-) denotes the gradient of the function f(-),
and g*(-) represents the convex conjugate of g(-). The update of s’ in (E12) can be
written as

L
st =g — p, (/lAT (As' —y) + Z w?) . (4.15)
=1

because Vf(s) = AAT (As —y). The proximity operator prox
pressed as prox , ,.(u) = u — p2prox

t+1
¢ as

prg (1) in (B14) is ex-

¢/p, (1/p2). Hence, from (E10) and (E-14), we can

update w

zt+1

'wé,” = z}” - (rgl + proxac , (K— — rgl)) . (4.16)
by 8 P2
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Algorithm 4.2 PDS-SSR: PDS-Based Algorithm for (4.1
Input: y € RY, A ¢ RM*N
Output: & € RY

1: Fix p;1 >0, p2 >0, s e RV, and w' € RV

2: fort =0to Ty — 1 do
3 sl = s — p; (/IAT (As' —y) + X5, w’)
4

4

zé,” =w, +m;m (28 —s') (¢ =1,...,L)

. t+1 _ t+1 _ z _ _
5: w,” =z, 02 (rgl +proxz_§g( ( o rgl)) ¢=1,...,L)
6: end for
7. & = Q(sTw)

We summarize the PDS-based algorithm named PDS-SSR/ in Algorithm B2. As
is the case with ADMM-SSR, PDS-SSR also requires only the proximity operator of
g¢(+). Since PDS-SSR computes only the addition of vectors and the multiplication of a
matrix and a vector, it requires O(M N) complexity [82, Ch. 6], which is lower than that
of ADMM-SSR.

4.3.3 Convergence of Proposed Algorithms

The convergence of the proposed algorithms depends on the convexity of the sparse
regularizer g¢(-). When g{(-), ..., g¢(+) are all convex, the objective function of the
optimization is also convex. In this case, the sequence {s’} obtained by ADMM-SSRI
converges to the optimizer of the problem from the general result for ADMM [69]. From
Theorem 3.1 in [RO], the sequence {s’ } obtained by PDS-SSR also converges if the
parameters p; and p; satisfy 1/p; — poL > A ||ATA||2 /2. When g¢(+) is nonconvex,
however, the convergence to the global optimizer is not guaranteed in general. Although
some convergence property have been proved under several assumptions [83-87], their
results cannot be directly used for the proposed algorithms.

4.4 Extension to Complex-Valued Case

In this section, we extend the proposed method to the reconstruction of the complex-
valued vector & € CV < CV as described in Section 12

For the reconstruction of the complex discrete-valued vector, we extend the SSRI
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optimization (4_1) to the problem

L
minimize {Z qe8e(s—cl)+ A ||g - As”;} , “4.17)
seCN ya=
which is referred to as the SCSRI optimization hereafter. The function g,(-) is a sparse
regularizer for the complex-valued sparse vector. The SCSR optimization with the ¢
regularizer has been proposed in Chapter B, whereas we consider nonconvex regularizers
as well in this paper. As discussed in Chapter B, the optimization in the complex-valued
domain is more suitable than that in the real-valued domain when the real part and the
imaginary part of the unknown vector are not independent.

For the SCSR optimization (4.17), we newly consider two kinds of sparse regularizers
as the candidates of g¢(-). For example, as the regularizers based on the £, norm,

we define 27 (@) = YV |i,|? and BP)(@) = ¥V, (IRe{i,}|” + |Im{i,}|”), where
@ = [d; --- iy]" € CN. The first regularizer Eip )(-) is based on the modulus for
complex numbers, whereas the second one fz -) treats the real part and the imaginary
part independently. We also define h(l)( ), h(o)( ), h(1 2)( ), h(l)( ), h(o)( 1), and hil*_z)(-)
in the same manner. The proximity operator of Y/, (-) (h,(-) = *1 )( ), h *O)(-), fzip )(-),

71(1_2)( -)) in the complex-valued domain can be written with that of the corresponding
regularizer yh(-) (h( ) = KD, KO0, BP)(), B1=2)(.), respectively) in the real-valued

domain. Note that h,(-) satisfy 7, (@) = & (|@|), where we define |@| = [|i] - |an|]".
By using this property, the proximity operator of yh,() can be derived as
[proxﬁ*('&)] [prox h(l’u,l)] | — | (4.18)

with a simple manipulation. The proximity operator of Y/ (-) can also be written with
the corresponding proximity operator prox,,,(-). Since we have Ay (@) = h (ur)+h (ur)
from the definition, the proximity operator can be written as

[prox (u)] [proxyh (uR)]n +J- [proxyh (uI)]n, (4.19)

by using a similar approach to (B.25), where ugr = Re{@} and u; = Im{@}.

Since ADMM with complex-valued variables have been discussed in [71] and Chap-
ter B, we propose the ADMM-based algorithm for the optimization (B17) by
using the approach in Chapter B. The resultant algorithm is obtained by replacing R,
()T, r¢, and prox 2 g{(-) in Algorithm B with C, (-)!, ¢, and prox u« gf(')’ respectively.

4.5 Simulation Results

In this section, we evaluate the performance of the proposed algorithms. In the simula-
tion, the measurement matrix is composed of ii.d] Gaussian variables with zero mean
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Figure 4.3: SER versus number of iterations for binary vectors ((N, M) = (200, 160),
SNR = 15 dB)

and unit variance. We also assume the zero mean additive white Gaussian noise. The
initialization is given by 2° = w® = 0 in ADMM-KSR and s” = 0,w° = 0 in PDS-
[SSR. Other parameters such as A and p are chosen to achieve good performance in the
simulation.

Figure B3 shows the versus number of iterations for the binary vector with
(ri,r2) = (=1,1) and (py1, p2) = (1/2,1/2). The result is obtained by averaging the
over 2,000 independent realizations of the measurement matrix. The problem size is
(N, M) = (200, 160) and the SNR is 15 dB. The parameters are set as q; = ¢» = 1/2,
A=005,p =3 pi =2/(1]|ATA,+4), and p> = 1/2. In Fig. 43, we denote the
sparse regularizers based on the £; norm, the £,,3 norm, the £; , norm, the {, norm, and
the {1 — {, difference by ‘(1,” ‘Cy;3,” ‘€12, ‘€p,” and ‘€1 — {»,” respectively. We can see
that ADMM-SSR and PDS-SSR converge to the same when we use the convex ¢
regularizer. The proposed algorithms with nonconvex regularizers, especially with the
¢, and £y norms, can achieve much better SER| performance.

In Fig. B4, we show the SER| of ADMM-SSR] versus SNR! for the binary vector
reconstruction with (N, M) = (200, 150). For comparison, we also show the performance
of the LMMSE and the box relaxation method [54] as ‘LMMSE’ and ‘Box,” respectively.
The parameters in ADMM-SSR are set as 4 = 0.05, p = 3, and Kj, = 300. The
nonconvex regularizers can outperform the convex ¢ regularizer and the box relaxation
method.

Figure K5 shows the versus SNR for the reconstruction of complex discrete-
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Figure 4.5: versus SNR for complex-valued vectors (N, M) = (200, 160))

valued vectors with (N, M) = (200, 160). The distribution of the unknown complex vari-

able is given by (cy, ¢2, €3, ¢4, ¢5) = (0, 1+ j, =1+ j,—1—j, 1 — j) and (p1, p2, p3, P4, P5) =
(0.6,0.1,0.1,0.1,0.1), where p; = Pr(x, = c!) (¢ =1,...,5). We use the sparse reg-
ularizers given by g1(-) = hx(:) and g/(-) = hux(-) (£ = 2,...,5) because the real part
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becomes zero only when the imaginary part is zero in this case. The parameters of the
proposed algorithm are set as g¢ = pg, 4 = 0.05, p = 3, and Kj;; = 300. From the figure,
we can see that the proposed approach with nonconvex regularizer can achieve good
performance even for the reconstruction of the complex discrete-valued vector.

4.6 Conclusion

In this chapter, we have proposed possibly nonconvex optimization problems for the
discrete-valued vector reconstruction in both real- and complex-valued cases. The
proposed method utilizes the sum of sparse regularizers as the regularizer for the discrete-
valued vector. Simulation results show that the proposed algorithms with nonconvex
regularizers can achieve better performance than that with the convex ¢ regularizer.
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Chapter 5

Asymptotic Performance Analysis of
Discrete-Valued Vector Reconstruction
with Sum of {; Regularizers

5.1 Introduction

For large-scale discrete-valued vector reconstruction, some convex optimization-based
methods have been proposed to obtain good performance with reasonable computational
complexity. Box relaxation method [54,55] considers the MLl method under the hyper-
cube including all possible discrete-valued vectors. Regularization-based method and
transform-based method [57] apply the idea of compressed sensing [4(),41] to discrete-
valued vector reconstruction. optimization [6(] takes a similar approach and uses
a weighted sum of ¢ regularizers as a regularizer for the discrete-valued vector. One of
advantages of the SOAV optimization over the other convex optimization-based methods
is that it can take the probability distribution of unknown variables into consideration.
The optimization has been applied to various practical problems [14,26,29,88,89],
whereas only a few theoretical aspects of the performance are known in the literature.
In this chapter, we analyze the asymptotic performance of discrete-valued vector
reconstruction based on the optimization. To make the analysis simpler, we
firstly modify the conventional optimization into the optimization by
using the boundedness of the unknown vector. We then investigate the performance of
Box-SOAV! by using CGMT [90,91], which has been used for the performance analyses
of several convex optimization problems. We provide the asymptotic SERI of Box4
in the large system limit with a fixed measurement ratio, which is defined as
the ratio of the number of unknown variables to the number of measurements. The
asymptotic SER is characterized by the probability distribution of the unknown vector,
the measurement ratio, the parameters of Bax-SOAV|, and the optimizer of a scalar
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optimization problem. The result enables us to predict the performance of Box-SOAV
in the large-scale discrete-valued vector reconstruction. We also derive the asymptotic
distribution of the estimate obtained by the optimization. By using the
asymptotic distribution, we can optimize the quantizer for the hard decision of the
unknown discrete-valued vector in terms of the asymptotic SER. Moreover, we propose
a procedure to choose the parameter value of the Box-SOAV] optimization to minimize
the asymptotic SERI. Simulation results show that the empirical performance of the
optimization and the conventional optimization agrees well with the
theoretical result for in large-scale problems. From the results, we can also
see that the proposed asymptotically optimal parameters and quantizer can achieve better
performance compared to the case with some fixed parameter and a naive quantizer.

The rest of this chapter is organized as follows. In Section B2, we describe the
CGMT. We then provide the main analytical results for the Box-SOAV] optimization in
Section B3. The proof for the main theorem is given in Section 5.4. Section 5.5 gives
some simulation results, which demonstrate the validity of the theoretical analysis for
Box-SOAV.. Finally, Section 5.6 presents some conclusions.

5.2 CGMT

CGMT is a theorem that associates the primary optimization (PO) problem with the
auxiliary optimization (AO}) problem given by

(PQ): ®(G) = min max {uTGw + p(w, u)} , (5.1)

WESy UES,

(AQ): ¢(g, h) = min max {||w||2 gTu — |lull, hTw + p(w, u)} , (5.2)
weSy ueS,

respectively, where G € RN g e RM h e RV, S,, ¢ R, Sy ¢ R¥, and p(-,-) :
RY x RM — R. We assume that S,, and S, are closed compact sets, and p(-,-) is a
continuous convex-concave function on Sy, X S;. The elements of G, g, and h are
i.i.d. standard Gaussian random variables. The following theorem relates the optimizer
we(G) of (PQ) with the optimal value of (AQ) in the limit of M, N — oo with a fixed
ratio A = M /N, which we simply denote N — oo in this paper.

Theorem 5.2.1 (CGMT [56]). Let S be an open set in Sy, and 8¢ = Sy, \ S. Also, let
¢s<(g, h) be the optimal value of (IAQ) with the constraint w € S°. If there are constants
n > 0 and ¢ satisfying (i) ¢(g, h) < ¢ + i and (ii) ¢sc(g, h) > ¢ + 2n with probability
approaching 1, then we have 1\}1_{1‘(1)0 Pr(weo(G) € S) = 1.

CGMT has been applied to the performance analyses of various optimization prob-
lems. The asymptotic hormalized squared error (NSE) and mean squared error (MSE)
have been analyzed for various regularized estimators [90-94]. The asymptotic SER|
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of the box relaxation method has been derived for BPSKI signals in [95], and the re-
sult has been generalized for pulse amplitude modulation (PAM] in [56]. CGMT has
also been used for the analysis of nonlinear measurement model [96]. A similar re-
sult has been obtained for MIMQ signal detection with low resolution pnalog-to-digital
converter (ADC), where the receiver has the quantized measurements [97]. Moreover,
CGMT can be applied to the case when the measurement matrix is not perfectly known
and includes Gaussian distributed errors [98]. In [99], the technique has been used to
derive the asymptotically optimal power allocation between the pilots and the data in
MIMQO transmission. In [100], CGMT-based analysis has been applied to an
optimization problem in the complex-valued domain under some assumptions, while
above approaches consider optimization problems in the real-valued domain.

5.3 Main Results

In this section, we provide the main results of this paper. In Section 831, we modify the
conventional optimization into the optimization to make the analysis
simpler. In Section 5.3.2, we derive the asymptotic SERI of the estimate obtained by
the Box-SOAV] optimization. We then characterize the distribution of the estimate in
Section B3.3. By using the results, we also derive the asymptotically optimal quantizer
for the estimate in Section 53 4. Finally, we propose a parameter selection method for
the optimization in Section 53 5.

5.3.1 Box-SOAV Optimization

To make the analysis simpler, we newly consider the Box-SOAV| optimization given by

L
. . 1
# = arg min {5 ly - AslG+ > qlls - rglnl} (5.3)
selrprp ]V =1
1 L
= arg min {5 ly = AslZ + > gels = re1ll + I(s)}, (5.4)
seRN =1

where the function 7 (-) denotes the indicator function given by

o (selrr]™)
He {OO (s¢[r.r]V)’ )

This modification is reasonable because x € [ry,r.]" and it does not change the value
of the objective function for s € [ry, 7.]V. Let f(s) = 25:1 qclls — relll; + I (s), where
f(-) is an element-wise function and we use the same notation f(-) for the corresponding
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scalar function hereafter. By modifying the result in [26], the proximity operator
prox, ¢ (z) (v = 0) can be obtained as

r (z<r +y07)
- rk-1 + <z<rg+
prox, , (2) = YOk  (ri—1 +yQk k ')’Qk)’ (5.6)
Ik (re +y0k < z2<ri +y0k+1)
rL (r +y0r £ 2)

where Q = (Zé:ll qg) - (Ztﬁ:k (]gr) (k =2,...,L). By using some proximal splitting
algorithm [61/]] with the proximity operator in (5.6), we can obtain a sequence converging
to the solution of the Bax-SOAV| optimization (5.4).

5.3.2 Asymptotic SER of Box-SOAV
To provide the asymptotic SER! of Bax-SOAV], we firstly show the following theorem.

Theorem 5.3.1. The measurement matrix A € R®*V is assumed to be composed of
i.i.d. Gaussian random variables with zero mean and variance 1/N. The distribution of
the noise vector v € R is also assumed to be Gaussian with mean 0 and covariance
matrix o-2I. We also assume that the optimization problem maxgs( mingso F(a, B) has
a unique optimizer (a*, %), where

B - i =]

Fa.p) = 2a 2 24/A a

a/,B\/Z_'_O'Vz,B‘/Z_l ﬁ.,.ﬂ\@ [env af(X_,_iH)]
2 VA '

(5.7)

Here, X is the random variable with the same distribution as the unknown variables, i.e.,
Pr(X = r;/) = pe. H is the standard Gaussian random variable independent of X. We
further define

L=A{g(,):[rn—rp,re—rnlxR—->R|
W (-, re) is Lipschitz continuous for any r, € R}. (5.8)

For any function ¢/(-, -) € L, we have

plim %nzzw(fn — % x) = E [w (X—x, X)] (5.9)

N—>
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where x,, denotes the nth element of & in (5.4) and

N a”
X =prox o ,| X+ HJ. (5.10)
POt ( VA )
Proof. See Section 5.4, |

The SERI of is given by % |Q(&) — ||y, where the element-wise quan-
tizer Q(-) maps each element of the vector to a value in R. The asymptotic of
Box-SOAV! is given by the following corollary of Theorem 5.3.11.

Corollary 5.3.1. Under the assumptions in Theorem 6.3_1], the asymptotic of Boxd
is given by

L
.1 . N
plim | Q(®) - @llg = 1 - > pepr (Q(X) —r | X = rf) . (5.11)
N—ooco —1
Proof. See Appendix B Al O

The function F(a, ) in (57) and the asymptotic in (B.11) can be calculated
by using the PDE pg(z) = v% exp(—z?/2) and the CDE Pg(z) = [ pg(z)dz’ of the
standard Gaussian distribution. For example, when we use the quantizer Qnv(-) that

maps the input to the nearest value in R, i.e.,

(A < r+ r2)
ry X
2
i+ +
Quv(%) = {7 (” 12 (P E PR 2””), (5.12)
1+
rr, (—VL 12 L < XA)

the asymptotic in (&11)) can be written as

£ ﬁ* 2a* :8*
(5.13)

L
SERny =1 - Zpe{PG (;g(reﬂ —re) + Qf“) - PG ( \/Z(rf_l - %)}

where we define Q; = —o0, Q741 = 0, ryp = —o0, and r7 .1 = oo for convenience.
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5.3.3 Asymptotic Distribution of Estimates by Box-SOAV

Corollary B3 Tlimplies that the asymptotic distribution of the estimate £, is characterized
by the random variable X in (5.10). In fact, we can obtain the following convergence
result from Theorem 5311,

Theorem 5.3.2. Let ug4 be the empirical distribution corresponding to the CDE given by
Pz(X) = #ZnNﬂ I(X, < X), where I(%, < %) = 1if £, < % and otherwise I(%, < %) = 0.
Moreover, let p 4 be the distribution of the random variable X. The empirical distribution

uz converges weakly in probability to uy, i.e., f gdug LN f g duyg holds as N — oo for
every continuous compactly supported function g(-) : [r1, 7] — R.

Proof. See Appendix B.B. O

From Theorem 532, we can evaluate the asymptotic distribution of the estimate
obtained by Box-SOAV!. The CDE of X is given by

Py (2) =Pr (X < %) (5.14)
L
:Zngr()A(S)?LX:rg) (5.15)
=1
L ot
= Pr(prox o ,|re+ H|<zx (5.16)
Dar (s (e 1) <9

A
= piPo (£ {prox‘l* () - re}) (5.17)
a* f
for £ € [r1,r.] \ R, where prox;}(-) :[r,r.] \ R — Ris given by
)’5+’yQ2 (1’1 <)€<r2)

prox,; () = (£ +yQr1  (re < £ <repr) (5.18)

X+y0r (ro-1<X<rp)

The CDE in (517) is not continuous at £ € R because the random variable X has a
probability mass at £ € R. In fact, the conditional probability mass at X = r, can be



5.3. Main Results 77

written as

PI‘(X:I‘5|X=I’1()

=Pr (prox o ey (rk + %H) = rg) (5.19)
pe [ -+ L) | Y2 el (5.20)
@ B B

whereas for £ ¢ R the conditional density of X on the event X = ry is given by

p)?|X:rk ()e) =

\/*Z (\/Z {prox o (x) - rk}) (5.21)

ﬁ\F

Hence, the asymptotic density p¢(X) of X can be written as

pe(®) = {Zk | Pk Pr( =r | X= rk) 0r,(X) (X=r7) (5.22)

Zkzl pkp)2|X:rk(x) (% ¢ R)

where 6,,(-) denotes the Dirac measure at r.

In Fig. B.1I, we show the empirical histogram of the CDE of the estimates by Boxd
SOAV. In the simulation, we set N = 1000, M = 750, A = 0.75, (p1,p2,p3) =
(0.2,0.6,0.2), (r,r2,r3) = (1,0, 1), and (g1, g2, ¢3) = (1,0.005, 1). The SNR defined as
Zle pgr€2 /o2 is 20 dB. The empirical result is averaged over 20 independent realizations
of the measurement matrix A and the unknown vector . To solve the
optimization, we use the Douglas-Rachford algorithm [61,101]. For comparison, the
figure also shows the asymptotic distribution in (517). We can see that the asymptotic
distribution obtained from Theorem 5.3.2 agrees well with the empirical histogram of
the CDE.

5.3.4 Asymptotically Optimal Quantizer

By using the asymptotic density in the previous subsection, we can design the quantizer
Q(-) to obtain the asymptotically optimal SERI. Although Qnv(-) in (512 is commonly
used as the quantizer, it is not optimal in terms of the asymptotic SER! in (B.11)) in
general. We here present the desired quantizer minimizing the asymptotic as the
asymptotically optimal quantizer Qro(X) = r;. The index £ e {l1,---, L} canbe obtained
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Figure 5.1: The empirical histogram of the CDE (solid line) and the asymptotic
distribution (dashed line) of the estimates by Box-SOAV| (N = 1000, M = 750,

A= 0.75, (p1,p2, p3) = (0.2, 0.6, 0.2), (I’], r, 1”3) = (—1, 0, 1), (ql, q>, q3) = (1, 0.005, 1),
SNR = 20 dB)

by MAP criterion as

{= arg max Pr (X =ri | X = rg) (5.23)
k=1,...L

arg max Pr(X =ry)Pr (X =r | X= rk) (5.24)
k=1,....L

arg max py4 P ﬂ(rf—rk)+Q"“ - Pg vZ(rf—er? (5.25)
k=1....L a* B a* B

when X = ry, and

¢ = arg max Pr (X =r | X = )?) (5.26)
k=1,...L

arg max Pr(X = ”k)Pqu:rk (%) (5.27)
k=1,....L

A
arg max ppG \/: {prox_}y* (%) — rk} (5.28)
k=1,...L a /3*\/Zf
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when £ ¢ R. When we use the above Qao(-) as the quantizer, the asymptotic SER
in (5.11) can be written as

L
SERa0 = 1- Y pcPr (QAO()?) — | X = rg) (5.29)
=1
L
=1- pePr (X e Qi (r) | X = rg) (5.30)
=1
L
= 1= pettgyner, (@) (531)
=1

in general, where we define
Qo(re) = {% ] Quo() = r¢} (5:32)
and pg|y_,, denotes the distribution of X conditioned on X = ry, i.e., the distribution of

Prox o, (I‘g + i/’—%H ) Note that the CDF corresponding to yg|y_,, is given by
B*VA

P)A(|X:rf (XA) = Pg

g {prox_i* () - rf}) (5.33)

el

as shown in (6.17). Once Q;(')(rg) is obtained, we can compute the asymptotic SERI
from (B.31]) and (5.33).

In practice, when we use the appropriate parameters g, of Box-SOAV,, the resultant
asymptotically optimal quantizer is usually given by the form of

r (XA < K;)

Qno(®) ={re (k) <X <k}, (5.34)

rr, (Kz < )’5)

where —oco = k| < & < -+ <Kk <K, = and rp- < K}f <r(=2...,L). In

1 L+1
this case, we have Q;(')(rg) = [«;, k;,,) and hence the asymptotic SERl in (8.31)) can be

written as

L
SERyo = 1 — ZP{{PG (g(K}fH —rep) + Qf“) - P (\/Z(KZ; —re) + %)}

* *
= B @

by using (5-18) and (533).
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5.3.5 Proposed Parameter Selection for Box-SOAV

The parameters g, (€ = 1,...,L) in the optimization (65.4) affects the per-
formance of the reconstruction. From the results of the previous subsections, once
the parameters ¢, are fixed, the asymptotic SERI of with the asymptotically
optimal quantizer can be evaluated as follows:

1. Calculate @* and 8* in Theorem B3 11.
2. Obtain the asymptotically optimal quantizer Qao(-) based on (5.25) and (5.28).
3. Compute the asymptotic in (B11)) (or (539) in many cases).

We thus propose the approach to determine the parameters g, (or Q¢ in (5.6)) by numer-
ically minimizing the resultant asymptotic in (B.11). In the following examples, we
compare performance of the quantizers Qnv(-) and Qao(+) with the proposed parameter
selection.

Example 5.3.1 (Binary Vector). We consider the reconstruction of the binary vector
x € {r, rz}N . When the estimate X of an element of @ equals r; or r,, we should just
quantize it on the basis of (525). For £ € (ry, ), the output of the asymptotically
optimal quantizer is determined from (5.28). We thus obtain the value of «; such that

A A
P1PG (g {PrOX_(ly* f (13) = ”1}) = p2pG (§ {Proxlf («3) - Vz}) . (5.36)

B*VA B*VA

If the solution of (5.36) lies in (r1, 2), we have

1 (@) 1 P )
K> = Prox o . |=(ri +r) + log—|. 5.37
» =P mf(z(l 2) A -1 gpz ( )
In this case, the asymptotically optimal quantizer can be written as
ri (X<«
Quoi) = {" ¥ <) (5.38)
rn (K < X)

for £ € (r1, rp). Figure 5.2 shows an example of the asymptotic density of the estimates
by Box-SOAV given by (5.22). In the figure, we set A = 0.6, (p1,p2) = (0.3,0.7),
(r,r2) = (=1,1), (g1,92) = (0.5,0.5), and BNR of 15 dB. We can see that a certain
probability mass is located at £ = +1. The functions PkP%|x=n, (%) (k = 1,2) are also
plotted by the dotted lines in the figure. We can confirm that the two curves cross at
2 =«.
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threshold «; of the asymptotically optimal quantizer (A = 0.6, (p1,p2) = (0.3,0.7),
(ri,r2) = (=1,1), (g1, q2) = (0.5,0.5), SNR = 15 dB)

We can obtain the asymptotically optimal parameters of the Box-SOAV| optimization
from the theoretical result. For the reconstruction of x € {ry, rz}N , the Bax-SOAV|
optimization is given by

. . 1
& = arg min {—Ily—ASII§+ql ls = rilll; + g2 IIS—rzllll} (5.39)
SE[I’I,I‘2]N
1 N
= agmin {5 lly - Asl3+0Q2 ) s (5.40)
Se[rlar2]N n=1
because q; ||s —ri1ll; + q2 |l|s — r21||; = 02 ZnNzl sn + (const.) for s € [r1,]". Hence,

the performance of depends only on ;. By numerically computing the
value of Q, minimizing the asymptotic SER|, we can obtain the optimal Qao(+) and the
corresponding asymptotic SERI. For example, Fig. 53 shows the asymptotic of
Qao(+) versus O when A = 0.7, (ri,r2) = (0, 1), (p1, p2) = (0.8,0.2), and SNR of 15
dB. From the figure, we can see that the asymptotic performance of Box-SOAV] largely
depends on the parameter Q>. By using the optimal value Q) of Q> minimizing the
asymptotic SER|, we can obtain the asymptotically optimal values of «*, 7, and «;
in (B37).

We then compare the performance of quantizer Qnv(-) in (5-12) and Qao(-) in (538).
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Figure 5.3: Asymptotic SER of Qao(-) versus Q> (A = 0.7, (ri,r2) = (0,1), (p1, p2) =
(0.8,0.2),SNR = 15 dB)

Figure 5.4 shows the asymptotic of with four cases: (i) Qnv(-) with
0, =0, (i) Qnv(-) with the optimal Qy, (iii) Qao(-) with Q> = 0, and (iv) Qao(-) with
the proposed optimal parameter selection. In the figure, we set A = 0.7, (r, r2) = (-1, 1),
and SNR of 15 dB. The figure shows that the proposed optimal parameter selection can
achieve better performance than the naive selection Q> = 0. Moreover, the performance
of Qao() is better than that of Qnv(+), especially when the difference between p; and
P2 is large.

Example 5.3.2 (Discrete-Valued Sparse Vector). The discrete-valued vector = with
(P1,p2.p3) = (1 = po)/2, po, (1 = po)/2) and (r1,r2,r3) = (=r,0,r) (r > 0) becomes
sparse when pg is large. By a similar discussion to Example 5.3 1|, the asymptotically
optimal quantizer is given by
-r (2<K)
Quo(2) =10 (&5 < X < «}) (5.41)

roo <)

when —r < K; < 0, where

1 (@")? 1 1 - po
S = o o |—=r+ -1
“ proxﬁ*\@ 2r A r °8 2po

Ky = =K. (5.43)

, (5.42)
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For the reconstruction of & via Bax-SQAV] in this scenario, we can set g; = g3 from
the symmetry of the distribution. As a result, the Bax-SOAV] optimization problem can
be written as

N : 1
& = arg min {EHZI—A'SH%JFQI s +7Llly + g2 [Islly + g1 ||3_r1||1}

se[-rr]N
(5.44)
. 1
= arg min {5 ly - Asl3 + g ||s||1} (5.45)
se[-rr]V

because qi ||s + r1||; + g1 ||s — r1||; = 2q;rN = (const.) for s € [-r,r]". Hence, only
q> is the parameter to be optimized. Note that the optimization problem
results in Box-LASSO [94] in this case. Figure 5.3 shows the asymptotic SERI of
Box-SOAV with Qv(-) and Qao(:). In the figure, we set (p1, pa, p3) = (0.05,0.9,0.05),
(r1, 2, 1r3) = (=1,0, 1), and SNR of 15 dB. The parameter ¢, of is numerically
chosen by minimizing the asymptotic for each quantizer. We can observe that

the asymptotically optimal quantizer Qao(-) outperforms Qnv(-) especially for large
A =M/N.

Remark 5.3.1. In Chapter B, a parameter selection method has been proposed for the
SOAV| optimization on the basis of the analysis of the DAMP algorithm. However, the
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A

Figure 5.5: Asymptotic SER versus A = M/N for discrete-valued sparse vector
((pl,pz, p3) = (0.05, 0.9, 0.05), (I’], r, I”3) = (—1, 0, 1), SNR = 15 dB)

method does not necessarily minimize the SER of the SOAV optimization because it
minimizes the required number of measurements for the perfect reconstruction in the
noise-free case. Since it does not take the noise variance into consideration, it is difficult
to fairly compare the result in Chapter B with the theoretical result in this paper.

5.4 Proof of Theorem 5.3.1

In this section, we show the proof of Theorem 531 Although the procedure of the
proof roughly follows the analysis using CGMT in the literature (e.g., [56,91]]), we need
to modify several parts for our problem.

54.1 (PO)

To obtain the (PQ) problem for the proof, we firstly define the error vectoras w = s—x
and rewrite the Box-SOAV optimization (5.4) as

L
1|1
in —{ = [|[Aw — v|? + +w—rel; ¢, 5.46
,L%N{zn w — vl ;qfnm w = ||1} (5.46)
where Sy, = {z eRN | rn-x, <z <ri—-x,(n=1,.. .,N)} and the objective function

is normalized by N. Since the convex conjugate of the function &£(z) := % ||z ||% is given
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by
* * * 1
& (zY) = max {'u,Tz -3 ||u||§} (5.47)
L,
=5 1215, (5.48)

we have

1 2 T N 2

~ |[Aw - v||3 = max {VNu" (Aw —v) — = ||ul?}. (5.49)

2 ueRM 2

Hence, the optimization problem (5.46) is equivalent to

weSy ueRM

L
1 N
min max —{ VNu' (Aw —v) — — ||u||§ + Z qelle +w —rel||y ¢ (5.50)
N 2 —

Let w* and u* be the optimal values of w and w, respectively. Since u* satisfies

*

u* = \/LN(A'w* —v) and w* is bounded, there exists a constant C, such that ||u*|, < C,
with probability approaching 1. We can thus rewrite (5.50) as

L
. 1T( - 1 , 1
min max { —u \/NA)w——v u-—=|ull5+= > qgelle+w-r|;,
{ W |

weSy UES,

(5.51)

where S, = {z eRM ||z, < Cu}. The optimization problem (5.51) takes the form of
(PQ) in (5.11).

54.2 (AO)

We then analyze the (AQ) problem corresponding to (5.51]). We can confirm that Sy, and
S, are closed compact sets and the function —\/LN'UTU—% ||u||§+# 2521 qellx +w —rel||4

is convex-concave on Sy, X 8. Hence, the (AQ) problem corresponding to (5.51)) is
given by

. 1 T T 1+
min max{ — |||w u—||u h'w)——vu
min uesu{ (ol g™ = full =

L
1 1
-3 ||u||§+N;qenmw—mnl}, (5:52)
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which can be rewritten as

1 1
min max{— (MQT — ’UT) u— I llull, hTw

WESy UES, \/N \/ﬁ
1 1 <
2
~ g e - mnl}. (5.53)
Since both g and v are Gaussian, lw \/ng v is also Gaussian distributed with mean
0 and covariance matrix (” I3 + O, )I We can thus rewrite (” \/ﬂz gT T)u as

vV ”1]1\]]”2 + 02g"u by the slight abuse of notation, where g is the random vector with i.i.d.
standard Gaussian elements. By setting ||u||, = B, the (AQ) problem can be further
rewritten as

2
w 1 1
min max lwll3 N (TVZ’B liglla ZBhTw — =2
weS,, 0<B<C, N VN N 2

+—qu||a:+w—r51||l} (5.54)

=1

From the identity y = ming-g (% 3‘—) for y (> 0), we have

I o Lo
2 2 . N v
— 4+ 0y =min| - + —— 5.55
N v a>0 | 2 2a ( )

and rewrite (5.54)) as

2 2
1 h;,
ymip| 28100 7Blole 1 ] § e Vi
2 Tglls

B>0 a>0 2 \/_ \/N 2 anl
N
Bllgll, . 1
+ e min N;Mwn) : (5.56)
where
1 x/ﬁ
Jn(Wn) == |Wn— fl Xy + Wy —rel. (557)
2( gl ) Bllgll; £ Zq
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Note that the objective function becomes separable for w, in (5.56), and that the change
in the range of 8 does not change the optimal value. Since the optimization with respect
to w in (B.5€) is given by

2
1 VN @ VN &
E{sn—(xn+mahn)} +E|—Z [lsn—rgl

=1

(5.58)
N
1 VN
=— » env, Xp + ——ahy|, (5.59)
NZ; Fos ! ( lgll, )
(5.56) can be rewritten as
Py = max min Fy(a, B), (5.60)
where
Py < 2B1glk  oWBlgle 1o 1 i aph? VN
’ 2 YN 2¢ yN 2 N 2 gl

. Blgl 1 VN
e h 5.61
Yo YN VL e“V%HL ( Tl " ) oD

The optimal value of w is given by

VYN
wy(h,x) = proxes, o~ . [+ ——ayh| -z, (5.62)
B Tallz ”9”2

where @), and g}, are the optimal values of @ and 3 corresponding to ¢, respectively.

5.4.3 Applying CGMT

We then consider the condition (i) of Theorem 62_1. As N — oo, Fy(a, ) converges
pointwise to F(a, 8) defined in Theorem 5.3.1l. Let ¢* = maxg. ming>o F(, §) and
denote the optimal values of @ and 8 by @™ and %, respectively. By a similar discussion

to the proof of [56, Lemma IV. 1], we have ¢}, i ¢* and (a/;’(,, ﬂ;"\,) i (a*,B)as N — oo.
Hence, the optimal value of (AQ) satisfies the condition (i) in CGMT for ¢ = ¢* and any
n > 0.

Next, we define the set S used in CGMT. We have the following lemma for the
optimizer wy of (AQ) in (5.62).
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Lemma 5.4.1. For any function (-, -) € L (given by (5.-8)), we have

plim % Zi; W (W (B, )y %) = B [w (X _ X, X)] , (5.63)

N—ooo

where Wy ,(h,, x,) denotes the nth element of Wy in (5-62).
Proof. See Appendix 5.Q. O

From Lemma B.4_1], we can define

S={ZGRN

% i W 5) —E [y (X - X, X) || < g} (5.64)
n=1

and obtain Wy (h, ) € S with probability approaching 1 for any & (> 0).

Finally, we consider the condition (ii) of CGMT. From the strong convexity in w of
the objective function in (554), we can show ¢sc > ¢y, +7 with probability approaching
1 for a constant 77 (> 0), where ¢ . denotes the optimal value of (IAQ)) under the restriction
of w € S¢. Hence, by setting ¢ = ¢*,n = 7i/3 in Theorem B.2_1I, we can use CGMT for
S, i.e., Lemma 5.4 1 holds not only for the optimizer wy of (AQ) but also for that of
(PQ). We thus conclude the proof.

5.5 Simulation Results

In this section, we compare the theoretical results by Corollary 53 1 and the empirical
performance obtained by computer simulations. In the simulations, the measurement
matrix A € RM*N and the noise vector v € RM satisfy the assumptions in Theorem 5.3.1I.

We firstly compare the empirical performance of the optimization with
the theoretical result. Figure 5.6 shows the SERI performance for the binary vector with
(r1, ) = (0, 1) for measurement ratios of A = 0.5,0.6, and 0.7. The distribution of the
unknown vector is given by (p1, p2) = (0.8,0.2). The SNRIis 15 dB. We use Qao(*)
as the quantizer and the parameter of Box-SOAV! is optimized as in Example 5.3_1I. In
the figure, ‘empirical’ represents the empirical performance obtained by averaging the
over 2000 independent realizations of the measurement matrix. We use Douglas-
Rachford algorithm [61,101] to solve the optimization problem. We can see
that the empirical performance agrees well with the theoretical prediction denoted by
‘theoretical’ for large N.

Next, we show that the proposed optimal parameters and quantizer can achieve better
performance than some fixed parameter and the naive quantizer. Figure 5.7 shows the
performance of the optimization versus the SNR, where N = 1000,
A = 0.8, (r,r,rn) = (-1,0,1), and (p1,p2,p3) = (0.1,0.8,0.1). As described in
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Figure 5.7: of Bax-SOAV versus the SNR (N = 1000, A = 0.8, (r,r2,13) =
(_19 09 1)’ (pl, p29 p3) = (0.1, 0.8, 0.1))

Example 532, the parameter of the Box-SOAV| optimization is only g in this case.
In the figure, ‘g2 = 0.01” and ‘g, = 0.1" denote the performance of the Box-SOAV
optimization with g, = 0.01 and g, = 0.1, respectively. We use the naive quantizer
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Figure 5.8: versus A = M/N (N = 1500, (r,rp,r3) = (-=1,0,1), (p1, p2, p3) =
(0.25,0.5,0.25), SNR = 20 dB)

Qnvy(+) in (B12) for these methods. Also, ‘optimal’ represents the performance of
the Bax-SOAV| optimization with the proposed asymptotically optimal parameter and
quantizer Qao(-). We can see that the proposed parameter and quantizer outperforms
the fixed parameter and the naive quantizer. It should be noted that the optimal value
of g clearly depends on the SNRI and the proposed approach can determine the value
adaptively.

Finally, we compare the performance of the optimization with some
conventional methods. Figure 5.8 shows the SERI performance versus A for the unknown
discrete-valued vector with (r1, 2, r3) = (=1,0,1). We assume N = 1500, (p1, p2, p3) =
(0.25,0.5,0.25), and the SNR of 20 dB. In the figure, ‘SOAV’ and ‘Box-SOAV’ represent
the conventional optimization and the optimization, respectively.
We use Qao(-) as the quantizer and the parameter of is optimized as in
Example 65.3.2. For comparison, we also evaluate the performance of the box relaxation
method [54,55] given by

1 2
min - ||y — As||5. 5.65
min > lly = Asl (5:65)
From the figure, we can see that the empirical performances of Box-SOAV| and SOAV
are close to the theoretical prediction of Bax-SOAVI. Moreover, they have better perfor-
mance than the box relaxation method because they effectively use the knowledge of the
distribution of the unknown vector.
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5.6 Conclusion

In this chapter, we have derived the theoretical asymptotic performance of the discrete-
valued vector reconstruction using the Box-SOAV| optimization. By using the CGMT
framework, we have shown that the asymptotic can be obtained with Corollary 5.3 1.
Moreover, we have derived the asymptotic distribution of the estimate obtained by
the Box-SOAV! optimization. The asymptotic results enable us to obtain the optimal
parameters of the Box-SOAV] optimization and the asymptotically optimal quantizer.
Simulation results show that the empirical performance is close to theoretical prediction
of Corollary B3 1 when the problem size is sufficiently large. We have also shown that
we can improve the performance of the optimization by using the proposed
asymptotically optimal parameters and quantizer.

Appendix 5.A Proof of Corollary 5.3.1

Lety(w, x) = 1= y(w+x, x) in Theorem 631, where the function y (-, -) : [r1, r.]XR —
{0, 1} is given by

. 1 (@) =x)
X(x,x)—{o Q) %) (5.66)

The left hand side of (5.9) can be written as

N
1 . 1 .
plim N;u = X x2)) = plim —11Q(#) - llo, (5.67)

N—oo N—oo

whereas the right hand side can be written as

E[l-y(X.X)] =1-Pr (Q(X) - X) (5.68)
L

=1 pePr (Q(X) | X = I’g), (5.69)
‘=1

which concludes (5-11). Although x(-,7¢) is not Lipschitz continuous, we can approx-
imate y(-,r,) with a Lipschitz function because H is a continuous random variable
and the probability measure for the discontinuity point of x(-,r¢) is zero (For a similar
discussion, see [56, Lemma A.4]).
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Appendix 5.B Proof of Theorem 5.3.2

It is sufficient to prove

A;im Pr(/gdy;;;—/gdpx

for any € > 0. From the Stone-Weierstrass theorem [[102], there exists a polynomial
v(:) : [r1, 7] — R such that

< 8) =1 (5.70)

18(x) = v(x)| < § (5.71)

for any x € [ry, r.]. Hence, the absolute value in (5Z0) can be upper bounded as

+

< ‘/gd,um—‘/vd,u@ + ‘/vd,u@—/vd,ug /vd,ux—/gd,ug
(5.72)

2
< /vd,u@—/vd,u;( +§8 (5.73)

Note that the polynomial v(-) is Lipschitz in [r{, rz]. We then define ¥/(w, x) = v(w + x)
in Theorem 5.3 1l and obtain plim 5 _, ., % ZnN:1 v(x,) =E [v()A()] ,l.e.,

Aym Pr(/vdu;g—/vdug

(6.73) and (6.74) conclude (6.70).

&
< 5) = 1. (5.74)

Appendix 5.C Proof of Lemma 5.4.1

Let 6(hy, x,,) = prox o+ 7 (xn + %hn) — x,. From the law of large numbers, we have
B*VA

plim % Z:V; W (O, ), %) = E [¢ (X X, X)] . (5.75)

N—ooo

Hence, it is sufficient to show

plim =0, (5.76)

N—>

N
% Z {l//(WNn(hn’ xn), xn) - 1//(9(]/1”, xﬂ)’ x”l)}
n=1
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which is equivalent to

lim PI’( Z{W(WNn(hn’ Xn)s Xn) = Y(O(hy, Xpn), xn)} < ‘9)
L 1 &
= pr A}i_rgopr( Z{'wl’(WNn(hn’ re)sre) = Y(0(hy, re), l"g)} < 8) (5.77)
=1 n=1
=1 (5.78)
for any € (> 0). We thus prove
| &
]\;l_rgo Pr( N ;{&(WN,n(hn, rf)a rf) - w(g(hl’l’ rf)’ rf)} < 8) = 1 (579)
for{ =1,...,L below.
If we denote the Lipschitz constant of y/(-, r¢) by Cy ¢, we have
|l//(WNn(hna re)sre) = Y(0(hy, re), r€)| < Gy |WN,n(hn, re) = 0(hn, l”g)| . (5.80)

The absolute value in the right hand side of (5.80) is upper bounded as

[N (P 7e) = 6, )|

< |[proxo;, \x (rg + ﬂa;hn) — ProXe:, ow (rg + @ hn)
By Tal/ gl Ao g/ VA
+ prox;_z%f (}’g + \/_hn) - proxﬁgﬂf (rg + i/yzhn) (5.81)
N e @
lgll> VA"
x o
+ prox%ﬁf (}’( + \/_h ) prox a(f (rg + \/_h,,) (5.82)

In (B.82), we use the fact that prox, f(-) is non-expansive. For the first term in (5.82), we

@lhy — L, {9 YN
A

IG,/;] VA B Tala is sufficiently

P .
— 0 as N — oo. Moreover, given tha

have
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Figure 5.9: Graphical representation for (5-83).

,B’?,\;Z when N is large, the second term is upper bounded as

proXa:, ym (l’g-i— i h ) Prox o+ (rg+ i hn)
Taly VA ! VA

al VN

N ) } (5.83)

By llgll,  gvA
i 0 (5.84)

as N — oo (See Fig. 69). We thus have | (W, (hy, re), re) — w(0(hy, re), re)| 5 0 and
obtain (8.79), which completes the proof.
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Discreteness-Aware Approximate
Message Passing for Discrete-Valued
Vector Reconstruction

6.1 Introduction

As described in Section [L3, some methods based on convex optimization have been
proposed for the large-scale discrete-valued vector reconstruction. The regularization-
based method and the transform-based method [57] borrow the idea from compressed
sensing [40,41]] in the formulation to obtain convex optimization problems. As for
theoretical analysis, the required number of measurements in the large system limit has
been derived for the binary vector reconstruction with the regularization-based method.
A more general result has been obtained for the reconstruction of uniformly distributed
discrete-valued vectors via the transform-based method. For non-uniformly distributed
vectors, however, no analytical result has been provided.

On the other hand, the optimization has been proposed for the reconstruc-
tion of discrete-valued vector with any discrete distribution [60]. Although the
optimization is similar to the regularization-based method, it can take the probability
distribution of the unknown vector into consideration. They are actually equivalent
when the unknown vector is uniformly distributed. Although some theoretical analy-
ses have been provided for the optimization problem [26,65], the required number of
measurements for the reconstruction has not been obtained for the optimization.

In this chapter, we propose an iterative algorithm based on the SOAV optimization
problem and analyze its reconstruction performance. By using the idea of the IAMP
algorithm [B8,39] for compressed sensing, we firstly consider a probability distribution
corresponding to the optimization. We then approximate the sum-product belief
propagation [35,B6] for the distribution and obtain the proposed algorithm, referred
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to as DAMP. For the approximation in the derivation, we assume the large system
limit, where the problem size increases to infinity with a fixed ratio of the number of
measurements to the number of unknown variables. The DAMP algorithm has basically
the same form as that of the original AMP algorithm for compressed sensing except for
their soft thresholding functions. Hence, the order of the computational complexity is
the same as that of the original AMP algorithm. By using state evolution [38,44/], we
analytically evaluate the asymptotic performance of the DAMP algorithm in the large
system limit. We further derive the required number of measurements for the perfect
reconstruction in the noise-free case. The analysis provides the optimal parameters of the
soft thresholding function in terms of minimizing the required number of measurements.
With the analytical result, we also propose a method to determine the parameters of the
optimization. Moreover, on the basis of the state evolution, we derive Bayes
optimal DAMP, which gives the minimum MSE at each iteration in the large system
limit. Simulation results show that the proposed DAMP algorithms can reconstruct the
discrete-valued vector from its underdetermined linear measurements. For large-scale
problems, the performance agrees well with the theoretical result obtained with the state
evolution. The optimization with the proposed parameters can achieve the better
performance than that of the original optimization. Moreover, when the problem
size is not large enough, it also outperforms some AMP-based algorithms in high SNR
region. We also evaluate the performance when the measurement matrix is a partial
discrete cosine transform (DCT) matrix. We compare the proposed methods with turbo
compressed sensing [103,104], which is a message passing-based algorithm designed
for partial DET measurement matrices. For small-scale problems, Bayes optimal DAMP
achieves better performance than turbo compressed sensing in the high SNR region.

The rest of the chapter is organized as follows. In Section 6.2, we propose the
DAMP algorithm for the discrete-valued vector reconstruction. Section 6.3 analyzes the
performance of the DAMP algorithm via the state evolution framework and shows some
examples of the analysis. We then apply the theoretical results to the optimization
in Section 6.4 and provide Bayes optimal DAMP in Section b.5. Section b.6 gives some
simulation results, which demonstrate the performance of the proposed algorithms and
show the validity of the theoretical analysis. Finally, we present some conclusions in
Section B.72.

6.2 Proposed Discreteness-aware AMP

In this section, we briefly explain the optimization [6(] and propose DAMP by
taking a similar approach to that of the AMP algorithm for compressed sensing [38,105].
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6.2.1 DAMP

The derivation of DAMP begins with belief propagation with the sum-product algo-
rithm [B6] for a probability distribution corresponding to the optimization ([L3€).
We first consider the following joint probability distribution

2

N L M B N
u(s) « Dexp (—ﬁ;qﬂsn—rgl)nl;llexp - ym—;am,jsj , (6.1)

where 8 > 0. Note that, as § — oo, the mass of the distribution concentrates on the
solution of (IL36). Hence, we can solve ([L36) by calculating the mode of the marginal
distribution of each x,, which can be approximated via belief propagation. However, the
computational complexity is prohibitive for the factor graph of (b-1)) with large N.

To derive a low-complexity algorithm, we then consider the large system limit
(M,N — oo with fixed M/N = A) and large g limit (8 — o), and approximate the
sum-product algorithm for (6.1]). As in the derivation in [39], assuming the measurement
matrix A € R¥*N being composed of iLi.dl variables with zero mean and variance 1/M,
we have the resultant algorithm as

1 . _ _1 61
2 =y— Ax' + -2 <7)' (azt Ry l—)> (6.2)
A VA
0
't =p (:v’ + AT —t) , (6.3)
VA

where x' is the estimate of « at the rth iteration. The function 5(+; -) is given by
77('“» 7) = prOX),J(’U,), (64)

where J(s) = ng:l qgclls — rel||y is the first term of the objective function in (IL.36). By
the direct calculation described in [2€], the nth element of prox,, ;(u) is written as

u, —yQi (un < r1+7yQ1)

r (r +y01 S u, <11 +y02)
[prox, ;(w)ln = {un —yQr  (rk-1 +yQk < upy <7i +7yQk) (6.5)

Ik (re + YOk < up < 1 +yQr+1)

up —yQr+1 (rp +yQr+1 < uy)
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Algorithm 6.1 DAMP algorithm
Input: y € RY, A ¢ RM*XN

Output: & € RV

2 =x! =E[z], 2 =0,A = M/N
2: fort =1to Ty, — 1 do

—

1 0,_
3: Zl=y- Ax' + Kzt—l <77, (wt—l + AT ITA1)>
2
N EL
t N )
0
5: ZBH-I =7n (mt + Ath; _t)
VA
6: end for
7: @ — wTitr
where u,, is the nth element of u, Q1 = — Z;;l Gr, QL+t = Zﬂ;l g¢, and
k-1 L
Oc=lar- Y a0 (k=2...L) (6.6)
=1 =k

Since [prox,;(u)], is a function of only uy,, the function n(u;y) is a element-wise
function of u. The nth element of r’(u;y) in (62) is the partial derivative of n(u;y)
with respect to up, and is given by [7'(u;y)], = 0 if [prox,,(w)l, € {r,...,r.},
otherwise [1'(u;y)], = 1. 9,2 = ||z - a:ll% /N + Ac? is a scaled effective variance at
the rth iteration [106]. Since the true solution « is unknown in practice, we use the
alternative value for 62, e.g., §? = ||zt||§/N as in [[109].

We summarize the proposed DAMP algorithm in Algorithm b.1l. It should be noted
that the update equations of DAMP (6.2), (6.3) are basically the same as those of the
IAMP algorithm for compressed sensing [38,39]. The only difference is the function
n(w;y), which is the soft thresholding function [5(u; )], = sign(u,) max {|u,| — v, 0} in
the case of the sparse vector reconstruction. Hence, the function n(wu; y) given by (6.4)—
(b.6) can be considered as the soft thresholding function for the discrete-valued vector
reconstruction. In TABLE b1, we summarize the relationship between the original
IAMP algorithm and the proposed DAMP algorithm.

From a Bayesian perspective, the original AMP algorithm uses the prior distribution
Ppri(x) o< exp (= |x]) for the unknown sparse vector, whereas the DAMP algorithm uses

Ppri(x) oc exp (— 257:1 qelx — rg|) for the discrete-valued vector. Although the DAMP

algorithm is based on the idea of the optimization, the estimate by the DAMP
algorithm is not necessarily equal to that by the optimization because of the
approximations in the derivation. For details of the relationship between IAMP-based
approaches and optimization-based approaches, see [107,108]. Since (6-2) and (6.3)
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Table 6.1: Comparison between the original AMP algorithm and the proposed DAMP
algorithm

original AMP algorithm [38,39] proposed DAMP algorithm
target sparse vector discrete-valued vector
optimization problem €1 optimization optimization in (IC36)
prior distribution pyri(x) Ppri(x) o< exp (= ) Pi(x) o exp (= TE ge |x o)
soft thresholding function | [n(w;y)], = sign(u,) max {|u,| — v, 0} n(u;y) = prox,,; (u) in (B3)

can be computed only with additions of vectors and multiplications of a matrix and a
vector, the computational complexity of the algorithm is O(M N) per iteration, which is
lower than that of internal point methods O(M N?) used in [57].

The DAMP algorithm can also be used for complex-valued vector by rewriting
the complex-valued model into the equivalent real-valued model when the real and
imaginary parts are independent, e.g., © € {1+ j,—1+j,—1—j,1—j}. When they are
dependent, however, the algorithm cannot be directly applied and hence some extensions
are required.

6.3 Asymptotic Analysis of DAMP

In this section, we provide a theoretical analysis of DAMP with state evolution frame-
work [B&], [44]. By using state evolution, we give the required number of measurements
for the perfect reconstruction and the parameter of the soft thresholding function mini-
mizing the required number of measurements in the large system limit.

6.3.1 State Evolution

State evolution is a framework to analyze the asymptotic performance of the AMP
algorithm. In the large system limit, the sample MSE o7 = ||z' — x||3/N of ' can be
predicted via the state evolution. Similarly to the case of compressed sensing, the state
evolution formula for DAMP in Algorithm b1l is written as

o2y =i (07 + M), 6.7)

where

Weg (0‘2) -E

2
o o
n X+—Z;—)—X} . (6.8)
b G5 G
The random variable X has the same distribution as that of the unknown discrete variable,
ie.,, P(X = rp) = po (€ = 1,...,L) in our problem, and Z is the standard Gaussian
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random variable independent of X. In the rigorous proof for the state evolution [44], it
is assumed that A is composed of Lidl Gaussian variables with zero mean and variance
1/M, and n(-;-) is Lipschitz continuous. In [44], however, it is expected that the
state evolution is also valid for a broader class of measurement matrices A, such as the
matrices with Li.d. (possibly non-Gaussian) elements with zero mean and variance 1/ M.
In fact, some numerical results in [38] imply such universality of the state evolution.

6.3.2 Condition for Perfect Reconstruction by DAMP

We can analyze the performance of the DAMP algorithm by investigating the function
Wsg(o?), which can be analytically obtained (See Appendix G.Al). In this section, we
consider the noise-free case (i.e., O'VZ = 0) and investigate a sufficient condition for the
perfect reconstruction defined as o-t2 — 0 (t — o). Since we have Wsg(0) = 0 in the

noise-free case, the sequence {0',2}t=0,1 with the recursion (b.7) converges to zero if
d¥sg
S < 1.

d(O'z) a0

yeen

Wsg(0?) is concave and its derivative at o> = 0 is smaller than one, i.e.,

d¥sg

d(O-Z) al0
o't2+1 = lI’SE(O'ZZ) < 0',2. In this case, DAMP reconstructs the unknown vector & perfectly
regardless of the initialization. Note that the above discussion is valid when the function
Wsg(o?) is concave, and we can examine the concavity as discussed later.

In fact, the condition < 1 results in Wsg(0?) < o2 and hence we have

d¥
To obtain the condition for the perfect reconstruction, we evaluate a SZE) ana-
o al0
lytically. By the mathematical manipulation, we have
d¥sg
Z = D(Q) (6.9)
d(O-Z) ol0
L
1 2
=3 D e {Qch (Q0) = Qrs1pG (Qes1) + (1 + Qc) PG (Qr)
=1
+(1402,) (1= P Qe (6.10)

where Q = [Q1 -+ Opr+1 ]T (See Appendix b.B)). Since we can choose any g1, ..., qr > 0
in (L.36), we minimize (6_10) with respect to Qy,...,Qr+1 as

Din = rrgnD(Q) subjectto Q1 < --- < Qr+1. (6.11)

Note that, in (b.11), we eliminate the constraint Q1 = —Qy ;. As we will see later, the
optimal values of Q; and Q. are Q" "= — and QZIL = oo, respectively, and hence
this relaxation does not change the optimal value Dy,j,. The optimization problem (.11I)
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Algorithm 6.2 Parameter optimization
Input: p,...,pL
Output: Q' = [QO]Dt Q;‘fl]
cfor{ =L, L- .,2do
Fr(Q) = pf—l { -p (Q) + Q0 (1 = PG (Q)} + pe{prc (Q) + QP (Q)}

1:

2

3: end for

4 O =0
5

6

7

:GL(Q) = FL(Q)

cfor{=L,L— .,3do
if Q(Gg(Q)) > max. Q (Zi;]j Fk(Q)) then

8: o = Q(Ge(Q))

9: Gg_l(Q) Fr-1(Q)
10: else
1 Qopt Qopt
12: Gg 1(Q) F{f 1(Q)+G€(Q)
13: end if
14: end for
15: Q" = Q(Gz(Q))
16: Qopt

can be solved via interior point methods [109] because D(Q) is a convex function of Q.
We can also solve (b11l) with the following theorem, which enables us to theoretically
analyze the performance of DAMP in some cases as described in Section b.3.3. In what
follows, for an equation A(Q) = 0 with a unique solution, we denote the solution by

O(h(Q)), i-e., (Q(M(Q))) = 0

Theorem 6.3.1. The unique minimizer Q°P' = [QOpt x QETI]T of the optimization
problem (b11]) can be obtained by Algorithm E
Proof. See Appendix 6.C. O

By using Algorithm 6.2, we can obtain the unique minimizer Q" and the corre-
d¥Ysg

sponding minimum value Dy, of ——
d(O' ) 0

. From (6.9), the soft thresholding function
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with the optimal parameters Qgpt is written as

opt
S

opt opt opt
un —yQ}" (f”k—l +yQF <up <1+ YQkp)

S
n°(w; )|, =
| L Ik (rk + YO < up <1+ VQZTI)

, (6.12)

opt
ry (rL +7QLP < un)

where [ns (uw; 7)]n denotes the nth element of 775(u; y).
The DAMP algorithm with 775(-; -), which we call soft thresholding henceforth,
provides the perfect reconstruction in the large system limit if Dy, < 1 and the function

e

PYsg VA & w

d(oc2)2 205 ; pe ; (=re + 1) {=pG (Tewk) + po (Tersnt)} (6.13)

lI’gE(o'z) =E is concave. Since we have

A
where Ty x = £ (=r¢ + 1) + O (See Appendix K.D), the concavity of Wsg(o?)
o

depends on Q;. By evaluating (B13) with @ = Q°P', we can investigate whether
Y5p(0?) is concave or not. If W3 (0?) is concave and Dpin < 1, soft thresholding
DAMP can perfectly reconstruct the discrete-valued vector in the large system limit.

6.3.3 Examples of Asymptotic Analysis

We show three examples of the analysis for DAMP via state evolution. Although it is
difficult to prove the concavity of ‘PgE(az) by the direct calculation in general, we can
confirm that \PSE(O'Z) is concave in the following examples.

Example 6.3.1 (Binary vector). As the simplest example, we firstly consider the recon-
struction of a binary vector x € {ry, r 3V with Pr(x, = 1) = p1and Pr(x, =) = p2 (=
1 — p1). The binary vector reconstruction appears in CDMAI multiuser detection and
signal detection for MIMQ systems with BPSKI or [QPSK.. By using Algorithm 6.2, we
can obtain the optimal parameters of the soft thresholding function.

In the noise-free case, soft thresholding DAMP provides the perfect reconstruction
in the large system limit if Dy, < 1. Figure 6.1 shows the phase transition line of soft
thresholding DAMP, where Dp,;, = 1. Note that the line is the boundary between the
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Figure 6.1: Phase transition of soft thresholding DAMP for binary vector

success and failure regions of DAMP in the large system limit. In the left region of
the curve, the MSE of the estimate obtained by DAMP does not converge to zero. In
the right region, DAMP can provide the perfect reconstruction of x. For example, the
figure shows that DAMP requires at least N /2 observations to accurately reconstruct an
N-dimensional uniformly distributed binary vector with p; = 0.5. This result coincides
with the theoretical analysis for the regularization-based method and the transform-based
method [57] as well as the box relaxation [95]. Moreover, our analysis also provides
the required number of measurements for the asymmetric distribution with p; # 0.5,
which has not been obtained in [57] and [93]. It should be noted that D, in (6.11)) is
independent of r; and r», and hence the phase transition line in Fig. b.1l is identical for
any r1 and r, in the noise-free case.

In the noisy case, the asymptotic MSE at the fixed point of soft thresholding DAMBP,
i.e., the value of o? satisfying o> = ‘PSE(O'Z + Ac?), can be obtained numerically by
iterating o7, | = Wgp(07 + Aoy). Figure B2 shows the result for the binary vector
x € {-1,1}" with Pr(x, = —=1) = p1, Pr(x, = 1) = 1 — p, and 02 = 0.01. We can see
that the asymptotic MSE becomes smaller when the measurement ratio A increases.

Example 6.3.2 (Possibly sparse discrete-valued vector). The reconstruction of a possibly
sparse discrete-valued vector, such as « € {~1,0,1}" and € {-3,-1,0,1,3}", also
arises in some problems, e.g., multiuser detection for machine-to-machine communica-
tions [26] and error recovery for MIMQ signal detection [65]. Although some methods
have been proposed for the reconstruction of the discrete-valued sparse vector [110-114],
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Figure 6.2: MSE at the fixed point in the noisy case (x € {-1, 1}, Pr(x, = -1) = p,
Pr(x, = 1) =1-p1, 02 = 0.01)

their theoretical analyses have not been obtained.

In Fig. 6.3, we show the phase transition line for € {-r,0, r}N (‘binary’) and
x € {-3r,-r,0,r,3r}N (r > 0) (‘quad’) in the noise-free case. For x € {-r,0, r},
we assume Pr(x, = 0) = p and Pr(x, = —r) = Pr(x, = r) = (1 — p)/2. For x €
{=3r,—r,0,r,3r}", we assume Pr(x, = 0) = p and Pr(x, = —3r) = Pr(x, = —r) =
Pr(x, = r) = Pr(x, = 3r) = (1 — p)/4. The dashed line ‘¢;” shows the phase transition
line of the original AMBP algorithm for compressed sensing, which utilizes only the
sparsity of the unknown vector. If the unknown vector is discrete-valued, the
algorithm requires a less number of measurements compared to the AMP algorithm.
However, as the possible candidates for non-zero value increases, more number of
measurements is required for the perfect reconstruction.

Example 6.3.3 (Uniformly distributed discrete-valued vector). Finally, we analyze the
reconstruction of « € {ry, ..., r;}" with the uniform distribution p; = --- = p; = 1/L.
The signal detection for MIMQJ systems with guadrature amplitude modulation (QAM)
can be reduced to such reconstruction problem.

By Algorithm 6.2, we have Q(zpt == Q;pt = 0. The resultant soft thresholding
function is equivalent to that of the AMP algorithm with the box relaxation [115]. The
condition for the perfect reconstruction in the noise-free case is Dy, = (L — 1)/(AL) <
1 & A > (L - 1)/L, which means that soft thresholding DAMP requires more than

(L — 1)N/L measurements to reconstruct a N dimensional vector with the uniform
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Figure 6.3: Phase transition of soft thresholding DAMP for possibly sparse discrete-
valued vector

distribution of L values. This threshold is the same as that for the transform-based
method [57]. It should be noted that the analysis of DAMP can also be applied even
for non-uniform distribution, while uniform distributions are assumed for the analyses
in [87] and [115].

6.4 Application to SOAV Optimization

In this section, we propose a method to determine the parameters g, of the
optimization ([L36) on the basis of the asymptotic analysis of soft thresholding DAMP.

The DAMP algorithm proposed in the previous section has low computational com-
plexity and its asymptotic performance can be predicted by state evolution, which pro-
vides the optimal parameters of the soft thresholding function. In the derivation, however,
we take the large system limit and assume that the measurement matrix A is composed of
iidl elements. Hence, the DAMP algorithm suffers from the performance degradation
when the problem size is not large or the measurement matrix is composed of correlated
elements.

The optimization can be solved with the proximal splitting methods [61] as a
convex optimization problem [26]. The convex optimization algorithms do not require
any assumptions on the measurement matrix and can obtain the minimizer even when
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the problem size is small. Thus, when the measurement matrix is composed of corre-
lated elements or the problem size is not large enough, the convex optimization-based
approach using parameters g1, . . ., gz obtained from the optimal values Q7 ..., Q7" in
the previous section might outperform the DAMP algorithm.

We thus derive the parameters q?pt corresponding to the optimal parameters Q?pt in
a casual manner. From the definitions of Qj in (b.€l), we can obtain g, from Q, and Q1

as gy = (— Qg + Qe+1) /2. Since QOpt .. QOpt are finite, the corresponding coefficients
qut, ce qL_1 given by

o =2 (-0 + o) (6.14)
are also finite. On the other hand, g™ = ¢,” = oo follows from Q" = —co and

L+1
the form qlp ls —r1|+ qL “|s — rz|, and the term becomes infinity whens < rjors > ry.

When r| < s < rz, however, the term is computed as

0% = oo. The objectlve function of the SOAV optimization includes g™ and ¢;"" in

q(l)pt |s —ri| + qL |s —rr| = (qOpt Opt)s + const. (6.15)
= —(Qolot Opt)s + const. (6.16)

because we have
0>+ 01 =2(q1 —qL) (6.17)

73 99 - - . t t .
from (b.6), where “const.” is a constant independent of s. Since Qgp and Q(]ip are finite,
t t . .
QOp sz is also finite and hence we have

opt opt
+ t. < <
g |s =i+ g s —rr) = (Q Js+eonst. (n<s<r) g

o0 (otherwise)

where the infinity for s ¢ (ry, r) corresponds to the box constraint r; < s < ry. There-
fore, we have the SOAV optimization problem corresponding to the optimal parameters
for soft thresholding DAMP as

L
3 . bl
& = arg min {Z a¢"™ lls = retlly + 3 lly - As||§}

seRN =1
subjectto 1 < s <rrl, (6.19)

where qOPt ces qutl are given by (6.14) and q;)pt, qut (= 0) must be chosen to satisfy

opt opt ( Qopt opt)

q, —4;, /2. Note that we relax the constraint as ;1 < s < r; 1 because
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Algorithm 6.3 Beck-Teboulle proximal gradient algorithm for optimization (6-19)
Input: y c RY, A e R¥*N 1 eR
Output: z’v ¢ RV

Lxl=0,2'=0,7y =1,y !> /l||A||§

2: fort =1to Ty — 1 do

3 =08 (2" + yAAT (y - AZ');y)

1+ 4472 +1

4: T+l = >
-1
5: CL)I = 1 + !
Tt+1
6: 24 = ™ + (1 - w,) !
7: end for

the unknown vector  may have r; and r;. The problem (£.19) can be rewritten as

& = arg min {h(s) + hx(s)}, (6.20)

seRN

where h1(s) = SF, q;" ||Is — relll; + (s), ha(s) = A ||ly — As||3 /2, and

L(S)— 0 (7”11SSSI’L1) (621)
~ loo  (otherwise) '

An important fact here is that the proximity operator of /;(z) is given by prox,, (u) =

1°(u;y) because q;)pt, cees qut, Q(l)pt, s szt satisfy (b.6]) and «(-) restricts the value of
prox,, (u) as ry < [prox,, (u)], < r.. Hence, the convex optimization problem (6.19)
can be efficiently solved by proximal splitting methods [61] using 75(u;y). As an ex-
ample, we show Beck-Teboulle proximal gradient algorithm [61,62] for the optimization
problem (6.20) in Algorithm 6.3

As we can see from the following example, the proposed parameters qut are different

from those of the original SOAV optimization in general.

Example 6.4.1. We consider the reconstruction of x € {—1,0, I}N . The distribution
of x is assumed to be Pr(x, = 0) = 0.2 and Pr(x, = —1) = Pr(x, = 1) = 0.4. In
this case, we have Q(l)pt = —o00, Qgpt = Q;’pt = 0, and szt = oo by Algorithm B.2.

Hence, the proposed parameters satisfy qut - qut =0 and qut = 0. Since we have

g s+ 1l + g7 IIslly + g3 lls = 1]I; = 2¢;"'N (= const.) for -1 < s < 1 in this
case, the proposed optimization problem is given by
& = arg min ||y — Asll%
seRN

subjectto —1 < s < 1. (6.22)
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The optimization problem (6.22) is quite different from the original SOAV optimiza-
tion [60] and the regularization-based method [57], where (g1, ¢2, ¢3) = (0.4,0.2,0.4) and
(91, 92, q3) = (1, 1, 1), respectively. Note that the box relaxation optimization (b.22) has
been considered for the reconstruction of the binary vector € {—1, l}N (e.g., [64,05]).
The proposed approach results in the box relaxation optimization (b6.22) even when
Pr(x; = 0) =0.2.

6.5 Bayes optimal DAMP

In this section, we provide Bayes optimal DAMP on the basis of the state evolution. In the
DAMP algorithm in Algorithm 6.1, we can use different functions as 7(-; -) instead of the
soft thresholding function (6.5), (b.12). Moreover, the state evolution formula (6.7) is still
valid for different (-; -) as far as it is Lipschitz continuous. In the literature of compressed
sensing, the IAMP algorithm is called Bayes optimal if the function [nB (w; y)] . =
E[X|X +yZ = u,] is used instead of the soft thresholding function [105,116]. x Note

{ i (X +Z Z) X}2
R
consider Psg(o?) as the functional of a function 7(-).

Although it is difficult in general to analytically calculate the optimal function 78(-; -),
we can obtain 78(-;-) for the Bayes optimal DAMP because the distribution of X is
discrete in our problem. The conditional probability of X can be written as

that n® (-; %) is the minimizer of ¥sg(c?) = E when we

1 Uy, — T,
Pr(X:”€|X+7’Zzun):ZP£’PG( " [), (6.23)

L
where the normalizing constant { is given by { = Z PePG (M" rg). From (6.23), we
Y

=1
have

L
Uy — re
Z perepG ( )
Y

=1

Z PePG ( - m)

As a special case, when ri = =1, = 1 and p; = p> = 0.5, (6.24) can be reduced
to [nB (w; y)]n = tanh (u,/ yz), which has been proposed for CDMAI multiuser detec-
tion [37,1117].

The state evolution formula for Bayes optimal DAMP is given by o

#| e e - )

[7® (u;y)], = (6.24)

— \PB (O-t

t+1

Ac?), where W8 (0%) =

o
Since n® (-; — | is the
\/Z)
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minimizer of Wsg(0?), Bayes optimal DAMP provides the minimum MSE at each
iteration in the large system limit. In the noise-free case, the sequence of the MSH
{0',2},=0,1,m obtained by O't2+1 = ‘PEE(O'ZZ) converges to zero if lI’g’E(O'Z) is concave and
Dpin < 1, because ‘I’SE(O'Z) < 0% in that case and hence 0-12+1 = lI’]S3E(0',2) < ‘I’SE(O'tZ) <
o?. Thus, the required measurement ratio A for soft thresholding DAMP is an upper
bound of that for Bayes optimal DAMBP. However, since ‘IJISSE(O'Z) is not necessarily
concave unlike ‘PSE(G'z), it is difficult to obtain the necessary condition analytically for
the perfect reconstruction by Bayes optimal DAMP.

A similar algorithm to Bayes optimal DAMP can be derived by using the discrete
prior distribution in GAMP [473,[118] with scalar variances. The AMP-based algorithm
similar to Bayes optimal DAMP has also been proposed for signal detection [42],
where the reconstruction of complex discrete-valued vectors with uniform distributions
is considered. However, these algorithms use update equations to obtain the effective
variance, while the proposed DAMP algorithm uses the simple estimation 67,2 = |2’ ||§ /N.
These conventional algorithms use the knowledge of the noise variance o2 unlike Bayes

optimal DAMB.

6.6 Simulation Results

In this section, we evaluate the performance of the proposed algorithms via computer
simulations.

Figure 6.4 shows the prediction of MSE via state evolution and the empirical MSH
o7 = |l&' — x||3/N with DAMP obtained by simulations. We set € {-1,1}",
Pr(x, = —1) = 0.2, Pr(x, = 1) = 0.8, A = 0.5, and 0> = 0. We evaluate the
performance for the different problem sizes of N = 100,500, 1000, and 5000. The
measurement matrix A € R™*V is composed of Lid] Gaussian variables with zero
mean and variance 1/M. In the figure, “soft thresholding” denotes the performance of
DAMEP with the soft thresholding function 7°(-; -) and “Bayes optimal” denotes that of
Bayes optimal DAMP with B(-;-). We can see that Bayes optimal DAMP has much
smaller MSE with less number of iterations than soft thresholding DAMP. The figure
also shows that the prediction with state evolution is close to the empirical performance
in the large-scale systems.

In Figs. B3 and 6.6, we evaluate the average of defined as [|Q(x") — x||o/N,
where Q(£) = arg min ;¢ yvll8 — Z|[1. The distribution of the unknown vector
is Pr(x, = 0) = 0.2,Pr(x, = —1) = Pr(x, = 1) = 0.4, which has been considered
in Example 6.4.1. The problem size is (N, M) = (1000, 800) in Fig. and (N, M) =
(100, 80) in Fig. 6. The measurement matrix A € R¥*V is composed of L.id] Gaussian
variables with zero mean and variance 1/M, and the SNR is defined as N(1 —p)/(M 0'3).
The number of iterations in the algorithms is fixed to 200. In the figures, “STDAMP” and
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Figure 6.4: State evolution and empirical performance in the noise-free case (x €
{-1, 1}V, Pr(x, = =1) = 0.2, Pr(x, = 1) = 0.8, A = 0.5, and o2 = 0)
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Figure 6.5: for Lid] Gaussian matrix (z € {-1,0, 1}V, Pr(x, = 0) = 0.2, Pr(x, =
—1) =Pr(x, = 1) = 0.4, and (N, M) = (1000, 800))

“BODAMP” denote soft thresholding and Bayes optimal DAMP, respectively.
For comparison, we also plot the performance of sum-product [43] with the
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Figure 6.6: SER for Lid] Gaussian matrix (z € {-1,0,1}", Pr(x, = 0) = 0.2, Pr(x, =
—1) = Pr(x, = 1) = 0.4, and (N, M) = (100, 80))

discrete-prior distribution as “GAMP”. “SOAV (original)” and “SOAV (proposed)”
represent the SOAV] optimization with the original coefficients g = p, [60] and that
with the proposed parameters q?pt, respectively. The parameter for the original
optimization A is fixed as A = 10. In the simulation, we have used Beck-Teboulle proximal
gradient algorithm [61,62] to solve these optimization problems. In both figures, we
can see that the performance of the SOAV optimization with the proposed parameters
is much better than the original ones. In Fig. 6.3, where N = 1000, Bayes optimal
DAMP and GAMP have better SER| performance than the other methods. As mentioned
in Section b5, the GAMP algorithm uses the knowledge of the noise variance, which is
not necessary in the proposed Bayes optimal DAMP. For the smaller-scale problem in
Fig. b6, however, the performance of these methods severely degrades and the
optimization with the proposed parameters can achieve the best SER performance for
high SNR region. The difference of the error floor between Bayes optimal DAMP and
GAMP may be caused by the estimation of the effective variance described in Section b.3.

In Flig. 6.7, we show the SERI performance for the correlated measurement matrix

A = d)f{AL,-_dJ(I)%. Here, Apiqi € RV is composed of iLid! Gaussian variables with
zero mean and variance 1/M. The (i, j) elements of the positive definite matrices ®g
and @ are given by [®r];; = Jo(|i — j| - 2ndr/v) and [®1];; = Jo(li = j| - 2ndr/V),
respectively. Jo(-) is the zeroth-order Bessel function of the first kind and we set
dr = dr = v/2 in the simulation. This model has been used for spatially correlated
MIMOQOI channels with equally spaced antennas [[11]]. The problem size and the distribution
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Figure 6.7: KER for correlated matrix (x € {-1,0, 1}V, Pr(x, = 0) = 0.2, Pr(x, = —1) =
Pr(x, = 1) = 0.4, and (N, M) = (1000, 800))

of the unknown vector are the same as those in Fig. 6.5. From Fig. 6.7, we can see that
the performance of AMP-based algorithms severely degrades because of the correlation.
On the other hand, the approach based on the SOAV optimization with the proposed
parameters works well even for the correlated measurement matrix.

Next, we evaluate the DAMP performance when the measurement matrix is a partial
matrix. The measurement vector y is assumed to be written as

y=SDzx+v, (6.25)
where D € RVV is the DCT matrix and its (i, j) element is given by

1
N (=D
d,‘,j =

2 T, . .
\/;cos (ﬁ(l -1)(2j - 1)) (@ #1)

in the simulations. The selection matrix S € RM*V is composed by randomly selecting
M rows of the N X N identity matrix. Figures 6.8 and b9 show the SER! performance
for the partial matrix. The distribution of the unknown vector is Pr(x, = 0) =
0.2,Pr(x, = —1) = Pr(x, = 1) = 0.4. The problem size is (N, M) = (1024,768) in
Fig. b8 and (N, M) = (128,96) in Fig. 6.9. In the figures, “Turbo-CS” denotes the
performance of the algorithm based on turbo compressed sensing [103,104], which has

(6.26)
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Figure 6.8: for partial matrix (x € {-1,0,1}", Pr(x, = 0) = 0.2, Pr(x, =
—1) =Pr(x, = 1) = 0.4, and (N, M) = (1024, 768))
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Figure 6.9: for partial matrix (x € {-1,0,1}", Pr(x, = 0) = 0.2, Pr(x, =
—1) =Pr(x, =1)=0.4, and (N, M) = (128, 96))

been proposed for the measurement with a partial DFT matrix. Although Turbo-CS
achieves the best in Fig. 6.8, it has the error floor in Fig. 6.9 possibly because
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Figure 6.10: Success rate in the noise-free case (x € {0, 1}, Pr(x, = 0) = 0.1,
Pr(x, = 1) = 0.9, and N = 1000)

the problem size is rather small. In [13], a similar phenomenon can be observed for
[O-ILAMAI [42], which is an AMP-based MIMQ signal detection scheme. The SERIs at
the error floor will depend both on the algorithms and the structure of the measurement
matrix. From the figures, we observe that Bayes optimal DAMP and GAMP achieve
good performance even if the problem size is not very large when the measurement
matrix is a partial DCT matrix. We note again that Bayes optimal DAMP does not
require the knowledge of noise variance unlike GAMP .

In Figs. .10 and 6111, we empirically evaluate the rate of the success recovery in
the sense that Q(x') = x after r = 300 iterations. Figure shows the success rate for
the binary vector € {0, 1}" with N = 1000. The distribution of the unknown vector
is given by Pr(x, = 0) = 0.1 and Pr(x,, = 1) = 0.9. The measurement matrix is an fi.id]
Gaussian matrix. We consider the noise-free case and hence the optimization

problem is given by

& =argmin gy ||s|l; + g2 lls - 11|,

seRN
subjectto y = As, (6.27)

which is solved by Douglas-Rachford algorithm [61, 101] in the simulation. In the
figure, “regularization-based” denotes the regularization-based method [57], which

solves (b.27) with gq; = g» = 1. The vertical line corresponds to the value of A for
Dpin = 1 obtained from Fig. b.1. In the large system limit, the left side of each vertical
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Figure 6.11: Success rate in the noise-free case (x € {0, 1}, Pr(x, = 0) = 0.1,
Pr(x, =1)=0.9,and N = 100)

line is the failure region and the right side is the success region of soft thresholding
DAMP in the sense that O't2 — 0 (¢t — 00). The success rate of soft thresholding DAMP
rapidly increases around the vertical line. Moreover, Bayes optimal DAMBP, ,
and the optimization with the proposed parameters can achieve slightly better
success rates than that of soft thresholding DAMP. Their success rates are also better
than those of the optimization with original coeflicients and the regularization-
based method. One of possible reasons that the recovery rate is not equal to one in the
success region near the boundary is that we restrict the maximum number of iterations
as t = 300. Another reason will be that the problem size here is finite and not large
enough. In Fig. 6.11], we evaluate the recovery rate for = € {0, 1} with N = 100. Since
the problem size is smaller than that in Fig. 610, the performance of the [AMP-based
algorithms is worse than that of the optimization with the proposed parameters.

6.7 Conclusion

In this chapter, we have proposed the algorithm for the discrete-valued vector reconstruc-
tion, referred to as DAMBP. We have analytically evaluated the asymptotic performance of
soft thresholding DAMP and have derived the condition for the perfect reconstruction in
the large system limit via state evolution. The optimization algorithm for the parameters
of the soft thresholding function enables us to analyze the performance theoretically
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in some cases. By using the analysis of soft thresholding DAMP, we have also pro-
posed the method to determine the parameters of the optimization. Moreover, we
have provided Bayes optimal DAMP, which gives much smaller MSE compared to soft
thresholding DAMP. Via computer simulations, we have shown that DAMP can recon-
struct the discrete-valued vector from its underdetermined linear measurements and the
empirical performance agrees well with our theoretical results for large-scale problems.
For smaller-scale problems, the optimization with the proposed parameters can
achieve better performance than the [AMP-based algorithms. We have also shown that
Bayes optimal DAMP works well for partial measurement matrices.

Appendix 6.A Derivation of Wsg(c?)

We firstly rewrite (6.8) as

L
Pse(o?) = Z pe¥sge(?), (6.28)
=1
where
) 2
‘PSE,g(O'z) = / { (I’g + — \/_ T) - 7‘[} pG(z)dz. (6.29)

From (6.4) and (6.5), we have

re+ x(2=01) (z < Tp1)

r (Tria <2< Tp12)
(o8 o ’ ’
n (r[ y 7z _) = e+ 5@ -0 (Tex-1k < 2 < Trik) (6.30)
VA VA
Ik (Teik <z < Tokks1)

re+ 52 = Qrs) (Terr+1 < 2)

where

VA
Torx = — (=re+ 1) + Q. (6.31)
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We thus rewrite Wsg ¢(0?) as
5 o2 Te11 5
Fseeo?) = — / (z = Q1) pc(z)dz
L Tt ke k+1
30 [ = patara:
=1 Y Tekk
2 L Ty k
0' ELS)
X Z / (z— Q1) pa(2)dz
k=2 Y Tri-1,k
ol )
5 (z = Qr+1)" pa(z)dz. (6.32)
Ter,L+1
For a, b, O € R, we have
b 2
/ (z - Q) pc(2)dz
= {~bpc (b) + apg (a) + P (b) — Pg (a)}
=20 {-pg (b) + pc (@)} + Q* {Pg (b) - PG (a)}, (6.33)
thus
L
Ysg (%) = Z (ri = re)* {Ps (Tek+1) = Pa (Tew) }
=1
0'2 L
X kZ_; [{-Texrrc (Tek) + P (Texk)}
+20kp6 (Trk) + Ot Pa (Teik) ]
2 L+1
Z [{Tek-14P (Tek-14) = P (Tex-14) }
k=2
~20up6 (Tep-14) = Ot Pa (Tei-14) ]
2
o
+ = (1+08). (634)

Hence, Wsg(o-?) in (628) can be obtained from (6.34).
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d¥sg
d(o?)

Appendix 6.B Derivation of

ol0

From (6.28), we have

B ZL:pf d¥sge

- 2
= d)

With the derivative of Ty ;- with respect to o>

,_ dTpew ( VA

Ok = —d(o-z) = Ry (=r¢ + Fk)),

d¥sg
d(c?)

al0 al0 .

the derivative of (6.34) is given by

d¥sg ¢
d(o?)

L
= Z (ri — r¢)? {Té,k,kHPG (Te k1) — T} 1.4PG (Trak)}

k=1

(6.35)

(6.36)

L
1
+ Z [{=Tekpc (Teik) + P (Texk)} +20kpc (Texk) + 07 P (Trik) |

(6.37)

Ao
0’2 L 2
N Z (Teak = Ok) T}y kPG (Tenk)
=1
1 L+1
+ 5 [{Tex-14Pc (Tek-14) = P (Tex-14) }
=2
~20ip6 (Trx-14) — Q7 P (Tr-14) ]
0_2 L+1 s
N (Tex-1k = k)" T} j_1 4G (Tek-1.k)
=2
1 2
+ A (1 + QL+1)
| &
=1 Z ({~Texirc (Texi) + Po (Terk) } +20kpG (Tekk) + QiPo (Teak) |
=1
1 L+1
+ A [{Tt’,k—l,kPG (Tek-14) — Po (T&k_l’k)}
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~2Qkpa (Tex-14) — Q1 P (Trs-16) ]

¥ i (1+02,). (6.38)
From
00 (€ < k)
g% T =10k (E=k), (6.39)
-0 (£ >k)

we conclude that

d¥sg ¢
d(c?)

al0

= % [{=0cpc (Qr) + P6 (Q)} +2Qepc (Qr) + Q7P (Qr)]

1 & )
+K Z (1+Qk)

k=0+1
1
3 [{Qe+1PG (Qe+1) = PG (Qr41)} = 20e41P6 (Qes1) — QF, 1 P6 (Qra1)]
1 L+1
+— -1 -0?
A k=t+2 ( k)
1 2
v (1+08) (6.40)
1
=3 {QfPG (Q¢) = Qr+1PG (Qev1) + (1 + Q?) Pg (Qy)
+(1402,) (1= P} (6.41)
Hence, 21(‘1;525) " is straightforwardly obtained from (6.35) and (6.41l) as in (6.10).

Appendix 6.C Proof of Theorem 6.3.1

Since D(Q)) is a monotonically increasing function of Q| and a monotonically decreasing
function of Qy 41, their optimal values are Q(fpt = —oo and QOpt = oo, respectively. Thus,

L+1
the optimization problem (b-11)) can be reduced to

Dmin = len D(QZ’ e ey QL)
Deens

L

subjectto 0> < --- < Qy, (6.42)
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where
D(0Q,...,01)
A
= ED(Q) (6.43)
01=—00,0y 4=
| &
=3 2 |per {~oepa @0 + 1+ 02) (1 - Pa @)}
=
+p¢ {QfPG (Qe) + (1 + Q?) Pg (Qf)}] : (6.44)
Itis sufficient to confirm that D(Qs, . . ., Q) is strictly convex and Q57, . . ., Q7" obtained
by Algorithm 6.2 satisfies [Karush-Kuhn-Tucker conditions of (b.42).

6.C.1 Strict Convexity of D(Q, ..., Q1)

To prove the strict convexity of ﬁ(Qz, ...,0p), we show that the Hessian V2Dis positive
definite. The partial derivative of D(Q», ...,Q1) with respect to Qp (£ = 2,...,L) is
given by

oD

a0, ~ P! {-pc (Qc) + Qe (1 = PG (Qe))} + pe{pc (Qe) + QcPG (Qr)} . (6.45)
The second-order partial derivative can be written as

0°D

— =pe-1 (1 = P (Q¢)) + peP: (Qr) > 0, (6.46)

005
and

d’D

—— =0t £ ). (6.47)

6090, " F

i i s . [0°D 8D\ .
From (6.46) and (6.47), the Hessian VD = diag ——5- -2 5 | 18 positive definite

005 007

and hence D(Q», . .., Q1) is a strictly convex function of Q», ..., Qy.

6.C.2 KKT Conditions

Next, we prove that Q7F o Q(zpt satisfies the KKT conditions of (6:42). We define the
Lagrange function as

L-1
L(Qs, ., 01) = D(Qs, ., 0L) + ) el Qc = Qv), (6.48)
(=2
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where uy, . . ., ur—1 are the KKTmultipliers. Since the partial derivatives of [)(Qg, ...,0r)
are obtained as in (6.43), the KKT conditions can be written with Fy(Q) (€ = 2,...,L)
defined in Algorithm 6.2.

[KKT conditions of (6.42)

1. F2(Q2) + 2 =0,
Fo(Qp) —pe—1 + e =0(€=3,...,L-1),
Fr(Qr) —pr-1 =0.

2. Qr =01 20(=2,...,L-1).
3. ue=20(=2,...,L-1).
4. pe(Qr— Q1) =0(L=2,...,L-1).

Before the investigation of the KKT conditions, we confirm that the equations
G/(Q)=0and Zi_:; Fi(Q) = 0 have a unique solution and Q(-) in Algorithm 6.2 can be
defined properly. For £ = 2,..., L, we have limg_,_« F¢(Q) = —00, limgp_,o F(Q) = o0,
and

dF,
Eé:pﬂdl—HﬂQD+mﬂﬂQ)>Q (6.49)

which show that each F;(Q) is a strictly increasing function with the range R. Since G¢(Q)
and Zi;} Fy(Q) are sum of some Fy(Q) (£ = 2,..., L), they are also strictly increasing

functions with the range R and the solutions of G/(Q) = 0 and Zi_:} Fi(Q) = 0 are
unique.

We then prove that Q77, ... ., Q7" obtained by Algorithm 62 and 41" := Gy (Q?Etl)
(¢ =2,...,L - 1) satisfy the KKT conditions, i.e.,

Fo (09) + ™ =0, (6.50)

Fe Q) = i + P =0(e=3,....L - 1) (6.51)
Fu(0F) - i, =0, (6.52)
OF -0 <0(=2...,L-1), (6.53)

w0 =2...,L-1), (6.54)

w (o - o) =0@=2....L-1). (6.55)

In the following proofs of (6.50)—(6-53), we denote the condition Q(G¢(Q)) > . rznaytg 1Q (Zi;} Fk(Q))
J=2,..,0-
in the line 8 of Algorithm 6.2 by H,.
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proof of (6.50)—(6.52)

From the definition of G/(Q), we have G, (QOpt) = F (QOP t) + Gyl (Q;Etl) for ¢ =
3,...,L —1. We thus obtain

Fe(007) = i + ™ = Fe () = Ge (QF) + G (020} (6.56)
=0. (6.57)

Similarly, we have F; (QOpt) +,u(2)pt = (QOpt)+G (QOpt) (QOpt) G> (Q(GZ(Q))) =
0 and F;, ( Opt) ﬂ0pt =Fy ( Opt) Gy ( zpt) = 0 because G1(Q) = F.(Q).

proof of (6.53)

We firstly consider the case where the condition Hy, is satisfied. In this case, Q?Etl

is determined as Q" p +1 = 0 (G¢41(Q)). We define ¢ (< ¢) as the maximum index that

Hy: is true, i.e., the conditions Hy, Hy—1, ..., Hpy1 are not satisfied and the condition
Hy is satisfied. By using Algorithm B2, we can obtain G (Q) = 22:5' Fx(Q) and
OF = QF = - = O = 0(Gp(Q)). We thus have Q)% = 0(Gr1(Q) >

Q (Zk = Fk(Q)) = Q (G¢(Q)) = QOpt and hence Qopt Q;Etl <0.

If the condition Hy, is not satisfied and Q?Etl QOpt we also have Q°pt Q?Etl <0.

proof of (6.54)

If the condition Hp,; is satisfied, u?pt = Gy (Q?Et]) = Gyi (Q(Gg+1(Q))) = 0 and

hence ,u?p " > 0 holds.
Next, we assume that the condition Hy, is not satisfied. In this case, we have

¢
0(Ge1(0) < max O > Fi(Q) . (6.58)
j=2,...L =y
We define ¢’ (< € + 1) as the maximum index that Hy is true, i.e., the conditions
He, He_q, ..., Hp o are not satisfied and the condition Hy- is satisfied. We can obtain
-1
0(Ge(Q)> max O > FuQ)], (6.59)
j=2,...0-1 =
¢
Ge(Q) = Geaa(Q) + ) Fi(Q), (6.60)

k=0’
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and Q?Etl = Qgpt =...= Q?Pt = O (G¢(Q)). In what follows, we often use the following

lemma.

Lemma 6.C.1. For strictly increasing functions f(Q) and g(Q) with the range R, we
have

0(f(2) <0(5(Q) &= Q(f(Q) <0(f(Q)+5(Q) <Q(g(Q).  (6.61)
The proposition obtained by replacing all of < with < also holds.

To prove x> 0, we will show that

4
{
> F(Q)
k=’

whichresultsin Q (G¢41(Q)) < O (G(Q)) from (6-60) and Lemma6.C1. If O (G41(Q))
O (G(Q)) holds, we can obtain ,ugpt > 0 as u?pt = Gyyl (ngtl) = Gyy1 (QOpt) =

2
Grri (Q (Gt”(Q))) > Gy (Q (G£+1(Q))) =0.
To show (B.67)), we provide the proof by contradiction with the assumption

0 (Ge1(0) <0 : (6.62)

l
0 (G (@) >0 ()] Fk(Q)) : (6.63)
k=C’
From (6.60), (6.63) and Lemma 6.C_1, we have
{
0D FlQ)| < 0(Gr(Q) < 0(Gri(Q)). (6.64)
k=t’

It follows from (6.59) and (6.64) that

4
max, 0 (kz, Fk(Q)) < Q(Gr(Q) < 0(Ge1(Q)). (6.65)

From (6.58) and (b.65), we can obtain
X [
0 (Gr+1(Q)) < max 0 kzz; Fk(Q)) : (6.66)

We define £ as £, = arg max O (Zizj Fk(Q)), which results in
J=C+1,...C

¢
Z Fr(Q)

k=0,

0(Ge1(0) <0 : (6.67)

IA
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Since ¢’ + 1 < {1 < ¢, the conditions Hy, . . ., Hy, are not satisfied and hence we have
6-1
0(Gy(Q) < max 0 (Z Fk<Q>), (6.68)
j=2....0—-1 ey
¢
G (Q) = G (Q) + ) Fi(Q). (6.69)
k=t

Lemma 6.C_1l, (6.67), and (b.69) give

¢
Z Fr(Q)

k=,

0(Ge1(0) < 0 (G (0) <0 : (6.70)

From (b.63) and (6.Z0), we have
0 (G (Q) < 0(Ge+1(0)) < 0 (G, (0)) - (6.71)

With a similar approach to (b.69), we can also obtain

{1—1
Ge(Q) = G (Q) + ) Fx(Q) (6.72)
k=’
and
01—1
0> F@)| < 0(Gr(Q) < 0 (Gr(0)). (6.73)
k=0’

It follows from (b.59) and (6.73) that

-1

Fk(Q)) < 0(Gy(Q). (6.74)
=J

p

max Q
=20l Q(

If ¢; = ¢’ + 1, (6.74) contradicts (6.68) and hence we can conclude (6.62)) and ,ugpt > 0.
Otherwise ¢; > ¢’ + 1, and in this case combining (b-68) and (6.74) gives

t1-1
0Gy(@) < _ max O (Z Fk(Q)) : (6.75)

We then define ¢, as £, = arg max 0 ( i':_jl Fk(Q)). Here, note that £’ + 1 < 6, <
J=U+1,.60—1
{1 < € + 1. By repeating the same manner, we have a sequence ¢y, {5, . . ., {; satisfying
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erivation o A2
U+i—-1<¢6 <€y <---<€ <€+1. Since {! +i — 1}, s monotonically
increasing and {¢;};=;.... is monotonically decreasing, there exists satlsfymg U+i—-1=
Gl <<l < C+1. Moreover, similar to (6.74)), we have
-
0(Gr(Q) > max_ 0 Z Fi(Q) (6.76)
T R V=
= _max. 0 ZFk(Q) (6.77)

However, (6.77) contradicts the fact that ¢’ (< € + 1) is the maximum index of H being
true because ¢z > ¢’. We thus conclude (6-62) and ,ugp "> 0.

proof of (6.55)

If the condition Hy,, is satisfied and Q E | is determined as O, 1 =0 (Ges I(Q)) ,uOPt

Gii (Q€+1) = 0 and hence ,u°pt (QOPt Q?Etl) = 0 holds. Otherwise, Q{, QOpt

hence ,uOPt (QOPt Q?Etl) = 0 also holds.

d*¥sg
d(o?)?

From (6.3R), the second derivative of Wsg ¢(0?) is given by

Appendix 6.D Derivation of ———

d*Wsg
d( 0-2)2

L
1
“A Z {17 Tl aiPG (Tesk) = 20k Tk T} kPG (Tenk) + QXT) 4 106G (Teik) }
=1

L+1
1 ,
T A {Ték—l,kTg,k_l,kPG (Tek-14) = 20k Tep-1.4T} _1 kPG (Tek-1.k)
=2
+QiT£,k_1,kPG (Tf,k-l,k)} (6.78)
| &
=X Z (Tekk — Qk) T} PG (Texk)
=1
1 L+1
~ 3 (Tek-1k —Qk) ¢ ie1iPG (Tei-1k) (6.79)
=2
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VA < ;
T 555 Z (=re +ri) {—PG (Trak) + PG (Tt’,k,k+l)}, (6.80)
k=1

which results in (6.13).



Chapter 7

Conclusion

7.1 Summary

In this thesis, we have proposed several algorithms for the discrete-valued vector recon-
struction and analyze the reconstruction performance of some algorithms.

In Chapter lll, we have explained the discrete-valued vector reconstruction from
underdetermined linear measurements and provided several applications in communi-
cation systems. The problem of the discrete-valued vector reconstruction appears in
many applications, such as MIMQ signal detection, channel equalization, decoding of
NO-STBQ, multiuser detection, and FTN signaling. We have also described conven-
tional approaches for the discrete-valued vector reconstruction. Various low-complexity
algorithms using the discrete nature have been proposed on the basis of message pass-
ing or convex optimization. The message passing-based approach can achieve good
performance under some assumptions on the measurement matrix, whereas the convex
optimization-based approach does not require such assumptions in the algorithm.

In Chapter 2, we have proposed the reconstruction algorithm for the binary vector via
iterative convex optimization. The proposed iterate the optimization
and the update of the parameters in the objective function. For the optimization,
we have derived the algorithm based on Douglas-Rachford algorithm, which is one of
proximal splitting methods. In each iteration of [IW-SQAV], we can improve the estimate
of the unknown vector by using the tentative estimate in the previous iteration as the
prior information. Simulation results show that the proposed method outperforms several
conventional methods in massive overloaded MIMQ signal detection and the decoding
of NO-STBCs.

In Chapter B, we have extended the conventional optimization to the
optimization for the reconstruction of complex discrete-valued vector. The proposed
optimization uses the weighted sum of some sparse regularizers in the complex-
valued domain as a regularizer for the discrete-valued vector. Moreover, we extend
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the SCSR optimization to the W-SCSRI| optimization and propose the iterative approach
named [W-SCSRI|, where we iteratively solve the optimization with the update
of the parameters in the objective function. By solving the optimization in the complex-
valued domain, we can directly utilize the discrete nature of the unknown vector in
the complex-valued domain. Simulation results show that the proposed [W-SCSRI can
achieve better performance than conventional methods in the applications of overloaded
signal detection and channel equalization.

In Chapter 4, we have proposed the algorithms on the basis of the optimization.
The proposed optimization uses possibly nonconvex sparse regularizer, whereas
only convex objective functions have been considered in the conventional methods. For
the SSR optimization, we have derived two algorithms on the basis of ADMM and PDS.
The proposed approach can also be used for the reconstruction of the complex discrete-
valued vector. Simulation results show that the proposed method with nonconvex
regularizers outperforms the conventional convex optimization-based methods.

In Chapter B, we have analyzed the asymptotic performance of the
optimization. By using the analysis using CGMT, we have characterized the SERI of the
Box-SOAV! in the large system limit. We have also proposed the method to obtain the
asymptotically optimal quantizer minimizing the asymptotic SERI. From the result, we
can also optimize the parameters in the objective function of the optimization.
Simulation results show that the empirical reconstruction performance agrees well with
the theoretical result in large-scale problems.

In Chapter B, we have applied the idea of the AMP algorithm for compressed sensing
to the SOAV] optimization. The resultant DAMP algorithm has low computational
complexity and its asymptotic performance can be predicted with the state evolution.
We have examined the asymptotic performance of the DAMP algorithm in the noise-
free case and derived the required measurement ratio for the perfect reconstruction.
Simulation results show that the performance of the DAMP algorithm is very close to
the theoretical result in large-scale problems.

7.2 Future Work

There are several remaining topics for the discrete-valued vector reconstruction and its
analysis. In this section, we provide the future work on the study in this thesis.

7.2.1 Interpretation of Iterative Approach

In Chapters @ and B, we have proposed the iterative approaches for the discrete-valued
vector reconstruction, where we iterate the optimization and the parameter update in
the objective function. However, the parameter update methods are rather heuristic
and there is no theoretical justification for the convergence of the overall algorithm.
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For similar iterative approaches such as fiterative reweighted Ieast squares (IRLS), the
relation to the corresponding nonconvex optimization has been discussed [119,120]. It
would be interesting to reveal the relation between the proposed iterative approaches and
the nonconvex optimization behind them. It might also provide a reasonable method for
the parameter update.

7.2.2 Extension of Performance Analysis via CGMT

The extension of CGMT is also an interesting research direction. As in the performance
analysis via CGMT in Chapter B, we have to assume that the measurement matrix A is
composed of Lidl zero mean Gaussian variables. Hence, the result cannot be directly
used when the measurement matrix does not satisty the assumption. For example, even
when the measurement matrix has nonzero mean Gaussian elements, we would need
to modify the result in some manner. In the context of compressed sensing, however,
the performance of ¢; optimization with the nonzero mean measurement matrix has
been analyzed via the replica method in developed in statistical mechanics [121]. Since
the replica method is not rigorous in part, it would be an interesting topic to prove the
same result as in [121] via the rigorous approach using CGMT. As for message passing-
based approaches, it has been shown that the performance of EP-based algorithm can
be predicted for unitary invariant measurement matrices [51,53]. It would also be
valuable to obtain the analytical result for optimization-based methods with such class
of measurement matrices.

The theoretical results for the optimization and the optimization in Chap-
ter 3 and 4 have not been obtained. The asymptotic analysis for the optimization in
the complex-valued domain might be obtained by using a similar approach to [10Q]. For
the SSR optimization, CGMT cannot be directly applied because the objective function
is not convex. However, the upper bound of the reconstruction error might be obtained
as it has been provided for the MAP method in [122].

7.2.3 Application of CGMT to Optimization Algorithm

Since some update equations of the optimization algorithm can be written in the form of
an optimization problem, which can be solved more easily than the original optimization
problem. By analyzing the subproblem in the update equation, it might be possible to
obtain the evolution of the reconstruction error in the optimization algorithm like the
state evolution for the [AMP algorithm. Moreover, this would enable us to determine the
asymptotically optimal parameters in the optimization algorithms such as the step size.
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7.2.4 Practical Applications

As described in Chapter [ll, various problems in communications can be expressed as
the discrete-valued vector reconstruction. In some problems, the measurement matrix
is not Li.d! Gaussian and have some structure depending on the system model. Hence,
the performance evaluation of the proposed algorithms is required to show the validity
in the application. Moreover, the unknown vector in some problems have an additional
structure other than the discreteness. In signal detection for MU-MIMQO OFDM/SC-CP
explained in Section [L2, for example, the unknown transmitted signal vector has not
only the discreteness but also the group sparsity. The use of such additional structure
would further improve the performance of the reconstruction.
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