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Abstract

Reconstruction of an unknown discrete-valued vector from its linear measurements is
a common problem in communication systems. When the number of measurements is
greater than or equal to the dimension of the unknown vector, the low complexity linear
methods, such as minimum mean-square-error (MMSE) method, might achieve satis-
factory reconstruction performance. In the underdetermined case with an insufficient
number of measurements, however, their performance is severely degraded. On the other
hand, although the maximum likelihood (ML) approach with the exhaustive search can
achieve an excellent performance, it requires huge computational complexity in large-
scale problems. This thesis proposes an efficient algorithm for the discrete-valued vector
reconstruction and provides asymptotic performance analyses for some reconstruction
methods.

Chapter 1 describes the discrete-valued vector reconstruction and its application
in communication systems. Moreover, the conventional methods are briefly reviewed.
Finally, the outline of this thesis is explained.

In Chapter 2, we focus on the reconstruction of the binary vector as the simplest
example of the discrete-valued vector reconstruction. We extend the conventional sum
of absolute values (SOAV) optimization to the weighted SOAV (W-SOAV) optimization
so that we can use the prior information of the unknown vector. We then propose an
iterative approach named iterative weighted SOAV (IW-SOAV), where we iterate the W-
SOAV optimization and the update of the weight parameters in the objective function.
The W-SOAV optimization can be efficiently solved with proximal splitting methods
for convex optimization. Simulation results show that the reconstruction performance
of the proposed IW-SOAV is better than several conventional methods in massive over-
loaded multiple-input multiple-output (MIMO) signal detection and the decoding of
non-orthogonal space-time block codes.

In Chapter 3, we propose an algorithm for the reconstruction of a complex discrete-
valued vector. The proposed method can be considered as an extension of the conven-
tional SOAV optimization in the real-valued domain. The proposed approach in the
complex-valued domain can utilize the dependency between the real part and the imag-
inary part of the unknown vector. It is shown that an optimization algorithm based on
alternating direction method of multipliers (ADMM) can provide a sequence converging
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to the solution of the optimization problem. We have shown via computer simulations
that the proposed method can achieve good performance in MIMO signal detection and
channel equalization.

Chapter 4 proposes a possibly nonconvex optimization problem for the discrete-
valued vector reconstruction. The proposed sum of sparse regularizers (SSR) optimiza-
tion problem can be regarded as a generalization of the convex SOAV optimization.
For the proposed SSR optimization, two optimization algorithms based on ADMM
and primal-dual splitting are proposed. Simulation results show that the proposed al-
gorithms using nonconvex optimization can achieve better reconstruction performance
than several conventional approaches using convex optimization.

In Chapter 5, we analyze the asymptotic performance of the SOAV optimization. We
firstly propose the Box-SOAV optimization by adding a box constraint to the conventional
SOAV optimization. By using convex Gaussian min-max theorem (CGMT), we evaluate
the asymptotic performance of the estimate obtained by the Box-SOAV optimization.
We also propose an approach to optimize the parameters of the Box-SOAV optimization
on the basis of the theoretical result.

In Chapter 6, we analyze the performance of the SOAV optimization from a different
perspective. We firstly propose a message passing-based algorithm using the idea of
the SOAV optimization. Although the proposed method requires some assumptions on
the measurement matrix, it can achieve good performance with low computational com-
plexity. Moreover, we evaluate the asymptotic performance of the proposed algorithm
on the basis of the state evolution. We also obtain the required measurement ratio for
the perfect reconstruction in the noise-free case.

In Chapter 7, we present the conclusion of the thesis.
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Chapter 1

Introduction

Discrete-valued vector reconstruction from its linear measurements is a common problem
in signal processing for communications systems, e.g., multiple-input multiple-output
(MIMO) signal detection [1–3] and multiuser detection in machine-to-machine (M2M)
communications [4]. In some applications such as overloaded MIMO systems [5–9] and
faster-than-Nyquist (FTN) signaling [10], the number of measurements is less than that
of the unknown variables. In such underdetermined problems, simple linear methods,
such as linear minimum mean square error (LMMSE) method, have poor performance.
Although the maximum likelihood (ML) method with the exhaustive search can achieve
good performance in terms of the error rate, the computational complexity increases
exponentially along with the problem size. Thus, a low-complexity algorithm is required
for the underdetermined discrete-valued vector reconstruction, especially in large-scale
problems.

This chapter provides a short introduction of the discrete-valued vector reconstruc-
tion. Section 1.1 describes the reconstruction of the discrete-valued vector from its linear
measurements. In Section 1.2, we briefly review several examples of the discrete-valued
vector reconstruction in communication systems. Section 1.3 presents conventional ap-
proaches for the discrete-valued vector reconstruction. Finally, Section 1.4 explains the
outline of this thesis.

In this thesis, we use the following notations. We denote the set of all real numbers
by R and the set of all complex numbers by C. Re{·} and Im{·} indicate the real part and
the imaginary part, respectively. We represent the imaginary unit by j, the transpose by
(·)T, the Hermitian transpose by (·)H, the N × N identity matrix by IN , the vector whose
elements are all 1 by 1, and the matrix whose elements are all 0 by 0. For a vector u =
[u1 · · · uN ]T ∈ KN (K = R orC), we define the ℓ1 and ℓ2 norms ofu as ∥u∥1 =

∑N
n=1 |un |

and ∥u∥2 =
√∑N

n=1 |un |2, respectively. We also define ∥u∥0 as the number of nonzero
elements in u. We represent the sample mean of the elements of u by ⟨u⟩ = 1

N
∑N

n=1 un.
[u]n denotes the nth element ofu. diag(u1, . . . , uN ) ∈ KN×N denotes the diagonal matrix

1



2 Chapter 1

whose (n, n) element is un. We represent the Kronecker product as ⊗ and the sign function
as sign(·). For a lower semicontinuous function ζ : KN → R∪{∞}, we define the Moreau
envelope and the proximity operator as envζ (u) = mins∈KN

{
ζ(s) + 1

2 ∥s − u∥2
2
}

and
proxζ (u) = arg min s∈KN

{
ζ(s) + 1

2 ∥s − u∥2
2
}
, respectively. pG(z) = 1√

2π
exp

(
− z2

2

)
and PG(z) =

∫ z
−∞ pG(z′)dz′ are the probability density function (PDF) and the cumulative

distribution function (CDF) of the standard Gaussian distribution, respectively. When
a sequence of random variables {Zn} (n = 1, 2, . . . ) converges in probability to Z , we
denote Zn

P−→ Z as n → ∞ or plim n→∞ Zn = Z .

1.1 Discrete-Valued Vector Reconstruction from Linear
Measurements

1.1.1 Real-Valued Case
We consider the reconstruction of a discrete-valued vectorx = [x1 · · · xN ]T ∈ RN ⊂ RN

from its linear measurement given by

y = Ax + v ∈ RM . (1.1)

In this thesis, we mainly focus on the underdetermined case with M < N . Here,
R = {r1, . . . , rL} is the set of possible values that the elements of the unknown vector
x take, where L ≪ N . The distribution of xn is assumed to be known and given by
Pr (xn = rℓ) = pℓ (ℓ = 1, . . . , L), where

∑L
ℓ=1 pℓ = 1. A ∈ RM×N is a measurement

matrix and v ∈ RM is an additive Gaussian noise vector with mean 0 and covariance
matrix σ2

vIM .

1.1.2 Complex-Valued Case
We consider the reconstruction of complex discrete-valued vector x̃ = [x̃1 · · · x̃N ]T ∈
CN ⊂ CN from its linear measurement given by

ỹ = Ãx̃ + ṽ ∈ CM, (1.2)

where M < N . Here, C = {c1, . . . , cL} is the set of possible values for the elements of
the unknown vector x̃. The distribution of x̃ is given by Pr (x̃n = cℓ) = pℓ (ℓ = 1, . . . , L),
where

∑L
ℓ=1 pℓ = 1. Ã ∈ CM×N is a measurement matrix and ṽ ∈ CM is an additive

Gaussian noise vector with mean 0 and covariance matrix σ2
vIM .

The discrete-valued vector reconstruction algorithm in the real-valued domain is
not appropriate for (1.2) in general. When the real part and the imaginary part are
independent on C, e.g., C = {1 + j,−1 + j,−1 − j, 1 − j}, we can convert the signal
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model (1.2) in the complex-valued domain into the equivalent model in the real-valued
domain as

y̌ = Ǎx̌ + v̌, (1.3)

where we define y̌ =
[
Re{ỹ}T Im{ỹ}T]T ∈ R2M , x̌ =

[
Re{x̃}T Im{x̃}T]T ∈ R2N ,

v̌ =
[
Re{ṽ}T Im{ṽ}T]T ∈ R2M , and

Ǎ =

[
Re{Ã} −Im{Ã}
Im{Ã} Re{Ã}

]
∈ R2M×2N . (1.4)

In this case, we can reconstruct the original complex-valued vector x̃ via the recon-
struction of the real-valued vector x̌. When the real part and the imaginary part
are dependent, however, such approach is inappropriate. For example, when C ={

ej(ℓ−1)π/4 | ℓ = 1, . . . , 8
}
, we need to estimate the real-valued vector in

{
1, 1√

2
, 0,− 1√

2
,−1

}2N
.

Hence, we cannot use the dependency between the real part and the imaginary part in
the reconstruction. It would be better in such cases to directly reconstruct the vector x̃
in the complex-valued domain.

1.2 Applications in Communication Systems
In this section, we present several applications of discrete-valued vector reconstruction
in communication systems.

MIMO Signal Detection
MIMO communications use multiple antennas at both the transmitter and the receiver as
in Fig. 1.1 to achieve high spectral efficiency and reliability. As the required data rate and
throughput have been significantly increasing, massive MIMO using tens or hundreds
of antennas are gathering attention as one of key technologies in the 5th generation (5G)
mobile communication systems [1, 2].

MIMO signal detection is to estimate the transmitted symbols from the received
signals, which is distorted by the channel and the additive noise. Since the transmitted
symbols belong to an finite-sized alphabet in digital communications, MIMO signal
detection with Nt transmit antennas and Nr receive antennas can be modeled as the
discrete-valued vector reconstruction with N = Nt and M = Nr. The unknown vector
x̃ ∈ CNt is composed of the transmitted symbols from Nt transmit antennas, where C is
the alphabet of transmitted symbols. For quadrature phase shift keying (QPSK), we have
(c1, c2, c3, c4) = (1 + j,−1 + j,−1 − j, 1 − j) and pℓ = 1/4 (ℓ = 1, . . . , 4). For 8-phase
shift keying (8PSK), we have cℓ = ej(ℓ−1)π/4 and pℓ = 1/8 (ℓ = 1, . . . , 8). For simplicity,
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Figure 1.1: System model of MIMO communications

precoding is not considered and the number of transmitted streams is assumed to be equal
to that of transmit antennas in this thesis. The measurement vector ỹ ∈ CNr denotes the
received signals at Nr receive antennas and Ã ∈ CNr×Nt represents the channel matrix
between the transmitter and the receiver.

The distribution of the channel matrix Ã depends on the channel model. In un-
correlated flat Rayleigh fading channels, the channel matrix is given by Ã = Ãi.i.d.,
where Ãi.i.d. ∈ CNr×Nt is composed of i.i.d. circular complex Gaussian variables with
zero mean and unit variance. For spatially correlated MIMO channels with equally
spaced linear arrays, the channel matrix can be modeled as Ã = Ψ

1
2
r Ãi.i.d.Ψ

1
2
t [11].

Here, the (i1, i2) element of Ψr and Ψt are given by [Ψr]i1,i2 = J0 (|i1 − i2 | · 2πdr/λw) and
[Ψt]i1,i2 = J0 (|i1 − i2 | · 2πdt/λw), respectively. The function J0(·) is the zeroth-order
Bessel function of the first kind. We denote the wavelength by λw and the antenna
spacing at the receiver and the transmitter by dr and dt, respectively. For other channel
models, see [11].

In some MIMO systems, sufficient number of receive antennas may not be available
due to the limited size, weight, cost and/or power consumption of the receiver. Such
MIMO systems, where the number of receive antennas Nr is less than that of transmitted
streams Nt, are known as overloaded (or underdetermined) MIMO systems [5, 7]. In
overloaded MIMO systems, Ã ∈ CNr×Nt (Nr < Nt) is a fat matrix and hence the signal
detection problem becomes underdetermined.

Error Recovery of MIMO Signal Detection
To improve the performance of the MIMO signal detection, some error recovery method
have been discussed [12, 13]. In these methods, the system model (1.2) is converted
into the linear equation of the error vector. Let x̂ ∈ CN be a tentative estimate of x̃
obtained by some simple detection method such as the LMMSE method. We then obtain
x̂d = QC(x̂) ∈ CN , where the element-wise function QC(·) maps each element into its
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Figure 1.2: Uplink MU-MIMO OFDM system for IoT environment

closest symbol in C, i.e., it provides the hard decision of x̃. The key point is that the
error vector ẽ = x̃− x̂d is sparse, i.e., ẽ has many zero elements, if the tentative estimate
is reliable enough. Moreover, the error vector ẽ also has the discreteness. For example,
when we use QPSK with (c1, c2, c3, c4) = (1 + j,−1 + j,−1 − j, 1 − j), the real part and
the imaginary part of the error vector contain only 2, 0, and −2. The transformation into
the equation of ẽ can be performed by subtracting Ãx̂d from both sides of (1.2) as

ỹd ! ỹ − Ãx̂d = Ã (x̃ − x̂d) + ṽ (1.5)
= Ãẽ + ṽ. (1.6)

From (1.6), we can reconstruct the error vector ẽ via some algorithm for the sparse
discrete-valued reconstruction algorithm. Denoting the estimate of the error vector ẽ as
ê, we can obtain the improved estimate of x̃ as x̂d + ê.

Signal Detection for MU-MIMO OFDM/SC-CP
We consider uplink communications of Internet of things (IoT) environments, which is
modeled as a precoded multi user multiple-input multiple-output (MU-MIMO) orthog-
onal frequency division multiplexing (OFDM) system. Figure 1.2 shows the system
model, where the number of transmit terminals is Nt, the number of receive antennas
at the base station is Nr, and the number of subcarriers is Qc. Given that the number
of transmit terminal is typically large in IoT environments, we focus on the overloaded
scenario and assume Nr < Nt hereafter. The symbol alphabet and the frequency domain
transmitted OFDM symbol vector from the nt-th transmit IoT terminal are denoted by C
and x̃nt , respectively. Here, taking IoT environment specific feature into consideration,
we assume only Nact IoT terminals out of Nt terminals are active meaning that only Nact
terminals transmit OFDM signal blocks. Non-active Nt − Nact terminals actually keep
silent, but we can regard they transmit all zero signal block 0Qc . We thus have x̃nt ∈ CQc

when the n-th terminal is active, and otherwise x̃nt = 0Qc . When we use the cyclic prefix
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with the length greater than or equal to the channel order, the received signal vector after
the removal of the cyclic prefix is given by

⎡⎢⎢⎢⎢⎢⎣

ỹf,OFDM
1
...

ỹf,OFDM
Nr

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

Λ(1,1)P · · · Λ(1,Nt)P
...

. . .
...

Λ(Nr,1)P · · · Λ(Nr,Nt)P

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x̃1
...

x̃Nt

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

ṽf
1
...

ṽf
Nr

⎤⎥⎥⎥⎥⎥⎦
, (1.7)

where ỹf,OFDM
nr ∈ CQc is the frequency domain received OFDM signal block at the nr-th

receive antenna [14]. The diagonal matrix Λ(nr,nt) = diag
(
λ(nr,nt)

1 , . . . , λ(nr,nt)
Qc

)
∈ CQc×Qc

is composed of the channel frequency responses with the order of Lp − 1 between the
nt-th IoT terminal and the nr-th receive antenna. The diagonal elements can be written
as

⎡⎢⎢⎢⎢⎢⎣

λ(nr,nt)
1
...

λ(nt,nt)
Qc

⎤⎥⎥⎥⎥⎥⎦
=

√
QcD

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(nr,nt)
0
...

h(nr,nt)
Lp−1

0Qc−Lp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1.8)

whereD ∈ CQc×Qc is a Qc-point unitary discrete Fourier transform (DFT) matrix defined
as

D =
1√
Qc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
1 e− j 2π×1×1

Qc · · · e− j 2π×1×(Qc−1)
Qc

...
...

...

1 e− j 2π×(Qc−1)×1
Qc · · · e− j 2π×(Qc−1)×(Qc−1)

Qc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1.9)

and h(nr,nt)
0 , . . . , h(nr,nt)

Lp−1 denotes the impulse response of the frequency selective channel
between the nt-th IoT terminal and nr-th receive antenna. P ∈ CQc×Qc is a precoding
matrix. vf

nr ∈ CQc is the frequency domain additive white noise vector at the nr-th receive
antenna with mean 0Qc and covariance matrix σ2

vIQc .
Here, we show a non-precoded MU-MIMO single carrier block transmission with

cyclic prefix (SC-CP) signal model. Assuming the length of cyclic prefix is greater than
or equal to the channel order Lp − 1, the time domain received signal block at the nr-th
receive antenna of the base station is written as

ỹt,SC-CP
nr =

Nt∑
nt=1

DHΛ(nr,nt)Dx̃nt + ṽ
t
nr, (1.10)
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where ṽt
nt ∈ CQc is the time domain additive white noise vector at the nr-th receive

antenna having mean 0Qc and covariance matrix σ2
vIQc [15, 16]. By stacking from

ỹt,SC-CP
1 to ỹt,SC-CP

Nr
in (1.10), and multiplying a unitary matrix of

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D 0 · · · 0

0 D
...

...
. . . 0

0 · · · 0 D

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ CQcNr×QcNr (1.11)

from the left of both sides, we have the frequency domain received non-precoded SC-CP
IoT signal vector at the base station as

⎡⎢⎢⎢⎢⎢⎣

ỹf,SC-CP
1
...

ỹf,SC-CP
Nr

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D 0 · · · 0

0 D
...

...
. . . 0

0 · · · 0 D

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

ỹt,SC-CP
1
...

ỹt,SC-CP
Nr

⎤⎥⎥⎥⎥⎥⎦
(1.12)

=

⎡⎢⎢⎢⎢⎢⎣

Λ(1,1)D · · · Λ(1,Nt)D
...

. . .
...

Λ(Nr,1)D · · · Λ(Nr,Nt)D

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x̃1
...

x̃Nt

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

ṽf
1
...

ṽf
Nr

⎤⎥⎥⎥⎥⎥⎦
, (1.13)

where ỹf,SC-CP
nr ∈ CQc is the frequency domain received SC-CP signal vector at the nr-th

base station antenna and ṽf
nr = Dṽt

nr (nr = 1, . . . , Nr). It should be noted here that this
received signal model can be regarded as a special case of (1.7), where the precoding
matrix P is set to be D. Thus, if DFT matrix D is appropriate for the precoding
matrix of overloaded MU-MIMO OFDM system with the convex optimization-based
signal detection, then the choice of non-precoded SC-CP signaling is extremely suited
for IoT environments because this approach requires neither the inverse discrete Fourier
transform (IDFT) operation nor the precoding operation at the IoT node (transmitter
side).

Channel Equalization

Channel equalization in the single carrier block transmission [15] can also be mod-
eled as the complex discrete-valued vector reconstruction. We here consider a MIMO
system with Nt transmit antennas and Nr receive antennas. When we use the cyclic
prefix to remove inter-block interference, the resultant channel matrix Ã ∈ CNrQb×NtQb

corresponding to an information block can be written as a block circulant matrix given
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by

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ(0) 0 · · · 0 Γ(Lp−1) · · · Γ(1)
...

. . . . . . . . . . . .
...

Γ(Lp−2) . . . . . . . . . Γ(Lp−1)

Γ(Lp−1) . . . . . . . . . 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 Γ(Lp−1) Γ(Lp−2) · · · Γ(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1.14)

where Qb is the information block length,

Γ(i) =

⎡⎢⎢⎢⎢⎢⎢⎣

γ(i)1,1 · · · γ(i)1,Nt
...

. . .
...

γ(i)Nr,1 · · · γ(i)Nr,Nt

⎤⎥⎥⎥⎥⎥⎥⎦
∈ CNr×Nt, (1.15)

and
{
γ(i)nr,nt

}
(i = 0, . . . , Lp − 1) is the impulse response of the channel between the ntth

transmit antenna and the nrth receive antenna (nt = 1, . . . , Nt and nr = 1, . . . , Nr) [17,18].
In the Rayleigh fading channels, γ(i)nr,nt is a circular complex Gaussian variable with
zero mean. It should be noted that the channel equalization problem also becomes
underdetermined in overloaded MIMO systems.

Decoding of NO-STBC
For MIMO communications, non-orthogonal space-time block code (NO-STBC) has
been studied to achieve both high rate and high diversity order [19]. In [20], for example,
a NO-STBC has been proposed by using cyclic division algebra (CDA), which can
achieve both the full diversity and the information losslessness under the ML decoding.
Moreover, the rate of the code is equal to the number of transmit antennas.

We consider MIMO communications using space-time block code (STBC) with Nt
transmit antennas and Nr receive antennas. By using a STBC, we send Kd complex
data symbols x̃1, . . . , x̃Kd ∈ C during Td time slots. We define the STBC matrix as
B̃ =

[
b̃1 · · · b̃Td

]
∈ CNt×Td , where b̃t = [b̃1,t · · · b̃Nt,t]T ∈ CNt (t = 1, . . . ,Td) indicates

the transmitted signal vector at the tth time slot and b̃nt,t is the transmitted symbol from
the ntth transmit antenna (nt = 1, . . . , Nt). In linear dispersion STBCs, the STBC matrix
B̃ is given by

B̃ =
Kd∑

k=1
C̃k x̃k, (1.16)
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where C̃k ∈ CNt×Td is a weight matrix corresponding to the data symbol s̃k . In [20], for
example, the NO-STBC matrix

B̃ =
Nt−1∑
nt=0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̄0,nt δ x̄Nt−1,ntω
nt
Nt

· · · δ x̄1,ntω
(Nt−1)nt
Nt

x̄1,nt x̄0,ntω
nt
Nt

· · · δ x̄2,ntω
(Nt−1)nt
Nt

x̄2,nt x̄1,ntω
nt
Nt

· · · δ x̄3,ntω
(Nt−1)nt
Nt

...
...

...
...

x̄Nt−2,nt x̄Nt−3,ntω
nt
Nt

· · · δ x̄Nt−1,ntω
(Nt−1)nt
Nt

x̄Nt−1,nt x̄Nt−2,ntω
nt
Nt

· · · x̄0,ntω
(Nt−1)nt
Nt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ρnt (1.17)

has been proposed by using CDA, where x̄nt,n′
t = x̃ntNt+n′

t+1 ∈ C (nt, n′t = 0, . . . , Nt − 1)
are the complex data symbols to be sent, andωNt = ej 2π

Nt . Since we use Td = Nt time slots
to send Kd = N2

t symbols in (1.17), the rate of this NO-STBC is Kd/Td = Nt. Moreover,
when δ = e

√
5 j and ρ = ej , the full diversity is also achieved under ML decoding [20].

The decoding of NO-STBC [21–24] to estimate the transmitted symbols can also
be regarded as the discrete-valued vector reconstruction. The received signal matrix
Ỹ ∈ CNr×Td corresponding to B̃ during Td time slots is given by

Ỹ = H̃B̃ + Ṽ , (1.18)

where H̃ ∈ CNr×Nt is the channel matrix and Ṽ ∈ CNr×Td is the zero mean additive white
Gaussian noise matrix. From (1.16) and (1.18), we have Ỹ =

∑Kd
k=1 H̃C̃k x̃k + Ṽ and

hence ỹ ! vec(Ỹ ) ∈ CNrTd can be written as

ỹ =
Kd∑

k=1
(ITd ⊗ H̃)vec(C̃k)x̃k + vec(Ṽ ) (1.19)

= (ITd ⊗ H̃)C̃x̃ + ṽ (1.20)
= Ãx̃ + ṽ, (1.21)

where x̃ = [x̃1 · · · x̃Kd]T ∈ CKd , ṽ = vec(Ṽ ) ∈ CNrTd , C̃ =
[
vec(C̃1) · · · vec(C̃Kd)

]
∈

CNtTd×Kd , and Ã = (ITd ⊗ H̃)C̃ ∈ CNrTd×Kd [21]. Note that the size of the effective
channel matrix Ã ∈ CNrTd×Kd is much larger than that of H̃ ∈ CNr×Nt . When we
use the NO-STBC given by (1.17) and assume the overloaded scenario with Nr < Nt,
the decoding is an underdetermined problem because K = NtTd > NrTd and hence Ã
becomes a fat matrix.

Multiuser Detection
Multiuser detection is an important issue in M2M communications, where a number of
transmit node simultaneously transmit signals with low data rates [4, 25, 26]. We here
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consider the following received signal model

y(t) =
Nt∑

n=1
hnxnsn(t) + v(t), (1.22)

in the transmission period
[
0,Tp

]
, where xn ∈ {1, 0,−1} and sn(t) are the transmitted

symbol and the signature waveform of the nth transmit node, respectively. hn is the
channel gain between the nth node and the receiver, and v(n) is the additive white
Gaussian noise (AWGN) with zero mean. Note that xn = 0 means that the nth node is
not active in the transmission period.

Multiuser detection to reconstruct the transmitted symbols xn can be considered as
the discrete-valued vector reconstruction. When we use Mf filters ϕm(t) (m = 1, . . . ,Mf)
at the receiver, the output of the filter is ym !

∫ Tp
0 y(t)ϕm(T − t)dt. Letting sm,n !∫ Tp

0 sn(t)ϕm(T − t)dt and vm !
∫ Tp
0 v(t)ϕm(T − t)dt, we have

y = SHx + v, (1.23)

where y =
[
y1 · · · yMf

]T ∈ RMf , H = diag(h1, . . . , hNt) ∈ RNt×Nt , x =
[
x1 · · · xNt

]T ∈
{1,−1}Nt , v =

[
v1 · · · vMf

]T ∈ RMf , and

S =

⎡⎢⎢⎢⎢⎢⎣

s1,1 · · · s1,Nt
...

. . .
...

sMf,1 · · · sMf,Nt

⎤⎥⎥⎥⎥⎥⎦
∈ RMf×Nt . (1.24)

FTN Signaling
To achieve high speed data transmission, FTN signaling has attracted much attention [10,
27–29]. In FTN signaling, the transmitter transmits signals beyond the Nyquist rate. For
example, when we consider the binary phase shift keying (BPSK) signals x1, . . . , xNs ∈
{1,−1}, the modulated signal in the transmission period

[
0,Tp

]
can be written as

x(t) =
Ns∑

n=1
xnan(t), (1.25)

where Ns is the number of transmitted symbols, Tp is the interval of one period, and an(t)
(n = 1, . . . , Ns) is the modulation pulse. Hence, the received signal through the AWGN
channel is given by

y(t) =
Ns∑

n=1
xnan(t) + v(t), (1.26)
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where v(t) is the AWGN with zero mean.
Detection of the transmitted symbols xn from the received signal y(t) results in the

discrete-valued vector reconstruction. Let ϕm(t) (m = 1, . . . ,Mb) be an orthogonal basis
in the time-frequency space to which x(t) belongs. We also define ym ! ⟨y(t), ϕm(t)⟩,
am,n ! ⟨an(t), ϕm(t)⟩, and vm ! ⟨v(t), ϕm(t)⟩, where ⟨·, ·⟩ denotes the inner product. We
then obtain

y = Ax + v, (1.27)

where y =
[
y1 · · · yMb

]T ∈ RMb , x =
[
x1 · · · xNs

]T ∈ {1,−1}Ns , v =
[
v1 · · · vMb

]T ∈
RMb , and

A =

⎡⎢⎢⎢⎢⎢⎣

a1,1 · · · a1,Ns
...

. . .
...

aMb,1 · · · aMb,Ns

⎤⎥⎥⎥⎥⎥⎦
∈ RMb×Ns . (1.28)

Since we have Mb < Ns in FTN signaling, the detection problem can be regarded as the
underdetermined discrete-valued vector reconstruction.

1.3 Conventional Methods
In this section, we briefly review several conventional approaches for the discrete-valued
vector reconstruction.

LMMSE Method

Linear reconstruction methods obtain the estimate of the unknown vector x̃ as x̂ =Wỹ,
where W ∈ CN×M is a weight matrix. In the LMMSE method, for example, the weight
matrix WLMMSE is determined by

WLMMSE = arg min
W ∈CN×M

E
[
∥Wỹ − x̃∥2

2
]

(1.29)

= RxÃ
H

(
ÃRxÃ

H + σ2
vIM

)−1
, (1.30)

where Rx = E
[
x̃x̃H]

. Although the linear reconstruction methods have low compu-
tational complexity, the reconstruction performance becomes poor in underdetermined
problems.
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Maximum Likelihood Method
The ML method obtains the vector s ∈ CN that maximizes the likelihood function

p (ỹ | x̃ = s) ∝ exp
(
−
88ỹ − Ãs

882
2

σ2
v

)
. (1.31)

This approach is equivalent to the minimization problem

minimize
s∈CN

88ỹ − Ãs
882

2 . (1.32)

The ML method can achieve the optimal performance in terms of the symbol error rate
(SER) when the distribution of the unknown vector x is uniform. However, since the op-
timization in (1.32) is a combinatorial optimization problem, the required computational
complexity becomes prohibitive in large-scale problems. Although some complexity
reduction methods such as sphere decoding [30, 31] and slab sphere decoding [5] have
been proposed, their complexity is still huge for tens or hundreds of N .

Local Neighborhood Search
In the context of MIMO signal detection and the decoding of STBC, several recon-
struction methods have been proposed on the basis of local neighborhood search. These
algorithms starts from an initial estimate and updates each element in an iterative manner.
The likelihood ascent search (LAS) [21, 32, 33] simply updates the element so that we
have a larger likelihood. The reactive tabu search (RTS) [34] incorporate the tabu search
technique to escape from the local optima. Since the performance of these methods
severely degrade for overloaded scenario because of many local optima, the enhanced
reactive tabu search (ERTS) has been proposed in [7]. ERTS is an extension of RTS
and employs RTS iteratively while randomly varying the initial point of the search until
a certain condition is satisfied. It is shown in [7] that ERTS can achieve comparable
performance to the optimal ML detection with affordable computational complexity for
overloaded MIMO systems with around 30 transmit antennas. If the number of anten-
nas further increases, however, ERTS requires prohibitive computational complexity to
achieve such performance because the required number of RTSs significantly increases.

Message Passing-Based Methods
Low complexity algorithms have been proposed for the discrete-valued vector reconstruc-
tion on the basis of belief propagation (BP) [35, 36]. For binary vector reconstruction,
approximated BP has been proposed with application to code division multiple access
(CDMA) multiuser detection [37]. A similar algorithm named approximate message
passing (AMP) [38,39] has also been proposed for compressed sensing [40,41], and then
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applied to discrete-valued vector reconstruction [42] and more general scenario [43]. The
AMP-based methods can be used for complex-valued vectors and its asymptotic perfor-
mance in the large system limit can be predicted by state evolution technique [38, 44].
However, the empirical performance of the AMP algorithm is degraded for small-scale
problems because of the cycles in the factor graph considered in the original BP [45,46].
Moreover, we require an assumption of the i.i.d. zero mean Gaussian measurement ma-
trix in the derivation of the algorithm. In fact, the performance of the AMP algorithm
might severely degrade for general measurement matrices. For example, the convergence
of the AMP algorithm becomes unstable for nonzero mean i.i.d. matrix [47]. To improve
the stability of the AMP algorithm, several techniques such as adaptive damping, mean
removal, and sequential update have been proposed [47, 48]. The convergence of gen-
eralized approximate message passing (GAMP) [43] with the appropriate damping have
also been discussed in [49] for general measurement matrices under several assumptions
for the distributions of the unknown vector and the measurement noise. To overcome
this unstability of the AMP algorithm, other message passing-based approaches, e.g.,
expectation propagation (EP) [50], vector approximate message passing (VAMP) [51],
and orthogonal approximate message passing (OAMP) [52], have also been proposed.
The asymptotic performance of these algorithms has been theoretically analyzed for uni-
tary invariant measurement matrices [51,53], which is a wider class than i.i.d. Gaussian
matrices.

Convex Optimization-Based Methods

Although the ML method can achieve excellent performance, the required computational
complexity becomes prohibitive when the problem size is large. To tackle this problem,
several convex optimization-based approaches have been proposed for the discrete-
valued vector reconstruction in the real-valued domain.

The box-relaxation method [54, 55] is a convex relaxation of the ML method under
the hypercube containing all possible discrete-valued vectors. In the real-valued case,
the box relaxation method uses the box constraint s ∈ [r1, rL]N as

minimize
s∈[r1,rL]N

∥y −As∥2
2 (1.33)

because the unknown vector satisfies x ∈ RN ⊂ [r1, rL]N . Since both of the objective
function and the feasible region are convex, the optimization problem can be solved
with several convex optimization techniques. The asymptotic SER of the box relax-
ation method has been derived in [56] by using the convex Gaussian min-max theorem
(CGMT) framework.
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In [57], the regularization-based method given by

minimize
s∈RN

L∑
ℓ=1

∥s − rℓ1∥1 subject to y = As (1.34)

has been proposed for the discrete-valued vector reconstruction in the noise-free case.
This method uses the regularizer

∑L
ℓ=1 ∥s − rℓ1∥1 for the unknown discrete-valued vector.

The idea of the regularizer comes from compressed sensing [40,41] for the reconstruction
of the sparse vector and the fact that the vector x − rℓ1 has some zero elements. As
described in [57], the optimization problem (1.34) can be solved as linear programming.
As for the theoretical analysis, the SER of the regularization-based method has been
derived for the binary vector reconstruction. Some methods based on a similar idea have
also been proposed for the noisy measurement case [58, 59]. However, these methods
cannot utilize the knowledge of the distribution of the unknown vector.

The sum of absolute values (SOAV) optimization [60] for the reconstruction of x is
given by

minimize
s∈RN

L∑
ℓ=1

qℓ ∥s − rℓ1∥1 subject to y = As (1.35)

in the noise-free case, and

minimize
s∈RN

{
L∑
ℓ=1

qℓ ∥s − rℓ1∥1 +
λ

2 ∥y −As∥2
2

}
(1.36)

in the noisy case, where qℓ (≥ 0) is a parameter and set as qℓ = pℓ in [60]. λ (> 0) is
also an parameter to control the balance between two terms in the objective function.
Although the SOAV optimization is based on a similar idea as that of the regularization-
based method (1.34), it includes the parameter qℓ in the objective function. By tuning
these parameters, we can take the probability p1, . . . , pL into account. Since the objective
function of the SOAV optimization is convex, we can obtain a sequence converging to the
optimal solution by several convex optimization algorithms such as proximal splitting
methods [61]. For example, an algorithm based on Beck-Teboulle proximal gradient
algorithm [62] has been proposed in [26]. Some theoretical results about the SOAV
optimization have been derived in [26] by using restricted isometry property (RIP) [63].

1.4 Outline of the Thesis
As described in the previous sections, we need a low-complexity algorithm for the large-
scale discrete-valued vector reconstruction. Although the LMMSE method and the local
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neighborhood search have low complexity, their reconstruction performance severely
degrades for underdetermined problems. The message passing-based algorithms can
achieve good performance with low complexity. However, it requires some assumptions
on the measurement matrix and the large system limit. Since the measurement matrix has
various structures in the applications described in Section 1.2, we require an algorithm
which can achieve good performance without any assumptions on the measurement
matrix. We thus propose novel reconstruction algorithms in this thesis by extending the
conventional convex optimization-based methods, which does not require any explicit
assumptions on the measurement matrix.

Another issue on the discrete-valued vector reconstruction is the performance analy-
sis of the algorithms. For message passing-based methods, the asymptotic performance
has been analyzed under some assumptions on the measurement matrix. For box-
relaxation method and the regularization-based method, the theoretical results have
also been provided in the large system limit. However, the theoretical aspects of the
SOAV optimization has not been understood sufficiently. In this thesis, we thus analyze
the asymptotic performance of the SOAV optimization and the corresponding message
passing-based algorithm. The result of the analysis enables us to optimize the parameters
in the objective function. Moreover, we can derive the required number of measurements
for the perfect reconstruction in the noise-free case.

The remainder of this thesis is organized as follows. Figure 1.3 shows the overview
of the thesis.

Chapter 2: Binary Vector Reconstruction via Iterative Convex Optimization

In Chapter 2, we consider the binary vector reconstruction as the simplest case of the
discrete-valued vector reconstruction. We extend the conventional SOAV optimization
to the weighted sum of absolute values (W-SOAV) optimization so that we can use the
prior information of the unknown vector. Moreover, we propose an iterative approach
referred to as iterative weighted sum of absolute values (IW-SOAV) to solve the W-SOAV
optimization with the update of the parameters in the objective function. Simulation
results show that the bit error rate (BER) performance of the proposed method is better
than that of conventional schemes, especially in the large-scale overloaded MIMO signal
detection and the large-scale decoding of NO-STBC.

Chapter 3: Reconstruction of Complex Discrete-Valued Vector via Convex Opti-
mization with Sparse Regularizers

In Chapter 3, we propose a method for the reconstruction of a complex discrete-valued
vector from its linear measurements. We propose a reconstruction approach of solving an
optimization problem called sum of complex sparse regularizers (SCSR) optimization.
The sum of sparse regularizers in the objective function can directly utilize the discrete
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Figure 1.3: Overview of the thesis

nature of the unknown vector in the complex-valued domain. We also propose an
algorithm for the SCSR optimization problem on the basis of alternating direction
method of multipliers (ADMM). For the proposed convex regularizers, we analytically
prove that the sequence obtained by the proposed algorithm converges to the optimal
solution of the problem. To obtain better reconstruction performance, we further propose
an iterative approach named iterative weighted sum of complex sparse regularizers (IW-
SCSR), where we update the parameters in the objective function in each iteration
by using the tentative estimate in the previous iteration. Simulation results show that
IW-SCSR can reconstruct the complex discrete-valued vector from its underdetermined
linear measurements and achieve good performance in the applications of overloaded
MIMO signal detection and channel equalization.

Chapter 4: Discrete-Valued Vector Reconstruction by Optimization with Sum of
Sparse Regularizers

In Chapter 4, we propose a possibly nonconvex optimization problem to reconstruct a
discrete-valued vector from its underdetermined linear measurements. The proposed
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sum of sparse regularizers (SSR) optimization uses the sum of sparse regularizers as
a regularizer for the discrete-valued vector. We also propose two proximal splitting
algorithms for the SSR optimization problem on the basis of ADMM and primal-dual
splitting (PDS). The ADMM-based algorithm can achieve faster convergence, whereas
the PDS-based algorithm does not require the computation of any inverse matrix. More-
over, we extend the ADMM-based approach for the reconstruction of complex discrete-
valued vectors. Note that the proposed approach can use any sparse regularizer as long
as its proximity operator can be efficiently computed. Simulation results show that
the proposed algorithms with nonconvex regularizers can achieve good reconstruction
performance.

Chapter 5: Asymptotic Performance Analysis of Discrete-Valued Vector Recon-
struction with Sum of ℓ1 Regularizers

In Chapter 5, we analyze the asymptotic performance of a convex optimization-based
discrete-valued vector reconstruction from linear measurements. We firstly propose a
box-constrained version of the conventional SOAV optimization, which uses a weighted
sum of ℓ1 regularizers as a regularizer for the discrete-valued vector. We then derive the
asymptotic SER performance of the box-constrained sum of absolute values (Box-SOAV)
optimization theoretically by using CGMT. We also derive the asymptotic distribution
of the estimate obtained by the Box-SOAV optimization. On the basis of the asymptotic
results, we can obtain the optimal parameters of the Box-SOAV optimization in terms
of the asymptotic SER. Moreover, we can also optimize the quantizer to obtain the
final estimate of the unknown discrete-valued vector. Simulation results show that the
empirical SER performance of Box-SOAV and the conventional SOAV is very close to
the theoretical result for Box-SOAV when the problem size is sufficiently large. We also
show that we can obtain better SER performance by using the proposed asymptotically
optimal parameters and quantizers compared to the case with some fixed parameter and
a naive quantizer.

Chapter 6: Discreteness-Aware Approximate Message Passing for Discrete-Valued
Vector Reconstruction

Chapter 6 considers the reconstruction of a discrete-valued random vector from possibly
underdetermined linear measurements using SOAV optimization. The proposed algo-
rithm, referred to as discreteness-aware approximate message passing (DAMP), is based
on the idea of AMP, which has been originally proposed for compressed sensing. The
DAMP algorithm has low computational complexity and its performance in the large
system limit can be predicted analytically via state evolution framework, where we pro-
vide a condition for the exact reconstruction with DAMP in the noise-free case. From the
analysis, we also propose a method to determine the parameters of the SOAV optimiza-
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tion. Moreover, on the basis of the state evolution, we provide Bayes optimal DAMP,
which has the minimum mean-square-error at each iteration of the algorithm. Simulation
results show that the DAMP algorithms can reconstruct the discrete-valued vector from
underdetermined linear measurements and the empirical performance agrees with our
theoretical results in large-scale systems. When the problem size is not large enough,
the SOAV optimization with the proposed parameters can achieve better performance
than the DAMP algorithms for high signal-to-noise ratio.

Chapter 7: Conclusion
In Chapter 7, we provide the summary and future work of this thesis.



Chapter 2

Binary Vector Reconstruction via
Iterative Convex Optimization

2.1 Introduction
In this chapter, we consider the binary vector reconstruction as the simplest example of the
discrete-valued vector reconstruction. We firstly formulate the SOAV optimization [60]
for the binary vector reconstruction in the noisy observation case. We then extend the
SOAV optimization to the W-SOAV optimization, where the prior information on the
unknown vector can be used, and propose an iterative approach, referred to as IW-SOAV.
In IW-SOAV, we iterate the W-SOAV optimization and the update of the parameters in
the objective function. IW-SOAV can reconstruct the unknown binary vector with low
computational complexity because the W-SOAV optimization problem can be efficiently
solved with proximal splitting methods [61]. Simulation results show that IW-SOAV
has better BER performance than several conventional methods in signal detection and
the decoding of NO-STBCs in overloaded MIMO systems.

The rest of this chapter is organized as follows. In Section 2.2, we present the pro-
posed IW-SOAV for the binary vector reconstruction. Section 2.3 gives some simulation
results to demonstrate the performance of the proposed scheme. Finally, Section 2.4
presents some conclusions.

2.2 Proposed Method
2.2.1 SOAV Optimization for Binary Vector Reconstruction
In this chapter, we consider the reconstruction of the binary vector x ∈ {1,−1}N from
its linear measurements given by (1.1). We assume that the probability distribution is
uniform, i.e., Pr(xn = 1) = Pr(xn = −1) = 1/2. From the symmetry of the distribution,
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Algorithm 2.1 Douglas-Rachford algorithm for (2.2)
1: Fix ε ∈ (0, 1), γ > 0, and z0 ∈ RN

2: for t = 0, 1, . . . do
3: st = proxγφ2(zt)
4: θt ∈ [ε, 2 − ε]
5: zt+1 = zt + θt(proxγφ1(2st − zt) − st))
6: end for

the SOAV optimization (1.36) in this case can be written as

minimize
s∈RN

{
1
2 ∥s − 1∥1 +

1
2 ∥s + 1∥1 +

λ

2 ∥y −As∥2
2

}
, (2.1)

where λ (> 0) is the parameter. The solution of (2.1) can be obtained with the following
theorem [61].

Theorem 2.2.1. Let φ1, φ2 : RN → (−∞,∞] be lower semicontinuous convex functions
and (ri dom φ1) ∩ (ri dom φ2) " ∅, where ri and dom denote the relative interior of the
set and the domain of the function, respectively. In addition, φ1(s) + φ2(s) → ∞ as
∥s∥2 → ∞ is assumed. A sequence {st} (t = 0, 1, . . .) converging to the solution of

minimize
s∈RN

{φ1(s) + φ2(s)} (2.2)

can be obtained by using the following Douglas-Rachford algorithm in Algorithm 2.1.

The Douglas-Rachford algorithm is one of the proximal splitting methods [61],
which can solve the optimization problem with the form of (2.2) by using the proximity
operator, which can be considered as an extension of the projection onto nonempty
closed convex sets for the convex function. In fact, for the indicator function ιC(u)
(ιC(u) = 0 if u ∈ C, and ιC(u) = ∞ otherwise) with such a convex set C, proxιC (u) is
the projection of u onto C.

In order to apply the theorem to our problem, we rewrite (2.1) as

minimize
s∈RN

{ f (s) + g(s)} , (2.3)

where f (s) = λ ∥y −As∥2
2 /2 and g(s) = ∥s − 1∥1 /2+ ∥s + 1∥1 /2. Note that f (s) and

g(s) are lower semicontinuous convex functions due to the continuity and the convexity of
ℓ1 and ℓ2 norms. Moreover, we have (ri dom f )∩(ri dom g) = (ri RN )∩(ri RN ) = RN " ∅
and f (s)+g(s) → ∞ as ∥s∥2

2 → ∞. Thus, we can calculate the solution of (2.1) or (2.3)
by using Algorithm 2.1 with φ1(s) = f (s) and φ2(s) = g(s). The proximity operators
of γ f (s) and γg(s) can be obtained as

proxγ f (u) =
(
I + λγHTH

)−1 (
u + λγHTy

)
, (2.4)
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and

[
proxγg(u)

]
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

un + γ (un < −1 − γ)
−1 (−1 − γ ≤ un < −1)
un (−1 ≤ un ≤ 1)
1 (1 ≤ un < 1 + γ)
un − γ (1 + γ ≤ un)

(2.5)

respectively, where un indicates the nth element of u.
The computational complexity of the algorithm is O(N3), which is dominated by the

matrix inversion
(
I + λγHTH

)−1 in (2.4). Note that the calculation of the inversion is
required only once, and thus the corresponding computational cost does not grow with
the number of iterations in the algorithm.

2.2.2 IW-SOAV
In this section, we consider to further improve the performance of the SOAV optimization
by extending the SOAV optimization into the W-SOAV optimization. Moreover, we also
propose the iterative approach named IW-SOAV, where we iterate the W-SOAV and the
update of the parameter in the objective function.

We firstly extend the SOAV optimization in (2.1) to the W-SOAV so that we can use
the prior information about x as

x̂ = arg min
s∈RN

{
N∑

n=1

(
q+n |sn − 1| + q−

n |sn + 1|
)
+
λ

2 ∥y −As∥2
2

}
, (2.6)

where we can choose the different parameters q+n and q−
n for each n. If there is no prior

information about x, i.e., q+n = q−
n = 1/2, the optimization problem (2.6) is equivalent

to (2.1). If q+n > q−
n , then arg min

sn∈R

(
q+n |sn − 1| + q−

n |sn + 1|
)
= 1 and hence the solution

of sn in (2.6) tends to take the value close to 1, and vice versa. Hence, if we have the
prior information about the unknown vector, we can incorporate them by tuning the
parameters q+n and q−

n properly. The optimization problem (2.6) can also be solved by
using the Douglas-Rachford algorithm. The proximity operator of

γgw(u) ! γ
N∑

n=1

(
q+n |un − 1| + q−

n |un + 1|
)

(2.7)
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Algorithm 2.2 IW-SOAV
Input: y ∈ RM,A ∈ RM×N

Output: x̂ ∈ RN

1: Let x̂ = 0.
2: for k = 1 to Kitr do
3: Update q+n and q−

n from x̂.
4: Fix ε ∈ (0, 1), γ > 0, and z0 ∈ RN .
5: for t = 0 to Titr do
6: st = proxγgw(zt)
7: θt ∈ [ε, 2 − ε]
8: zt+1 = zt + θt(proxγ f (2st − zt) − st))
9: end for

10: x̂ = sTitr

11: end for
12: x̂ = sTitr

can be written as

[proxγgw(u)]n

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

un + γ (un < −1 − γ)
−1 (−1 − γ ≤ un < −1 − dnγ)
un + dnγ (−1 − dnγ ≤ un < 1 − dnγ)
1 (1 − dnγ ≤ un < 1 + γ)
un − γ (1 + γ ≤ un)

, (2.8)

where dn = q+n − q−
n . By solving the optimization problem in (2.6) via the Douglas-

Rachford algorithm with proxγ f and proxγgw, a new estimate of the unknown vector x
can be obtained.

To implement the idea of W-SOAV, we propose an iterative approach summarized
in Algorithm 2.2, referred to as IW-SOAV. In each iteration of IW-SOAV, we use the
estimate obtained in the previous iteration as the prior information. By calculating the
weights q+n and q−

n from the estimate and solving the W-SOAV optimization problem,
we can obtain an improved estimate of x. We discuss the method of the weight update
in the next subsection.

The computational complexity of IW-SOAV is the same order as that of the Douglas-
Rachford algorithm for the SOAV optimization because it is dominated by the matrix
inversion

(
I + λγHTH

)−1 in (2.4).
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0 x̂n

q+nq−
n

−1 1

1

Figure 2.1: q+n and q−
n in the simple approach

2.2.3 Weight Update Rule in IW-SOAV
As a candidate for the weight update rule, we can consider the simple method given by

q+n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (x̂n < −1)
1 + x̂n

2 (−1 ≤ x̂n < 1)
1 (1 ≤ x̂n)

(2.9)

and

q−
n = 1 − q+n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 (x̂n < −1)
1 − x̂n

2 (−1 ≤ x̂n < 1)
0 (1 ≤ x̂n)

. (2.10)

Figure 2.1 shows q+n and q−
n as a function of x̂n. q+n is large when x̂n is large, whereas q−

n
is large when x̂n is small.

Although the above approach is very simple, it does not use the previous estimate of
other symbols xi (i " n) to obtain the weight q+n and q−

n . As a more reasonable approach,
we here propose the log likelihood ratio (LLR)-based approach. We firstly consider to
approximate the posterior LLR of xn defined as

Λn := log p(xn = +1 | y)
p(xn = −1 | y) (2.11)

= log p(y | xn = +1)
p(y | xn = −1), (2.12)
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by using the current estimate x̂. To reduce the computational complexity, we firstly
approximate Λn as

Λn ≈ log

M∏
m=1

p(ym | xn = +1)

M∏
m=1

p(ym | xn = −1)
(2.13)

=

M∑
m=1

log p(ym | xn = +1)
p(ym | xn = −1) (2.14)

by assuming that the observations y1, . . . , yM are independent, which means p(y | xn =

+1) = ∏M
m=1 p(ym | xn = +1) and p(y | xn = −1) = ∏M

m=1 p(ym | xn = −1). By
using the similar idea to the Gaussian approximation in the BP-based detection [64], we
rewrite ym as

ym = am,nxn +

N∑
k=1
k"n

am,k xk + vm (2.15)

= am,nxn + ξ
n
m (2.16)

where ξn
m =

∑N
k=1,k"n am,k xk + vm. Since ξn

m is the sum of N − 1 independent random
variables and Gaussian noise, we can approximate it as a Gaussian random variable from
the central limit theorem when N is large. We thus calculate (2.14) as

M∑
m=1

log p(ym | xn = +1)
p(ym | xn = −1) ≈

M∑
m=1

2am,n
(
ym − µξnm

)
σ2
ξnm

, (2.17)

where µξnm and σ2
ξnm

represent the mean and the variance of ξn
m, respectively, which are

given by

µξnm =
N∑

k=1
k"n

am,kE [xk] , (2.18)

σ2
ξni
=

N∑
k=1
k"n

a2
m,k

(
1 − E [xk]2

)
+ σ2

v . (2.19)

Since E [xk] is not available in general, we approximate µξni and σ2
ξni

using the current
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estimates x̂1, . . . , x̂N as

µξni ≈ µ̂ξni :=
N∑

k=1
k"n

am,k x̂′k, (2.20)

σ2
ξnm

≈ σ̂2
ξnm

:=
N∑

k=1
k"n

a2
m,k

(
1 − (x̂′k)2

)
+ σ2

v , (2.21)

where

x̂′n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 (x̂n < −1)
x̂n (−1 ≤ x̂n < 1)
1 (1 ≤ x̂n)

(2.22)

is bounded in [−1, 1] so that 1 − (x̂′k)2 in (2.21) is not negative. From (2.14), (2.17),
(2.20) and (2.21), the posterior LLR of xn can be approximated as

Λn ≈ Λ̂n :=
M∑

m=1

2am,n
FGG
H
ym −

N∑
k=1
k"n

am,k x̂′k
IJJ
K

N∑
k=1
k"n

a2
m,k

(
1 − (x̂′k)2

)
+ σ2

v

. (2.23)

From the approximated posterior LLR Λ̂n, we use the approximation of the posterior
probabilities Pr(xn = +1 | y) and Pr(xn = −1 | y) as q+n and q−

n , respectively, and update

q+n !
eΛ̂n

1 + eΛ̂n

, q−
n !

1
1 + eΛ̂n

. (2.24)

It should be noted that the LLR-based approach can be combined with the channel
decoder as shown in Sec. 2.3.2.

Since the computational complexity of (2.23) isO(MN), the complexity for the direct
calculation of Λ̂1, . . . , Λ̂N will be O(MN2). However, we can reduce the complexity to
O(MN) by calculating and storing

µ̂m !
N∑

k=1
am,k x̂′k, (2.25)

σ̂2
m !

N∑
k=1

a2
m,k

(
1 − (x̂′k)2

)
+ σ2

v , (2.26)
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in advance. Since (2.25) and (2.26) can be calculated with the complexity of O(N), we
can obtain all of µ̂m and σ̂2

m (m = 1, . . . ,M) with O(MN). By using µ̂m and σ̂m, (2.20)
and (2.21) are rewritten as

µ̂ξnm = µ̂m − am,n x̂′n, (2.27)

σ̂2
ξnm
= σ̂2

m − a2
m,n

(
1 − (x̂′n)2

)
, (2.28)

which can be obtained with O(1). With (2.25)–(2.28), (2.23) can be rewritten as

Λ̂n =

M∑
m=1

2am,n
{
ym −

(
µ̂m − am,n x̂′n

)}
σ̂2

m − a2
m,n

(
1 − (x̂′n)2

) (2.29)

and hence the complexity needed for the calculation of each Λ̂n is reduced to just
O(M). As a result, we can obtain Λ̂1, . . . , Λ̂N with the complexity of O(MN), while the
complexity of the Douglas-Rachford algorithm for the SOAV optimization is O(N3).

2.2.4 Extension to Non-Binary Vector
Although we have focused on the binary vector reconstruction in this chapter, we can
extend the proposed approach to the reconstruction of non-binary vectors. The W-SOAV
optimization in (2.6) can be extended for the reconstruction of x ∈ {r1, . . . , rL}N as

x̂ = arg min
s∈RN

{(
N∑

n=1

L∑
ℓ=1

qℓ,n |sn − rℓ |
)
+
λ

2 ∥y −As∥2
2

}
, (2.30)

where qℓ,n (≥ 0) is the parameter. We have proposed a method for the error recovery
of MIMO signal detection with QPSK, where we reconstruct the discrete-valued vector
in {−2, 0, 2}N [65]. In [65], the parameter qℓ,n is determined on the basis of the relaxed
maximum a posteriori (MAP) estimation with approximated LLRs.

2.3 Simulation Results
In this section, we show the performance of IW-SOAV in two applications in communi-
cation systems via computer simulations. As the weight update rule, we use the proposed
LLR-based approach.

2.3.1 Overloaded MIMO Signal Detection
As discussed in Section 1.2, massive overloaded MIMO signal detection can be regarded
as the discrete-valued vector reconstruction. When we use QPSK with (c1, c2, c3, c4) =
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Figure 2.2: BER performance for MIMO with (Nt, Nr) = (50, 32)

Figure 2.3: BER performance for MIMO with (Nt, Nr) = (100, 64)

(1+ j,−1+ j,−1− j, 1− j) as the modulation method, the signal detection problem results
in the binary vector reconstruction in the real-valued domain after the transformation
to the model (1.3). We here present several simulation results for massive overloaded
MIMO signal detection via IW-SOAV.

Figures 2.2 and 2.3 shows the BER performance versus signal-to-noise ratio (SNR)
for overloaded MIMO systems with (Nt, Nr) = (50, 32) and (Nt, Nr) = (100, 64), respec-
tively. In the figures, we assume flat Rayleigh fading channels and set Ã = Ãi.i.d.,
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Table 2.1: The value of λ in (2.6)
SNR per receive antenna (dB) 0–10 12.5–20 22.5 25–30

λ 0.01 0.1 0.3 1

which is composed of i.i.d. complex Gaussian random variables with zero mean and unit
variance. We denote the LMMSE detection by “MMSE”, the BP-based detection named
graph-based iterative Gaussian detector (GIGD) [64] by “GIGD,” the detection with a
quadratic programming [58] by “Quad-min”, and the massive overloaded MIMO signal
detection proposed in [7] by “ERTS”. The parameters of ERTS are the same as those
in [7], e.g., the maximum number of RTSs is NRTS = 500 and the maximum number
of iterations in RTS is Nitr = 300. “IW-SOAV” denotes the convex optimization-based
IW-SOAV in Algorithm 2.2. The parameters of the Douglas-Rachford algorithm are set
as z0 = 0, ε = 0.1, γ = 1, and θt = 1.9 (t = 0, 1, . . . ,Titr), which give fast convergence.
The number of iterations in the Douglas-Rachford algorithm is fixed to Titr = 50, which
is sufficiently large for the convergence of the algorithm. The parameter λ in (2.6) is
selected as shown in TABLE 2.1, which is determined from simulation results. In the
figures, Titr is the number of iterative W-SOAV optimizations in IW-SOAV. In Fig. 2.2,
where Nt = 50, the performance of IW-SOAV is inferior to that of ERTS. In Fig. 2.3
with Nt = 100, however, the performance of ERTS has degraded and IW-SOAV has
better performance in high SNR. The reason for the performance degradation of ERTS
is that, if the number of transmit antennas is large, RTS often fails to find the true
transmitted signal vector due to the huge number of candidates of the transmitted vec-
tor. Although we may get better performance with ERTS by increasing the number of
RTSs, the computational complexity could be prohibitive to achieve comparable perfor-
mance as IW-SOAV. Specifically, the computational complexity of ERTS is given by
O(N3

t ) + O(NRTSN2
t ) in the worst case, and since the number of all candidates of the

transmit signal vector increases exponentially with the number of transmit antennas, the
required NRTS to keep good performance will increase more rapidly than Nt. On the
other hand, the computational complexity of IW-SOAV is O(N3

t ).
Figure 2.4 shows the BER performance versus the number of receive antennas Nr for

Nt = 150 and the SNR per receive antenna of 20 dB. We can observe that IW-SOAV with
L = 5 requires less antennas than other schemes to achieve a certain BER performance.
For BER = 10−4, IW-SOAV can reduce more than ten receive antennas compared to
ERTS.

In Fig. 2.5, we also show the BER performance for spatially correlated MIMO
channels with (Nt, Nr) = (100, 64). We assume a linear array with equally spaced
antennas in both the receiver and the transmitter, and set to dr = dt = 0.5λw in the
simulations, where dr and dt are the antenna spacing at the receiver and the transmitter,
respectively, and λw is the wavelength. From Fig. 2.5, we can see that the proposed
scheme can achieve better performance compared to the conventional schemes even in
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Figure 2.4: BER performance versus Nr for MIMO with Nt = 150 and the SNR per
receive antenna of 20 dB

Figure 2.5: BER performance for spatially correlated MIMO with (Nt, Nr) = (100, 64)

the spatially correlated MIMO channels, while the performance of GIGD and ERTS is
degraded significantly.

To compare the computational complexity, we evaluate the average computation time
to detect a transmitted symbol vector versus Nt and the corresponding BER performance
for the fixed ratio Nr/Nt = 2/3 and the SNR per receive antenna of 17.5 dB in Figs. 2.6
and 2.7, respectively. The simulation is conducted by using a computer with 2 GHz
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Figure 2.6: Average computation time versus Nt for uncoded MIMO with Nr/Nt = 2/3
and the SNR per receive antenna of 17.5 dB

Figure 2.7: BER performance versus Nt for uncoded MIMO with Nr/Nt = 2/3 and the
SNR per receive antenna of 17.5 dB

Intel Core i7-3667U and 8 GB memory. The channel matrix is composed of i.i.d.
Gaussian variables. In the figures, “PVC” represents the signal detection scheme called
pre-voting cancellation (PVC) [6], which is intended for small-scale overloaded MIMO
systems. Although PVC can achieve a comparable BER performance to ML detection
for small-scale MIMO systems, its average computation time rapidly increases along
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Figure 2.8: Model of coded MIMO systems

with Nt. In Fig. 2.7, the BER performance of ERTS severely degrades for large Nt.
This is because the maximum number of RTSs is limited as NRTS = 500 to avoid the
prohibitive computational complexity, while the number of candidates of the transmitted
signal vector exponentially increases along with Nt. Compared to the conventional
detection schemes, the proposed IW-SOAV can achieve better BER performance with
lower complexity in large-scale overloaded MIMO systems.

2.3.2 Signal Detection in LDPC-coded Overloaded MIMO Systems
Next, we evaluate the performance of the proposed IW-SOAV in MIMO systems with low
density parity check (LDPC) codes [66,67]. Since the proposed W-SOAV optimization
can use the posterior LLRs of transmitted symbols as the prior information, we can
integrate it with soft channel decoding schemes, e.g., LDPC codes or turbo codes. We
thus consider a joint detection and decoding scheme using the W-SOAV optimization
for coded massive overloaded MIMO systems.

Figure 2.8 shows the system model of the coded MIMO with Nt transmit antennas
and Nr (< Nt) receive antennas. In the transmitter, Q information bits are encoded into
P coded bits by a channel encoder with the code rate R = Q/P. For simplicity, P is
assumed to be a multiple of 2Nt. P coded bits are then modulated into P/2 QPSK
symbols and sent from Nt transmit antennas over T = P/2Nt symbols time.

The received signal vector at time t ∈ {1, . . . ,T} is given by

ỹ(t) = Ã(t)x̃(t) + ṽ(t), (2.31)
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where Ã(t), x̃(t), and ṽ(t) are the channel matrix, the transmitted signal vector, and the
noise vector at time t, respectively. We can convert (2.31) into the real signal model

y(t) = A(t)x(t) + v(t). (2.32)

In the proposed detection and decoding, we iteratively perform the detection with the
W-SOAV optimization and the channel decoding to update LLRs of transmitted symbols.
The detector obtains the estimate x̂(t) of x(t) with the W-SOAV optimization using the
information from the channel decoder except for the first iteration. Specifically, by using
the posterior LLR obtained at the output of the channel decoder as

λ(t)n = log
p
(
x(t)n = +1 | y(t)

)

p
(
x(t)n = −1 | y(t)

) , (2.33)

the weight parameters of the W-SOAV optimization are given by

q+n
(t)
=

eλ
(t)
n

1 + eλ
(t)
n

, q−
n
(t) =

1
1 + eλ

(t)
n

(2.34)

as in (2.24). After the detection via the W-SOAV optimization with the above q+n
(t) and

q−
n
(t), we calculate the posterior LLRs Λ̂(t)

=
[
Λ̂(t)

1 · · · Λ̂(t)
2Nt

]T
, where Λ̂(t)

n is given by

(2.29). Using all LLRs Λ̂(1)
, . . . , Λ̂

(T) as the input, the decoder performs the soft channel
decoding and outputs new posterior LLRs λ(1), . . . ,λ(T) to the MIMO detector, where
λ(t) =

[
λ(t)1 · · · λ(t)2Nt

]T
. After a certain number of the iterations of the detection and

decoding, the decoder outputs the decoded bits as the final estimate of the transmitted
information bits.

Figures 2.9 and 2.10 show the BER performance of the proposed signal detection
and decoding for LDPC coded MIMO with (Nt, Nr) = (100, 64). The parameters of the
algorithm are set as Titr = 30 and λ = 0.01. The code rate is R = 1/2, and the column
and row weights of the parity check matrix are three and six, respectively. In the figures,
the code length are Nc = 4000 and 8000, respectively. We represent the proposed
joint detection and decoding by “Joint det./dec.”, where Kmax indicates the maximum
number of iterative W-SOAV optimizations. Even before the Kmaxth iteration, the LDPC
decoder outputs the final estimate of the information bits if the decoded bits satisfy all
parity check constraints. From the figures, we can see that, as the iteration proceeds, the
performance of the joint detection and decoding is considerably improved via LLR update
between the W-SOAV optimization and the LDPC decoding. For comparison, we also
plot the performance of the independent detection and LDPC decoding (“Independent
det./dec.”), where IW-SOAV with Kitr = 5 is used as the detection scheme. Moreover,
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Figure 2.9: BER performance for LDPC coded MIMO with (Nt, Nr) = (100, 64), R = 1/2
and N = 4000

Figure 2.10: BER performance for LDPC coded MIMO with (Nt, Nr) = (100, 64), R =
1/2 and N = 8000

“GIGD+LDPC” shows the performance of the joint detection and decoding with GIGD
and LDPC decoding, which are integrated in the same manner as in Fig. 2.8. The
number of outer iterations between the detector and the decoder is set to 5. We can see
that the proposed joint detection and decoding achieves much better performance than
the scheme with GIGD and the independent approach. Each element of the estimate
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Figure 2.11: BER performance in i.i.d. channels with NO-STBC (Nt = 9, Nr = 6)

x̂ obtained by IW-SOAV with Kitr = 5 is almost hard decision, i.e., close to 1 or −1,
and hence LDPC decoding in the independent approach has poor performance even
compared to the case with Kitr = 1. The figures also show that the performance is
improved as the code length increases.

2.3.3 Decoding of NO-STBC
Next, we show some numerical results for the decoding of NO-STBC discussed in
Section 1.2. We use QPSK and NO-STBC given by (1.17) with δ = e

√
5 j and ρ = ej .

The parameters in IW-SOAV are ε = 0.1, γ = 1, z0 = 0, Titr = 50, and θt = 1.9
(t = 0, . . . ,Titr).

Figures 2.11 and 2.12 show the BER performance for overloaded NO-STBCs. In
the figures, we assume i.i.d. channels as H̃ = H̃i.i.d., where the elements of H̃i.i.d.
are i.i.d. circular complex Gaussian variables with zero mean and unit variance. We
denote the LMMSE decoding by “LMMSE”, the RTS-based decoding [22] by “RTS”,
and the proposed IW-SOAV scheme by “Proposed”. We also plot the performance of
ERTS [7], which has been proposed for signal detection in uncoded overloaded MIMO
systems with tens of antennas. The parameters of RTS and ERTS are the same as those
in [22] and [7], respectively. For the proposed IW-SOAV, the parameter λ is determined
as in TABLE 2.1. Figure 2.11 shows the performance for more number of antennas
(Nt, Nr) = (9, 6), where the size of the measurement matrix A in the resultant real-valued
model is 108×162. In this case, we estimate the transmitted symbol vector in {1,−1}162,
which is equivalent to the signal detection for uncoded massive overloaded MIMO with
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Figure 2.12: BER performance in i.i.d. channels with NO-STBC (Nt = 12, Nr = 8)

Figure 2.13: BER performance in spatially correlated channels with NO-STBC (Nt =
12, Nr = 8)

(Nt, Nr) = (81, 54). Although ERTS achieves better performance than the proposed
IW-SOAV for SNRs around 15 dB, its complexity is much larger than the proposed
IW-SOAV with Kitr = 3 according to Fig. 2.6. In Fig. 2.12, where (Nt, Nr) = (12, 8) with
A of size 192 × 288, the proposed IW-SOAV outperforms the conventional schemes for
all SNRs.

Figure 2.13 shows the BER performance in spatially correlated channels. We assume
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(Nt, Nr) = (12, 8) and a linear array with equally spaced antennas at the receiver and
transmitter. We denote the antenna spacing at the receiver and the transmitter by dr and
dt, respectively, and set dr = dt = 0.5λw in the simulations, where λw is the wavelength.
Figure 2.13 shows that the performance of the proposed IW-SOAV in spatially correlated
channels is comparable to that in i.i.d. channels, while the BER of ERTS significantly
degrades.

2.4 Conclusion
In this chapter, we have proposed the binary vector reconstruction method named IW-
SOAV, which iteratively solves the convex W-SOAV optimization problem with updating
weights in the objective function. The W-SOAV optimization can be efficiently solved
with the proximal splitting methods. A similar approach can be applied to the recon-
struction of non-binary vectors as in [65]. Simulation results show that IW-SOAV can
achieve better performance than conventional methods in large-scale overloaded MIMO
signal detection and the decoding of NO-STBCs.
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Reconstruction of Complex
Discrete-Valued Vector via Convex
Optimization with Sparse Regularizers

3.1 Introduction
As shown in Section 1.2, we need to perform the discrete-valued vector reconstruction
in the complex-valued domain in many applications of communication systems. Several
message passing-based methods [42, 50, 53] can be used for complex-valued vectors
and its asymptotic performance in the large system limit can be theoretically predicted.
For arbitrary measurement matrices, however, the performance has not been verified
theoretically. Moreover, the assumption of large system limit remains in the derivation
and the analysis, and hence the performance may degrade for finite-scale problems. On
the other hand, as described in Section 1.3, several convex optimization-based methods
have been proposed for the discrete-valued vector reconstruction [54, 57, 60]. However,
they reconstruct the discrete-valued vector in the real-valued domain and cannot be
directly used for the reconstruction of complex discrete-valued vectors in general. When
the real part and the imaginary part of the unknown vector are independent each other,
we can use the reconstruction methods by converting the original model in the complex-
valued domain into the equivalent model in the real-valued domain as shown in (1.3).
When they are not independent, however, this approach is not appropriate because we
cannot take advantage of the dependency between them. In such cases, we should
directly use the discrete nature of the unknown vector in the complex-valued domain.

In this chapter, we extend the SOAV optimization for the reconstruction of complex
discrete-valued vectors. This extension enables us to directly reconstruct the complex
discrete-valued vector even when the real part and the imaginary part are not indepen-
dent. We provide an optimization algorithm for the proposed SCSR optimization on the
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basis of ADMM [61, 68–71]. To obtain better reconstruction performance, we further
extend the SCSR optimization to the weighted sum of complex sparse regularizers (W-
SCSR) optimization and propose IW-SCSR, which iterates the W-SCSR optimization
with updating parameters in the objective function in each iteration. We also discuss
the selection of the parameter in the W-SCSR optimization and the computational com-
plexity reduction scheme for the proposed algorithm. Moreover, we prove that the
sequence obtained by the proposed algorithm converges to the optimal solution of the
W-SCSR optimization problem without any explicit assumptions on the measurement
matrix. Simulation results show that the proposed IW-SCSR can achieve better per-
formance than AMP- and EP-based algorithms for overloaded MIMO signal detection
with around tens of antennas. For sparse discrete-valued vector, IW-SCSR outperforms
the ℓ1 optimization, which uses only the sparsity of the unknown vector. The proposed
IW-SCSR also achieves good performance for channel equalization in the single car-
rier block transmission using cyclic prefix, where the measurement matrix becomes a
block circulant matrix. These results suggest that the proposed IW-SCSR has wider
range of applicability than some existing message passing-based methods, especially for
communications applications.

The remainder of this chapter is organized as follows. We present the proposed SCSR
optimization and IW-SCSR in Section 3.2. In Section 3.3, we show some simulation
results to demonstrate the validity of the proposed approach. Section 3.4 gives some
conclusions.

3.2 Proposed Method
In this section, we present the SCSR optimization and the proposed algorithm based
on ADMM. We also propose IW-SCSR and discuss the convergence of the proposed
algorithm for the W-SCSR optimization.

3.2.1 SCSR Optimization

A straightforward approach to reconstruct the discrete-valued vector x̃ in (1.2) is the
ML method in (1.32) under the additive Gaussian noise. The problem (1.32) is a
combinatorial optimization problem and hence the required computational complexity
can be prohibitive when the problem size (N,M) is large. We thus require a low-
complexity method for the large-scale discrete-valued vector reconstruction.

We extend the SOAV optimization [60] in (1.36), which reconstructs the discrete-
valued vector in the real-valued domain, to the reconstruction of the complex discrete-
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valued vector. The proposed SCSR optimization is given by

minimize
s∈CN

{
L∑
ℓ=1

qℓg̃ℓ (s − cℓ1) + λ
88ỹ − Ãs

882
2

}
, (3.1)

where λ and qℓ ≥ 0 (ℓ = 1, . . . , L) are the parameters. The function g̃ℓ : CN → R
is a sparse regularizer and thus the first term

∑L
ℓ=1 qℓg̃ℓ (s − cℓ1) can be considered as

a regularizer for x ∈ CN , which uses the fact that x − cℓ1 has some zero elements.
When g̃1(·), . . . , g̃L(·) are all convex, the SCSR optimization can be regarded as a convex
relaxation of the ML method in (1.32).

The SCSR optimization (3.1) is an optimization problem in the complex-valued
domain CN . As described in Section 1.1, the conventional SOAV optimization in the
real-valued domain might be inappropriate for the complex discrete-valued vectors in
general. On the other hand, the SCSR optimization problem can directly consider the
reconstruction in the complex-valued domain.

3.2.2 Choice of Sparse Regularizers
In this paper, we consider ℓ1 regularization-based two convex sparse regularizers h(1)⋆ (·)
and h(1)⋆⋆(·) given by

h(1)⋆ (u) = ∥u∥1 (3.2)

=

N∑
n=1

√
Re{un}2 + Im{un}2, (3.3)

h(1)⋆⋆ (u) = ∥Re{u}∥1 + ∥Im{u}∥1 (3.4)

=

N∑
n=1

(|Re{un}| + |Im{un}|) (3.5)

as the candidates of g̃ℓ(·). The first regularizer h(1)⋆ (·) is based on the modulus for complex
numbers, whereas h(1)⋆⋆(·) handles the real part and the imaginary part separately. When
the real part and the imaginary part are independent on C, the SCSR optimization with
h(1)⋆⋆(·) is equivalent to the corresponding SOAV optimization in the real-valued domain
for (1.3).

We need to choose the regularizers h(1)⋆ (·) and h(1)⋆⋆(·) appropriately for C. For
example, in Fig. 3.1, we show the contour plot of

∑L
ℓ=1 qℓg̃ℓ (s − cℓ) in the SCSR op-

timization (3.1) for (c1, c2, c3, c4) = (1 + j,−1 + j,−1 − j, 1 − j) and (q1, q2, q3, q4) =
(0.25, 0.25, 0.25, 0.25). Figs. 3.1(a) and 3.1(b) show the contours for g̃ℓ(·) = h(1)⋆ (·) and
g̃ℓ(·) = h(1)⋆⋆(·) (ℓ = 1, . . . , 4), respectively. We can see that the contours are quite different.
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Figure 3.1: Contour plot of the function
∑4
ℓ=1 qℓg̃ℓ (s − cℓ): (c1, c2, c3, c4) = (1 + j,−1 +

j,−1 − j, 1 − j) and (q1, q2, q3, q4) = (0.25, 0.25, 0.25, 0.25). The crosses indicate cℓ.

Figure 3.2: Contour plot of the function
∑5
ℓ=1 qℓg̃ℓ (s − cℓ): (c1, c2, c3, c4, c5) = (0, 1 +

j,−1 + j,−1 − j, 1 − j) and (q1, q2, q3, q4, q5) = (0.8, 0.05, 0.05, 0.05, 0.05). The crosses
indicate cℓ.

The function
∑4
ℓ=1 qℓg̃ℓ (s − cℓ) has the minimum value only at s = 0 when g̃ℓ(·) = h(1)⋆ (·),

whereas it has the minimum value on {s | Re{s} ∈ [−1, 1] and Im{s} ∈ [−1, 1]} when
g̃ℓ(·) = h(1)⋆⋆(·). From the perspective of using the discreteness of x ∈ CN , the function∑4
ℓ=1 qℓg̃ℓ (s − cℓ) should have the minimum value at least onC = {1 + j,−1 + j,−1 − j, 1 − j}

and hence h(1)⋆⋆(·) is preferable in this case. As another example, we also show the
contour for (c1, c2, c3, c4, c5) = (0, 1 + j,−1 + j,−1 − j, 1 − j) and (q1, q2, q3, q4, q5) =
(0.8, 0.05, 0.05, 0.05, 0.05) in Fig. 3.2. The regularizers are selected as g1(·) = h(1)⋆ (·)
and g̃ℓ(·) = h(1)⋆⋆(·) (ℓ = 2, . . . , 5) in Fig. 3.2(a), and g̃ℓ(·) = h(1)⋆⋆(·) (ℓ = 1, . . . , 5) in
Fig. 3.2(b). When we use the regularizer in Fig. 3.2(b), either the real part or the
imaginary part of s can be zero because the regularizer treats them independently. This
property is not suitable for C = {0, 1 + j,−1 + j,−1 − j, 1 − j}, where the real part be-
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comes zero only when the imaginary part is zero. We thus should use the regularization
with g1(·) = h(1)⋆ (·) and g̃ℓ(·) = h(1)⋆⋆(·) (ℓ = 2, . . . , 5) in Fig. 3.2(a) for discrete-valued
vectors in {0, 1 + j,−1 + j,−1 − j, 1 − j}N .

3.2.3 Proposed Algorithm for SCSR Optimization
We propose an algorithm for the SCSR optimization (3.1) on the basis of ADMM. The
optimization problem (3.1) can be rewritten with new variables z1, . . . , zL ∈ CN as

minimize
s,z1,...,zL∈CN

{
L∑
ℓ=1

qℓg̃ℓ (zℓ − cℓ1) + λ
88ỹ − Ãs

882
2

}

subject to s = zℓ (ℓ = 1, . . . , L) . (3.6)

The problem (3.6) is further rewritten as the standard form of ADMM, i.e.,

minimize
s∈CN , z∈CLN

{ f (s) + g (z)}

subject to Φs = z, (3.7)

where z =
[
zT

1 · · · zT
L
]T ∈ CLN , f (s) = λ

88ỹ − Ãs
882

2, g (z) = ∑L
ℓ=1 qℓg̃ℓ (zℓ − cℓ1),

and Φ = [IN · · · IN ]T ∈ RLN×N .
We derive the update equations of the proposed algorithm for the optimization

problem (3.7). The augmented Lagrangian function for (3.7) is given by

Lρ(s, z, θ) = f (s) + g(z) + 2Re{θH(Φs − z)} + ρ∥Φs − z∥2
2, (3.8)

where θ ∈ CLN and ρ > 0. The update equations of ADMM are given by

st+1 = arg min
s∈CN

Lρ(s, zt, θt), (3.9)

zt+1 = arg min
z∈CLN

Lρ(st+1, z, θt), (3.10)

θt+1 = θt + ρ(Φst+1 − zt+1), (3.11)

where t is the iteration index. From the identity 2Re{θHu}+ρ∥u∥2
2 = ρ∥u+w∥2

2−ρ∥w∥2
2

(u ∈ CLN and w = θ/ρ), we have

st+1 = arg min
s∈CN

{
f (s) + ρ

88Φs − zt +wt882
2

}
, (3.12)

zt+1 = arg min
z∈CLN

{
g (z) + ρ

88Φst+1 − z +wt882
2

}
, (3.13)

wt+1 = wt +Φst+1 − zt+1, (3.14)
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where wt = θt/ρ ∈ CLN .
The update of st in (3.12) can be written as

st+1 = arg min
s∈CN

{
λ
88ỹ − Ãs

882
2 + ρ

88Φs − zt +wt882
2

}
. (3.15)

The Wirtinger derivative [72] of the objective function in (3.15) is given by

∂

∂sH

{
λ
88ỹ − Ãs

882
2 + ρ

88Φs − zt +wt882
2

}

=
(
ρLIN + λÃ

HÃ
)
s −

(
ρ

L∑
ℓ=1

(
zt
ℓ −wt

ℓ

)
+ λÃHỹ

)
, (3.16)

wherewt
ℓ ∈ CN (ℓ = 1, . . . , L) are subvectors ofwt defined aswt = [(wt

1)T · · · (wt
L)T]T.

We can thus rewrite (3.12) as

st+1 =
(
ρLIN + λÃ

HÃ
)−1

(
ρ

L∑
ℓ=1

(
zt
ℓ −wt

ℓ

)
+ λÃHỹ

)
. (3.17)

The update of zt in (3.13) can be written with the proximity operator of 1
2ρg(·) as

zt+1 = prox 1
2ρ g

(
Φst+1 +wt

)
. (3.18)

Let ḡℓ (zℓ) ! g̃ℓ (zℓ − cℓ1) and u =
[
uT

1 · · · uT
L
]T ∈ CLN (uℓ ∈ CN ). The proximity

operator of 1
2ρg(·) can be written as

prox 1
2ρ g

(u) =

⎡⎢⎢⎢⎢⎢⎢⎣

prox q1
2ρ ḡ1

(u1)
...

prox qL
2ρ ḡL

(uL)

⎤⎥⎥⎥⎥⎥⎥⎦
(3.19)

=

⎡⎢⎢⎢⎢⎢⎢⎣

c11 + prox q1
2ρ g1

(u1 − c11)
...

cL1 + prox qL
2ρ gL

(uL − cL1)

⎤⎥⎥⎥⎥⎥⎥⎦
(3.20)

because the function g(·) is separable as g (z) = ∑L
ℓ=1 qℓḡℓ (zℓ). From (3.19) to (3.20),

we have used ḡℓ (zℓ) = g̃ℓ (zℓ − cℓ1) and the property of proximity operator for transla-
tion [61].

We thus need to calculate the proximity operator about h(1)⋆ (·) and h(1)⋆⋆(·) in (3.3)
and (3.5), respectively, which are candidates of g̃ℓ(·). From the result in [71], the
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proximity operator of γh(1)⋆ (·) (γ > 0) is given by

[
prox

γh(1)⋆
(u)

]
n
=

⎧⎪⎪⎨
⎪⎪⎩
(|[u]n | − γ)

[u]n
|[u]n |

(|[u]n | ≥ γ)

0 (|[u]n | < γ)
, (3.21)

where u ∈ CN . We can transform the proximity operator of γh(1)⋆⋆(·) as

prox
γh(1)⋆⋆

(u)

= arg min
s∈CN

{
γh(1)⋆⋆ (s) +

1
2 ∥s − u∥2

2

}
(3.22)

= arg min
s=sR+ jsI∈CN

(sR,sI∈RN)

{(
γ ∥sR∥1 +

1
2 ∥sR − uR∥2

2

)
+

(
γ ∥sI∥1 +

1
2 ∥sI − uI∥2

2

)}
,

(3.23)

where uR ! Re{u} ∈ RN and uI ! Im{u} ∈ RN are the real and the imaginary parts
of u ∈ CN , respectively. The minimization with respect to s ∈ CN in (3.23) can be
divided into the minimization with respect to sR ∈ RN and sI ∈ RN . We can thus write
prox

γh(1)⋆⋆
(u) with the proximity operator of the ℓ1 norm in the real-valued domain as

[
prox

γh(1)⋆⋆
(u)

]
n

=
[
proxγ∥·∥1

(uR)
]

n
+ j ·

[
proxγ∥·∥1

(uI)
]

n
(3.24)

= sign ([uR]n)max (|[uR]n | − γ, 0) + j · sign ([uI]n)max (|[uI]n | − γ, 0) , (3.25)

where [uR]n and [uI]n are the nth element of uR and uI, respectively. By using (3.21)
or (3.25), we can compute the proximity operator of 1

2ρg(·) in (3.20).
We summarize the proposed algorithm for the SCSR optimization (3.7) in Algo-

rithm 3.1. The order of the computational complexity is O
(
N3) because it is dominated

by the inverse matrix
(
ρLIN + λÃHÃ

)−1. It should be noted that the computation is
required only once in the algorithm. Once we obtain the inverse matrix, the update
equations of the proposed algorithm can be performed with O(N2). Note that the pro-
posed algorithm does not require the proximity operator of

∑L
ℓ=1 qℓg̃ℓ (s − cℓ1), which

depends on the selection of g̃ℓ(·). We can implement the proposed algorithm only with
prox qℓ

2ρ g̃ℓ
(·) given by prox

γh(1)⋆
(·) in (3.21) or prox

γh(1)⋆⋆
(·) in (3.25).

3.2.4 IW-SCSR
The SOAV optimization has been extended to W-SOAV optimization to use the prior
information about the unknown vector in Chapter 2. In Chapter 2, an iterative approach
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Algorithm 3.1 Proposed Algorithm for SCSR Optimization (3.7)
Input: ỹ ∈ CM, Ã ∈ CM×N

Output: x̂ ∈ CN

1: Fix ρ > 0, z0 ∈ CLN , and w0 ∈ CLN

2: for t = 0 to Titr − 1 do
3: st+1 =

(
ρLIN + λÃHÃ

)−1 (
ρ
∑L
ℓ=1

(
zt
ℓ −wt

ℓ

)
+ λÃHỹ

)
4: zt+1

ℓ = cℓ1 + prox qℓ
2ρ g̃ℓ

(
st+1 +wt

ℓ − cℓ1
)

(ℓ = 1, . . . , L)
5: wt+1

ℓ = wt
ℓ + s

t+1 − zt+1
ℓ (ℓ = 1, . . . , L)

6: end for
7: x̂ = sTitr

named IW-SOAV has also been proposed to obtain better performance. The IW-SOAV
iterates the W-SOAV optimization with updating parameters in the objective function.

Assuming that the sparse regularizer g̃ℓ(·) is element-wise as h(1)⋆ (·) or h(1)⋆⋆(·), we
here extend the SCSR optimization problem (3.1) to the W-SCSR optimization given by

minimize
s∈CN

{
L∑
ℓ=1

N∑
n=1

qn,ℓg̃ℓ (sn − cℓ) + λ
88ỹ − Ãs

882
2

}
, (3.26)

which is equivalent to

minimize
s,z1,...,zL∈CN

{
L∑
ℓ=1

N∑
n=1

qn,ℓg̃ℓ
(
zn,ℓ − cℓ

)
+ λ

88ỹ − Ãs
882

2

}

subject to s = zℓ (ℓ = 1, . . . , L) . (3.27)

Here, qn,ℓ is the parameter and zn,ℓ is the nth element of zℓ (n = 1, . . . , N and ℓ =
1, . . . , L). Note that we can use different parameters qn,ℓ for each element sn of s, whereas
a common parameter qℓ is used for all sn in (3.1). The optimization problem (3.27) can
be further rewritten as

minimize
s∈CN , z∈CLN

{ f (s) + gw (z)}

subject to Φs = z, (3.28)

where gw (z) = ∑L
ℓ=1

∑N
n=1 qn,ℓg̃ℓ

(
zn,ℓ − cℓ

)
. The optimization algorithm for (3.28) can

be obtained by replacing prox 1
2ρ g

(·) in (3.20) with prox 1
2ρ gw

(·). By using the same
approach as in (3.20), prox 1

2ρ gw
(u) is given by

[
prox 1

2ρ gw
(u)

]
(ℓ−1)N+n

= cℓ + prox qn,ℓ
2ρ g̃ℓ

(
un,ℓ − cℓ

)
, (3.29)
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Algorithm 3.2 IW-SCSR
Input: ỹ ∈ CM, Ã ∈ CM×N

Output: x̂ ∈ CN

1: Initialize qn,ℓ (n = 1, . . . , N and ℓ = 1, . . . , L).
2: for k = 1 to Kitr do
3: Fix βr > 0, ρ > 0, z0 ∈ CLN , and w0 ∈ CLN

4: λ =

∑L
ℓ′=1 pℓ′

∑L
ℓ=1

∑N
n=1 qn,ℓg̃ℓ(cℓ′ − cℓ)

βrMσ2
v

5: for t = 0 to Titr − 1 do
6: st+1 =

(
ρLIN + λÃHÃ

)−1 (
ρ
∑L
ℓ=1

(
zt
ℓ −wt

ℓ

)
+ λÃHỹ

)
7: zt+1

n,ℓ = cℓ + prox qn,ℓ
2ρ g̃ℓ

(
st+1

n + wt
n,ℓ − cℓ

)
(n = 1, . . . , N and ℓ = 1, . . . , L)

8: wt+1
ℓ = wt

ℓ + s
t+1 − zt+1

ℓ (ℓ = 1, . . . , L)
9: end for

10: dn,ℓ =
!!!sTitr

n − cℓ
!!! (n = 1, . . . , N and ℓ = 1, . . . , L)

11: qn,ℓ =
d−1
n,ℓ∑L

ℓ′=1 d−1
n,ℓ′

(n = 1, . . . , N and ℓ = 1, . . . , L)
12: end for
13: x̂ = sTitr

where un,ℓ denotes the nth element ofuℓ (ℓ = 1, . . . , L and n = 1, . . . , N). The coefficient
qn,ℓ/2ρ of g̃ℓ(·) depends not only on ℓ but also on n in (3.29) unlike prox qℓ

2ρ g̃ℓ
(·) in (3.20).

We propose an iterative approach called IW-SCSR in Algorithm 3.2, where we
iteratively calculate the solution of the W-SCSR optimization (3.28) with the update of
the parameter qn,ℓ. In such an iterative approach, the parameter qn,ℓ can be updated by
using the estimate at the previous iteration x̂pre =

[
x̂pre

1 · · · x̂pre
N

]T. In this paper, we
propose a parameter update given by

qn,ℓ =
d−1

n,ℓ∑L
ℓ′=1 d−1

n,ℓ′
, (3.30)

where dn,ℓ =
!!x̂pre

n − cℓ
!! is the distance between x̂pre

n and cℓ. The denominator of (3.30)
has a role for the normalization of qn,ℓ, i.e.,

∑L
ℓ=1 qn,ℓ = 1 (n = 1, . . . , N). If dn,ℓ is small,

then the corresponding qn,ℓ becomes large and the estimate of xn will be close to cℓ.

3.2.5 Selection of Parameter λ
The performance of the W-SCSR optimization (3.27), (3.28) depends on the selection
of the parameter λ, which controls the balance between f (s) and g̃ (z) = g̃ (Φs). The
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value of f (s) for the true vector x̃ is given by f (x̃) = λ
88ỹ − Ãx̃

882
2 = λ ∥ṽ∥

2
2 and hence

the optimal value of λ depends on the noise variance σ2
v in general. We thus need to

choose a good value of λ depending on the noise variance. To tackle this problem, we
propose an adaptive parameter selection method taking the noise variance into account.
Specifically, we determine λ so that the ratio E [g̃ (Φx̃)] /E [ f (x̃)] becomes a constant
βr (> 0), i.e.,

E [g̃ (Φx̃)]
E [ f (x̃)] = βr, (3.31)

where E [·] represents the expectation with respect to the distributions of x̃ and ṽ. Note
that we use the expectation E [ f (x̃)] and E [g̃ (Φx̃)] instead of f (x̃) and g̃ (Φx̃) because
the true vector x̃ and the noise vector ṽ are unknown. Since we can calculate the left
side of (3.31) as

E [g̃ (Φx̃)]
E [ f (x̃)] =

∑L
ℓ′=1 pℓ′

∑L
ℓ=1

∑N
n=1 qn,ℓg̃ℓ(cℓ′ − cℓ)

λMσ2
v

, (3.32)

the proposed λ is given by

λ =

∑L
ℓ′=1 pℓ′

∑L
ℓ=1

∑N
n=1 qn,ℓg̃ℓ(cℓ′ − cℓ)

βrMσ2
v

. (3.33)

Once we fix the value of βr, the proposed λ in (3.33) adaptively changes in accordance
with the noise variance σ2

v . The proposed λ becomes large when the noise variance σ2
v

is small, and vice versa.

3.2.6 Computational Complexity Reduction
The order of the computational complexity of IW-SCSR is dominated by the inverse
matrix

(
ρLIN + λÃHÃ

)−1, which requires the complexity of O(N3). If we update
the parameter λ at each outer iteration k, we need to compute Kitr inverse matrices
as a whole. However, the calculation of these inverse matrices can be eliminated by
computing the singular value decomposition (SVD) of Ã before executing the algorithm.
In the underdetermined case with M < N , the SVD of A is given byA = UΞV H, where
Ξ =

[
diag(ξ1, . . . , ξM) 0M×(N−M)

]
∈ RM×N is a rectangular diagonal matrix with the

singular values ξ1, . . . , ξM of A. U ∈ CM×M and V ∈ CN×N are unitary matrices
composed of the left and right singular vectors, respectively. With the SVD of Ã, we
can rewrite the inverse matrix as(

ρLIN + λÃ
HÃ

)−1

= V diag
(

1
ρL + λξ2

1
, . . . ,

1
ρL + λξ2

M
,

1
ρL
, . . . ,

1
ρL

)
V H. (3.34)
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Once we obtain the SVD of Ã, we do not need to directly compute the inverse matrix(
ρLIN + λÃHÃ

)−1 at each outer iteration t even if the parameter λ is updated in the
algorithm. It should be noted that the order of the overall computational complexity of
IW-SCSR is still O(MN min(M, N)) because we require the SVD of the measurement
matrix Ã.

When the measurement matrix Ã has some special structure, we can compute the
inverse matrix more efficiently. As an example, we consider the channel equalization in
Section 1.2. Taking advantage of the block circulant structure of Ã in (1.14), we can
efficiently compute the inverse matrix

(
ρLIN + λÃHÃ

)−1. The matrix Ã in (1.14) can
be decomposed as

Ã =
(
DH ⊗ INr

)
B

(
D ⊗ INt

)
, (3.35)

whereD ∈ CQb×Qb denotes the normalized DFT matrix. The matrixB is block diagonal
given by

B =

⎡⎢⎢⎢⎢⎢⎣

B1 0
. . .

0 BQb

⎤⎥⎥⎥⎥⎥⎦
∈ CNrQb×NtQb, (3.36)

where

Bq =

Lp−1∑
i=0
Γ(i)ωi(q−1) ∈ CNr×Nt (3.37)

and ω = e2π j/Qb (q = 1, . . . ,Qb). From (3.35), the inverse matrix in IW-SCSR can be
rewritten as(

ρLIN + λÃ
HÃ

)−1

=
(
ρLIN + λ

(
DH ⊗ INt

)
BHB

(
D ⊗ INt

) )−1
(3.38)

=
(
DH ⊗ INt

) (
ρLIN + λB

HB
)−1 (

D ⊗ INt

)
(3.39)

=
(
DH ⊗ INt

) ⎡⎢⎢⎢⎢⎢⎣

R−1
1 0
. . .

0 R−1
Qb

⎤⎥⎥⎥⎥⎥⎦
(
D ⊗ INt

)
, (3.40)

where Rq = ρLINt + λB
H
q Bq ∈ CNt×Nt . The size of the inverse matrices is reduced to

Nt×Nt in (3.40) and the required computational complexity becomes O(N3
t Qb), which is

significantly smaller than the original direct calculation with O(N3) = O(N3
t Q3

b). Note
that we can compute the inverse matrix R−1

q in the same way as (3.34) with the SVD of
Bq. The property in (3.35) is also used in [18] to propose an equalization method in the
frequency domain.
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3.2.7 Convergence Property
Here, we investigate the convergence of the proposed algorithm for the W-SCSR op-
timization problem (3.28). By extending the result for ADMM in the real-valued do-
main [70], residual convergence, objective convergence, and dual variable convergence
have been proved for ADMM in the complex-valued domain [71]. However, the conver-
gence of

{
st} to the optimizer of the problem has not been discussed in [71]. We thus

prove the following theorem about the convergence of
{
st} for (3.28).

Theorem 3.2.1. Assume that the Lagrangian function L̃ (s, z, θ) ! f (s) + g̃ (z) +
2Re{θH (Φs − z)} for (3.28) has a saddle point, i.e., there is (s∗, z∗, θ∗) such that

L̃ (s∗, z∗, θ) ≤ L̃ (s∗, z∗, θ∗) ≤ L̃ (s, z, θ∗) (3.41)

holds for any s, z, θ. Also, assume that the sparse regularizer g̃ℓ(·) is h(1)⋆ (·) or h(1)⋆⋆(·).
Then, the sequence

{
st} (t = 1, 2, . . . ) obtained by the proposed algorithm for (3.28)

converges to the optimal solution of (3.28).
Proof. The functions f (s) and g̃ (z) are proper, closed, and convex. From Theorem 16
in [71], we have the residual convergence Φst − zt → 0 and the objective convergence
f
(
st ) + g̃

(
zt ) → f (s∗) + g̃ (z∗) (t → ∞). Note that s∗ and z∗ are the optimal values

of s and z in (3.28), respectively, and satisfy Φs∗ = z∗.
In order to see the convergence of

{
st} to one of the optimizers of (3.28), we evaluate!!g̃ (

Φst ) − g̃
(
zt ) !!, which is upper bounded as

!!g̃ (
Φst ) − g̃

(
zt ) !! ≤ L∑

ℓ=1

N∑
n=1

qn,ℓ

!!!g̃ℓ (
st

n − cℓ
)
− g̃ℓ

(
zt

n,ℓ − cℓ
)!!! . (3.42)

When g̃ℓ(·) = h(1)⋆ (·), we have!!!g̃ℓ (
st

n − cℓ
)
− g̃ℓ

(
zt

n,ℓ − cℓ
)!!!

=
!!!!!st

n − cℓ
!! − !!!zt

n,ℓ − cℓ
!!!!!! (3.43)

≤
!!!st

n − zt
n,ℓ

!!! (3.44)

→ 0 (t → ∞) (3.45)

because st − zt
ℓ → 0. When g̃ℓ(·) = h(1)⋆⋆(·), we can also obtain!!!g̃ℓ (

st
n − cℓ

)
− g̃ℓ

(
zt

n,ℓ − cℓ
)!!!

=
!!! (!!Re{st

n − cℓ}
!! + !!Im{st

n − cℓ}
!!) − (!!!Re{zt

n,ℓ − cℓ}
!!! + !!!Im{zt

n,ℓ − cℓ}
!!!) !!! (3.46)

≤
!!!Re{st

n − zt
n,ℓ}

!!! + !!!Im{st
n − zt

n,ℓ}
!!! (3.47)

→ 0 (t → ∞) . (3.48)
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From (3.42), (3.45), and (3.48), we have
!!g̃ (
Φst ) − g̃

(
zt ) !! → 0 (k → ∞) and!! f (

st ) + g̃ (
Φst ) − ( f (s∗) + g̃ (Φs∗))

!!
≤

!! f (
st ) + g̃ (

zt ) − ( f (s∗) + g̃ (z∗))
!! + !!g̃ (

Φst ) − g̃
(
zt ) !! (3.49)

→ 0 (t → ∞) . (3.50)

Hence, f
(
st ) + g̃ (

Φst ) converges to the optimal value of the objective function. Since
the objective function is continuous, we conclude that

{
st} converges to one of optimizers

of (3.28). !

3.3 Simulation Results
In this section, we evaluate the performance of the proposed method by computer
simulations. We consider MIMO signal detection and channel equalization described in
Section 1.2. In both cases, the additive noise vector ṽ is assumed to be circular complex
Gaussian distributed with mean 0 and covariance matrix σ2

vIM .

3.3.1 MIMO Signal Detection
We first compare the performance of the proposed SCSR optimization and the SOAV
optimization in the real-valued domain. Figure 3.3 shows the average of SER defined
as ∥Q (x̂) − x̃∥0 /N for QPSK with C = {1 + j,−1 + j,−1 − j, 1 − j}, where x̂ is the
estimate of x̃ and Q (x̂) = arg min s∈CN ∥s − x̂∥1. The result is obtained by averaging
the SER over 1, 000 independent realizations of the measurement matrix. The problem
size is (N,M) = (50, 40). We assume i.i.d. flat Rayleigh fading channels and hence the
measurement matrix Ã = Ãi.i.d. ∈ CM×N is composed of i.i.d. circular complex Gaussian
variables with zero mean and unit variance. The SNR is defined as E

[
∥x̃∥2

2
]
/σ2

v . In
the figure, we denote the LMMSE method by ‘LMMSE,’ the SOAV optimization in the
real-valued domain by ‘SOAV,’ the SCSR optimization with g̃ℓ(·) = h(1)⋆ (·) (ℓ = 1, . . . , 4)
by ‘SCSR (h(1)⋆ (·)),’ and the SCSR optimization with g̃ℓ(·) = h(1)⋆⋆(·) (ℓ = 1, . . . , 4) by
‘SCSR (h(1)⋆⋆(·)).’ The parameter of the SCSR optimization is fixed as qn,ℓ = 1/4. The
parameter λ is determined from (3.33) with βr = 15, which achieves good performance
in the simulation. The parameter ρ in the proposed algorithm is ρ = 0.1 and the number
of inner iterations is Titr = 100. From the figure, we can see that the SCSR optimization
with h(1)⋆⋆(·), which treats the real and imaginary part separately, can achieve the same
performance as the SOAV optimization in the real-valued domain.

We then investigate the convergence of the proposed algorithm for the SCSR opti-
mization. In Fig. 3.4, we show the convergence curve of the algorithm for ρ = 0.01, 0.1,
and 0.3. The problem size is (N,M) = (50, 40) and C = {1 + j,−1 + j,−1 − j, 1 − j}.
The SNR is 17.5 dB. The regularizer is g̃ℓ(·) = h(1)⋆⋆(·) (ℓ = 1, . . . , 4) and we fix qn,ℓ = 1/4
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Figure 3.3: SER in i.i.d. MIMO channels (QPSK, (N,M) = (50, 40), βr = 15)

Figure 3.4: SER versus the number of iterations in i.i.d. MIMO channels (QPSK,
(N,M) = (50, 40), SNR = 17.5 dB, βr = 15)

and βr = 15. We can see that these three curves converge to almost the same SER if the
number of iterations is large enough. Since ρ = 0.1 achieves the fastest convergence of
the three and 100 iterations are enough to convergent in the figure, we use these values
hereafter.

In Figs. 3.5 and 3.6, we compare the SER performance of the proposed IW-SCSR
and some conventional methods for QPSK with (N,M) = (50, 40) in i.i.d. and correlated
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Figure 3.5: SER in i.i.d. MIMO channels (QPSK, (N,M) = (50, 40), βr = 15)

Figure 3.6: SER in correlated MIMO channels (QPSK, (N,M) = (50, 40), βr = 15)

MIMO channels, respectively. The result is obtained by averaging the SER over more
than 3, 000 independent realizations of the measurement matrix hereafter. In the figures,
‘IO-LAMA’ represents individually-optimal large MIMO AMP (IO-LAMA) [42], which
is MIMO signal detection method based on AMP. ‘EP-based algorithm’ denotes the EP-
based method [53] for discrete-valued vector reconstruction. ‘IW-SCSR’ indicates the
proposed method in Algorithm 3.2 and Kitr denotes the number of iterations of the
outer loop. For IW-SCSR, the parameter is initialized as qn,ℓ = 1/4, the regularizer
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Figure 3.7: SER in correlated MIMO channels (8PSK, (N,M) = (50, 48), βr = 15)

is g̃ℓ(·) = h(1)⋆⋆(·) (ℓ = 1, . . . , 4), and the parameter is determined from (3.33) with
βr = 15. From Fig. 3.5, we can see that the performance of IW-SCSR is improved
by the weight update and IW-SCSR with Kitr = 5 outperforms the other methods
in high SNR region. The message passing-based methods, i.e., IO-LAMA and the
EP-based algorithm, assume large-scale problems and hence they have severe error
floors in this case. Fig. 3.6 shows the SER performance in correlated MIMO channels
Ã = Ψ

1
2
r Ãi.i.d.Ψ

1
2
t described in Section 1.2. We set dr/λw = dt/λw = 1/2 in the

simulation. In Fig. 3.6, the SER performance of IO-LAMA severely degrades because
the algorithm assumes i.i.d. measurement matrix. On the other hand, the assumption is
not required for convex optimization-based IW-SCSR and hence the performance does
not severely degrade compared to IO-LAMA. Although the EP-based algorithm also
works well in the low SNR region, it has the error floor in the high SNR region. We
can see that the proposed IW-SCSR can achieve good performance even in correlated
channels.

Figure 3.7 shows the SER performance in correlated channels for 8PSK with C ={
ej(ℓ−1)π/4 | ℓ = 1, . . . , 8

}
. Note that the SOAV optimization in the real-valued domain is

not appropriate in this case because the real part and the imaginary part are dependent on
C. The problem size is (N,M) = (50, 48). The parameter qn,ℓ of IW-SCSR is initialized
as qn,ℓ = 1/8. We use (3.33) with βr = 15 for the parameter λ in IW-SCSR. In Fig. 3.7,
the EP-based algorithm outperforms the other methods in the low SNR region. In the
high SNR region, however, the EP-based algorithm has the error floor and IW-SCSR
with Kitr = 5 can achieve better performance than the EP-based algorithm. In Figs. 3.6
and 3.7, we observe that the proposed IW-SCSR for uniformly distributed unknown
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Figure 3.8: SER versus M in correlated MIMO channels (8PSK, N = 50, SNR = 30
dB, βr = 15)

vectors is more effective when the cardinality of C is smaller.
In Fig. 3.8, we show the SER performance versus M in correlated MIMO channels

with 8PSK, N = 50, and SNR = 30 dB. The parameters of IW-SCSR are the same
as those in Fig. 3.7. From the figure, we can see that the performance of IW-SCSR
improves as the number of measurements M increases. When M is greater than 44,
IW-SCSR with h(1)⋆ (·) achieves better performance than the EP-based algorithm.

Figures. 3.9 and 3.10 show the SER performance forC = {0, 1+ j,−1+ j,−1− j, 1− j}.
The SOAV optimization in the real-valued domain is not suitable in this case as well as

in the case of Fig. 3.7. The problem size is (N,M) = (50, 30) in Fig. 3.9 and (N,M) =
(200, 120) in Fig. 3.10, and the measurement matrix is correlated as in Figs. 3.6 and 3.7.
In the simulation, we assume that x̃ is a discrete-valued sparse vector with ∥x̃∥0 = 0.2N
and the nonzero elements are uniformly distributed on {1 + j,−1 + j,−1 − j, 1 − j}.
The parameter of IW-SCSR is initialized as qn,1 = 0.8 and qn,2 = · · · = qn,5 = 0.05.
The sparse regularizer g̃ℓ(·) is set as g1(·) = h(1)⋆ (·) and g̃ℓ(·) = h(1)⋆⋆(·) (ℓ = 2, . . . , 5) as
in Fig. 3.2(a). We denote the ℓ1 optimization by ‘ℓ1,’ which uses only the sparsity and
solves

minimize
s∈CN

∥s∥1 + λ
88ỹ − Ãs

882
2 . (3.51)

The parameter λ in (3.51) is fixed as the same value in IW-SCSR with Kitr = 1, which is
determined from (3.33) with βr = 10. In the figures, IW-SCSR with Kitr = 1 can achieve
a bit better performance than the ℓ1 optimization. We also observe that the performance
of IW-SCSR is further improved when Kitr = 5. Although the EP-based algorithm has
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Figure 3.9: SER in correlated MIMO channels (C = {0, 1 + j,−1 + j,−1 − j, 1 − j},
(N,M) = (50, 30), ∥x̃∥0 = 10, βr = 10)

Figure 3.10: SER in correlated MIMO channels (C = {0, 1 + j,−1 + j,−1 − j, 1 − j},
(N,M) = (200, 120), ∥x̃∥0 = 40, βr = 10)
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Figure 3.11: SER versus the sparsity ε in correlated MIMO channels (C =

{0, 1 + j,−1 + j,−1 − j, 1 − j}, (N,M) = (50, 40), SNR = 17.5 dB, βr = 10)

the error floor in Fig. 3.9, it achieves the best performance for the larger-scale problem
in Fig. 3.10.

We then show the SER performance versus the sparsity of the unknown discrete-
valued vector in Fig. 3.11. We assume C = {0, 1 + j,−1 + j,−1 − j, 1 − j} and represent
the sparsity of the unknown vector by ε ! 1 − ∥x̃∥0 /N . The nonzero elements are
assumed to be uniformly distributed on {1 + j,−1 + j,−1 − j, 1 − j} as in Figs. 3.9
and 3.10. The problem size is (N,M) = (50, 40), the SNR is 17.5 dB, and we define
βr = 10. The parameter qn,ℓ is initialized as qn,1 = ε and qn,2 = · · · = qn,5 = (1−ε)/4. In
Fig. 3.11, the ℓ1 optimization has a poor performance for non-sparse vector with small
ε, whereas IW-SCSR and the EP-based algorithm have better performance because
they use the discreteness of the unknown vector x. We can also see that the proposed
IW-SCSR outperforms the EP-based algorithm for ε ≥ 0.5.

3.3.2 Channel Equalization
In Figs. 3.12 and 3.13, we evaluate the SER performance for channel equalization
described in Section 1.2. Unlike MIMO signal detection in flat fading channel, the
measurement matrix becomes a block circulant matrix in this problem. In Figs. 3.12
and 3.13, we assume QPSK with C = {1 + j,−1 + j,−1 − j, 1 − j}, Lp = 5, and Qb =
32. We also assume (Nt, Nr) = (4, 3) in Fig. 3.12 and (Nt, Nr) = (8, 6) in Fig. 3.13.
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Figure 3.12: SER in channel equalization (QPSK, (N,M) = (128, 96), (Nt, Nr) = (4, 3),
Lp = 5, Qb = 32, βr = 15)

Figure 3.13: SER in channel equalization (QPSK, (N,M) = (256, 192), (Nt, Nr) = (8, 6),
Lp = 5, Qb = 32, βr = 15)

The impulse response
{
γ(i)nr,nt

}
(i = 0, . . . , Lp) is composed of i.i.d. circular complex

Gaussian variables with zero mean and unit variance. The SNR is here defined as
(LpNt/N)E

[
∥x̃∥2

2
]
/σ2

v . For IW-SCSR, we use the same regularizers and parameters as
those in Figs. 3.5 and 3.6. In Figs. 3.12 and 3.13, we observe that the performance of
IW-SCSR is better than that of the conventional methods. Unlike in the case of MIMO
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Figure 3.14: SER in channel equalization (8PSK, (N,M) = (64, 64), (Nt, Nr) = (2, 2),
Lp = 5, Qb = 32, βr = 15)

signal detection in Fig. 3.10, the performance of the EP-based algorithm is worse than
IW-SCSR even in the larger-scale problem with (N,M) = (256, 192). This is possibly
because the measurement matrix in channel equalization has the specific structure as
in (1.14).

Figure 3.14 shows the performance for 8PSK with C =
{
ej(ℓ−1)π/4 | ℓ = 1, . . . , 8

}
,

(Nt, Nr) = (2, 2), Lp = 5, and Qb = 32. The regularizers and parameters of IW-SCSR
is same as those in Fig. 3.7. In the high SNR region, IW-SCSR outperforms the other
methods. From Figs. 3.12 and 3.14, we can see that the proposed IW-SCSR achieves
good performance in channel equalization as well as in MIMO signal detection.

3.4 Conclusion
In this chapter, we have proposed the SCSR optimization for the reconstruction of
complex discrete-valued vector by extending the SOAV optimization in the real-valued
domain. The SCSR optimization uses the discreteness of the unknown vector in the
complex-valued domain by including the sum of sparse regularizers in the objective
function. As the sparse regularizer for complex-valued vectors, we have presented two
regularizers h(1)⋆ (·) and h(1)⋆⋆(·), which should be appropriately chosen in accordance with
the distribution of the unknown vector. We have also proposed the iterative approach
named IW-SCSR, which iterates the W-SCSR optimization with updating the parameters
in the objective function. We have proved that the sequence obtained by the proposed
algorithm converges to the optimal solution of the W-SCSR optimization problem.
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Simulation results show that the proposed IW-SCSR works well for the underdetermined
discrete-valued vector reconstruction, whereas the conventional message passing-based
algorithms have error floors in the high SNR region. The proposed method can also
reconstruct the discrete-valued vector even for the correlated measurement matrix, which
appears in MIMO signal detection in correlated channels. For discrete-valued sparse
vectors, IW-SCSR have better performance than the ℓ1 optimization, which utilizes only
the sparsity of the unknown vector. We have also shown that the proposed IW-SCSR
can achieve good performance for channel equalization in frequency-selective fading
channels.
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Discrete-Valued Vector Reconstruction
by Nonconvex Optimization with Sum
of Sparse Regularizers

4.1 Introduction
As introduced in Section 1.3, low-complexity approaches for the discrete-valued vector
reconstruction have been proposed on the basis of convex optimization [54,57,60]. These
optimization problems also take advantage of the discrete nature of the unknown vector
as a prior knowledge. However, since all these methods consider convex optimization
problems obtained by convex relaxation techniques, the discreteness has not been taken
full advantage of.

In this chapter, to obtain better reconstruction performance without any explicit
assumption on the measurement matrix, we propose a possibly nonconvex optimization
problem named SSR optimization. By using the discreteness of the unknown vector and
the idea of compressed sensing [40, 41], we utilize the sum of some sparse regularizers
as a regularizer for the discrete-valued vector in the proposed SSR optimization. The
SSR optimization can be considered as a generalization of the SOAV optimization, and
is equivalent to the SOAV optimization when we use the convex ℓ1 norm as the sparse
regularizer. Other than the ℓ1 norm, we can also use nonconvex regularizers such as
the ℓp norm (0 < p < 1) [73–76], the ℓ0 norm, and the ℓ1 − ℓ2 difference [77, 78]. For
the SSR optimization, we propose an algorithm on the basis of ADMM [61, 68–70],
which is known to achieve fast convergence in general, regardless of the convexity of
the cost function. However, the ADMM-based algorithm involves the computation of
an inverse matrix, which may require prohibitive computational complexity in very
large-scale problems. We thus also propose a PDS [79, 80]-based algorithm, which
can avoid the computation of the inverse matrix. Moreover, we extend the proposed
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approach to the reconstruction of discrete-valued vectors in the complex-valued domain,
which commonly emerges in the filed of communications. Simulation results show that
the proposed algorithms with nonconvex regularizers can achieve better performance
than that with the convex ℓ1 regularizer, which corresponds to the conventional SOAV
optimization.

The rest of this chapter is organized as follows. We propose the SSR optimization
problem in Section 4.2 and derive two optimization algorithms in Section 4.3. In
Section 4.4, we extend the proposed approach to the reconstruction of complex discrete-
valued vector. Section 4.5 gives some simulation results. Finally, we present some
conclusions in Section 4.6.

4.2 Proposed SSR Optimization Problem
For the reconstruction of x from y and A in (1.1), we propose the SSR optimization
problem

minimize
s∈RN

{
L∑
ℓ=1

qℓgℓ (s − rℓ1) +
λ

2 ∥y −As∥2
2

}
, (4.1)

where λ (> 0) is the parameter and
∑L
ℓ=1 qℓ = 1 (qℓ ≥ 0). The function gℓ(·) is a sparse

regularizer and we assume that its proximity operator can be computed efficiently. The
employment of sparse regularizers in the SSR optimization is based on the fact that
the vector x − rℓ1 has some zero elements, which has been utilized in the SOAV
optimization [60]. We can thus consider

∑L
ℓ=1 qℓgℓ (s − rℓ1) in the objective function as

a regularizer for discrete-valued vectors in RN .
We show some examples of the sparse regularizer gℓ(·) and the corresponding prox-

imity operators, which are required for the proposed algorithms in Section 4.3. Note
that we consider both convex and nonconvex regularizers in this paper, and we can use
any sparse regularizer as far as its proximity operator can be computed. Although the
proximity operator is usually defined for proper closed convex functions, the minimizer
in the definition of the proximity operator can also be obtained formally for the following
nonconvex regularizers. We thus use the term ‘proximity operator’ for both convex and
nonconvex functions henceforth.

Example 4.2.1 (ℓ1 Norm). For the ℓ1 norm-based convex regularizer h(1)(u) = ∥u∥1 =∑N
n=1 |un | (u = [u1 · · · uN ]T ∈ RN ), the proximity operator proxγh(1) (·) is given by

[
proxγh(1) (u)

]
n = sign(un)max (|un | − γ, 0) . (4.2)

The SSR optimization with the ℓ1 regularizer is equivalent to the SOAV optimization [60].
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Figure 4.1: (h(s + 1) + h(s − 1))/2

Example 4.2.2 (ℓ0 Norm). The nonconvex regularizer h(0)(u) = ∥u∥0 based on the ℓ0
norm, i.e., the number of nonzero elements of u, has the proximity operator given by

[
proxγh(0) (u)

]
n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{0}
(
|un | <

√
2γ

)
{0, un}

(
|un | =

√
2γ

)
{un}

(
|un | >

√
2γ

) . (4.3)

Example 4.2.3 (ℓp Norm (0 < p < 1)). We also consider the nonconvex regularizer
h(p)(u) = ∥u∥p

p =
∑N

n=1 |un |p with the ℓp norm (0 < p < 1). In Fig. 4.1, we compare the
regularizer (h(p)(s + 1) + h(p)(s − 1))/2 in the binary case with R = {−1, 1} for different
values of p. From the figure, we can see that the sums of nonconvex regularizers with
h(1/2)(·) and h(2/3)(·) can promote the discrete nature more effectively compared to the
convex one with h(1)(·), because the sums of nonconvex regularizers do not have their
minimum values for s ∈ (−1, 1) but only for s = ±1. The proximity operator of the
ℓp norm-based regularizers has been discussed in [74–76]. For arbitrary p ∈ (0, 1),
we can numerically compute the proximity operator, while the proximity operator for
p = 1/2, 2/3 can be written explicitly. Figure 4.2 shows the proximity operators of
γh(1)(·), γh(2/3)(·), γh(1/2)(·), and γh(0)(·) (γ = 0.5). As we can see from the figure, the
proximity operators of the nonconvex regularizers are not continuous.

Example 4.2.4 (ℓ1−ℓ2 Difference). The nonconvex regularizer h(1−2)(u) = ∥u∥1−∥u∥2
based on the ℓ1 − ℓ2 difference has been proposed for compressed sensing [77,78]. The
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Figure 4.2: proxγh(u) (γ = 0.5)

proximity operator of h(1−2)(·) can be computed with Lemma 1 in [78] or Proposition
7.1 in [81].

4.3 Proximal Splitting Algorithms for SSR Optimization
In this section, we propose two algorithms for the SSR optimization. The first one is
based on ADMM and the second one is based on PDS.

4.3.1 ADMM-Based Algorithm
We can rewrite the optimization problem of the SSR optimization (4.1) with new vari-
ables z1, . . . , zL ∈ RN as

minimize
s,z1,...,zL∈RN

{
L∑
ℓ=1

qℓgℓ (zℓ − rℓ1) +
λ

2 ∥y −As∥2
2

}

subject to s = zℓ (ℓ = 1, . . . , L), (4.4)

which is further rewritten as

minimize
s∈RN ,z∈RLN

{ f (s) + g(z)} subject to Φs = z. (4.5)
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Here, z =
[
zT

1 · · · zT
L
]T ∈ RLN , Φ = [IN · · · IN ]T, f (s) = λ

2 ∥y −As∥2
2, and g(z) =∑L

ℓ=1 qℓgℓ (zℓ − rℓ1).
We derive the proposed algorithm based on ADMM. The update equations of ADMM

for (4.5) are given by

st+1 = arg min
s∈CN

{
f (s) + ρ2

88Φs − zt +wt882
2

}
, (4.6)

zt+1 = arg min
z∈CLN

{
g (z) + ρ2

88Φst+1 − z +wt882
2

}
, (4.7)

wt+1 = wt +Φst+1 − zt+1, (4.8)

where t is the iteration index, ρ (> 0) is a parameter, and wt ∈ RLN . From the equation
∂

∂sT

{
f (s) + ρ2

88Φs − zt +wt
882

2

}
= 0, the update of st in (4.6) can be written as

st+1 =
(
ρLIN + λATA

)−1
(
ρ
∑L
ℓ=1

(
zt
ℓ −wt

ℓ

)
+ λATy

)
, where zt

ℓ ∈ RN and wt
ℓ ∈ RN

(ℓ = 1, . . . , L) are subvectors of zt =
[
zt

1
T · · · zt

L
T
]T

and wt =
[
wt

1
T · · · wt

L
T
]T

,
respectively. The update of zt in (4.7) can be written as

zt+1 = prox 1
ρ g

(
Φst+1 +wt

)
(4.9)

=

⎡⎢⎢⎢⎢⎢⎢⎣

r11 + prox q1
ρ g1

(
st+1 +wt

1 − r11
)

...
rL1 + prox qL

ρ gL

(
st+1 +wt

L − rL1
)
⎤⎥⎥⎥⎥⎥⎥⎦
, (4.10)

because the function g(·) is separable as g (z) = ∑L
ℓ=1 qℓgℓ (zℓ − rℓ1). We also use the

property of proximity operator for translation [61] in (4.10).
We summarize the ADMM-based algorithm for the SSR optimization (4.1) as

ADMM-SSR in Algorithm 4.1, where Q(·) denotes the element-wise quantization
operator which maps the input to its nearest value in R. One of the advantages of
ADMM-SSR is that we do not require the proximity operator of the whole regularizer∑L
ℓ=1 qℓgℓ (s − rℓ1) and we can implement ADMM-SSR as long as the proximity opera-

tor of gℓ(·) can be calculated as in Examples 4.2.1–4.2.4. The computational complexity
is dominated by the inverse matrix

(
ρLIN + λATA

)−1, which usually requires O(N3)
complexity [82, Ch. 11].

4.3.2 PDS-Based Algorithm
As we have mentioned in the previous subsection, ADMM-SSR requires the computation
of the inverse matrix, which may require prohibitive computational complexity for very
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Algorithm 4.1 ADMM-SSR: ADMM-Based Algorithm for (4.1)
Input: y ∈ RM,A ∈ RM×N

Output: x̂ ∈ RN

1: Fix ρ > 0, z0 ∈ RN L , and w0 ∈ RN L

2: for t = 0 to Titr − 1 do
3: st+1 =

(
ρLIN + λATA

)−1
(
ρ
∑L
ℓ=1

(
zt
ℓ −wt

ℓ

)
+ λATy

)
4: zt+1

ℓ = rℓ1 + prox qℓ
ρ gℓ

(
st+1 +wt

ℓ − rℓ1
)

(ℓ = 1, . . . , L)
5: wt+1

ℓ = wt
ℓ + s

t+1 − zt+1
ℓ (ℓ = 1, . . . , L)

6: end for
7: x̂ = Q(sTitr)

large-scale problems. To overcome this problem, we also propose an algorithm based
on primal-dual splitting [80], which can avoid the computation of the inverse matrix.

We first rewrite the SSR optimization problem (4.1) as

minimize
s∈RN

{ f (s) + g(Φs)} , (4.11)

where f (·) and g(·) are defined below (4.5). PDS is applicable to the problem of the
form (4.11) and is given by

st+1 = st − ρ1
(
∇ f

(
st ) +ΦTwt

)
, (4.12)

zt+1 = wt + ρ2Φ
(
2st+1 − st

)
, (4.13)

wt+1 = proxρ2g∗

(
zt+1

)
, (4.14)

where ρ1, ρ2 (> 0) are the parameters, ∇ f (·) denotes the gradient of the function f (·),
and g∗(·) represents the convex conjugate of g(·). The update of st in (4.12) can be
written as

st+1 = st − ρ1

(
λAT (

Ast − y
)
+

L∑
ℓ=1

wt
ℓ

)
. (4.15)

because ∇ f (s) = λAT (As − y). The proximity operator proxρ2g∗(·) in (4.14) is ex-
pressed as proxρ2g∗(u) = u− ρ2proxg/ρ2 (u/ρ2). Hence, from (4.10) and (4.14), we can
update wt+1

ℓ as

wt+1
ℓ = zt+1

ℓ − ρ2

(
rℓ1 + prox qℓ

ρ2
gℓ

(
zt+1
ℓ

ρ2
− rℓ1

))
. (4.16)
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Algorithm 4.2 PDS-SSR: PDS-Based Algorithm for (4.1)
Input: y ∈ RM,A ∈ RM×N

Output: x̂ ∈ RN

1: Fix ρ1 > 0, ρ2 > 0, s0 ∈ RN , and w0 ∈ RN L

2: for t = 0 to Titr − 1 do
3: st+1 = st − ρ1

(
λAT (

Ast − y
)
+

∑L
ℓ=1 w

t
ℓ

)
4: zt+1

ℓ = wt
ℓ + ρ2

(
2st+1 − st ) (ℓ = 1, . . . , L)

5: wt+1
ℓ = zt+1

ℓ − ρ2

(
rℓ1 + prox qℓ

ρ2
gℓ

(
zt+1
ℓ
ρ2

− rℓ1
))

(ℓ = 1, . . . , L)
6: end for
7: x̂ = Q(sTitr)

We summarize the PDS-based algorithm named PDS-SSR in Algorithm 4.2. As
is the case with ADMM-SSR, PDS-SSR also requires only the proximity operator of
gℓ(·). Since PDS-SSR computes only the addition of vectors and the multiplication of a
matrix and a vector, it requires O(MN) complexity [82, Ch. 6], which is lower than that
of ADMM-SSR.

4.3.3 Convergence of Proposed Algorithms

The convergence of the proposed algorithms depends on the convexity of the sparse
regularizer gℓ(·). When g1(·), . . . , gL(·) are all convex, the objective function of the SSR
optimization is also convex. In this case, the sequence

{
st} obtained by ADMM-SSR

converges to the optimizer of the problem from the general result for ADMM [69]. From
Theorem 3.1 in [80], the sequence

{
st} obtained by PDS-SSR also converges if the

parameters ρ1 and ρ2 satisfy 1/ρ1 − ρ2L ≥ λ
88ATA

88
2 /2. When gℓ(·) is nonconvex,

however, the convergence to the global optimizer is not guaranteed in general. Although
some convergence property have been proved under several assumptions [83–87], their
results cannot be directly used for the proposed algorithms.

4.4 Extension to Complex-Valued Case

In this section, we extend the proposed method to the reconstruction of the complex-
valued vector x̃ ∈ CN ⊂ CN as described in Section 1.1.2.

For the reconstruction of the complex discrete-valued vector, we extend the SSR
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optimization (4.1) to the problem

minimize
s∈CN

{
L∑
ℓ=1

qℓg̃ℓ (s − cℓ1) + λ
88ỹ − Ãs

882
2

}
, (4.17)

which is referred to as the SCSR optimization hereafter. The function g̃ℓ(·) is a sparse
regularizer for the complex-valued sparse vector. The SCSR optimization with the ℓ1
regularizer has been proposed in Chapter 3, whereas we consider nonconvex regularizers
as well in this paper. As discussed in Chapter 3, the optimization in the complex-valued
domain is more suitable than that in the real-valued domain when the real part and the
imaginary part of the unknown vector are not independent.

For the SCSR optimization (4.17), we newly consider two kinds of sparse regularizers
as the candidates of g̃ℓ(·). For example, as the regularizers based on the ℓp norm,
we define h̃(p)⋆ (ũ) = ∑N

n=1 |ũn |p and h̃(p)⋆⋆(ũ) =
∑N

n=1 (|Re{ũn}|p + |Im{ũn}|p), where
ũ = [ũ1 · · · ũN ]T ∈ CN . The first regularizer h̃(p)⋆ (·) is based on the modulus for
complex numbers, whereas the second one h̃(p)⋆⋆(·) treats the real part and the imaginary
part independently. We also define h(1)⋆ (·), h(0)⋆ (·), h(1−2)

⋆ (·), h(1)⋆⋆(·), h(0)⋆⋆(·), and h(1−2)
⋆⋆ (·)

in the same manner. The proximity operator of γ h̃⋆(·) (h̃⋆(·) = h̃(1)⋆ (·), h̃(0)⋆ (·), h̃(p)⋆ (·),
h̃(1−2)
⋆ (·)) in the complex-valued domain can be written with that of the corresponding

regularizer γh(·) (h(·) = h(1)(·), h(0)(·), h(p)(·), h(1−2)(·), respectively) in the real-valued
domain. Note that h̃⋆(·) satisfy h̃⋆ (ũ) = h (|ũ|), where we define |ũ| = [|ũ1 | · · · |ũN |]T.
By using this property, the proximity operator of γ h̃⋆(·) can be derived as[

proxγ h̃⋆(ũ)
]

n
=

[
proxγh(|ũ|)

]
n

ũn

|ũn |
(4.18)

with a simple manipulation. The proximity operator of γ h̃⋆⋆(·) can also be written with
the corresponding proximity operator proxγh(·). Since we have h̃⋆⋆ (ũ) = h (uR)+h (uI)
from the definition, the proximity operator can be written as[

proxγ h̃⋆⋆ (ũ)
]

n
=

[
proxγh (uR)

]
n + j ·

[
proxγh (uI)

]
n , (4.19)

by using a similar approach to (3.25), where uR = Re{ũ} and uI = Im{ũ}.
Since ADMM with complex-valued variables have been discussed in [71] and Chap-

ter 3, we propose the ADMM-based algorithm for the SCSR optimization (4.17) by
using the approach in Chapter 3. The resultant algorithm is obtained by replacing R,
(·)T, rℓ, and prox qℓ

ρ gℓ
(·) in Algorithm 4.1 with C, (·)H, cℓ, and prox qℓ

2ρ g̃ℓ
(·), respectively.

4.5 Simulation Results
In this section, we evaluate the performance of the proposed algorithms. In the simula-
tion, the measurement matrix is composed of i.i.d. Gaussian variables with zero mean
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Figure 4.3: SER versus number of iterations for binary vectors ((N,M) = (200, 160),
SNR = 15 dB)

and unit variance. We also assume the zero mean additive white Gaussian noise. The
initialization is given by z0 = w0 = 0 in ADMM-SSR and s0 = 0,w0 = 0 in PDS-
SSR. Other parameters such as λ and ρ are chosen to achieve good performance in the
simulation.

Figure 4.3 shows the SER versus number of iterations for the binary vector with
(r1, r2) = (−1, 1) and (p1, p2) = (1/2, 1/2). The result is obtained by averaging the SER
over 2, 000 independent realizations of the measurement matrix. The problem size is
(N,M) = (200, 160) and the SNR is 15 dB. The parameters are set as q1 = q2 = 1/2,
λ = 0.05, ρ = 3, ρ1 = 2/

(
λ
88ATA

88
2 + 4

)
, and ρ2 = 1/2. In Fig. 4.3, we denote the

sparse regularizers based on the ℓ1 norm, the ℓ2/3 norm, the ℓ1/2 norm, the ℓ0 norm, and
the ℓ1 − ℓ2 difference by ‘ℓ1,’ ‘ℓ2/3,’ ‘ℓ1/2,’ ‘ℓ0,’ and ‘ℓ1 − ℓ2,’ respectively. We can see
that ADMM-SSR and PDS-SSR converge to the same SER when we use the convex ℓ1
regularizer. The proposed algorithms with nonconvex regularizers, especially with the
ℓp and ℓ0 norms, can achieve much better SER performance.

In Fig. 4.4, we show the SER of ADMM-SSR versus SNR for the binary vector
reconstruction with (N,M) = (200, 150). For comparison, we also show the performance
of the LMMSE and the box relaxation method [54] as ‘LMMSE’ and ‘Box,’ respectively.
The parameters in ADMM-SSR are set as λ = 0.05, ρ = 3, and Kitr = 300. The
nonconvex regularizers can outperform the convex ℓ1 regularizer and the box relaxation
method.

Figure 4.5 shows the SER versus SNR for the reconstruction of complex discrete-
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Figure 4.4: SER versus SNR for binary vectors((N,M) = (200, 150))

Figure 4.5: SER versus SNR for complex-valued vectors ((N,M) = (200, 160))

valued vectors with (N,M) = (200, 160). The distribution of the unknown complex vari-
able is given by (c1, c2, c3, c4, c5) = (0, 1+ j,−1+ j,−1− j, 1− j) and (p1, p2, p3, p4, p5) =
(0.6, 0.1, 0.1, 0.1, 0.1), where pℓ = Pr(xn = cℓ) (ℓ = 1, . . . , 5). We use the sparse reg-
ularizers given by g̃1(·) = h̃⋆(·) and g̃ℓ(·) = h̃⋆⋆(·) (ℓ = 2, . . . , 5) because the real part
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becomes zero only when the imaginary part is zero in this case. The parameters of the
proposed algorithm are set as qℓ = pℓ, λ = 0.05, ρ = 3, and Kitr = 300. From the figure,
we can see that the proposed approach with nonconvex regularizer can achieve good
performance even for the reconstruction of the complex discrete-valued vector.

4.6 Conclusion
In this chapter, we have proposed possibly nonconvex optimization problems for the
discrete-valued vector reconstruction in both real- and complex-valued cases. The
proposed method utilizes the sum of sparse regularizers as the regularizer for the discrete-
valued vector. Simulation results show that the proposed algorithms with nonconvex
regularizers can achieve better performance than that with the convex ℓ1 regularizer.
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Chapter 5

Asymptotic Performance Analysis of
Discrete-Valued Vector Reconstruction
with Sum of ℓ1 Regularizers

5.1 Introduction
For large-scale discrete-valued vector reconstruction, some convex optimization-based
methods have been proposed to obtain good performance with reasonable computational
complexity. Box relaxation method [54, 55] considers the ML method under the hyper-
cube including all possible discrete-valued vectors. Regularization-based method and
transform-based method [57] apply the idea of compressed sensing [40, 41] to discrete-
valued vector reconstruction. SOAV optimization [60] takes a similar approach and uses
a weighted sum of ℓ1 regularizers as a regularizer for the discrete-valued vector. One of
advantages of the SOAV optimization over the other convex optimization-based methods
is that it can take the probability distribution of unknown variables into consideration.
The SOAV optimization has been applied to various practical problems [14,26,29,88,89],
whereas only a few theoretical aspects of the performance are known in the literature.

In this chapter, we analyze the asymptotic performance of discrete-valued vector
reconstruction based on the SOAV optimization. To make the analysis simpler, we
firstly modify the conventional SOAV optimization into the Box-SOAV optimization by
using the boundedness of the unknown vector. We then investigate the performance of
Box-SOAV by using CGMT [90,91], which has been used for the performance analyses
of several convex optimization problems. We provide the asymptotic SER of Box-
SOAV in the large system limit with a fixed measurement ratio, which is defined as
the ratio of the number of unknown variables to the number of measurements. The
asymptotic SER is characterized by the probability distribution of the unknown vector,
the measurement ratio, the parameters of Box-SOAV, and the optimizer of a scalar
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optimization problem. The result enables us to predict the performance of Box-SOAV
in the large-scale discrete-valued vector reconstruction. We also derive the asymptotic
distribution of the estimate obtained by the Box-SOAV optimization. By using the
asymptotic distribution, we can optimize the quantizer for the hard decision of the
unknown discrete-valued vector in terms of the asymptotic SER. Moreover, we propose
a procedure to choose the parameter value of the Box-SOAV optimization to minimize
the asymptotic SER. Simulation results show that the empirical SER performance of the
Box-SOAV optimization and the conventional SOAV optimization agrees well with the
theoretical result for Box-SOAV in large-scale problems. From the results, we can also
see that the proposed asymptotically optimal parameters and quantizer can achieve better
performance compared to the case with some fixed parameter and a naive quantizer.

The rest of this chapter is organized as follows. In Section 5.2, we describe the
CGMT. We then provide the main analytical results for the Box-SOAV optimization in
Section 5.3. The proof for the main theorem is given in Section 5.4. Section 5.5 gives
some simulation results, which demonstrate the validity of the theoretical analysis for
Box-SOAV. Finally, Section 5.6 presents some conclusions.

5.2 CGMT
CGMT is a theorem that associates the primary optimization (PO) problem with the
auxiliary optimization (AO) problem given by

(PO): Φ(G) = min
w∈Sw

max
u∈Su

{
uTGw + ρ(w,u)

}
, (5.1)

(AO): φ(g,h) = min
w∈Sw

max
u∈Su

{
∥w∥2 g

Tu − ∥u∥2 h
Tw + ρ(w,u)

}
, (5.2)

respectively, where G ∈ RM×N , g ∈ RM , h ∈ RN , Sw ⊂ RN , Su ⊂ RM , and ρ(·, ·) :
RN × RM → R. We assume that Sw and Su are closed compact sets, and ρ(·, ·) is a
continuous convex-concave function on Sw × Su. The elements of G, g, and h are
i.i.d. standard Gaussian random variables. The following theorem relates the optimizer
ŵΦ(G) of (PO) with the optimal value of (AO) in the limit of M, N → ∞ with a fixed
ratio ∆ = M/N , which we simply denote N → ∞ in this paper.

Theorem 5.2.1 (CGMT [56]). Let S be an open set in Sw and Sc = Sw \ S. Also, let
φSc(g,h) be the optimal value of (AO) with the constraint w ∈ Sc. If there are constants
η > 0 and φ̄ satisfying (i) φ(g,h) ≤ φ̄ + η and (ii) φSc(g,h) ≥ φ̄ + 2η with probability
approaching 1, then we have lim

N→∞
Pr (ŵΦ(G) ∈ S) = 1.

CGMT has been applied to the performance analyses of various optimization prob-
lems. The asymptotic normalized squared error (NSE) and mean squared error (MSE)
have been analyzed for various regularized estimators [90–94]. The asymptotic SER
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of the box relaxation method has been derived for BPSK signals in [95], and the re-
sult has been generalized for pulse amplitude modulation (PAM) in [56]. CGMT has
also been used for the analysis of nonlinear measurement model [96]. A similar re-
sult has been obtained for MIMO signal detection with low resolution analog-to-digital
converter (ADC), where the receiver has the quantized measurements [97]. Moreover,
CGMT can be applied to the case when the measurement matrix is not perfectly known
and includes Gaussian distributed errors [98]. In [99], the technique has been used to
derive the asymptotically optimal power allocation between the pilots and the data in
MIMO BPSK transmission. In [100], CGMT-based analysis has been applied to an
optimization problem in the complex-valued domain under some assumptions, while
above approaches consider optimization problems in the real-valued domain.

5.3 Main Results
In this section, we provide the main results of this paper. In Section 5.3.1, we modify the
conventional SOAV optimization into the Box-SOAV optimization to make the analysis
simpler. In Section 5.3.2, we derive the asymptotic SER of the estimate obtained by
the Box-SOAV optimization. We then characterize the distribution of the estimate in
Section 5.3.3. By using the results, we also derive the asymptotically optimal quantizer
for the estimate in Section 5.3.4. Finally, we propose a parameter selection method for
the Box-SOAV optimization in Section 5.3.5.

5.3.1 Box-SOAV Optimization
To make the analysis simpler, we newly consider the Box-SOAV optimization given by

x̂ = arg min
s∈[r1,rL]N

{
1
2 ∥y −As∥2

2 +
L∑
ℓ=1

qℓ ∥s − rℓ1∥1

}
(5.3)

= arg min
s∈RN

{
1
2 ∥y −As∥2

2 +
L∑
ℓ=1

qℓ ∥s − rℓ1∥1 + I(s)
}
, (5.4)

where the function I(·) denotes the indicator function given by

I(s) =
{

0 (s ∈ [r1, rL]N )
∞ (s # [r1, rL]N )

. (5.5)

This modification is reasonable because x ∈ [r1, rL]N and it does not change the value
of the objective function for s ∈ [r1, rL]N . Let f (s) = ∑L

ℓ=1 qℓ ∥s − rℓ1∥1 +I(s), where
f (·) is an element-wise function and we use the same notation f (·) for the corresponding
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scalar function hereafter. By modifying the result in [26], the proximity operator
proxγ f (z) (γ ≥ 0) can be obtained as

proxγ f (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 (z < r1 + γQ2)
...

...

z − γQk (rk−1 + γQk ≤ z < rk + γQk)
rk (rk + γQk ≤ z < rk + γQk+1)
...

...

rL (rL + γQL ≤ z)

, (5.6)

where Qk =
(∑k−1

ℓ=1 qℓ
)
−

(∑L
ℓ′=k qℓ′

)
(k = 2, . . . , L). By using some proximal splitting

algorithm [61] with the proximity operator in (5.6), we can obtain a sequence converging
to the solution of the Box-SOAV optimization (5.4).

5.3.2 Asymptotic SER of Box-SOAV
To provide the asymptotic SER of Box-SOAV, we firstly show the following theorem.

Theorem 5.3.1. The measurement matrix A ∈ RM×N is assumed to be composed of
i.i.d. Gaussian random variables with zero mean and variance 1/N . The distribution of
the noise vector v ∈ RM is also assumed to be Gaussian with mean 0 and covariance
matrix σ2

vI . We also assume that the optimization problem maxβ>0 minα>0 F(α, β) has
a unique optimizer (α∗, β∗), where

F(α, β) = αβ
√
∆

2 +
σ2

v β
√
∆

2α − 1
2 β

2 − αβ

2
√
∆
+
β
√
∆

α
E

[
env α

β
√
∆

f

(
X +

α√
∆

H
)]
.

(5.7)

Here, X is the random variable with the same distribution as the unknown variables, i.e.,
Pr(X = rℓ) = pℓ. H is the standard Gaussian random variable independent of X . We
further define

L = {ψ(·, ·) : [r1 − rL, rL − r1] × R → R |
ψ(·, rℓ) is Lipschitz continuous for any rℓ ∈ R}. (5.8)

For any function ψ(·, ·) ∈ L, we have

plim
N→∞

1
N

N∑
n=1

ψ (x̂n − xn, xn) = E
[
ψ

(
X̂ − X, X

)]
, (5.9)
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where x̂n denotes the nth element of x̂ in (5.4) and

X̂ = prox α∗
β∗

√
∆

f

(
X +

α∗
√
∆

H
)
. (5.10)

Proof. See Section 5.4. !

The SER of Box-SOAV is given by 1
N ∥Q(x̂) − x∥0, where the element-wise quan-

tizer Q(·) maps each element of the vector to a value in R. The asymptotic SER of
Box-SOAV is given by the following corollary of Theorem 5.3.1.

Corollary 5.3.1. Under the assumptions in Theorem 5.3.1, the asymptotic SER of Box-
SOAV is given by

plim
N→∞

1
N

∥Q(x̂) − x∥0 = 1 −
L∑
ℓ=1

pℓ Pr
(
Q(X̂) = rℓ | X = rℓ

)
. (5.11)

Proof. See Appendix 5.A. !

The function F(α, β) in (5.7) and the asymptotic SER in (5.11) can be calculated
by using the PDF pG(z) = 1√

2π
exp(−z2/2) and the CDF PG(z) =

∫ z
−∞ pG(z′)dz′ of the

standard Gaussian distribution. For example, when we use the quantizer QNV(·) that
maps the input to the nearest value in R, i.e.,

QNV(x̂) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1
(
x̂ <

r1 + r2
2

)
...

...

rℓ
(rℓ−1 + rℓ

2 ≤ x̂ <
rℓ + rℓ+1

2

)
...

...

rL

(rL−1 + rL

2 ≤ x̂
)

, (5.12)

the asymptotic SER in (5.11) can be written as

SERNV = 1 −
L∑
ℓ=1

pℓ

{
PG

(√
∆

2α∗ (rℓ+1 − rℓ) +
Qℓ+1
β∗

)
− PG

(√
∆

2α∗ (rℓ−1 − rℓ) +
Qℓ

β∗

)}
,

(5.13)

where we define Q1 = −∞, QL+1 = ∞, r0 = −∞, and rL+1 = ∞ for convenience.
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5.3.3 Asymptotic Distribution of Estimates by Box-SOAV
Corollary 5.3.1 implies that the asymptotic distribution of the estimate x̂n is characterized
by the random variable X̂ in (5.10). In fact, we can obtain the following convergence
result from Theorem 5.3.1.

Theorem 5.3.2. Let µx̂ be the empirical distribution corresponding to the CDF given by
Px̂(x̂) = 1

N
∑N

n=1 I(x̂n ≤ x̂), where I(x̂n ≤ x̂) = 1 if x̂n ≤ x̂ and otherwise I(x̂n ≤ x̂) = 0.
Moreover, let µX̂ be the distribution of the random variable X̂ . The empirical distribution
µx̂ converges weakly in probability to µX̂ , i.e.,

∫
g dµx̂

P−→
∫
g dµX̂ holds as N → ∞ for

every continuous compactly supported function g(·) : [r1, rL] → R.

Proof. See Appendix 5.B. !

From Theorem 5.3.2, we can evaluate the asymptotic distribution of the estimate
obtained by Box-SOAV. The CDF of X̂ is given by

PX̂ (x̂) = Pr
(
X̂ ≤ x̂

)
(5.14)

=

L∑
ℓ=1

pℓ Pr
(
X̂ ≤ x̂ | X = rℓ

)
(5.15)

=

L∑
ℓ=1

pℓ Pr
(
prox α∗

β∗
√
∆

f

(
rℓ +

α∗
√
∆

H
)
≤ x̂

)
(5.16)

=

L∑
ℓ=1

pℓPG

(√
∆

α∗

{
prox−1

α∗
β∗

√
∆

f
(x̂) − rℓ

})
(5.17)

for x̂ ∈ [r1, rL] \ R, where prox−1
γ f (·) : [r1, rL] \ R → R is given by

prox−1
γ f (x̂) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂ + γQ2 (r1 < x̂ < r2)
...

...

x̂ + γQℓ+1 (rℓ < x̂ < rℓ+1)
...

...

x̂ + γQL (rL−1 < x̂ < rL)

. (5.18)

The CDF in (5.17) is not continuous at x̂ ∈ R because the random variable X̂ has a
probability mass at x̂ ∈ R. In fact, the conditional probability mass at X̂ = rℓ can be
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written as

Pr
(
X̂ = rℓ | X = rk

)

= Pr
(
prox α∗

β∗
√
∆

f

(
rk +

α∗
√
∆

H
)
= rℓ

)
(5.19)

= PG

(√
∆

α∗ (rℓ − rk) +
Qℓ+1
β∗

)
− PG

(√
∆

α∗ (rℓ − rk) +
Qℓ

β∗

)
, (5.20)

whereas for x̂ # R the conditional density of X̂ on the event X = rk is given by

pX̂ |X=rk (x̂) =
√
∆

α∗ pG

(√
∆

α∗

{
prox−1

α∗
β∗

√
∆

f
(x̂) − rk

})
. (5.21)

Hence, the asymptotic density pX̂(x̂) of X̂ can be written as

pX̂(x̂) =
{∑L

k=1 pk Pr
(
X̂ = rℓ | X = rk

)
δrℓ (x̂) (x̂ = rℓ)∑L

k=1 pk pX̂ |X=rk (x̂) (x̂ # R)
, (5.22)

where δrℓ (·) denotes the Dirac measure at rℓ.
In Fig. 5.1, we show the empirical histogram of the CDF of the estimates by Box-

SOAV. In the simulation, we set N = 1000, M = 750, ∆ = 0.75, (p1, p2, p3) =
(0.2, 0.6, 0.2), (r1, r2, r3) = (−1, 0, 1), and (q1, q2, q3) = (1, 0.005, 1). The SNR defined as∑L
ℓ=1 pℓr2

ℓ /σ2
v is 20 dB. The empirical result is averaged over 20 independent realizations

of the measurement matrix A and the unknown vector x. To solve the Box-SOAV
optimization, we use the Douglas-Rachford algorithm [61, 101]. For comparison, the
figure also shows the asymptotic distribution in (5.17). We can see that the asymptotic
distribution obtained from Theorem 5.3.2 agrees well with the empirical histogram of
the CDF.

5.3.4 Asymptotically Optimal Quantizer
By using the asymptotic density in the previous subsection, we can design the quantizer
Q(·) to obtain the asymptotically optimal SER. Although QNV(·) in (5.12) is commonly
used as the quantizer, it is not optimal in terms of the asymptotic SER in (5.11) in
general. We here present the desired quantizer minimizing the asymptotic SER as the
asymptotically optimal quantizerQAO(x̂) = rℓ̂. The index ℓ̂ ∈ {1, · · · , L} can be obtained



78 Chapter 5

-1 -0.5 0 0.5 1

x̂

0

0.2

0.4

0.6

0.8

1

C
D
F

Figure 5.1: The empirical histogram of the CDF (solid line) and the asymptotic
distribution (dashed line) of the estimates by Box-SOAV (N = 1000, M = 750,
∆ = 0.75, (p1, p2, p3) = (0.2, 0.6, 0.2), (r1, r2, r3) = (−1, 0, 1), (q1, q2, q3) = (1, 0.005, 1),
SNR = 20 dB)

by MAP criterion as

ℓ̂ = arg max
k=1,...,L

Pr
(
X = rk | X̂ = rℓ

)
(5.23)

= arg max
k=1,...,L

Pr (X = rk)Pr
(
X̂ = rℓ | X = rk

)
(5.24)

= arg max
k=1,...,L

pk

{
PG

(√
∆

α∗ (rℓ − rk) +
Qℓ+1
β∗

)
− PG

(√
∆

α∗ (rℓ − rk) +
Qℓ

β∗

)}
(5.25)

when x̂ = rℓ, and

ℓ̂ = arg max
k=1,...,L

Pr
(
X = rk | X̂ = x̂

)
(5.26)

= arg max
k=1,...,L

Pr (X = rk) pX̂ |X=rk (x̂) (5.27)

= arg max
k=1,...,L

pk pG

(√
∆

α∗

{
prox−1

α∗
β∗

√
∆

f
(x̂) − rk

})
(5.28)



5.3. Main Results 79

when x̂ # R. When we use the above QAO(·) as the quantizer, the asymptotic SER
in (5.11) can be written as

SERAO = 1 −
L∑
ℓ=1

pℓ Pr
(
QAO(X̂) = rℓ | X = rℓ

)
(5.29)

= 1 −
L∑
ℓ=1

pℓ Pr
(
X̂ ∈ Q−1

AO(rℓ) | X = rℓ
)

(5.30)

= 1 −
L∑
ℓ=1

pℓµX̂ |X=rℓ

(
Q−1

AO(rℓ)
)

(5.31)

in general, where we define

Q−1
AO(rℓ) = { x̂ | QAO(x̂) = rℓ} (5.32)

and µX̂ |X=rℓ denotes the distribution of X̂ conditioned on X = rℓ, i.e., the distribution of
prox α∗

β∗
√
∆

f

(
rℓ + α∗√

∆
H

)
. Note that the CDF corresponding to µX̂ |X=rℓ is given by

PX̂ |X=rℓ (x̂) = PG

(√
∆

α∗

{
prox−1

α∗
β∗

√
∆

f
(x̂) − rℓ

})
(5.33)

as shown in (5.17). Once Q−1
AO(rℓ) is obtained, we can compute the asymptotic SER

from (5.31) and (5.33).
In practice, when we use the appropriate parameters qℓ of Box-SOAV, the resultant

asymptotically optimal quantizer is usually given by the form of

QAO(x̂) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 (x̂ < κ∗2)
...

...

rℓ (κ∗ℓ ≤ x̂ < κ∗ℓ+1)
...

...

rL (κ∗L ≤ x̂)

, (5.34)

where −∞ = κ∗1 < κ∗2 < · · · < κ∗L < κ∗L+1 = ∞ and rℓ−1 < κ∗ℓ < rℓ (ℓ = 2, . . . , L). In
this case, we have Q−1

AO(rℓ) = [κ∗ℓ, κ∗ℓ+1) and hence the asymptotic SER in (5.31) can be
written as

S̃ERAO = 1 −
L∑
ℓ=1

pℓ

{
PG

(√
∆

α∗ (κ
∗
ℓ+1 − rℓ) +

Qℓ+1
β∗

)
− PG

(√
∆

α∗ (κ
∗
ℓ − rℓ) +

Qℓ

β∗

)}

(5.35)

by using (5.18) and (5.33).
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5.3.5 Proposed Parameter Selection for Box-SOAV
The parameters qℓ (ℓ = 1, . . . , L) in the Box-SOAV optimization (5.4) affects the per-
formance of the reconstruction. From the results of the previous subsections, once
the parameters qℓ are fixed, the asymptotic SER of Box-SOAV with the asymptotically
optimal quantizer can be evaluated as follows:

1. Calculate α∗ and β∗ in Theorem 5.3.1.

2. Obtain the asymptotically optimal quantizer QAO(·) based on (5.25) and (5.28).

3. Compute the asymptotic SER in (5.11) (or (5.35) in many cases).

We thus propose the approach to determine the parameters qℓ (or Qℓ in (5.6)) by numer-
ically minimizing the resultant asymptotic SER in (5.11). In the following examples, we
compare performance of the quantizers QNV(·) and QAO(·) with the proposed parameter
selection.

Example 5.3.1 (Binary Vector). We consider the reconstruction of the binary vector
x ∈ {r1, r2}N . When the estimate x̂ of an element of x equals r1 or r2, we should just
quantize it on the basis of (5.25). For x̂ ∈ (r1, r2), the output of the asymptotically
optimal quantizer is determined from (5.28). We thus obtain the value of κ∗2 such that

p1pG

(√
∆

α∗

{
prox−1

α∗
β∗

√
∆

f

(
κ∗2

)
− r1

})
= p2pG

(√
∆

α∗

{
prox−1

α∗
β∗

√
∆

f

(
κ∗2

)
− r2

})
. (5.36)

If the solution of (5.36) lies in (r1, r2), we have

κ∗2 = prox α∗
β∗

√
∆

f

(
1
2 (r1 + r2) +

(α∗)2
∆

1
r2 − r1

log p1
p2

)
. (5.37)

In this case, the asymptotically optimal quantizer can be written as

QAO(x̂) =
{

r1 (x̂ < κ∗2)
r2 (κ∗2 ≤ x̂)

(5.38)

for x̂ ∈ (r1, r2). Figure 5.2 shows an example of the asymptotic density of the estimates
by Box-SOAV given by (5.22). In the figure, we set ∆ = 0.6, (p1, p2) = (0.3, 0.7),
(r1, r2) = (−1, 1), (q1, q2) = (0.5, 0.5), and SNR of 15 dB. We can see that a certain
probability mass is located at x̂ = ±1. The functions pk pX̂ |X=rk (x̂) (k = 1, 2) are also
plotted by the dotted lines in the figure. We can confirm that the two curves cross at
x̂ = κ∗2.
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Figure 5.2: The asymptotic density (solid line) of the estimates by Box-SOAV and the
threshold κ∗2 of the asymptotically optimal quantizer (∆ = 0.6, (p1, p2) = (0.3, 0.7),
(r1, r2) = (−1, 1), (q1, q2) = (0.5, 0.5), SNR = 15 dB)

We can obtain the asymptotically optimal parameters of the Box-SOAV optimization
from the theoretical result. For the reconstruction of x ∈ {r1, r2}N , the Box-SOAV
optimization is given by

x̂ = arg min
s∈[r1,r2]N

{
1
2 ∥y −As∥2

2 + q1 ∥s − r11∥1 + q2 ∥s − r21∥1

}
(5.39)

= arg min
s∈[r1,r2]N

{
1
2 ∥y −As∥2

2 +Q2

N∑
n=1

sn

}
(5.40)

because q1 ∥s − r11∥1 + q2 ∥s − r21∥1 = Q2
∑N

n=1 sn + (const.) for s ∈ [r1, r2]N . Hence,
the performance of Box-SOAV depends only on Q2. By numerically computing the
value of Q2 minimizing the asymptotic SER, we can obtain the optimal QAO(·) and the
corresponding asymptotic SER. For example, Fig. 5.3 shows the asymptotic SER of
QAO(·) versus Q2 when ∆ = 0.7, (r1, r2) = (0, 1), (p1, p2) = (0.8, 0.2), and SNR of 15
dB. From the figure, we can see that the asymptotic performance of Box-SOAV largely
depends on the parameter Q2. By using the optimal value Q∗

2 of Q2 minimizing the
asymptotic SER, we can obtain the asymptotically optimal values of α∗, β∗, and κ∗2
in (5.37).

We then compare the performance of quantizer QNV(·) in (5.12) and QAO(·) in (5.38).
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Figure 5.3: Asymptotic SER of QAO(·) versus Q2 (∆ = 0.7, (r1, r2) = (0, 1), (p1, p2) =
(0.8, 0.2), SNR = 15 dB)

Figure 5.4 shows the asymptotic SER of Box-SOAV with four cases: (i) QNV(·) with
Q2 = 0, (ii) QNV(·) with the optimal Q2, (iii) QAO(·) with Q2 = 0, and (iv) QAO(·) with
the proposed optimal parameter selection. In the figure, we set∆ = 0.7, (r1, r2) = (−1, 1),
and SNR of 15 dB. The figure shows that the proposed optimal parameter selection can
achieve better performance than the naive selection Q2 = 0. Moreover, the performance
of QAO(·) is better than that of QNV(·), especially when the difference between p1 and
p2 is large.

Example 5.3.2 (Discrete-Valued Sparse Vector). The discrete-valued vector x with
(p1, p2, p3) = ((1 − p0)/2, p0, (1 − p0)/2) and (r1, r2, r3) = (−r, 0, r) (r > 0) becomes
sparse when p0 is large. By a similar discussion to Example 5.3.1, the asymptotically
optimal quantizer is given by

QAO(x̂) =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−r (x̂ < κ∗2)
0 (κ∗2 ≤ x̂ < κ∗3)
r (κ∗3 ≤ x̂)

(5.41)

when −r < κ∗2 < 0, where

κ∗2 = prox α∗
β∗

√
∆

f

(
−1

2r +
(α∗)2
∆

1
r

log 1 − p0
2p0

)
, (5.42)

κ∗3 = −κ∗2 . (5.43)
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Figure 5.4: Asymptotic SER versus p1 for binary vector (∆ = 0.7, (r1, r2) = (−1, 1),
SNR = 15 dB)

For the reconstruction of x via Box-SOAV in this scenario, we can set q1 = q3 from
the symmetry of the distribution. As a result, the Box-SOAV optimization problem can
be written as

x̂ = arg min
s∈[−r,r]N

{
1
2 ∥y −As∥2

2 + q1 ∥s + r1∥1 + q2 ∥s∥1 + q1 ∥s − r1∥1

}

(5.44)

= arg min
s∈[−r,r]N

{
1
2 ∥y −As∥2

2 + q2 ∥s∥1

}
(5.45)

because q1 ∥s + r1∥1 + q1 ∥s − r1∥1 = 2q1rN = (const.) for s ∈ [−r, r]N . Hence, only
q2 is the parameter to be optimized. Note that the Box-SOAV optimization problem
results in Box-LASSO [94] in this case. Figure 5.5 shows the asymptotic SER of
Box-SOAV with QNV(·) and QAO(·). In the figure, we set (p1, p2, p3) = (0.05, 0.9, 0.05),
(r1, r2, r3) = (−1, 0, 1), and SNR of 15 dB. The parameter q2 of Box-SOAV is numerically
chosen by minimizing the asymptotic SER for each quantizer. We can observe that
the asymptotically optimal quantizer QAO(·) outperforms QNV(·) especially for large
∆ = M/N .

Remark 5.3.1. In Chapter 6, a parameter selection method has been proposed for the
SOAV optimization on the basis of the analysis of the DAMP algorithm. However, the
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Figure 5.5: Asymptotic SER versus ∆ = M/N for discrete-valued sparse vector
((p1, p2, p3) = (0.05, 0.9, 0.05), (r1, r2, r3) = (−1, 0, 1), SNR = 15 dB)

method does not necessarily minimize the SER of the SOAV optimization because it
minimizes the required number of measurements for the perfect reconstruction in the
noise-free case. Since it does not take the noise variance into consideration, it is difficult
to fairly compare the result in Chapter 6 with the theoretical result in this paper.

5.4 Proof of Theorem 5.3.1
In this section, we show the proof of Theorem 5.3.1. Although the procedure of the
proof roughly follows the analysis using CGMT in the literature (e.g., [56,91]), we need
to modify several parts for our problem.

5.4.1 (PO)
To obtain the (PO) problem for the proof, we firstly define the error vector as w ! s−x
and rewrite the Box-SOAV optimization (5.4) as

min
w∈Sw

1
N

{
1
2 ∥Aw − v∥2

2 +
L∑
ℓ=1

qℓ ∥x +w − rℓ1∥1

}
, (5.46)

where Sw =
{
z ∈ RN | r1− xn ≤ zn ≤ rL − xn (n = 1, . . . , N)

}
and the objective function

is normalized by N . Since the convex conjugate of the function ξ(z) ! 1
2 ∥z∥2

2 is given
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by

ξ∗(z∗) ! max
u∈RM

{
uTz∗ − 1

2 ∥u∥2
2

}
(5.47)

=
1
2 ∥z∗∥2

2 , (5.48)

we have

1
2 ∥Aw − v∥2

2 = max
u∈RM

{√
NuT (Aw − v) − N

2 ∥u∥2
2

}
. (5.49)

Hence, the optimization problem (5.46) is equivalent to

min
w∈Sw

max
u∈RM

1
N

{
√

NuT (Aw − v) − N
2 ∥u∥2

2 +
L∑
ℓ=1

qℓ ∥x +w − rℓ1∥1

}
. (5.50)

Let w∗ and u∗ be the optimal values of w and u, respectively. Since u∗ satisfies
u∗ = 1√

N
(Aw∗ − v) and w∗ is bounded, there exists a constant Cu such that ∥u∗∥2 ≤ Cu

with probability approaching 1. We can thus rewrite (5.50) as

min
w∈Sw

max
u∈Su

{
1
N
uT

(√
NA

)
w − 1√

N
vTu − 1

2 ∥u∥2
2 +

1
N

L∑
ℓ=1

qℓ ∥x +w − rℓ1∥1

}
,

(5.51)

where Su =
{
z ∈ RM | ∥z∥2 ≤ Cu

}
. The optimization problem (5.51) takes the form of

(PO) in (5.1).

5.4.2 (AO)
We then analyze the (AO) problem corresponding to (5.51). We can confirm that Sw and
Su are closed compact sets and the function− 1√

N
vTu−1

2 ∥u∥2
2+

1
N

∑L
ℓ=1 qℓ ∥x +w − rℓ1∥1

is convex-concave on Sw × Su. Hence, the (AO) problem corresponding to (5.51) is
given by

min
w∈Sw

max
u∈Su

{
1
N

(
∥w∥2 g

Tu − ∥u∥2 h
Tw

)
− 1√

N
vTu

− 1
2 ∥u∥2

2 +
1
N

L∑
ℓ=1

qℓ ∥x +w − rℓ1∥1

}
, (5.52)
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which can be rewritten as

min
w∈Sw

max
u∈Su

{
1√
N

( ∥w∥2√
N

gT − vT
)
u − 1

N
∥u∥2 h

Tw

− 1
2 ∥u∥2

2 +
1
N

L∑
ℓ=1

qℓ ∥x +w − rℓ1∥1

}
. (5.53)

Since both g and v are Gaussian, ∥w∥2√
N
g − v is also Gaussian distributed with mean

0 and covariance matrix
( ∥w∥2

2
N + σ2

v

)
I . We can thus rewrite

(
∥w∥2√

N
gT − vT

)
u as√

∥w∥2
2

N + σ2
vg

Tu by the slight abuse of notation, where g is the random vector with i.i.d.
standard Gaussian elements. By setting ∥u∥2 = β, the (AO) problem can be further
rewritten as

min
w∈Sw

max
0≤β≤Cu

{√
∥w∥2

2
N
+ σ2

v
β ∥g∥2√

N
− 1

N
βhTw − 1

2 β
2

+
1
N

L∑
ℓ=1

qℓ ∥x +w − rℓ1∥1

}
. (5.54)

From the identity χ = minα>0
(
α
2 +

χ2

2α

)
for χ (> 0), we have

√
∥w∥2

2
N
+ σ2

v = min
α>0

FG
H
α

2 +
∥w∥2

2
N + σ2

v
2α

IJ
K

(5.55)

and rewrite (5.54) as

max
β>0

min
α>0

{
αβ

2
∥g∥2√

N
+
σ2

v β

2α
∥g∥2√

N
− 1

2 β
2 − 1

N

N∑
n=1

αβh2
n

2

√
N

∥g∥2

+
β

α

∥g∥2√
N

min
w∈Sw

1
N

N∑
n=1

Jn(wn)
}
, (5.56)

where

Jn(wn) =
1
2

(
wn −

√
N

∥g∥2
αhn

)2

+
α

β

√
N

∥g∥2

L∑
ℓ=1

qℓ |xn + wn − rℓ | . (5.57)
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Note that the objective function becomes separable for wn in (5.56), and that the change
in the range of β does not change the optimal value. Since the optimization with respect
to w in (5.56) is given by

min
w∈Sw

1
N

N∑
n=1

Jn(wn)

= min
s∈[r1,rL]N

1
N

N∑
n=1

[
1
2

{
sn −

(
xn +

√
N

∥g∥2
αhn

)}2

+
α

β

√
N

∥g∥2

L∑
ℓ=1

qℓ |sn − rℓ |
]

(5.58)

=
1
N

N∑
n=1

envα
β

√
N

∥g ∥2
f

(
xn +

√
N

∥g∥2
αhn

)
, (5.59)

(5.56) can be rewritten as

φ∗N = max
β>0

min
α>0

FN (α, β), (5.60)

where

FN (α, β) =
αβ

2
∥g∥2√

N
+
σ2

v β

2α
∥g∥2√

N
− 1

2 β
2 − 1

N

N∑
n=1

αβh2
n

2

√
N

∥g∥2

+
β

α

∥g∥2√
N

1
N

N∑
n=1

envα
β

√
N

∥g ∥2
f

(
xn +

√
N

∥g∥2
αhn

)
. (5.61)

The optimal value of w is given by

ŵN (h,x) = proxα∗
N

β∗
N

√
N

∥g ∥2
f

(
x +

√
N

∥g∥2
α∗

Nh

)
− x, (5.62)

where α∗
N and β∗N are the optimal values of α and β corresponding to φ∗N , respectively.

5.4.3 Applying CGMT
We then consider the condition (i) of Theorem 5.2.1. As N → ∞, FN (α, β) converges
pointwise to F(α, β) defined in Theorem 5.3.1. Let φ∗ = maxβ>0 minα>0 F(α, β) and
denote the optimal values of α and β by α∗ and β∗, respectively. By a similar discussion
to the proof of [56, Lemma IV. 1], we have φ∗N

P−→ φ∗ and (α∗
N, β

∗
N )

P−→ (α∗, β∗) as N → ∞.
Hence, the optimal value of (AO) satisfies the condition (i) in CGMT for φ̄ = φ∗ and any
η > 0.

Next, we define the set S used in CGMT. We have the following lemma for the
optimizer ŵN of (AO) in (5.62).
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Lemma 5.4.1. For any function ψ(·, ·) ∈ L (given by (5.8)), we have

plim
N→∞

1
N

N∑
n=1

ψ
(
ŵN,n(hn, xn), xn

)
= E

[
ψ

(
X̂ − X, X

)]
, (5.63)

where ŵN,n(hn, xn) denotes the nth element of ŵN in (5.62).

Proof. See Appendix 5.C. !

From Lemma 5.4.1, we can define

S =
{
z ∈ RN

!!!!!
!!!!!
1
N

N∑
n=1

ψ(zn, xn) − E
[
ψ

(
X̂ − X, X

)] !!!!! < ε
}

(5.64)

and obtain ŵN (h,x) ∈ S with probability approaching 1 for any ε (> 0).
Finally, we consider the condition (ii) of CGMT. From the strong convexity in w of

the objective function in (5.54), we can show φSc ≥ φ∗N + η̃ with probability approaching
1 for a constant η̃ (> 0), where φSc denotes the optimal value of (AO) under the restriction
of w ∈ Sc. Hence, by setting φ̄ = φ∗, η = η̃/3 in Theorem 5.2.1, we can use CGMT for
S, i.e., Lemma 5.4.1 holds not only for the optimizer ŵN of (AO) but also for that of
(PO). We thus conclude the proof.

5.5 Simulation Results
In this section, we compare the theoretical results by Corollary 5.3.1 and the empirical
performance obtained by computer simulations. In the simulations, the measurement
matrixA ∈ RM×N and the noise vectorv ∈ RM satisfy the assumptions in Theorem 5.3.1.

We firstly compare the empirical performance of the Box-SOAV optimization with
the theoretical result. Figure 5.6 shows the SER performance for the binary vector with
(r1, r2) = (0, 1) for measurement ratios of ∆ = 0.5, 0.6, and 0.7. The distribution of the
unknown vector is given by (p1, p2) = (0.8, 0.2). The SNR is 15 dB. We use QAO(·)
as the quantizer and the parameter of Box-SOAV is optimized as in Example 5.3.1. In
the figure, ‘empirical’ represents the empirical performance obtained by averaging the
SER over 2000 independent realizations of the measurement matrix. We use Douglas-
Rachford algorithm [61,101] to solve the Box-SOAV optimization problem. We can see
that the empirical performance agrees well with the theoretical prediction denoted by
‘theoretical’ for large N .

Next, we show that the proposed optimal parameters and quantizer can achieve better
performance than some fixed parameter and the naive quantizer. Figure 5.7 shows the
SER performance of the Box-SOAV optimization versus the SNR, where N = 1000,
∆ = 0.8, (r1, r2, r3) = (−1, 0, 1), and (p1, p2, p3) = (0.1, 0.8, 0.1). As described in
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Figure 5.6: SER of Box-SOAV versus N ((r1, r2) = (0, 1), (p1, p2) = (0.8, 0.2), SNR = 15
dB)
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Figure 5.7: SER of Box-SOAV versus the SNR (N = 1000, ∆ = 0.8, (r1, r2, r3) =
(−1, 0, 1), (p1, p2, p3) = (0.1, 0.8, 0.1))

Example 5.3.2, the parameter of the Box-SOAV optimization is only q2 in this case.
In the figure, ‘q2 = 0.01’ and ‘q2 = 0.1’ denote the performance of the Box-SOAV
optimization with q2 = 0.01 and q2 = 0.1, respectively. We use the naive quantizer
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Figure 5.8: SER versus ∆ = M/N (N = 1500, (r1, r2, r3) = (−1, 0, 1), (p1, p2, p3) =
(0.25, 0.5, 0.25), SNR = 20 dB)

QNV(·) in (5.12) for these methods. Also, ‘optimal’ represents the performance of
the Box-SOAV optimization with the proposed asymptotically optimal parameter and
quantizer QAO(·). We can see that the proposed parameter and quantizer outperforms
the fixed parameter and the naive quantizer. It should be noted that the optimal value
of q2 clearly depends on the SNR and the proposed approach can determine the value
adaptively.

Finally, we compare the performance of the Box-SOAV optimization with some
conventional methods. Figure 5.8 shows the SER performance versus ∆ for the unknown
discrete-valued vector with (r1, r2, r3) = (−1, 0, 1). We assume N = 1500, (p1, p2, p3) =
(0.25, 0.5, 0.25), and the SNR of 20 dB. In the figure, ‘SOAV’ and ‘Box-SOAV’ represent
the conventional SOAV optimization and the Box-SOAV optimization, respectively.
We use QAO(·) as the quantizer and the parameter of Box-SOAV is optimized as in
Example 5.3.2. For comparison, we also evaluate the performance of the box relaxation
method [54, 55] given by

min
s∈[−1,1]N

1
2 ∥y −As∥2

2 . (5.65)

From the figure, we can see that the empirical performances of Box-SOAV and SOAV
are close to the theoretical prediction of Box-SOAV. Moreover, they have better perfor-
mance than the box relaxation method because they effectively use the knowledge of the
distribution of the unknown vector.
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5.6 Conclusion
In this chapter, we have derived the theoretical asymptotic performance of the discrete-
valued vector reconstruction using the Box-SOAV optimization. By using the CGMT
framework, we have shown that the asymptotic SER can be obtained with Corollary 5.3.1.
Moreover, we have derived the asymptotic distribution of the estimate obtained by
the Box-SOAV optimization. The asymptotic results enable us to obtain the optimal
parameters of the Box-SOAV optimization and the asymptotically optimal quantizer.
Simulation results show that the empirical performance is close to theoretical prediction
of Corollary 5.3.1 when the problem size is sufficiently large. We have also shown that
we can improve the performance of the Box-SOAV optimization by using the proposed
asymptotically optimal parameters and quantizer.

Appendix 5.A Proof of Corollary 5.3.1
Letψ(w, x) = 1− χ(w+x, x) in Theorem 5.3.1, where the function χ(·, ·) : [r1, rL]×R →
{0, 1} is given by

χ(x̂, x) =
{

1 (Q(x̂) = x)
0 (Q(x̂) " x)

. (5.66)

The left hand side of (5.9) can be written as

plim
N→∞

1
N

N∑
n=1

(1 − χ(x̂n, xn)) = plim
N→∞

1
N

∥Q(x̂) − x∥0 , (5.67)

whereas the right hand side can be written as

E
[
1 − χ(X̂, X)

]
= 1 − Pr

(
Q(X̂) = X

)
(5.68)

= 1 −
L∑
ℓ=1

pℓ Pr
(
Q(X̂) = rℓ | X = rℓ

)
, (5.69)

which concludes (5.11). Although χ(·, rℓ) is not Lipschitz continuous, we can approx-
imate χ(·, rℓ) with a Lipschitz function because H is a continuous random variable
and the probability measure for the discontinuity point of χ(·, rℓ) is zero (For a similar
discussion, see [56, Lemma A.4]).
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Appendix 5.B Proof of Theorem 5.3.2
It is sufficient to prove

lim
N→∞

Pr
(!!!!
∫

g dµx̂ −
∫

g dµX̂

!!!! < ε
)
= 1 (5.70)

for any ε > 0. From the Stone-Weierstrass theorem [102], there exists a polynomial
ν(·) : [r1, rL] → R such that

|g(x) − ν(x)| < ε

3 (5.71)

for any x ∈ [r1, rL]. Hence, the absolute value in (5.70) can be upper bounded as!!!!
∫

g dµx̂ −
∫

g dµX̂

!!!!
≤

!!!!
∫

g dµx̂ −
∫

ν dµx̂

!!!! +
!!!!
∫

ν dµx̂ −
∫

ν dµX̂

!!!! +
!!!!
∫

ν dµX̂ −
∫

g dµX̂

!!!!
(5.72)

<

!!!!
∫

ν dµx̂ −
∫

ν dµX̂

!!!! + 2
3ε (5.73)

Note that the polynomial ν(·) is Lipschitz in [r1, rL]. We then define ψ(w, x) = ν(w + x)
in Theorem 5.3.1 and obtain plim N→∞

1
N

∑N
n=1 ν(x̂n) = E

[
ν(X̂)

]
, i.e.,

lim
N→∞

Pr
(!!!!
∫

ν dµx̂ −
∫

ν dµX̂

!!!! < ε

3

)
= 1. (5.74)

(5.73) and (5.74) conclude (5.70).

Appendix 5.C Proof of Lemma 5.4.1
Let θ(hn, xn) = prox α∗

β∗
√
∆

f

(
xn +

α∗√
∆

hn

)
− xn. From the law of large numbers, we have

plim
N→∞

1
N

N∑
n=1

ψ(θ(hn, xn), xn) = E
[
ψ

(
X̂ − X, X

)]
. (5.75)

Hence, it is sufficient to show

plim
N→∞

!!!!!
1
N

N∑
n=1

{
ψ(ŵN,n(hn, xn), xn) − ψ(θ(hn, xn), xn)

}!!!!! = 0, (5.76)
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which is equivalent to

lim
N→∞

Pr
(!!!!!

1
N

N∑
n=1

{
ψ(ŵN,n(hn, xn), xn) − ψ(θ(hn, xn), xn)

}!!!!! < ε
)

=

L∑
ℓ=1

pℓ lim
N→∞

Pr
(!!!!!

1
N

N∑
n=1

{
ψ(ŵN,n(hn, rℓ), rℓ) − ψ(θ(hn, rℓ), rℓ)

}!!!!! < ε
)

(5.77)

= 1 (5.78)

for any ε (> 0). We thus prove

lim
N→∞

Pr
(!!!!!

1
N

N∑
n=1

{
ψ(ŵN,n(hn, rℓ), rℓ) − ψ(θ(hn, rℓ), rℓ)

}!!!!! < ε
)
= 1 (5.79)

for ℓ = 1, . . . , L below.
If we denote the Lipschitz constant of ψ(·, rℓ) by Cψ,ℓ, we have

!!ψ(ŵN,n(hn, rℓ), rℓ) − ψ(θ(hn, rℓ), rℓ)
!! ≤ Cψ,ℓ

!!ŵN,n(hn, rℓ) − θ(hn, rℓ)
!! . (5.80)

The absolute value in the right hand side of (5.80) is upper bounded as
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)!!!!! (5.81)

≤
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√

N
∥g∥2

α∗
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α∗
√
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hn

!!!!!
+

!!!!!proxα∗
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β∗
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√
N

∥g ∥2
f

(
rℓ +

α∗
√
∆

hn

)
− prox α∗

β∗
√
∆

f

(
rℓ +

α∗
√
∆

hn

)!!!!!. (5.82)

In (5.82), we use the fact that proxγ f (·) is non-expansive. For the first term in (5.82), we
have

!!! √N
∥g∥2

α∗
N hn − α∗√

∆
hn

!!! P−→ 0 as N → ∞. Moreover, given that α∗N
β∗N

√
N

∥g∥2
is sufficiently
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Figure 5.9: Graphical representation for (5.83).

close to α∗

β∗
√
∆

when N is large, the second term is upper bounded as
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)
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√
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)
Qk

!!!!!
}

(5.83)

P−→ 0 (5.84)

as N → ∞ (See Fig. 5.9). We thus have |ψ(ŵn(hn, rℓ), rℓ) − ψ(θ(hn, rℓ), rℓ)|
P−→ 0 and

obtain (5.79), which completes the proof.



Chapter 6

Discreteness-Aware Approximate
Message Passing for Discrete-Valued
Vector Reconstruction

6.1 Introduction
As described in Section 1.3, some methods based on convex optimization have been
proposed for the large-scale discrete-valued vector reconstruction. The regularization-
based method and the transform-based method [57] borrow the idea from compressed
sensing [40, 41] in the formulation to obtain convex optimization problems. As for
theoretical analysis, the required number of measurements in the large system limit has
been derived for the binary vector reconstruction with the regularization-based method.
A more general result has been obtained for the reconstruction of uniformly distributed
discrete-valued vectors via the transform-based method. For non-uniformly distributed
vectors, however, no analytical result has been provided.

On the other hand, the SOAV optimization has been proposed for the reconstruc-
tion of discrete-valued vector with any discrete distribution [60]. Although the SOAV
optimization is similar to the regularization-based method, it can take the probability
distribution of the unknown vector into consideration. They are actually equivalent
when the unknown vector is uniformly distributed. Although some theoretical analy-
ses have been provided for the optimization problem [26, 65], the required number of
measurements for the reconstruction has not been obtained for the SOAV optimization.

In this chapter, we propose an iterative algorithm based on the SOAV optimization
problem and analyze its reconstruction performance. By using the idea of the AMP
algorithm [38, 39] for compressed sensing, we firstly consider a probability distribution
corresponding to the SOAV optimization. We then approximate the sum-product belief
propagation [35, 36] for the distribution and obtain the proposed algorithm, referred
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to as DAMP. For the approximation in the derivation, we assume the large system
limit, where the problem size increases to infinity with a fixed ratio of the number of
measurements to the number of unknown variables. The DAMP algorithm has basically
the same form as that of the original AMP algorithm for compressed sensing except for
their soft thresholding functions. Hence, the order of the computational complexity is
the same as that of the original AMP algorithm. By using state evolution [38, 44], we
analytically evaluate the asymptotic performance of the DAMP algorithm in the large
system limit. We further derive the required number of measurements for the perfect
reconstruction in the noise-free case. The analysis provides the optimal parameters of the
soft thresholding function in terms of minimizing the required number of measurements.
With the analytical result, we also propose a method to determine the parameters of the
SOAV optimization. Moreover, on the basis of the state evolution, we derive Bayes
optimal DAMP, which gives the minimum MSE at each iteration in the large system
limit. Simulation results show that the proposed DAMP algorithms can reconstruct the
discrete-valued vector from its underdetermined linear measurements. For large-scale
problems, the performance agrees well with the theoretical result obtained with the state
evolution. The SOAV optimization with the proposed parameters can achieve the better
performance than that of the original SOAV optimization. Moreover, when the problem
size is not large enough, it also outperforms some AMP-based algorithms in high SNR
region. We also evaluate the performance when the measurement matrix is a partial
discrete cosine transform (DCT) matrix. We compare the proposed methods with turbo
compressed sensing [103, 104], which is a message passing-based algorithm designed
for partial DFT measurement matrices. For small-scale problems, Bayes optimal DAMP
achieves better performance than turbo compressed sensing in the high SNR region.

The rest of the chapter is organized as follows. In Section 6.2, we propose the
DAMP algorithm for the discrete-valued vector reconstruction. Section 6.3 analyzes the
performance of the DAMP algorithm via the state evolution framework and shows some
examples of the analysis. We then apply the theoretical results to the SOAV optimization
in Section 6.4 and provide Bayes optimal DAMP in Section 6.5. Section 6.6 gives some
simulation results, which demonstrate the performance of the proposed algorithms and
show the validity of the theoretical analysis. Finally, we present some conclusions in
Section 6.7.

6.2 Proposed Discreteness-aware AMP

In this section, we briefly explain the SOAV optimization [60] and propose DAMP by
taking a similar approach to that of the AMP algorithm for compressed sensing [38,105].
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6.2.1 DAMP
The derivation of DAMP begins with belief propagation with the sum-product algo-
rithm [36] for a probability distribution corresponding to the SOAV optimization (1.36).
We first consider the following joint probability distribution

µ(s) ∝
N∏

n=1
exp

(
−β

L∑
ℓ=1

qℓ |sn − rℓ |
)

M∏
m=1

exp
⎧⎪⎪⎨
⎪⎪⎩
− βλ2

FG
H
ym −

N∑
j=1

am, j s j
IJ
K

2⎫⎪⎪⎬
⎪⎪⎭
, (6.1)

where β > 0. Note that, as β → ∞, the mass of the distribution concentrates on the
solution of (1.36). Hence, we can solve (1.36) by calculating the mode of the marginal
distribution of each xn, which can be approximated via belief propagation. However, the
computational complexity is prohibitive for the factor graph of (6.1) with large N .

To derive a low-complexity algorithm, we then consider the large system limit
(M, N → ∞ with fixed M/N = ∆) and large β limit (β → ∞), and approximate the
sum-product algorithm for (6.1). As in the derivation in [39], assuming the measurement
matrix A ∈ RM×N being composed of i.i.d. variables with zero mean and variance 1/M ,
we have the resultant algorithm as

zt = y −Axt +
1
∆
zt−1

〈
η′

(
xt−1 +ATzt−1; θt−1√

∆

)〉
, (6.2)

xt+1 = η

(
xt +ATzt ; θt√

∆

)
, (6.3)

where xt is the estimate of x at the tth iteration. The function η(·; ·) is given by

η(u; γ) = proxγJ(u), (6.4)

where J(s) = ∑L
ℓ=1 qℓ∥s − rℓ1∥1 is the first term of the objective function in (1.36). By

the direct calculation described in [26], the nth element of proxγJ(u) is written as

[proxγJ(u)]n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un − γQ1 (un < r1 + γQ1)
r1 (r1 + γQ1 ≤ un < r1 + γQ2)
...

...

un − γQk (rk−1 + γQk ≤ un < rk + γQk)
rk (rk + γQk ≤ un < rk + γQk+1)
...

...

un − γQL+1 (rL + γQL+1 ≤ un)

, (6.5)
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Algorithm 6.1 DAMP algorithm
Input: y ∈ RM,A ∈ RM×N

Output: x̂ ∈ RN

1: x0 = x1 = E[x], z0 = 0, ∆ = M/N
2: for t = 1 to Titr − 1 do
3: zt = y −Axt +

1
∆
zt−1

〈
η′

(
xt−1 +ATzt−1; θ̂t−1√

∆

)〉

4: θ̂2
t =

∥zt ∥2
2

N

5: xt+1 = η

(
xt +ATzt ; θ̂t√

∆

)
6: end for
7: x̂ = xTitr

where un is the nth element of u, Q1 = −∑L
ℓ=1 qℓ,QL+1 =

∑L
ℓ=1 qℓ, and

Qk =

k−1∑
ℓ=1

qℓ −
L∑

ℓ′=k

qℓ′ (k = 2, . . . , L). (6.6)

Since [proxγJ(u)]n is a function of only un, the function η(u; γ) is a element-wise
function of u. The nth element of η′(u; γ) in (6.2) is the partial derivative of η(u; γ)
with respect to un, and is given by [η′(u; γ)]n = 0 if [proxγJ(u)]n ∈ {r1, . . . , rL},
otherwise [η′(u; γ)]n = 1. θ2

t = ∥xt − x∥2
2/N + ∆σ2

v is a scaled effective variance at
the tth iteration [106]. Since the true solution x is unknown in practice, we use the
alternative value for θ2

t , e.g., θ̂2
t = ∥zt ∥2

2/N as in [105].
We summarize the proposed DAMP algorithm in Algorithm 6.1. It should be noted

that the update equations of DAMP (6.2), (6.3) are basically the same as those of the
AMP algorithm for compressed sensing [38, 39]. The only difference is the function
η(u; γ), which is the soft thresholding function [η(u; γ)]n = sign(un)max {|un | − γ, 0} in
the case of the sparse vector reconstruction. Hence, the function η(u; γ) given by (6.4)–
(6.6) can be considered as the soft thresholding function for the discrete-valued vector
reconstruction. In TABLE 6.1, we summarize the relationship between the original
AMP algorithm and the proposed DAMP algorithm.

From a Bayesian perspective, the original AMP algorithm uses the prior distribution
ppri(x) ∝ exp (− |x |) for the unknown sparse vector, whereas the DAMP algorithm uses
ppri(x) ∝ exp

(
−∑L

ℓ=1 qℓ |x − rℓ |
)

for the discrete-valued vector. Although the DAMP
algorithm is based on the idea of the SOAV optimization, the estimate by the DAMP
algorithm is not necessarily equal to that by the SOAV optimization because of the
approximations in the derivation. For details of the relationship between AMP-based
approaches and optimization-based approaches, see [107, 108]. Since (6.2) and (6.3)
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Table 6.1: Comparison between the original AMP algorithm and the proposed DAMP
algorithm

original AMP algorithm [38,39] proposed DAMP algorithm
target sparse vector discrete-valued vector

optimization problem ℓ1 optimization SOAV optimization in (1.36)
prior distribution ppri(x) ppri(x) ∝ exp (− |x |) ppri(x) ∝ exp

(
−∑L

ℓ=1 qℓ |x − rℓ |
)

soft thresholding function [η(u; γ)]n = sign(un)max {|un | − γ, 0} η(u; γ) = proxγJ (u) in (6.5)

can be computed only with additions of vectors and multiplications of a matrix and a
vector, the computational complexity of the algorithm is O(MN) per iteration, which is
lower than that of internal point methods O(MN2) used in [57].

The DAMP algorithm can also be used for complex-valued vector by rewriting
the complex-valued model into the equivalent real-valued model when the real and
imaginary parts are independent, e.g., x ∈ {1+ j,−1+ j,−1− j, 1− j}N . When they are
dependent, however, the algorithm cannot be directly applied and hence some extensions
are required.

6.3 Asymptotic Analysis of DAMP
In this section, we provide a theoretical analysis of DAMP with state evolution frame-
work [38], [44]. By using state evolution, we give the required number of measurements
for the perfect reconstruction and the parameter of the soft thresholding function mini-
mizing the required number of measurements in the large system limit.

6.3.1 State Evolution
State evolution is a framework to analyze the asymptotic performance of the AMP
algorithm. In the large system limit, the sample MSE σ2

t = ∥xt − x∥2
2/N of xt can be

predicted via the state evolution. Similarly to the case of compressed sensing, the state
evolution formula for DAMP in Algorithm 6.1 is written as

σ2
t+1 = ΨSE

(
σ2

t + ∆σ
2
v

)
, (6.7)

where

ΨSE
(
σ2

)
= E

[{
η

(
X +

σ√
∆

Z; σ√
∆

)
− X

}2
]
. (6.8)

The random variable X has the same distribution as that of the unknown discrete variable,
i.e., Pr(X = rℓ) = pℓ (ℓ = 1, . . . , L) in our problem, and Z is the standard Gaussian
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random variable independent of X . In the rigorous proof for the state evolution [44], it
is assumed that A is composed of i.i.d. Gaussian variables with zero mean and variance
1/M , and η(·; ·) is Lipschitz continuous. In [44], however, it is expected that the
state evolution is also valid for a broader class of measurement matrices A, such as the
matrices with i.i.d. (possibly non-Gaussian) elements with zero mean and variance 1/M .
In fact, some numerical results in [38] imply such universality of the state evolution.

6.3.2 Condition for Perfect Reconstruction by DAMP
We can analyze the performance of the DAMP algorithm by investigating the function
ΨSE(σ2), which can be analytically obtained (See Appendix 6.A). In this section, we
consider the noise-free case (i.e., σ2

v = 0) and investigate a sufficient condition for the
perfect reconstruction defined as σ2

t → 0 (t → ∞). Since we have ΨSE(0) = 0 in the
noise-free case, the sequence {σ2

t }t=0,1,... with the recursion (6.7) converges to zero if

ΨSE(σ2) is concave and its derivative at σ2 = 0 is smaller than one, i.e., dΨSE
d(σ2)

!!!!
σ↓0
< 1.

In fact, the condition dΨSE
d(σ2)

!!!!
σ↓0
< 1 results in ΨSE(σ2) < σ2 and hence we have

σ2
t+1 = ΨSE(σ2

t ) < σ2
t . In this case, DAMP reconstructs the unknown vector x perfectly

regardless of the initialization. Note that the above discussion is valid when the function
ΨSE(σ2) is concave, and we can examine the concavity as discussed later.

To obtain the condition for the perfect reconstruction, we evaluate dΨSE
d(σ2)

!!!!
σ↓0

ana-

lytically. By the mathematical manipulation, we have

dΨSE
d(σ2)

!!!!
σ↓0

:= D(Q) (6.9)

=
1
∆

L∑
ℓ=1

pℓ
{
QℓpG (Qℓ) − Qℓ+1pG (Qℓ+1) +

(
1 +Q2

ℓ

)
PG (Qℓ)

+
(
1 +Q2

ℓ+1

)
(1 − PG (Qℓ+1))

}
, (6.10)

whereQ = [Q1 · · · QL+1]T (See Appendix 6.B). Since we can choose any q1, . . . , qL ≥ 0
in (1.36), we minimize (6.10) with respect to Q1, . . . ,QL+1 as

Dmin = min
Q

D(Q) subject to Q1 ≤ · · · ≤ QL+1. (6.11)

Note that, in (6.11), we eliminate the constraint Q1 = −QL+1. As we will see later, the
optimal values of Q1 and QL+1 are Qopt

1 = −∞ and Qopt
L+1 = ∞, respectively, and hence

this relaxation does not change the optimal value Dmin. The optimization problem (6.11)
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Algorithm 6.2 Parameter optimization
Input: p1, . . . , pL

Output: Qopt =
[
Qopt

1 · · · Qopt
L+1

]T

1: for ℓ = L, L − 1, . . . , 2 do
2: Fℓ(Q) = pℓ−1 {−pG (Q) +Q (1 − PG (Q))} + pℓ {pG (Q) +QPG (Q)}
3: end for
4: Qopt

L+1 = ∞
5: GL(Q) = FL(Q)
6: for ℓ = L, L − 1, . . . , 3 do
7: if Q̂(Gℓ(Q)) > max

j=2,...,ℓ−1
Q̂

(∑ℓ−1
k= j Fk(Q)

)
then

8: Qopt
ℓ = Q̂(Gℓ(Q))

9: Gℓ−1(Q) = Fℓ−1(Q)
10: else
11: Qopt

ℓ = Qopt
ℓ−1

12: Gℓ−1(Q) = Fℓ−1(Q) + Gℓ(Q)
13: end if
14: end for
15: Qopt

2 = Q̂(G2(Q))
16: Qopt

1 = −∞

can be solved via interior point methods [109] because D(Q) is a convex function of Q.
We can also solve (6.11) with the following theorem, which enables us to theoretically
analyze the performance of DAMP in some cases as described in Section 6.3.3. In what
follows, for an equation h(Q) = 0 with a unique solution, we denote the solution by
Q̂(h(Q)), i.e., h(Q̂(h(Q))) = 0.

Theorem 6.3.1. The unique minimizer Qopt =
[
Qopt

1 · · · Qopt
L+1

]T of the optimization
problem (6.11) can be obtained by Algorithm 6.2.

Proof. See Appendix 6.C. !

By using Algorithm 6.2, we can obtain the unique minimizer Qopt and the corre-

sponding minimum value Dmin of dΨSE
d(σ2)

!!!!
σ↓0

. From (6.5), the soft thresholding function
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with the optimal parameters Qopt
ℓ is written as

[
ηS (u; γ)

]
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1
(
un < r1 + γQopt

2

)
...

...

un − γQopt
k

(
rk−1 + γQopt

k ≤ un < rk + γQopt
k

)
rk

(
rk + γQopt

k ≤ un < rk + γQopt
k+1

)
...

...

rL

(
rL + γQopt

L ≤ un

)

, (6.12)

where
[
ηS (u; γ)

]
n denotes the nth element of ηS(u; γ).

The DAMP algorithm with ηS(·; ·), which we call soft thresholding DAMP henceforth,
provides the perfect reconstruction in the large system limit if Dmin < 1 and the function

ΨS
SE(σ2) = E

[{
ηS

(
X +

σ√
∆

Z; σ√
∆

)
− X

}2
]

is concave. Since we have

d2ΨSE
d(σ2)2 =

√
∆

2σ5

L∑
ℓ=1

pℓ
L∑

k=1
(−rℓ + rk)3

{
−pG

(
Tℓ,k,k

)
+ pG

(
Tℓ,k,k+1

)}
, (6.13)

where Tℓ,k,k ′ =

√
∆

σ
(−rℓ + rk) + Qk ′ (See Appendix 6.D), the concavity of ΨSE(σ2)

depends on Qℓ. By evaluating (6.13) with Q = Qopt, we can investigate whether
ΨS

SE(σ2) is concave or not. If ΨS
SE(σ2) is concave and Dmin < 1, soft thresholding

DAMP can perfectly reconstruct the discrete-valued vector in the large system limit.

6.3.3 Examples of Asymptotic Analysis
We show three examples of the analysis for DAMP via state evolution. Although it is
difficult to prove the concavity of ΨS

SE(σ2) by the direct calculation in general, we can
confirm that ΨS

SE(σ2) is concave in the following examples.

Example 6.3.1 (Binary vector). As the simplest example, we firstly consider the recon-
struction of a binary vector x ∈ {r1, r2}N with Pr(xn = r1) = p1 and Pr(xn = r2) = p2 (=
1 − p1). The binary vector reconstruction appears in CDMA multiuser detection and
signal detection for MIMO systems with BPSK or QPSK. By using Algorithm 6.2, we
can obtain the optimal parameters of the soft thresholding function.

In the noise-free case, soft thresholding DAMP provides the perfect reconstruction
in the large system limit if Dmin < 1. Figure 6.1 shows the phase transition line of soft
thresholding DAMP, where Dmin = 1. Note that the line is the boundary between the
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Figure 6.1: Phase transition of soft thresholding DAMP for binary vector

success and failure regions of DAMP in the large system limit. In the left region of
the curve, the MSE of the estimate obtained by DAMP does not converge to zero. In
the right region, DAMP can provide the perfect reconstruction of x. For example, the
figure shows that DAMP requires at least N/2 observations to accurately reconstruct an
N-dimensional uniformly distributed binary vector with p1 = 0.5. This result coincides
with the theoretical analysis for the regularization-based method and the transform-based
method [57] as well as the box relaxation [95]. Moreover, our analysis also provides
the required number of measurements for the asymmetric distribution with p1 " 0.5,
which has not been obtained in [57] and [95]. It should be noted that Dmin in (6.11) is
independent of r1 and r2, and hence the phase transition line in Fig. 6.1 is identical for
any r1 and r2 in the noise-free case.

In the noisy case, the asymptotic MSE at the fixed point of soft thresholding DAMP,
i.e., the value of σ2 satisfying σ2 = ΨS

SE(σ2 + ∆σ2
v ), can be obtained numerically by

iterating σ2
t+1 = Ψ

S
SE(σ2

t + ∆σ
2
v ). Figure 6.2 shows the result for the binary vector

x ∈ {−1, 1}N with Pr(xn = −1) = p1, Pr(xn = 1) = 1 − p1, and σ2
v = 0.01. We can see

that the asymptotic MSE becomes smaller when the measurement ratio ∆ increases.

Example 6.3.2 (Possibly sparse discrete-valued vector). The reconstruction of a possibly
sparse discrete-valued vector, such as x ∈ {−1, 0, 1}N and x ∈ {−3,−1, 0, 1, 3}N , also
arises in some problems, e.g., multiuser detection for machine-to-machine communica-
tions [26] and error recovery for MIMO signal detection [65]. Although some methods
have been proposed for the reconstruction of the discrete-valued sparse vector [110–114],
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Figure 6.2: MSE at the fixed point in the noisy case (x ∈ {−1, 1}N , Pr(xn = −1) = p1,
Pr(xn = 1) = 1 − p1, σ2

v = 0.01)

their theoretical analyses have not been obtained.
In Fig. 6.3, we show the phase transition line for x ∈ {−r, 0, r}N (‘binary’) and

x ∈ {−3r,−r, 0, r, 3r}N (r > 0) (‘quad’) in the noise-free case. For x ∈ {−r, 0, r}N ,
we assume Pr(xn = 0) = p and Pr(xn = −r) = Pr(xn = r) = (1 − p)/2. For x ∈
{−3r,−r, 0, r, 3r}N , we assume Pr(xn = 0) = p and Pr(xn = −3r) = Pr(xn = −r) =
Pr(xn = r) = Pr(xn = 3r) = (1 − p)/4. The dashed line ‘ℓ1’ shows the phase transition
line of the original AMP algorithm for compressed sensing, which utilizes only the
sparsity of the unknown vector. If the unknown vector is discrete-valued, the DAMP
algorithm requires a less number of measurements compared to the AMP algorithm.
However, as the possible candidates for non-zero value increases, more number of
measurements is required for the perfect reconstruction.

Example 6.3.3 (Uniformly distributed discrete-valued vector). Finally, we analyze the
reconstruction of x ∈ {r1, . . . , rL}N with the uniform distribution p1 = · · · = pL = 1/L.
The signal detection for MIMO systems with quadrature amplitude modulation (QAM)
can be reduced to such reconstruction problem.

By Algorithm 6.2, we have Qopt
L = · · · = Qopt

2 = 0. The resultant soft thresholding
function is equivalent to that of the AMP algorithm with the box relaxation [115]. The
condition for the perfect reconstruction in the noise-free case is Dmin = (L − 1)/(∆L) <
1 ⇔ ∆ > (L − 1)/L, which means that soft thresholding DAMP requires more than
(L − 1)N/L measurements to reconstruct a N dimensional vector with the uniform
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Figure 6.3: Phase transition of soft thresholding DAMP for possibly sparse discrete-
valued vector

distribution of L values. This threshold is the same as that for the transform-based
method [57]. It should be noted that the analysis of DAMP can also be applied even
for non-uniform distribution, while uniform distributions are assumed for the analyses
in [57] and [115].

6.4 Application to SOAV Optimization
In this section, we propose a method to determine the parameters qℓ of the SOAV
optimization (1.36) on the basis of the asymptotic analysis of soft thresholding DAMP.

The DAMP algorithm proposed in the previous section has low computational com-
plexity and its asymptotic performance can be predicted by state evolution, which pro-
vides the optimal parameters of the soft thresholding function. In the derivation, however,
we take the large system limit and assume that the measurement matrixA is composed of
i.i.d. elements. Hence, the DAMP algorithm suffers from the performance degradation
when the problem size is not large or the measurement matrix is composed of correlated
elements.

The SOAV optimization can be solved with the proximal splitting methods [61] as a
convex optimization problem [26]. The convex optimization algorithms do not require
any assumptions on the measurement matrix and can obtain the minimizer even when
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the problem size is small. Thus, when the measurement matrix is composed of corre-
lated elements or the problem size is not large enough, the convex optimization-based
approach using parameters q1, . . . , qL obtained from the optimal values Qopt

1 , . . . ,Q
opt
L in

the previous section might outperform the DAMP algorithm.
We thus derive the parameters qopt

ℓ corresponding to the optimal parameters Qopt
ℓ in

a casual manner. From the definitions of Qk in (6.6), we can obtain qℓ from Qℓ and Qℓ+1
as qℓ = (−Qℓ +Qℓ+1) /2. Since Qopt

2 , . . . ,Q
opt
L are finite, the corresponding coefficients

qopt
2 , . . . , q

opt
L−1 given by

qopt
ℓ =

1
2

(
−Qopt

ℓ +Qopt
ℓ+1

)
(6.14)

are also finite. On the other hand, qopt
1 = qopt

L = ∞ follows from Qopt
1 = −∞ and

Qopt
L+1 = ∞. The objective function of the SOAV optimization includes qopt

1 and qopt
L in

the form qopt
1 |s − r1 |+qopt

L |s − rL |, and the term becomes infinity when s ≤ r1 or s ≥ rL .
When r1 < s < rL , however, the term is computed as

qopt
1 |s − r1 | + qopt

L |s − rL | = (qopt
1 − qopt

L )s + const. (6.15)

=
1
2 (Q

opt
2 +Qopt

L )s + const. (6.16)

because we have

Q2 +QL = 2(q1 − qL) (6.17)

from (6.6), where “const.” is a constant independent of s. Since Qopt
2 and Qopt

L are finite,
Qopt

2 +Qopt
L is also finite and hence we have

qopt
1 |s − r1 | + qopt

L |s − rL | =
⎧⎪⎪⎨
⎪⎪⎩

1
2 (Q

opt
2 +Qopt

L )s + const. (r1 < s < rL)
∞ (otherwise)

, (6.18)

where the infinity for s # (r1, rL) corresponds to the box constraint r1 < s < rL . There-
fore, we have the SOAV optimization problem corresponding to the optimal parameters
for soft thresholding DAMP as

x̂ = arg min
s∈RN

{
L∑
ℓ=1

qopt
ℓ ∥s − rℓ1∥1 +

λ

2 ∥y −As∥2
2

}

subject to r11 ≤ s ≤ rL1, (6.19)

where qopt
2 , . . . , q

opt
L−1 are given by (6.14) and qopt

1 , qopt
L (≥ 0) must be chosen to satisfy

qopt
1 −qopt

L = (Qopt
2 +Qopt

L )/2. Note that we relax the constraint as r11 ≤ s ≤ rL1 because
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Algorithm 6.3 Beck-Teboulle proximal gradient algorithm for SOAV optimization (6.19)
Input: y ∈ RM,A ∈ RM×N, λ ∈ R
Output: xTitr ∈ RN

1: x1 = 0, z1 = 0, τ1 = 1, γ−1 ≥ λ∥A∥2
2

2: for t = 1 to Titr − 1 do
3: xt+1 = ηS (

zt + γλAT (
y −Azt ) ; γ

)

4: τt+1 =
1 +

√
4τ2

t + 1
2

5: ωt = 1 + τt − 1
τt+1

6: zt+1 = ωtxt+1 + (1 − ωt)xt

7: end for

the unknown vector x may have r1 and rL . The problem (6.19) can be rewritten as
x̂ = arg min

s∈RN

{h1(s) + h2(s)} , (6.20)

where h1(s) =
∑L
ℓ=1 qopt

ℓ ∥s − rℓ1∥1 + ι(s), h2(s) = λ ∥y −As∥2
2 /2, and

ι(s) =
{

0 (r11 ≤ s ≤ rL1)
∞ (otherwise)

. (6.21)

An important fact here is that the proximity operator of h1(x) is given by proxγh1(u) =
ηS(u; γ) because qopt

1 , . . . , q
opt
L ,Q

opt
1 , . . . ,Q

opt
L satisfy (6.6) and ι(·) restricts the value of

proxγh1(u) as r1 ≤ [proxγh1(u)]n ≤ rL . Hence, the convex optimization problem (6.19)
can be efficiently solved by proximal splitting methods [61] using ηS(u; γ). As an ex-
ample, we show Beck-Teboulle proximal gradient algorithm [61,62] for the optimization
problem (6.20) in Algorithm 6.3.

As we can see from the following example, the proposed parameters qopt
ℓ are different

from those of the original SOAV optimization in general.
Example 6.4.1. We consider the reconstruction of x ∈ {−1, 0, 1}N . The distribution
of x is assumed to be Pr(xn = 0) = 0.2 and Pr(xn = −1) = Pr(xn = 1) = 0.4. In
this case, we have Qopt

1 = −∞, Qopt
2 = Qopt

3 = 0, and Qopt
4 = ∞ by Algorithm 6.2.

Hence, the proposed parameters satisfy qopt
1 − qopt

3 = 0 and qopt
2 = 0. Since we have

qopt
1 ∥s + 1∥1 + qopt

2 ∥s∥1 + qopt
3 ∥s − 1∥1 = 2qopt

1 N (= const.) for −1 ≤ s ≤ 1 in this
case, the proposed optimization problem is given by

x̂ = arg min
s∈RN

∥y −As∥2
2

subject to − 1 ≤ s ≤ 1. (6.22)
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The optimization problem (6.22) is quite different from the original SOAV optimiza-
tion [60] and the regularization-based method [57], where (q1, q2, q3) = (0.4, 0.2, 0.4) and
(q1, q2, q3) = (1, 1, 1), respectively. Note that the box relaxation optimization (6.22) has
been considered for the reconstruction of the binary vector x ∈ {−1, 1}N (e.g., [54,95]).
The proposed approach results in the box relaxation optimization (6.22) even when
Pr(xj = 0) = 0.2.

6.5 Bayes optimal DAMP
In this section, we provide Bayes optimal DAMP on the basis of the state evolution. In the
DAMP algorithm in Algorithm 6.1, we can use different functions as η(·; ·) instead of the
soft thresholding function (6.5), (6.12). Moreover, the state evolution formula (6.7) is still
valid for different η(·; ·) as far as it is Lipschitz continuous. In the literature of compressed
sensing, the AMP algorithm is called Bayes optimal if the function

[
ηB (u; γ)

]
n =

E [X | X + γZ = un ] is used instead of the soft thresholding function [105,116]. x Note

that ηB
(
·; σ√
∆

)
is the minimizer of Ψ̃SE(σ2) = E

[{
η̃

(
X +

σ√
∆

Z
)
− X

}2
]

when we

consider Ψ̃SE(σ2) as the functional of a function η̃(·).
Although it is difficult in general to analytically calculate the optimal function ηB(·; ·),

we can obtain ηB(·; ·) for the Bayes optimal DAMP because the distribution of X is
discrete in our problem. The conditional probability of X can be written as

Pr (X = rℓ | X + γZ = un ) =
1
ζ

pℓpG

(
un − rℓ
γ

)
, (6.23)

where the normalizing constant ζ is given by ζ =
L∑
ℓ=1

pℓpG

(
un − rℓ
γ

)
. From (6.23), we

have

[
ηB (u; γ)

]
n =

L∑
ℓ=1

pℓrℓpG

(
un − rℓ
γ

)

L∑
ℓ′=1

pℓ′pG

(
un − rℓ′
γ

) . (6.24)

As a special case, when r1 = −1, r2 = 1 and p1 = p2 = 0.5, (6.24) can be reduced
to

[
ηB (u; γ)

]
n = tanh

(
un/γ2) , which has been proposed for CDMA multiuser detec-

tion [37, 117].
The state evolution formula for Bayes optimal DAMP is given by σ2

t+1 = Ψ
B
SE(σ2

t +

∆σ2
v ), where ΨB

SE(σ2) = E
[{
ηB

(
X +

σ√
∆

Z; σ√
∆

)
− X

}2
]
. Since ηB

(
·; σ√
∆

)
is the



6.6. Simulation Results 109

minimizer of Ψ̃SE(σ2), Bayes optimal DAMP provides the minimum MSE at each
iteration in the large system limit. In the noise-free case, the sequence of the MSE
{σ2

t }t=0,1,... obtained by σ2
t+1 = Ψ

B
SE(σ2

t ) converges to zero if ΨS
SE(σ2) is concave and

Dmin < 1, because ΨS
SE(σ2) < σ2 in that case and hence σ2

t+1 = Ψ
B
SE(σ2

t ) ≤ ΨS
SE(σ2

t ) <
σ2

t . Thus, the required measurement ratio ∆ for soft thresholding DAMP is an upper
bound of that for Bayes optimal DAMP. However, since ΨB

SE(σ2) is not necessarily
concave unlike ΨS

SE(σ2), it is difficult to obtain the necessary condition analytically for
the perfect reconstruction by Bayes optimal DAMP.

A similar algorithm to Bayes optimal DAMP can be derived by using the discrete
prior distribution in GAMP [43, 118] with scalar variances. The AMP-based algorithm
similar to Bayes optimal DAMP has also been proposed for MIMO signal detection [42],
where the reconstruction of complex discrete-valued vectors with uniform distributions
is considered. However, these algorithms use update equations to obtain the effective
variance, while the proposed DAMP algorithm uses the simple estimation θ̂2

t = ∥zt ∥2
2/N .

These conventional algorithms use the knowledge of the noise variance σ2
v unlike Bayes

optimal DAMP.

6.6 Simulation Results
In this section, we evaluate the performance of the proposed algorithms via computer
simulations.

Figure 6.4 shows the prediction of MSE via state evolution and the empirical MSE
σ2

t = ∥xt − x∥2
2/N with DAMP obtained by simulations. We set x ∈ {−1, 1}N ,

Pr(xn = −1) = 0.2, Pr(xn = 1) = 0.8, ∆ = 0.5, and σ2
v = 0. We evaluate the

performance for the different problem sizes of N = 100, 500, 1000, and 5000. The
measurement matrix A ∈ RM×N is composed of i.i.d. Gaussian variables with zero
mean and variance 1/M . In the figure, “soft thresholding” denotes the performance of
DAMP with the soft thresholding function ηS(·; ·) and “Bayes optimal” denotes that of
Bayes optimal DAMP with ηB(·; ·). We can see that Bayes optimal DAMP has much
smaller MSE with less number of iterations than soft thresholding DAMP. The figure
also shows that the prediction with state evolution is close to the empirical performance
in the large-scale systems.

In Figs. 6.5 and 6.6, we evaluate the average of SER defined as ∥Q(xt) − x∥0/N ,
where Q(x̂) = arg min s∈{r1,...,rL}N ∥s − x̂∥1. The distribution of the unknown vector
is Pr(xn = 0) = 0.2, Pr(xn = −1) = Pr(xn = 1) = 0.4, which has been considered
in Example 6.4.1. The problem size is (N,M) = (1000, 800) in Fig. 6.5 and (N,M) =
(100, 80) in Fig. 6.6. The measurement matrixA ∈ RM×N is composed of i.i.d. Gaussian
variables with zero mean and variance 1/M , and the SNR is defined as N(1− p)/

(
Mσ2

v
)
.

The number of iterations in the algorithms is fixed to 200. In the figures, “STDAMP” and
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Figure 6.4: State evolution and empirical performance in the noise-free case (x ∈
{−1, 1}N , Pr(xn = −1) = 0.2, Pr(xn = 1) = 0.8, ∆ = 0.5, and σ2

v = 0)

Figure 6.5: SER for i.i.d. Gaussian matrix (x ∈ {−1, 0, 1}N , Pr(xn = 0) = 0.2, Pr(xn =

−1) = Pr(xn = 1) = 0.4, and (N,M) = (1000, 800))

“BODAMP” denote soft thresholding DAMP and Bayes optimal DAMP, respectively.
For comparison, we also plot the performance of sum-product GAMP [43] with the
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Figure 6.6: SER for i.i.d. Gaussian matrix (x ∈ {−1, 0, 1}N , Pr(xn = 0) = 0.2, Pr(xn =

−1) = Pr(xn = 1) = 0.4, and (N,M) = (100, 80))

discrete-prior distribution as “GAMP”. “SOAV (original)” and “SOAV (proposed)”
represent the SOAV optimization with the original coefficients qℓ = pℓ [60] and that
with the proposed parameters qopt

ℓ , respectively. The parameter for the original SOAV
optimization λ is fixed as λ = 10. In the simulation, we have used Beck-Teboulle proximal
gradient algorithm [61, 62] to solve these optimization problems. In both figures, we
can see that the performance of the SOAV optimization with the proposed parameters
is much better than the original ones. In Fig. 6.5, where N = 1000, Bayes optimal
DAMP and GAMP have better SER performance than the other methods. As mentioned
in Section 6.5, the GAMP algorithm uses the knowledge of the noise variance, which is
not necessary in the proposed Bayes optimal DAMP. For the smaller-scale problem in
Fig. 6.6, however, the performance of these methods severely degrades and the SOAV
optimization with the proposed parameters can achieve the best SER performance for
high SNR region. The difference of the error floor between Bayes optimal DAMP and
GAMP may be caused by the estimation of the effective variance described in Section 6.5.

In Fig. 6.7, we show the SER performance for the correlated measurement matrix
A = Φ

1
2
RAi.i.d.Φ

1
2
T. Here, Ai.i.d. ∈ RM×N is composed of i.i.d. Gaussian variables with

zero mean and variance 1/M . The (i, j) elements of the positive definite matrices ΦR
and ΦT are given by [ΦR]i, j = J0(|i − j | · 2πdR/ν) and [ΦT]i, j = J0(|i − j | · 2πdT/ν),
respectively. J0(·) is the zeroth-order Bessel function of the first kind and we set
dR = dT = ν/2 in the simulation. This model has been used for spatially correlated
MIMO channels with equally spaced antennas [11]. The problem size and the distribution
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Figure 6.7: SER for correlated matrix (x ∈ {−1, 0, 1}N , Pr(xn = 0) = 0.2, Pr(xn = −1) =
Pr(xn = 1) = 0.4, and (N,M) = (1000, 800))

of the unknown vector are the same as those in Fig. 6.5. From Fig. 6.7, we can see that
the performance of AMP-based algorithms severely degrades because of the correlation.
On the other hand, the approach based on the SOAV optimization with the proposed
parameters works well even for the correlated measurement matrix.

Next, we evaluate the DAMP performance when the measurement matrix is a partial
DCT matrix. The measurement vector y is assumed to be written as

y = SDx + v, (6.25)

where D ∈ RN×N is the DCT matrix and its (i, j) element is given by

di, j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
1
N

(i = 1)√
2
N

cos
( π
2N

(i − 1)(2 j − 1)
)

(i " 1)
(6.26)

in the simulations. The selection matrix S ∈ RM×N is composed by randomly selecting
M rows of the N × N identity matrix. Figures 6.8 and 6.9 show the SER performance
for the partial DCT matrix. The distribution of the unknown vector is Pr(xn = 0) =
0.2, Pr(xn = −1) = Pr(xn = 1) = 0.4. The problem size is (N,M) = (1024, 768) in
Fig. 6.8 and (N,M) = (128, 96) in Fig. 6.9. In the figures, “Turbo-CS” denotes the
performance of the algorithm based on turbo compressed sensing [103,104], which has
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Figure 6.8: SER for partial DCT matrix (x ∈ {−1, 0, 1}N , Pr(xn = 0) = 0.2, Pr(xn =

−1) = Pr(xn = 1) = 0.4, and (N,M) = (1024, 768))

Figure 6.9: SER for partial DCT matrix (x ∈ {−1, 0, 1}N , Pr(xn = 0) = 0.2, Pr(xn =

−1) = Pr(xn = 1) = 0.4, and (N,M) = (128, 96))

been proposed for the measurement with a partial DFT matrix. Although Turbo-CS
achieves the best SER in Fig. 6.8, it has the error floor in Fig. 6.9 possibly because
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Figure 6.10: Success rate in the noise-free case (x ∈ {0, 1}N , Pr(xn = 0) = 0.1,
Pr(xn = 1) = 0.9, and N = 1000)

the problem size is rather small. In [13], a similar phenomenon can be observed for
IO-LAMA [42], which is an AMP-based MIMO signal detection scheme. The SERs at
the error floor will depend both on the algorithms and the structure of the measurement
matrix. From the figures, we observe that Bayes optimal DAMP and GAMP achieve
good performance even if the problem size is not very large when the measurement
matrix is a partial DCT matrix. We note again that Bayes optimal DAMP does not
require the knowledge of noise variance unlike GAMP .

In Figs. 6.10 and 6.11, we empirically evaluate the rate of the success recovery in
the sense that Q(xt) = x after t = 300 iterations. Figure 6.10 shows the success rate for
the binary vector x ∈ {0, 1}N with N = 1000. The distribution of the unknown vector
is given by Pr(xn = 0) = 0.1 and Pr(xn = 1) = 0.9. The measurement matrix is an i.i.d.
Gaussian matrix. We consider the noise-free case and hence the SOAV optimization
problem is given by

x̂ = arg min
s∈RN

q1 ∥s∥1 + q2 ∥s − 1∥1

subject to y = As, (6.27)

which is solved by Douglas-Rachford algorithm [61, 101] in the simulation. In the
figure, “regularization-based” denotes the regularization-based method [57], which
solves (6.27) with q1 = q2 = 1. The vertical line corresponds to the value of ∆ for
Dmin = 1 obtained from Fig. 6.1. In the large system limit, the left side of each vertical
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Figure 6.11: Success rate in the noise-free case (x ∈ {0, 1}N , Pr(xn = 0) = 0.1,
Pr(xn = 1) = 0.9, and N = 100)

line is the failure region and the right side is the success region of soft thresholding
DAMP in the sense that σ2

t → 0 (t → ∞). The success rate of soft thresholding DAMP
rapidly increases around the vertical line. Moreover, Bayes optimal DAMP, GAMP ,
and the SOAV optimization with the proposed parameters can achieve slightly better
success rates than that of soft thresholding DAMP. Their success rates are also better
than those of the SOAV optimization with original coefficients and the regularization-
based method. One of possible reasons that the recovery rate is not equal to one in the
success region near the boundary is that we restrict the maximum number of iterations
as t = 300. Another reason will be that the problem size here is finite and not large
enough. In Fig. 6.11, we evaluate the recovery rate for x ∈ {0, 1}N with N = 100. Since
the problem size is smaller than that in Fig. 6.10, the performance of the AMP-based
algorithms is worse than that of the SOAV optimization with the proposed parameters.

6.7 Conclusion
In this chapter, we have proposed the algorithm for the discrete-valued vector reconstruc-
tion, referred to as DAMP. We have analytically evaluated the asymptotic performance of
soft thresholding DAMP and have derived the condition for the perfect reconstruction in
the large system limit via state evolution. The optimization algorithm for the parameters
of the soft thresholding function enables us to analyze the performance theoretically
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in some cases. By using the analysis of soft thresholding DAMP, we have also pro-
posed the method to determine the parameters of the SOAV optimization. Moreover, we
have provided Bayes optimal DAMP, which gives much smaller MSE compared to soft
thresholding DAMP. Via computer simulations, we have shown that DAMP can recon-
struct the discrete-valued vector from its underdetermined linear measurements and the
empirical performance agrees well with our theoretical results for large-scale problems.
For smaller-scale problems, the SOAV optimization with the proposed parameters can
achieve better performance than the AMP-based algorithms. We have also shown that
Bayes optimal DAMP works well for partial DCT measurement matrices.

Appendix 6.A Derivation of ΨSE(σ2)
We firstly rewrite (6.8) as

ΨSE(σ2) =
L∑
ℓ=1

pℓΨSE,ℓ(σ2), (6.28)

where

ΨSE,ℓ(σ2) =
∫ ∞

−∞

{
η

(
rℓ +

σ√
∆

z; σ√
∆

)
− rℓ

}2
pG(z)dz. (6.29)

From (6.4) and (6.5), we have

η

(
rℓ +

σ√
∆

z; σ√
∆

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rℓ + σ√
∆
(z − Q1)

(
z < Tℓ,1,1

)
r1

(
Tℓ,1,1 ≤ z < Tℓ,1,2

)
...

...

rℓ + σ√
∆
(z − Qk)

(
Tℓ,k−1,k ≤ z < Tℓ,k,k

)
rk

(
Tℓ,k,k ≤ z < Tℓ,k,k+1

)
...

...

rℓ + σ√
∆
(z − QL+1)

(
Tℓ,L,L+1 ≤ z

)

, (6.30)

where

Tℓ,k,k ′ =

√
∆

σ
(−rℓ + rk) +Qk ′ . (6.31)
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We thus rewrite ΨSE,ℓ(σ2) as

ΨSE,ℓ(σ2) = σ2

∆

∫ Tℓ,1,1

−∞
(z − Q1)2 pG(z)dz

+

L∑
k=1

∫ Tℓ,k,k+1

Tℓ,k,k
(rk − rℓ)2 pG(z)dz

+
σ2

∆

L∑
k=2

∫ Tℓ,k,k

Tℓ,k−1,k

(z − Qk)2 pG(z)dz

+
σ2

∆

∫ ∞

Tℓ,L,L+1

(z − QL+1)2 pG(z)dz. (6.32)

For a, b,Q ∈ R, we have

∫ b

a
(z − Q)2 pG(z)dz

= {−bpG (b) + apG (a) + PG (b) − PG (a)}
− 2Q {−pG (b) + pG (a)} +Q2 {PG (b) − PG (a)} , (6.33)

thus

ΨSE,ℓ(σ2) =
L∑

k=1
(rk − rℓ)2

{
PG

(
Tℓ,k,k+1

)
− PG

(
Tℓ,k,k

)}

+
σ2

∆

L∑
k=1

[{
−Tℓ,k,k pG

(
Tℓ,k,k

)
+ PG

(
Tℓ,k,k

)}

+2Qk pG
(
Tℓ,k,k

)
+Q2

k PG
(
Tℓ,k,k

) ]

+
σ2

∆

L+1∑
k=2

[{
Tℓ,k−1,k pG

(
Tℓ,k−1,k

)
− PG

(
Tℓ,k−1,k

)}

−2Qk pG
(
Tℓ,k−1,k

)
− Q2

k PG
(
Tℓ,k−1,k

) ]
+
σ2

∆

(
1 +Q2

L+1

)
. (6.34)

Hence, ΨSE(σ2) in (6.28) can be obtained from (6.34).
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Appendix 6.B Derivation of dΨSE
d(σ2)

!!!!
σ↓0

From (6.28), we have

dΨSE
d(σ2)

!!!!
σ↓0
=

L∑
ℓ=1

pℓ
dΨSE,ℓ
d(σ2)

!!!!
σ↓0
. (6.35)

With the derivative of Tℓ,k,k ′ with respect to σ2

T ′
ℓ,k,k ′ =

dTℓ,k,k ′

d(σ2)

(
= −

√
∆

2σ3 (−rℓ + rk)
)
, (6.36)

the derivative of (6.34) is given by

dΨSE,ℓ
d(σ2)

=

L∑
k=1

(rk − rℓ)2
{
T ′
ℓ,k,k+1pG

(
Tℓ,k,k+1

)
− T ′

ℓ,k,k pG
(
Tℓ,k,k

)}

+
1
∆

L∑
k=1

[{
−Tℓ,k,k pG

(
Tℓ,k,k

)
+ PG

(
Tℓ,k,k

)}
+ 2Qk pG

(
Tℓ,k,k

)
+Q2

k PG
(
Tℓ,k,k

) ]

+
σ2

∆

L∑
k=1

(
Tℓ,k,k − Qk

)2 T ′
ℓ,k,k pG

(
Tℓ,k,k

)

+
1
∆

L+1∑
k=2

[{
Tℓ,k−1,k pG

(
Tℓ,k−1,k

)
− PG

(
Tℓ,k−1,k

)}

−2Qk pG
(
Tℓ,k−1,k

)
− Q2

k PG
(
Tℓ,k−1,k

) ]

− σ2

∆

L+1∑
k=2

(
Tℓ,k−1,k − Qk

)2 T ′
ℓ,k−1,k pG

(
Tℓ,k−1,k

)

+
1
∆

(
1 +Q2

L+1

)
(6.37)

=
1
∆

L∑
k=1

[{
−Tℓ,k,k pG

(
Tℓ,k,k

)
+ PG

(
Tℓ,k,k

)}
+ 2Qk pG

(
Tℓ,k,k

)
+Q2

k PG
(
Tℓ,k,k

) ]

+
1
∆

L+1∑
k=2

[{
Tℓ,k−1,k pG

(
Tℓ,k−1,k

)
− PG

(
Tℓ,k−1,k

)}
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−2Qk pG
(
Tℓ,k−1,k

)
− Q2

k PG
(
Tℓ,k−1,k

) ]
+

1
∆

(
1 +Q2

L+1

)
. (6.38)

From

lim
σ↓0

Tℓ,k,k ′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞ (ℓ < k)
Qk ′ (ℓ = k)
−∞ (ℓ > k)

, (6.39)

we conclude that

dΨSE,ℓ
d(σ2)

!!!!
σ↓0

=
1
∆

[
{−QℓpG (Qℓ) + PG (Qℓ)} + 2QℓpG (Qℓ) +Q2

ℓPG (Qℓ)
]

+
1
∆

L∑
k=ℓ+1

(
1 +Q2

k

)

+
1
∆

[
{Qℓ+1pG (Qℓ+1) − PG (Qℓ+1)} − 2Qℓ+1pG (Qℓ+1) − Q2

ℓ+1PG (Qℓ+1)
]

+
1
∆

L+1∑
k=ℓ+2

(
−1 − Q2

k

)

+
1
∆

(
1 +Q2

L+1

)
(6.40)

=
1
∆

{
QℓpG (Qℓ) − Qℓ+1pG (Qℓ+1) +

(
1 +Q2

ℓ

)
PG (Qℓ)

+
(
1 +Q2

ℓ+1

)
(1 − PG (Qℓ+1))

}
. (6.41)

Hence, dΨSE
d(σ2)

!!!
σ↓0

is straightforwardly obtained from (6.35) and (6.41) as in (6.10).

Appendix 6.C Proof of Theorem 6.3.1
Since D(Q) is a monotonically increasing function of Q1 and a monotonically decreasing
function of QL+1, their optimal values are Qopt

1 = −∞ and Qopt
L+1 = ∞, respectively. Thus,

the optimization problem (6.11) can be reduced to

Dmin = min
Q2,...,QL

D̃(Q2, . . . ,QL)

subject to Q2 ≤ · · · ≤ QL, (6.42)
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where

D̃(Q2, . . . ,QL)

:= ∆2 D(Q)
!!!!
Q1=−∞,QL+1=∞

(6.43)

=
1
2

L∑
ℓ=2

[
pℓ−1

{
−QℓpG (Qℓ) +

(
1 +Q2

ℓ

)
(1 − PG (Qℓ))

}

+pℓ
{
QℓpG (Qℓ) +

(
1 +Q2

ℓ

)
PG (Qℓ)

}]
. (6.44)

It is sufficient to confirm that D̃(Q2, . . . ,QL) is strictly convex and Qopt
2 , . . . ,Q

opt
L obtained

by Algorithm 6.2 satisfies Karush-Kuhn-Tucker (KKT) conditions of (6.42).

6.C.1 Strict Convexity of D̃(Q2, . . . ,QL)
To prove the strict convexity of D̃(Q2, . . . ,QL), we show that the Hessian ∇2D̃ is positive
definite. The partial derivative of D̃(Q2, . . . ,QL) with respect to Qℓ (ℓ = 2, . . . , L) is
given by

∂D̃
∂Qℓ

= pℓ−1 {−pG (Qℓ) +Qℓ (1 − PG (Qℓ))} + pℓ {pG (Qℓ) +QℓPG (Qℓ)} . (6.45)

The second-order partial derivative can be written as

∂2D̃
∂Q2

ℓ

= pℓ−1 (1 − PG (Qℓ)) + pℓPG (Qℓ) > 0, (6.46)

and
∂2D̃

∂Qℓ∂Qℓ′
= 0 (ℓ " ℓ′). (6.47)

From (6.46) and (6.47), the Hessian ∇2D̃ = diag
(
∂2D̃
∂Q2

2
, . . . ,

∂2D̃
∂Q2

L

)
is positive definite

and hence D̃(Q2, . . . ,QL) is a strictly convex function of Q2, . . . ,QL .

6.C.2 KKT Conditions
Next, we prove that Qopt

2 , . . . ,Q
opt
L satisfies the KKT conditions of (6.42). We define the

Lagrange function as

L(Q2, . . . ,QL) = D̃(Q2, . . . ,QL) +
L−1∑
ℓ=2
µℓ(Qℓ − Qℓ+1), (6.48)
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where µ2, . . . , µL−1 are the KKT multipliers. Since the partial derivatives of D̃(Q2, . . . ,QL)
are obtained as in (6.45), the KKT conditions can be written with Fℓ(Q) (ℓ = 2, . . . , L)
defined in Algorithm 6.2.
KKT conditions of (6.42)

1. F2(Q2) + µ2 = 0,
Fℓ(Qℓ) − µℓ−1 + µℓ = 0 (ℓ = 3, . . . , L − 1),
FL(QL) − µL−1 = 0.

2. Qℓ − Qℓ+1 ≤ 0 (ℓ = 2, . . . , L − 1).

3. µℓ ≥ 0 (ℓ = 2, . . . , L − 1).

4. µℓ(Qℓ − Qℓ+1) = 0 (ℓ = 2, . . . , L − 1).

Before the investigation of the KKT conditions, we confirm that the equations
Gℓ(Q) = 0 and

∑ℓ−1
k= j Fk(Q) = 0 have a unique solution and Q̂(·) in Algorithm 6.2 can be

defined properly. For ℓ = 2, . . . , L, we have limQ→−∞ Fℓ(Q) = −∞, limQ→∞ Fℓ(Q) = ∞,
and

dFℓ
dQ
= pℓ−1 (1 − PG (Q)) + pℓPG (Q) > 0, (6.49)

which show that each Fℓ(Q) is a strictly increasing function with the rangeR. Since Gℓ(Q)
and

∑ℓ−1
k= j Fk(Q) are sum of some Fℓ(Q) (ℓ = 2, . . . , L), they are also strictly increasing

functions with the range R and the solutions of Gℓ(Q) = 0 and
∑ℓ−1

k= j Fk(Q) = 0 are
unique.

We then prove that Qopt
2 , . . . ,Q

opt
L obtained by Algorithm 6.2 and µopt

ℓ := Gℓ+1
(
Qopt
ℓ+1

)
(ℓ = 2, . . . , L − 1) satisfy the KKT conditions, i.e.,

F2
(
Qopt

2

)
+ µopt

2 = 0, (6.50)

Fℓ
(
Qopt
ℓ

)
− µopt

ℓ−1 + µ
opt
ℓ = 0 (ℓ = 3, . . . , L − 1), (6.51)

FL

(
Qopt

L

)
− µopt

L−1 = 0, (6.52)

Qopt
ℓ − Qopt

ℓ+1 ≤ 0 (ℓ = 2, . . . , L − 1), (6.53)
µopt
ℓ ≥ 0 (ℓ = 2, . . . , L − 1), (6.54)

µopt
ℓ

(
Qopt
ℓ − Qopt

ℓ+1

)
= 0 (ℓ = 2, . . . , L − 1). (6.55)

In the following proofs of (6.50)–(6.55), we denote the condition Q̂(Gℓ(Q)) > max
j=2,...,ℓ−1

Q̂
(∑ℓ−1

k= j Fk(Q)
)

in the line 8 of Algorithm 6.2 by Hℓ.
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proof of (6.50)–(6.52)

From the definition of Gℓ(Q), we have Gℓ

(
Qopt
ℓ

)
= Fℓ

(
Qopt
ℓ

)
+ Gℓ+1

(
Qopt
ℓ+1

)
for ℓ =

3, . . . , L − 1. We thus obtain

Fℓ
(
Qopt
ℓ

)
− µopt

ℓ−1 + µ
opt
ℓ = Fℓ

(
Qopt
ℓ

)
− Gℓ

(
Qopt
ℓ

)
+ Gℓ+1

(
Qopt
ℓ+1

)
(6.56)

= 0. (6.57)

Similarly, we have F2
(
Qopt

2

)
+µopt

2 = F2
(
Qopt

2

)
+G3

(
Qopt

3

)
= G2

(
Qopt

2

)
= G2

(
Q̂(G2(Q))

)
=

0 and FL

(
Qopt

L

)
− µopt

L−1 = FL

(
Qopt

L

)
− GL

(
Qopt

L

)
= 0 because GL(Q) = FL(Q).

proof of (6.53)

We firstly consider the case where the condition Hℓ+1 is satisfied. In this case, Qopt
ℓ+1

is determined as Qopt
ℓ+1 = Q̂ (Gℓ+1(Q)). We define ℓ′ (< ℓ) as the maximum index that

Hℓ′ is true, i.e., the conditions Hℓ,Hℓ−1, . . . ,Hℓ′+1 are not satisfied and the condition
Hℓ′ is satisfied. By using Algorithm 6.2, we can obtain Gℓ′(Q) = ∑ℓ

k=ℓ′ Fk(Q) and
Qopt
ℓ = Qopt

ℓ−1 = · · · = Qopt
ℓ′ = Q̂ (Gℓ′(Q)). We thus have Qopt

ℓ+1 = Q̂ (Gℓ+1(Q)) >
Q̂

(∑ℓ
k=ℓ′ Fk(Q)

)
= Q̂ (Gℓ′(Q)) = Qopt

ℓ and hence Qopt
ℓ − Qopt

ℓ+1 ≤ 0.
If the condition Hℓ+1 is not satisfied and Qopt

ℓ+1 = Qopt
ℓ , we also have Qopt

ℓ −Qopt
ℓ+1 ≤ 0.

proof of (6.54)

If the condition Hℓ+1 is satisfied, µopt
ℓ = Gℓ+1

(
Qopt
ℓ+1

)
= Gℓ+1

(
Q̂(Gℓ+1(Q))

)
= 0 and

hence µopt
ℓ ≥ 0 holds.

Next, we assume that the condition Hℓ+1 is not satisfied. In this case, we have

Q̂ (Gℓ+1(Q)) ≤ max
j=2,...,ℓ

Q̂ FG
H

ℓ∑
k= j

Fk(Q)IJ
K
. (6.58)

We define ℓ′ (< ℓ + 1) as the maximum index that Hℓ′ is true, i.e., the conditions
Hℓ,Hℓ−1, . . . ,Hℓ′+1 are not satisfied and the condition Hℓ′ is satisfied. We can obtain

Q̂ (Gℓ′(Q)) > max
j=2,...,ℓ′−1

Q̂ FG
H
ℓ′−1∑
k= j

Fk(Q)IJ
K
, (6.59)

Gℓ′(Q) = Gℓ+1(Q) +
ℓ∑

k=ℓ′
Fk(Q), (6.60)
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and Qopt
ℓ+1 = Qopt

ℓ = · · · = Qopt
ℓ′ = Q̂ (Gℓ′(Q)). In what follows, we often use the following

lemma.
Lemma 6.C.1. For strictly increasing functions f (Q) and g(Q) with the range R, we
have

Q̂ ( f (Q)) < Q̂ (g(Q)) ⇐⇒ Q̂ ( f (Q)) < Q̂ ( f (Q) + g(Q)) < Q̂ (g(Q)) . (6.61)

The proposition obtained by replacing all of < with ≤ also holds.
To prove µopt

ℓ ≥ 0, we will show that

Q̂ (Gℓ+1(Q)) ≤ Q̂

(
ℓ∑

k=ℓ′
Fk(Q)

)
, (6.62)

which results in Q̂ (Gℓ+1(Q)) ≤ Q̂ (Gℓ′(Q)) from (6.60) and Lemma 6.C.1. If Q̂ (Gℓ+1(Q)) ≤
Q̂ (Gℓ′(Q)) holds, we can obtain µopt

ℓ ≥ 0 as µopt
ℓ = Gℓ+1

(
Qopt
ℓ+1

)
= Gℓ+1

(
Qopt
ℓ′

)
=

Gℓ+1
(
Q̂ (Gℓ′(Q))

)
≥ Gℓ+1

(
Q̂ (Gℓ+1(Q))

)
= 0.

To show (6.62), we provide the proof by contradiction with the assumption

Q̂ (Gℓ+1(Q)) > Q̂

(
ℓ∑

k=ℓ′
Fk(Q)

)
. (6.63)

From (6.60), (6.63) and Lemma 6.C.1, we have

Q̂

(
ℓ∑

k=ℓ′
Fk(Q)

)
< Q̂ (Gℓ′(Q)) < Q̂ (Gℓ+1(Q)) . (6.64)

It follows from (6.59) and (6.64) that

max
j=2,...,ℓ′

Q̂ FG
H

ℓ∑
k= j

Fk(Q)IJ
K
< Q̂ (Gℓ′(Q)) < Q̂ (Gℓ+1(Q)) . (6.65)

From (6.58) and (6.65), we can obtain

Q̂ (Gℓ+1(Q)) ≤ max
j=ℓ′+1,...,ℓ

Q̂ FG
H

ℓ∑
k= j

Fk(Q)IJ
K
. (6.66)

We define ℓ1 as ℓ1 = arg max
j=ℓ′+1,...,ℓ

Q̂
(∑ℓ

k= j Fk(Q)
)
, which results in

Q̂ (Gℓ+1(Q)) ≤ Q̂

(
ℓ∑

k=ℓ1

Fk(Q)
)
. (6.67)
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Since ℓ′ + 1 ≤ ℓ1 ≤ ℓ, the conditions Hℓ, . . . ,Hℓ1 are not satisfied and hence we have

Q̂(Gℓ1(Q)) ≤ max
j=2,...,ℓ1−1

Q̂ FG
H
ℓ1−1∑
k= j

Fk(Q)IJ
K
, (6.68)

Gℓ1(Q) = Gℓ+1(Q) +
ℓ∑

k=ℓ1

Fk(Q). (6.69)

Lemma 6.C.1, (6.67), and (6.69) give

Q̂ (Gℓ+1(Q)) ≤ Q̂
(
Gℓ1(Q)

)
≤ Q̂

(
ℓ∑

k=ℓ1

Fk(Q)
)
. (6.70)

From (6.65) and (6.70), we have

Q̂ (Gℓ′(Q)) < Q̂ (Gℓ+1(Q)) ≤ Q̂
(
Gℓ1(Q)

)
. (6.71)

With a similar approach to (6.69), we can also obtain

Gℓ′(Q) = Gℓ1(Q) +
ℓ1−1∑
k=ℓ′

Fk(Q) (6.72)

and

Q̂

(
ℓ1−1∑
k=ℓ′

Fk(Q)
)
≤ Q̂ (Gℓ′(Q)) < Q̂

(
Gℓ1(Q)

)
. (6.73)

It follows from (6.59) and (6.73) that

max
j=2,...,ℓ′

Q̂ FG
H
ℓ1−1∑
k= j

Fk(Q)IJ
K
< Q̂

(
Gℓ1(Q)

)
. (6.74)

If ℓ1 = ℓ′ + 1, (6.74) contradicts (6.68) and hence we can conclude (6.62) and µopt
ℓ ≥ 0.

Otherwise ℓ1 > ℓ′ + 1, and in this case combining (6.68) and (6.74) gives

Q̂(Gℓ1(Q)) ≤ max
j=ℓ′+1,...,ℓ1−1

Q̂ FG
H
ℓ1−1∑
k= j

Fk(Q)IJ
K
. (6.75)

We then define ℓ2 as ℓ2 = arg max
j=ℓ′+1,...,ℓ1−1

Q̂
(∑ℓ1−1

k= j Fk(Q)
)
. Here, note that ℓ′ + 1 ≤ ℓ2 <

ℓ1 < ℓ + 1. By repeating the same manner, we have a sequence ℓ1, ℓ2, . . . , ℓi satisfying
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ℓ′ + i − 1 ≤ ℓi < ℓi−1 < · · · < ℓ1 < ℓ + 1. Since {ℓ′ + i − 1}i=1,... is monotonically
increasing and {ℓi}i=1,... is monotonically decreasing, there exists ĩ satisfying ℓ′+ ĩ − 1 =
ℓĩ < ℓĩ−1 < · · · < ℓ1 < ℓ + 1. Moreover, similar to (6.74), we have

Q̂
(
Gℓĩ (Q)

)
> max

j=2,...,ℓ′+ĩ−2
Q̂ FG

H
ℓĩ−1∑
k= j

Fk(Q)IJ
K

(6.76)

= max
j=2,...,ℓĩ−1

Q̂ FG
H
ℓĩ−1∑
k= j

Fk(Q)IJ
K
. (6.77)

However, (6.77) contradicts the fact that ℓ′ (< ℓ + 1) is the maximum index of Hℓ′ being
true because ℓĩ > ℓ′. We thus conclude (6.62) and µopt

ℓ ≥ 0.

proof of (6.55)

If the condition Hℓ+1 is satisfied and Qopt
ℓ+1 is determined as Qopt

ℓ+1 = Q̂ (Gℓ+1(Q)), µopt
ℓ =

Gℓ+1
(
Qopt
ℓ+1

)
= 0 and hence µopt

ℓ

(
Qopt
ℓ − Qopt

ℓ+1

)
= 0 holds. Otherwise, Qopt

ℓ+1 = Qopt
ℓ and

hence µopt
ℓ

(
Qopt
ℓ − Qopt

ℓ+1

)
= 0 also holds.

Appendix 6.D Derivation of d2ΨSE
d(σ2)2

From (6.38), the second derivative of ΨSE,ℓ(σ2) is given by

d2ΨSE,ℓ
d(σ2)2

=
1
∆

L∑
k=1

{
T2
ℓ,k,kT ′

ℓ,k,k pG
(
Tℓ,k,k

)
− 2QkTℓ,k,kT ′

ℓ,k,k pG
(
Tℓ,k,k

)
+Q2

kT ′
ℓ,k,k pG

(
Tℓ,k,k

)}

− 1
∆

L+1∑
k=2

{
T2
ℓ,k−1,kT ′

ℓ,k−1,k pG
(
Tℓ,k−1,k

)
− 2QkTℓ,k−1,kT ′

ℓ,k−1,k pG
(
Tℓ,k−1,k

)

+Q2
kT ′
ℓ,k−1,k pG

(
Tℓ,k−1,k

)}
(6.78)

=
1
∆

L∑
k=1

(
Tℓ,k,k − Qk

)2 T ′
ℓ,k,k pG

(
Tℓ,k,k

)

− 1
∆

L+1∑
k=2

(
Tℓ,k−1,k − Qk

)2 T ′
ℓ,k−1,k pG

(
Tℓ,k−1,k

)
(6.79)
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=

√
∆

2σ5

L∑
k=1

(−rℓ + rk)3
{
−pG

(
Tℓ,k,k

)
+ pG

(
Tℓ,k,k+1

)}
, (6.80)

which results in (6.13).
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Conclusion

7.1 Summary
In this thesis, we have proposed several algorithms for the discrete-valued vector recon-
struction and analyze the reconstruction performance of some algorithms.

In Chapter 1, we have explained the discrete-valued vector reconstruction from
underdetermined linear measurements and provided several applications in communi-
cation systems. The problem of the discrete-valued vector reconstruction appears in
many applications, such as MIMO signal detection, channel equalization, decoding of
NO-STBC, multiuser detection, and FTN signaling. We have also described conven-
tional approaches for the discrete-valued vector reconstruction. Various low-complexity
algorithms using the discrete nature have been proposed on the basis of message pass-
ing or convex optimization. The message passing-based approach can achieve good
performance under some assumptions on the measurement matrix, whereas the convex
optimization-based approach does not require such assumptions in the algorithm.

In Chapter 2, we have proposed the reconstruction algorithm for the binary vector via
iterative convex optimization. The proposed IW-SOAV iterate the W-SOAV optimization
and the update of the parameters in the objective function. For the W-SOAV optimization,
we have derived the algorithm based on Douglas-Rachford algorithm, which is one of
proximal splitting methods. In each iteration of IW-SOAV, we can improve the estimate
of the unknown vector by using the tentative estimate in the previous iteration as the
prior information. Simulation results show that the proposed method outperforms several
conventional methods in massive overloaded MIMO signal detection and the decoding
of NO-STBCs.

In Chapter 3, we have extended the conventional SOAV optimization to the SCSR
optimization for the reconstruction of complex discrete-valued vector. The proposed
SCSR optimization uses the weighted sum of some sparse regularizers in the complex-
valued domain as a regularizer for the discrete-valued vector. Moreover, we extend
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the SCSR optimization to the W-SCSR optimization and propose the iterative approach
named IW-SCSR, where we iteratively solve the W-SCSR optimization with the update
of the parameters in the objective function. By solving the optimization in the complex-
valued domain, we can directly utilize the discrete nature of the unknown vector in
the complex-valued domain. Simulation results show that the proposed IW-SCSR can
achieve better performance than conventional methods in the applications of overloaded
MIMO signal detection and channel equalization.

In Chapter 4, we have proposed the algorithms on the basis of the SSR optimization.
The proposed SSR optimization uses possibly nonconvex sparse regularizer, whereas
only convex objective functions have been considered in the conventional methods. For
the SSR optimization, we have derived two algorithms on the basis of ADMM and PDS.
The proposed approach can also be used for the reconstruction of the complex discrete-
valued vector. Simulation results show that the proposed method with nonconvex
regularizers outperforms the conventional convex optimization-based methods.

In Chapter 5, we have analyzed the asymptotic performance of the Box-SOAV
optimization. By using the analysis using CGMT, we have characterized the SER of the
Box-SOAV in the large system limit. We have also proposed the method to obtain the
asymptotically optimal quantizer minimizing the asymptotic SER. From the result, we
can also optimize the parameters in the objective function of the Box-SOAV optimization.
Simulation results show that the empirical reconstruction performance agrees well with
the theoretical result in large-scale problems.

In Chapter 6, we have applied the idea of the AMP algorithm for compressed sensing
to the SOAV optimization. The resultant DAMP algorithm has low computational
complexity and its asymptotic performance can be predicted with the state evolution.
We have examined the asymptotic performance of the DAMP algorithm in the noise-
free case and derived the required measurement ratio for the perfect reconstruction.
Simulation results show that the performance of the DAMP algorithm is very close to
the theoretical result in large-scale problems.

7.2 Future Work
There are several remaining topics for the discrete-valued vector reconstruction and its
analysis. In this section, we provide the future work on the study in this thesis.

7.2.1 Interpretation of Iterative Approach
In Chapters 2 and 3, we have proposed the iterative approaches for the discrete-valued
vector reconstruction, where we iterate the optimization and the parameter update in
the objective function. However, the parameter update methods are rather heuristic
and there is no theoretical justification for the convergence of the overall algorithm.
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For similar iterative approaches such as iterative reweighted least squares (IRLS), the
relation to the corresponding nonconvex optimization has been discussed [119, 120]. It
would be interesting to reveal the relation between the proposed iterative approaches and
the nonconvex optimization behind them. It might also provide a reasonable method for
the parameter update.

7.2.2 Extension of Performance Analysis via CGMT

The extension of CGMT is also an interesting research direction. As in the performance
analysis via CGMT in Chapter 5, we have to assume that the measurement matrix A is
composed of i.i.d. zero mean Gaussian variables. Hence, the result cannot be directly
used when the measurement matrix does not satisfy the assumption. For example, even
when the measurement matrix has nonzero mean Gaussian elements, we would need
to modify the result in some manner. In the context of compressed sensing, however,
the performance of ℓ1 optimization with the nonzero mean measurement matrix has
been analyzed via the replica method in developed in statistical mechanics [121]. Since
the replica method is not rigorous in part, it would be an interesting topic to prove the
same result as in [121] via the rigorous approach using CGMT. As for message passing-
based approaches, it has been shown that the performance of EP-based algorithm can
be predicted for unitary invariant measurement matrices [51, 53]. It would also be
valuable to obtain the analytical result for optimization-based methods with such class
of measurement matrices.

The theoretical results for the SCSR optimization and the SSR optimization in Chap-
ter 3 and 4 have not been obtained. The asymptotic analysis for the SCSR optimization in
the complex-valued domain might be obtained by using a similar approach to [100]. For
the SSR optimization, CGMT cannot be directly applied because the objective function
is not convex. However, the upper bound of the reconstruction error might be obtained
as it has been provided for the MAP method in [122].

7.2.3 Application of CGMT to Optimization Algorithm

Since some update equations of the optimization algorithm can be written in the form of
an optimization problem, which can be solved more easily than the original optimization
problem. By analyzing the subproblem in the update equation, it might be possible to
obtain the evolution of the reconstruction error in the optimization algorithm like the
state evolution for the AMP algorithm. Moreover, this would enable us to determine the
asymptotically optimal parameters in the optimization algorithms such as the step size.
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7.2.4 Practical Applications
As described in Chapter 1, various problems in communications can be expressed as
the discrete-valued vector reconstruction. In some problems, the measurement matrix
is not i.i.d. Gaussian and have some structure depending on the system model. Hence,
the performance evaluation of the proposed algorithms is required to show the validity
in the application. Moreover, the unknown vector in some problems have an additional
structure other than the discreteness. In signal detection for MU-MIMO OFDM/SC-CP
explained in Section 1.2, for example, the unknown transmitted signal vector has not
only the discreteness but also the group sparsity. The use of such additional structure
would further improve the performance of the reconstruction.
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